Wy e

+

w.v, ”
TR Rt
B TR

LN L T
-&‘am(e P

PROGRAM PROTECTION MANUAL
FOR THE C - 64
 VOLUME I

K

Syt
P

R
g B a2

PSR P AR

W e

S b Sl

LR B T O R e (X g 5
BRIV LS O SCRNE R LI SA AR s U S LNEFPRE T)

' LEARN THE SECRETS OF SOFTWARE PROTECTION.
COPYRIGHT 1985]
BY CSM SOFTWARE, INC.
ALL RIGHTS RESERVED -
B R S

INTRODUCTION

This manual is designed for the computer user or programmer who
has some background in programming, machine 1language and
program protection. We are not going to assume a high level of
expertise. We only expect that the reader has read and become
familiar with the information presented in the PROGRAM
PROTECTION MANUAL FOR THE C-64 (VOLUME I).

The best way to get the most out of this book is to keep the
PROGRAM PROTECTION MANUAL FOR THE C-64 (VOLUME I) handy for
reference. One cannot be expected to remember all the
techniques described in the first manual, so feel free to refer
back to it for information when needed.

The information presented herein will be for illustrative
purposes only. The routines featured 1in this manual are
original and contain code similar to that in actual use. Don't
be surprised if you see some programmers using our routines in
the near future, they've done it before.

The first few chapters are a review of some very important
aspects of computer software. If the information contained 1in
these chapters seems familiar, that's because it is mainly from
the first manual on program protection. Please take the time to
re-read this information. It is very important!

The rest of the manual contains all new information, presented
in a logical manner. Read this book from front to back, first
chapter to last. The information presented in the earlier
chapters is used as building blocks for the T1later <chapters.
Take your time when reading the chapters, try to understand
each and every concept before going on. It has taken months to
compile the information contained in this manual so don't feel
bad if you don't understand all of it the first time through.

We have called upon many different experts to help us write
this manual. We would like to give special credit to these fine
folks for all their help. Without their help this manual could
not have been written.

SPECIAL THANKS TO THE FOLLOWING PEOPLE FOR CONTRIBUTING TO THIS
MANUAL - YOU FOLKS DID A GREAT J0B!!

BILL MELLON DAVE JOHNSON
CAYE GIRGENTI P. J. MYERS
PHIL SLAYMAKER MIKE POWERS

T. N. SIMSTAD

P.S. Thanks to my wife and kids for putting up with me while
writing this. .

COPYRIGHT NOTICE

PROGRAM PROTECTION MANUAL FOR THE C-64 VOLUME II
COPYRIGHT 1985 (C) BY CSM SOFTWARE INC
ALL RIGHTS RESERVED

This manual and the computer programs on the accompanying floppy disks, which are
described by this manual, are copyrighted and contain proprietary information
belonging to CSM SOFTWARE INC.

No one may give or sell copies of this manual or the accompanying disks or of the
listings of the programs on the disks to any person or institution, except as
provided for by the written agreement with CSM SOFTWARE INC.

No one may copy, photocopy, reproduce, translate this manual or reduce it to
machine readable form, in whole or in part, without the prior written consent of
CSM SOFTWARE INC.

WARRANTY AND LIABILITY

Neither CSM SOFTWARE INC., nor any dealer or distributor makes any warranty,
express or implied, with respect to this manual, the disk or any related item,
their quality, performance, merchantability, or fitness for any purpose. It is
the responsibility solely of the purchaser to determine the suitability of these
products for any purpose.

In no case will CSM SOFTWARE INC. be held liable for direct, indirect or
incidential damages resulting from any defect or omission in the manual, the disk
or other related items and processes, including, but not limited to, any
interruption of service, loss of business, anticipated profit, or other
consequential damages.

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. CSM SOFTWARE INC. will not assume any other warranty or liability. Nor
do they authorize any other person to assume any other warranty or liability for
them, in connection with the sale of their products.

UPDATES AND REVISIONS

CSM SOFTWARE INC. reserves the right to correct and/or improve this manual and
the related disk at any time without notice and without responsibility to provide
these changes to prior purchasers of the program.

IMPORTANT NOTICE

THIS PRODUCT IS SOLD SOLELY FOR THE ENTERTAINMENT AND EDUCATION OF THE PURCHASER.
IT IS ILLEGAL TO SELL OR DISTRIBUTE COPIES OF COPYRIGHTED PROGRAMS. THIS PRODUCT
DOES NOT CONDONE SOFTWARE PIRACY NOR DOES IT CONDONE ANY OTHER ILLEGAL ACT.

il et e L

ii

[es N o) oo~ oo - N —
~ — ~— ~— ~ ~— —

— S p—
& w N —
—

—
oy On

. .

——
. .

TABLE OF CONTENTS

SOFTWARE LAW . . .
ARCHIVAL COPIES

COPY PROTECTION

EVOLUTION OF COPY PROTECTION

THE FUTURE OF COPY PROTECTION .
INTRODUCTION TO MACHINE LANGUAGE

AUTOBOOTS . .
INTERRUPTS AND RESETS

COMPILERS . . .
UNDOCUMENTED OPCODES

ENCRYPTION TECHNIQUES
PROGRAMMING EPROMS

6510 AND THE PLA .
GCR RECORDING

READING GCR

WORKING INSIDE THE DISK DRIVE

STANDARD TRACK FORMAT
CUSTOM DOS ROUTINES

CARTRIDGES - EASY .
ADVANCED CARTRIDGES

DECRYPTION . .
THE BACKDOOR APPROACH

THE DOCTOR'S WAY
TRACING PROGRAMS

PROTECTING YOUR OWN SOFTWARE

ADVANCED MEMORY THEORY

EPROM/EEPROM PROGRAMMING (ADVANCED)

DEFINITIONS

»

. 46

— 0 o

19
35

61
71

. 78

88

93
]03

117
123

.130
.135

.159
.170

.181
.187

.203
.218

.233
.239

.265
.273

http:�..�.�.�.�.�.��

SOFTWARE LAW

The purpose of this chapter is to inform the user of the C(C-64
computer what they may and may not do with the programs they
have purchased. I am not a lawyer and I am not trying to give
legal advice. What I am trying to do is make the average user
more aware of some of the aspects of software law. If you have
any specific questions go to your own lawyer or a lawyer who
specializes in software law.

Programs may take many forms. They may be purchased on disks,
cassette tapes, cartridges or stringy floppies for the C-64.
The only difference between a blank disk and a word processing
program is a small amount of magnetic information that has been
placed on the disk. Usually the magnetic information can be
placed on the disk in less than a minute. With todays high
speed copy machines, programs may be duplicated within a
minutes or less. This will include the time necessary to verify
the disk.

Many programs take thousands of hours to develop. A good
program will need a great amount of time to develop and debug.
Anyone who has written even a simple program in BASIC can
verify this fact. Consider the time required to write a good
data base or a good word processor. (0Often times the program
will be developed by a group of programmers, all working
together to finish the program. Each programmer may be a
specialist in a particular aspect of the program. How can a
programmer make any money if it takes months to develop a
program and only minutes for a software pirate to copy?

Two methods currently exist to protect the program from
unauthorized copying. Both offer the programmer some amount of
protection for his software. First is the legal method, this is
the law of the country where the program is used. Second is the
copy protection method, this is the method that the programmer
uses to actually prevent unauthorized duplication of the
software. In this chapter I will cover a few of the more
popular legal ways of protecting computer software.

The Congress of the United States has passed a number of 1laws
to protect the author of a computer program. There are many
ways that a programmer may legally protect his software from
being copied.

1). Trade Secret:

Trade secrets will protect the program as long as the program
is kept a secret. If you keep your program secret and the code
that makes the program work a secret, you have the Dbest
protection of all. The difficulty comes in when you try to sell
the program to the customer. If you don't require the customer
and all the users to sign a non-disclosure agreement, your

PPMII SOFTWARE LAW PAGE 1

trade secret status may be lost. Trade secrets work well during
the development phase of the program, but they are impractical
if the program is to be mass marketed.

2). Patent Protection:

Copyrights only protects the expression of an idea, whereas a
patent will protect the idea itself. If your program is granted
a patent, you will have a seventeen year monopoly on your idea.
This sounds like it might be the ideal way to protect your
program. Right?

WRONG! Patents many times take two or more years to obtain,
your program may be obsolete before it has patent protection.
Also the patent office may be unwilling to provide your program
with a patent.

3). Trademarks:

The trademarks can only protect the name of the program, not
the program itself. If your program has a good name, you will
want to use a trademark to prevent anyone else from wusing the
same name on their products.

4). Copyright:

A copyright will protect the expression of an idea, not the
idea itself. Although this last statement may sound confusing,
it really is easy to understand.

Most lawyers agree the best legal protection for your software
is through the use of the copyright protection laws. In recent
years the copyright laws have been updated and protection has
been specifically extended to computer programs. This coverage
will apply if the program is on a disk, cassette tape,
cartridge or part of the internal ROM memory of the computer.

I stated earlier that the copyright will protect the expression
of an idea, not the idea itself. Let's look at this example.
You, as a software author are working on word processing
program. This is to be the best word processing program ever
made. It will have all the functions of any other word
processor plus a few new ideas of your own. While you are
writing the program, you make every effort to insure that no
one gets a copy of your <code, thereby insuring your trade
secret protection is maintained. Once the program 1is finished
you copyright the program and begin to market the program. A
few weeks later you find out that someone else has just
marketed a new word processing program, this program has every
feature that your program has. The two programs are very
similar and perform all the same functions. Could this be a
case of copyright infringement? Possibly, or it could be the
case of two programmers simultaneously creating similar
programs. Even though the programs appear to be similar, they

PPMII SOFTWARE LAW PAGE 2

have been <created independently of each other. The other
program may perform the same functions that yours does, but it
does it in a different way. It is not what the program does, it
is how it does it. Thus the statement: A copyright will protect
the expression of an idea, not the idea itself.

Let's take a look at another example. You develop a word
processing program. A software pirate buys a copy of your
program. He changes the name and a few 1lines of code. The
pirate then sells the program as his own. This is a clear cut
case of copyright infringement. One can not just change a few
simple lines of code and say that they are the author. If you
take the pirate to court it would be an easy case to win. The
program would have to be substantially different from your
program in ordered to be considered unique.

The copyright is automatically born when the program is created
and transferred from you to paper, disk or other media. You
have up to five years to perfect your copyright with the
Copyright 0ffice. When you wish to perfect the copyright, you
must follow a few simple steps. First, you need to place the
proper copyright notice in a conspicuous place, you must file
the proper form with the Copyright Office, send in a check for
Ten dollars, the first twenty five pages and the Tlast twenty
five pages of your program. It would be advisable to contact
your lawyer for further information on how to proceed.

You, as a software author, have copyrighted your program and
have done it properly. What is to prevent some one from copying
your program? The copyright 1law states that anyone who
willingly copies your program is in violation of the law. They
don't have to sell your program to violate the law, they only
have to copy it to be in violation. The law does provide for
the lawful owner of the program to make a copy for archival
purposes, The law also provides for the lawful owner of a
program to adapt (modify) the program if -the adaptation
(modification) is essential to the use of the program.

If you find that someone has violated the law and is copying
your program you can sue that person. You may recover any
actual damages that you incurred, your attorneys fees, court
costs and whatever other damages the court wishes to order. You
may also request an injunction to prevent the pirate from any
further copying of your program.

Your local library is a good source of reference on computer
software law. Many books have been written on the subject in
the past few years. Try to get the most recent one, because the
law is changing almost daily.

5). Limiting liability:
This form of protection may very well be the most important for

the software author. By 1limiting his Tliability the software
author can protect himself from wunhappy or dissatisfied

PPMII SOFTWARE LAW PAGE 3

customers. The personal computer is covered by consumer
protection laws. Anytime the consumer purchases a software
program (or most any item) certain warranties go with.

Three types of warranties are: express warranty, implied
warranty of fitness and implied warranty of merchantability.
The express warranty is created by the wording of the program
or a salesmans words (i.e. 'This program will sort five
thousand files in two seconds'). If the product won't do it, it
shouldn't say it. The implied warranty of fitness only comes
into play if a salesman states that the program will fulfill
his needs and the customer buys the product based upon the
salesmans recommendations. Again if the product won't do it,
don't say that it will. The implied warranty of merchantability
states that the product is as good as anyone elses. This
warranty is created automatically when your program is sold.

Why then, is limiting 1iability the most important type of
protection for the software author? Because if you, as the
software author, don't properly disclaim each and every
warranty, the author or seller may be open to a lawsuit if the
product does not perform as the buyer expected it to. In many
states the disclaimer must be placed in a conspicuous location,
visible without opening the package, in order to be valid. If
you put the disclaimer in the wrong location, it may be
considered void. Contact a lawyer for specific information on
limiting your 1lijability if you are considering writing
programs.

PPMII SOFTWARE LAW PAGE 4

ARCHIVAL COPIES

The dictionary defines the word ARCHIVE as follows: The place
where records or papers of historical interest are stored. The
meaning in the computer industry has taken a slightly different
turn. An archival copy of a program is a duplicate program that
is stored in a safe place, to be wused in the event that
anything should happen to the original. Software laws today
provide for the owner of a program to make an archival copy of
the original program., It is your right to make a copy of any
program that you purchase. You also have the right to modify
the program that you purchase, providing that you don't make
copies of the original or the modified programs for anyone
else.

I think that we all have purchased a program, gotten it home
and found that the program did not suit our needs. Sometimes
the program only needed a small change to suit our particular
needs. Other times the program was junk and we just wasted our
money. If you wish to modify the program, you may do so. You
may not give copies of the modified program to your friends. It
is still protected by copyright laws. Changing a few 1lines of
code or renaming the program will not let the purchaser usurp
the copyright Taw.

Software stored on disk, tape or computer chip is highly
susceptible to damage. Should the original copy of a program
become unuseable for any reason, the user only has to go to his
archives and retrieve the archival copy and he 1is back in
business.

How does one obtain an arvchival copy of a program? Some
software companies provide a backup program for a nominal fee.
Others do not. They leave it up to the individual to make his
own copy. In the interest of preventing software piracy some
companies make their software virtually wuncopyable. Other
companies offer the legitimate purchaser the right to obtain an
archival copy for a nominal fee, thereby keeping the honest
people honest.

What is the owner of the program to do? The manufacturer will
not supply a backup and the program has a great deal of
protection built in to prevent illegal copying. This protection
prevents the legitimate buyer from making an archival copy. It
seems some software companies want people to ‘'break' their
programs in order to obtain a backup copy. 'Breaking' a program
refers to removing all the protection schemes from a program.
'Breaking' a program will allow the program to be copied by any
convenient method. The broken program will perform exactly the
same as the original. The only difference between the original
and the broken version is the program protection. In some ways
it seems that software companies are encouraging piracy, by
forcing the end user to break a program in order to obtain an
archival copy. Once the program is broken anyone <can copy it

PPMII ARCHIVAL COPIES PAGE 5

and many times they do (illegally of <course). Remember, once
you have purchased the program it is yours, to do with as you
wish. You may modify the program, you can change the program,
you can even sell the original version of the program if you
wish. You may NOT make copies of the program to give or to sell
to other people. That is illegal.

I have many copy programs that will copy almost any disk,
errors and all. They take less than five minutes to make a copy
of a full disk and, in most cases, will make an exact duplicate
of the original program, including any errors. The major
problem with the copy programs is that the copied program will
perform just like the original.

You might ask why I think that this 1is a problem. If the
original disk used 'bad blocks' the copy will use 'bad blocks'.
'Bad blocks' 1is a type of program protection that will
literally beat your disk drive to death when the program Tloads
in to memory. The programmer will intentionally write a bad
block on the disk. This bad block does not <contain any
information, its only purpose is to generate an error when the
disk drive tries to read the block. The disk drive will make a
loud banging sound when it tries to read this bad block. This
banging results from the cam (that moves the read/write head)
bumping against its end stop. This bumping can be very hard on
the disk drive. Many disk drives have been knocked out of
alignment while trying to read a bad block.

It is the program author's right to protect his software from
unauthorized duplication. It is your right to protect your disk
drive from being beat to death. You have the right to protect
your investment from being rendered useless. It is your right
to 'fix' the program so that it will not beat your drive to
death. You also have the right to make an archival copy of your
programs. Don't let a protected program keep you from having
the copy you need.

In 1976 Congress passed the current copyright law. This law is
refered to as 'TITLE 17, USC, COPYRIGHTS'. A copy of this Tlaw
is not hard to find; all law libraries have one. Check with
your local court house or university libraries for a copy of
the act. Prior to 1976 the copyright laws could be found in the
'COPYRIGHT ACT OF 1909'. The 1909 1law did not specifically
address computer software (for a good reason - there weren't
any computers in 1909). It was not wuntil 1976 that computer
programs were specifically mentioned in the copyright 1law and
then only briefly. On December 12, 1980 the Congress revised
Section 117 of the 1976 copyright act to specifically include
computer software. The revision was known as 'COMPUTER SOFTWARE
ACT OF 1980°'.

The 1980 act provided a definition of a ‘computer program' (17
USC 101). Computer software is defined as: 'A COMPUTER PROGRAM
IS A SET OF STATEMENTS OR INSTRUCTIONS TO BE USED DIRECTLY OR
INDIRECTLY IN A COMPUTER TO BRING ABOUT A CERTAIN RESULT.'

PPMII ARCHIVAL COPIES PAGE 6

This definition is hardly startling or revolutionary; it is,
however, the first definition of computer software in a U.S.
copyright law.

The 1980 act is a revision of section 117 of the 1976 act. The
new section 117 provides some specifics relating to backing up
programs. It gives the lawful owner of a program the right to
copy or adapt a copyrighted program as long as the copying is
essential to using the program (117 USC 117):

"NOTWITHSTANDING THE PROVISIONS OF SECTION 106, IT IS NOT
AN INFRINGEMENT FOR THE OWNER OF A COPY OF A COMPUTER PROGRAM
TO MAKE, OR AUTHORIZE THE MAKING OF, ANOTHER COPY OR ADAPTATION
OF THAT COMPUTER PROGRAM PROVIDED (1) THAT THE NEW COPY OR
ADAPTATION IS CREATED AS AN ESSENTIAL STEP IN THE UTILIZATION
OF THE COMPUTER OR (2) THAT THE NEW COPY OR ADAPTATION IS FOR
ARCHIVAL PURPOSES ONLY AND THAT ALL ARCHIVAL COPIES ARE
DESTROYED IN THE EVENT THAT CONTINUED POSSESSION OF THE
COMPUTER PROGRAM CEASES TO BE RIGHTFUL.'

"ANY EXACT COPIES PREPARED 1IN ACCORDANCE WITH THE
PROVISIONS OF THIS SECTION MAY BE LEASED, SOLD, OR OTHERWISE
TRANSFERRED, ALONG WITH THE COPY FROM WHICH THE COPIES WERE
PREPARED, ONLY AS PART OF THE LEASE, SALE OR OTHER TRANSFER OF
ALL RIGHTS IN THE PROGRAM. ADAPTIONS SO PREPARED MAY BE
TRANSFERRED ONLY WITH THE AUTHORIZATION OF THE COPYRIGHT
HOLDER.'

The COPYRIGHT ACT OF 1980 allows the backing up of a
copyrighted program for archival purposes provided that the
archival copies ARE NOT retained by original purchaser after
the purchaser sells the program. This means that you are
allowed to keep backup copies of the program as 1long as you
keep the original. In most cases there 1is only one occasion
when you can no longer keep a back up copy. That's when you
sell it to someone else.

The purchaser of a copyrighted program is allowed to make an
adaptation (change or modify) as long as the adaptation is an
essential step in the utilization of the program. The purchaser
may not sell or transfer the adapted program without the
authorization of the copyright holder. A1l adaptations of the
original program must be destroyed upon sale of the original!

PPMII ARCHIVAL COPIES PAGE 7

COPY PROTECTION

Copy protection refers to the methods that a software author
uses to protect his program from wunauthorized duplication.
These methods range from the simple to the bizzare. Most often
copy protection is an afterthought. The software author will
spend weeks or months writing a program. Then he usually spends
a few hours protecting his work. I have seen programs that have
taken literally thousands of hours to write, then the author
spends thirty minutes on the protection scheme.

Programs on cassette may be protected by several methods. The
program may be stored on the tape in several parts. Each part
will load the next part. Information may be stored in such a
way that it may be difficult to copy with only one cassette
player. There is not a lot one can do to protect software saved
on cassette. There are a few firms which make an interface
which will allow the user to copy any cassette based program to
another cassette. These interfaces will make exact copies of
the original. When one considers the cost of such an interface,
it will provide the most economical method of program
duplication. Find a friend who has a cassette player and share
the cost of the interface.

Disk based programs can not be copied as easily as cassette
based programs. If they could there would not be any need for
this book. Programs stored on disk have more options as to
their copy protection. The BLOCK ALLOCATION MAP (BAM) may be
modified. The DIRECTORY (DIR) can be hidden from the user or it
may be modified to prevent the user from listing the directory.
Special information may be stored on the disk in such a manner
that it may not be easily retrieved by the average wuser. Many
different types of errors may be intentionally placed on the
disk. These errors will be checked by the program as it runs.
If the error is of the proper type and at the proper Tlocation
the program will execute. If some one makes a copy of the
original disk and does not place the errors on the duplicate
disk the program will not run. Disks may be formatted on a disk
drive that is not totally compatible with the 1541. The program
will load and run properly, but duplicates can not be made on
the 1541 disk drive.

Information is stored on the disk in what is called a BLOCK.
There are 683 blocks of information that may be wused on the
1541 drive. Each block may contain up to 256 BYTES of
information. In addition to the 683 blocks, the disk will also
contain some special information (header) including SYNC MARKS,
ID numbers, CHECKSUM and TRACK and SECTOR numbers. The disk
drive uses this special information to process and identify the
block. This special information is referred to as the HEADER.
Some software manufacturers will modify the 'header' in such a
fashion that this block of information is no longer readable by
the disk drive. Once a block has been modified in this manner

PPMII COPY PROTECTION PAGE 8

it is referred to as a BAD BLOCK. Generally a bad block does
not contain any information, it is just there to <create an
error when the disk drive tries to read it.

I am sure that you have all tried to 1load a disk that has
contained a bad block. While the program 1is 1loading the red
light will flash and the disk drive will make a 1loud banging
noise. This noise is generated by the disk drive when it tries
to read the bad block. The disk drive can not properly read the
information contained in on the disk. When this occurs the disk
drive will mechanically re-position the read/write head. To do
this it is necessary to pound the stepper motor cam against its
end stop. The read/write head of the disk drive is attached to
the stepper motor cam. When the bad block 1is encountered, an
error will be generated and the read/write head will 1literally
get beat to death. In other words, if the disk drive tries to
read a bad block the read/write head will pound against the end
stop in an attempt to retrieve the information from the disk.

I know that all of you have heard that there is a problem with
the 1541 disk drives going out of alignment. Reading and
writing bad blocks is a major contributor to this
mis-alignment. Why would a software manufacturer put bad blocks
on a disk when it may tear up the disk drive when their program
tries to read the bad block??? Because they cares more about
protecting their program from pirates than they do about your
disk drive. If your disk drive gets beat to death +trying to
read his program, that's your problem (or so they think).

While I am on my soap box, I would like to tell a little story
that happened to me. About six months ago I purchased a
protected program (cost $95.00). After using this program for
less than two months the program developed a flaw in it (due to
jts protection scheme). After contacting the manufacturer, I
was told to send in the original program disk and they would
send me a new copy (for $12.00). The trouble was that I needed
the program and could not afford to wait two or more weeks, as
they requested. It was necessary for me to modify the original
disk so that it could be returned to working condition and it
was also necessary to repair my drive. '

In an effort to prevent any one from making a copy of the disk
the company used a technique called bad blocks on the disk. As
you all know, when the disk drive tries to read a bad block the
drive makes a loud banging noise. This noise is a direct result
of the drives stepper motor cam pounding against a stop. This
pounding can be very harmful to the disk drives' mechanical
parts. After the drive mechanism pounds against the stop enough
times, the drives' stepper motor will become mis-aligned. The
read/write head, which is attached to the stepper motor, will
be beat out of alignment and the disk drive will no Tlonger be
able to read or write any information from the disk.

PPMII COPY PROTECTION PAGE 9

On the disk I purchased, the program would read a portion of
the program into memory, modify it and re-write the information
back to the original disk. While loading the program, the disk
drive made an unusually 1loud and hard <clicking noise (bad
blocks were used). After this, the disk drive had a hard time
reading the information from the disk. After the program had
run and all the information had been processed, the program
attempted to write the information back to the disk. After
partially writing the information, the program stopped. The
disk drive head had been knocked out of alignment when the
program tried to read the bad block. My disk drive was damaged
and the program was rendered useless, even when used on a good
drive. The company's protection scheme prevented me from making
a backup copy of the program and my drive was made useless.

I cannot begin to tell you of all the people who, after trying
to load one of these protected programs, have had their disk
drives damaged. If you have not had your disk drive beaten out
of alignment, just wait. Your turn is coming!

Some of the newer protection schemes rely on different forms of
data on the disk. Rather than have the disk drive's normal DOS
(Disk Operating System) read the data from the disk, many
programmers are now writing their own routines to read this
data from the disk. What may appear as an error to the normal
DOS may be the programmers own form program protection.
Programmers have just recently begun to read and write data to
the disk at will. This is accomplished by writing their own ML
routine that resides in the RAM memory of the disk drive. All
the programmer has to do is execute this routine to read or
write data from the disk. Since the disk drive 1is wunder the
control of this new routine all of the error checking routines
may be bypassed. This allows the programmer to read
non-standard dats as it comes from the disk. The specific
routines and alograthims will be explained in further detail in
later chapters of this book.

Cartridge programs may also be copy protected. The fact that
the program resides on a cartridge, is copy protection enough
for most people. Down loading the cartridge to disk (cassette)
can usually be accomplished very easily. The information stored
on the cartridge may then be loaded in the normal fashion and
executed. More on this in the chapter on cartridges.

PPMII COPY PROTECTION PAGE 10

EVOLUTION OF PROTECTION SCHEMES

In this chapter we will try to cover the -evolution of disk
protection schemes for the C-64. We will give an overview of
the schemes that have appeared on the majority of software
during the past few years. The schemes discussed will be those
that work and those that don't. Those that work will be covered
with special emphasis. You may want to use this guide to help
you understand the various types of protection.

IN THE BEGINNING....

In the beginning there were not any copy programs for the C-64.
The owner of the C-64 had much diffilculty making an archival
copy of his treasured software. It was a dark and desolate time
for the owner of the C-64 computer. There was not much software
available for this new and powerful machine. The software that
was available was overpriced, poor quality and mostly written
in BASIC.

When the proud owner of a new piece of software would get it
home, he immediately tried to make an archival copy of the
valuable new program. This required the user to LOAD and SAVE
each and every file from the disk. If each file was a BASIC
program file, it would not pose much of problem. Al1 the
programmer had to do was just use another type of file (seq,
usr, rel or ML) on the disk and the user could no 1longer back
up the original disk by just simply LOADing and SAVEing the
files.

The early types of program protection that developed were
simple, easy to implement and mostly ineffective. Most of the
original software for the C-64 was written 1in BASIC. The
original protection schemes were designed to prevent the user
from simply loading and then saving the program directly from
memory. This could be done in a number of ways. First (and most
ineffective), is through the use of a few simple POKEs when the
program was RUN. These POKEs would disable the RUN/STOP &
RESTORE keys, thereby preventing the wuser from stopping the
program, If the user could not stop the program, they could not
save the program back to another disk. This type of protection
was only effective if the user ran the program. All the user
had to do was to LOAD the program into memory, and immediately
SAVE the program back to another disk. The SAVE had to be
performed prior to RUNning the program. It didn't take 1long
before the end user was able to copy all his software by simply
LOADing and SAVEing the files.

The first improvement in program protection came through the
use of a boot or loader program. This boot was also written in
BASIC. In order for the main program to operate properly it was
necessary to load the main program from another program (the
boot or loader program). The user would load and RUN the loader

PPMII EVOLUTION PAGE 11

program. The loader program would POKE a few values into memory
then it would LOAD and automatically RUN the main program. The
main program would then check (PEEK) to see if the first
program had placed the proper values into memory. This way the
user could not simply LOAD and SAVE just the main program, they
also had to SAVE the boot. Occasionally the Tloader program
would have hidden lines, some pointers reset or bogus 1line
numbers (see the PPM volume 1). A1l this was an attempt to
confuse the 1inexperienced wuser and was - still not very
effective.

Then came the first real step forward in program protection,
the use of a ML loader. Not just any old ML 1loader, but an
auto-loader. An auto-loader is a ML program that resides in a
special area of memory (see the chapter on auto-loaders). When
the auto-loader is loaded into memory it will automatically
execute (run). There is no need to tell the computer to RUN
(nor SYS). As soon as the program is loaded into memory the
program executes. Generally these auto loaders perform the same
functions as the BASIC loader performs. They will store a few
values in memory and then LOAD and execute the main program,.
The main program will check for these special values as it
executes. If the special values are there the program will run,
if not the program will crash. It was still possible to LOAD
the BASIC program and SAVE it from memory. One problem though,
if the user was not sophisticated enough to go into the BASIC
program and modify it so that it would not require the special
values in memory, it still would not run. When the wuser tried
to LOAD the ML auto-loader it would immediately execute,
preventing the user from copying the ML auto-loader. As long as
the user did not know much about BASIC programming this was an
effective technique. Even if the user could LOAD and LIST the
BASIC program, they still had to have enough knowledge to
modify it so it would properly execute without the loader.

Shortly thereafter, the BASIC programs began to be replaced by
ML. Now the user could not LIST either the loader or the main
program. Since the main program was written in ML, the user
could no longer just LOAD and SAVE it. This posed quite a
problem for the user; it became almost impossible to back wup
the disks that they purchased. Well, about this time, a copy
program appeared on the market. Not just any old copy program,
but 1541 BACKUP!! This would copy a whole disk in 30 minutes.
I'm sure some of you 'old timers' remember this one, it was the
copy program with the ‘'gas gauge'. The program was slow and
limited in what it would do, but it worked! It was possible
copy the whole disk., from track 1 to track 35, without even
knowing what was on the disk. This program would copy all types
of files, BASIC or ML, Program, Sequential, User or Relative.
The only thing that the copy program would not do is make a
copy of a disk with an error on it. The copy program would just
‘give up' if it encountered an error.

PPMII EVOLUTION PAGE 12

Well, it didn't take long until someone came up with idea that
they could stop this type of copy program. A1l they had to do
was to create an error on the disk. They Jjust intentionally
placed an error on the disk so that when the copy program
encountered the error it caused the program to give wup. The
idea here is to inhibit or prevent the user from making a copy;
the error served no purpose other than keeping the wuser from
copying the disk. Two general types of errors appeared on the
scene. The first and most common type of error involved the use
of modified data on the disk. A1l the programmer had to do is
put some data on the disk that should not be there and the disk
drive would interpret this as an error. The disk drive has a
very sophisticated error checking routine that insures proper
reading of the data. If as little as one byte is 'out of place'
the drive will give an error condition. The most common type of
errors to appear were 20, 21, 22, 23, & 27. These errors, while
undesirable, were 'acceptable' (you'll see what I mean by
‘*acceptable'). When the disk drive read this type of error it
would cause the READ/WRITE head to beat against its end stop.
This beating, if it occurred repeatedly, would cause the drive
to go out of alignment. Keep in mind that at this stage of
program protection the program never read this error. The
error's only purpose was to inhibit the user from copying the
disk. This makes the error acceptable.

The second and the least common type of error 1is where the
programmer would punch a hole in the disk. The programmer would
save the program on the disk in such a manner that a certain
track or group of tracks (usually the outer tracks) would be
unused. The programmer would then use a paper punch to punch a
hole in disk on these unused tracks. The original disk would
never move the R/W head over this ‘error' on the disk. The
programmer would then place all kinds of warning labels on the
program informing the user that if they tried to copy the disk
their disk drive would be damaged. If the user tried to make a
copy of this disk they would end up ruining their disk
drive!!!! When the disk drive encountered the hole in the
disk, the R/W head would usually become damaged beyond repair.
This seemed like a pretty good way for the programmer to
protect his program, right?? WRONG! The programmer overlooked
one small fact. When the disk drive reads information from a
disk the R/W head is left in last position that it read data
from the disk. This means that if the user were to read another
program that used the outer tracks, the disk drives R/W head
would remain on the outer tracks. Now, just suppose what would
happen to the disk drive 1if the disk with the hole were
inserted and the wuser tried to LOAD the program. Instant
disaster, because the R/W head had been 1left on the outer
tracks from the last disk; now when the ‘'punched' disk s
inserted, the R/W head will be directly over the hole. The
legitimate user would have destroyed his disk drive, all
because some programmer didn't take the time to properly
protect his program.

PPMII EVOLUTION PAGE 13

About this time copy programs took a great step forward. The
file copy program appeared. The file copy program would allow
the user to copy any type of file from one disk to another. It
was now possible to just copy all the files from the original
disk and make a perfect copy. Well it didn't take 1long before
the programmers came up with a method of preventing file
copying a disk and getting a working copy.

The next 'little' evolution in program protection is the most
disasterous change that could have occurred. Some ‘'bright'
programmer came up with the idea that if they «could put an
error on the disk to inhibit anyone from copying the disk it
might be possible have the program itself check for the error
on the disk. This is where program protection began to stink.
Remember that whenever the disk drive encounters an error the
R/W head gets beat up against its end stop. Now every time that
one of these 'protected programs' loads into memory the error
gets checked. Every time the user loads one of his favorite
programs into memory the protection scheme causes the R/W head
to beat up against the end stop. After the R/W head bangs
enough times, the drive gets pounded out of alignment.

We are going to introduce a very important concept here; take
time to understand this. Let's look at the concept of program
protection.

1). The programmer places non-standard data on the disk (data
that would not normally be there, i.e. the error).

2). The program checks for the presence of this non-standard
data (the error).

3). If the non-standard data is present (as on the original
disk), the disk drive will pass a specific value(s) to the
computer., If the non-standard data is not present (as on
the copy disk) the disk drive will pass a different value
to the computer.

4). If the proper value is returned from the disk drive the
program will execute properly. If the incorrect value is
returned from the disk drive, the program will crash.

This 'error checking' form of program protection is especially
hazardous to the <casual wuser of protected programs. Some
programs go so far as to tell the user that 'NOISE AT THE END
OF LOAD IS NORMAL'. The poor wuser, who does not know any
better, will end up beating their disk drive to death while
listening to the 'NORMAL' noise. Thousands of disk drives have
been beat out of alignment by this 'NORMAL' noise.

This error checking caught on like wild fire. Before long every
programmer was using this terrible form of program protection.
The programmers somehow never gave any thought to what might
happen to the users disk drive after repeated use of the
protected program. Even worse than that is some progrmmers knew

PPMII EVOLUTION PAGE 14

the effects of these errors on the disk drive and wused them
anyway.

Generating these errors required a programmer to have a very
thorough understanding of how data is stored on the disk and
how this data could be manipulated. It was no simple task to
write a program that would allow the user to duplicate these
errors. In fact, for a short time this error checking was
uncopyable. The programmers were smug in the belief that they
had a form of program protection that was beneficial to the
software industry. This error checking kept the wuser from
making a working copy of the origial disk and thereby prevented
software piracy.

Well, the user soon realized that his disk drive was getting
beat to death by using these protected disks. In order for the
end user to use the software without destroying their disk
drive, it became essential to modify the program. If the wuser
was to keep their disk drive in alignment, it was necessary to
remove the need for the program to find the error on the disk.
This is where the casual user found himself reading books on ML
and trying to find out ways. . to modify the original program.
When the user found out how simple was 1is to modify these
protected programs, it wasn't long before everyone was doing
it.

Then a company wrote a program (UNGUARD BY MICRO-W) that would
allow the user to repoduce these errors on the copy disk (why
anyone would want to reproduce these errors is beyond me). Now
the user had a tool to make an archival copy of their valued
program. UNGUARD would do errors 20, 21, 22, 23 & 27. This
program was a real break through for the user who only wants to
reproduce these errors.

It didn't take the programmers long to come up with a new type
of error that could be used for program protection. This ‘'new'
error was #29, I.D. mismatch. The way that programmers
generated this error is by reformatting a single track with a
different I.D. Error 29 is unique in that it does not cause the
head to beat against the end stop. Error 29 was a pleasant
change on the program protection scene. This type of protection
offered the programmer some measure of security for their
software without beating the user's disk drive to death,

It wasn't very 1long before the wusers found a method of
producing the error 29. A simple BASIC program could be written
that would allow the user to reformat any track with any 1I.D.
desired.

We are now at the time where the endless cycle in program
protection really becomes apparant. The programmers have found
a way to protect their software. Shortly thereafter, a company
writes a program that will «copy those disks. Then the
programmers change their protection scheme, making it
uncopyable. In a few months some other company writes a copy

PPMII EVOLUTION ' PAGE 15

program that will allow the user to back up this new protection
scheme. Then the programmers come up with a new protection
scheme that can not be copied..... and so on and so on.

Now the level of expertise in program protection is at a new
plateau. Programmers have become more sophisticated and so have
the program protection schemes. Some companies have included an
extra sector on tracks 18-24. This may seem 1like a new
protection scheme, but it is really a very old technique. The
extra sector is a hold over from the days of the 2040 & 3040
disk drives from Commodore. Commodore disk drives used to have
one more sector than the 1541 does on tracks 18-24. All a
programmer had to do is use the format from a 2040 or 3040 disk
drive and copy his program on to it. Then the programmer checks
for the presence of the extra sector, if it's there the program
‘will execute properly. If the extra sector is not there, the
program will crash.

Well, in just the past few months we have seen some very
drastic changes and advancements in the field of program
protection. Programmers have learned how to read and write data
anywhere on the disk. The data can be written on the track or
in between tracks (half-tracks). The data can be placed beyond
track 35 (extra tracks). The data may be written at different
speeds to the disk (modified density). The data can be written
in a number of different ways to the disk. It is not important
how the programmer choses to write the data on the disk. What
is important is that the programmer must be able to verify that
the non-standard data is present. Recall our discussion of the
concept of program protection. Keep in mind that no matter what
form of program protection is used on the disk, the same basic
premise of checking for the non-standard data is followed.

We have made an attempt to bring the reader up to date in the
field of program protection. From here it will be necessary to
look at the specific way that data is stored on the disk, how
this data can be modified and how a program can be written that
will read this non-standard data. Up to now the information
presented has been very straight forward and easy to follow.
From here on out, in may take a little more <concentration to
fully understand the material. If you don't grasp everything we
are telling you, don't worry about it. Take your time and
re-read the following chapters if necessary.

PPMII EVOLUTION PAGE 16

THE FUTURE: A PERSONAL OPINION

We've stepped through the evolution of copy protection
techniques and now it's time to look at the future. What is the
direction for copy protection, and what does that mean to the
user? Will the new protection schemes prohibit you from making
an archival copy of your software?

Copy protection is becoming so sophisticated that many of the
current copy programs are unable to handle the present schemes
let alone those of the future. We have investigated the newest
copy programs on the market and have found each one lacking in
some way. Some are better than others, but none have been able
to successfully overcome all of the protection schemes
currently being wutilized. This dis not meant to be a
condemnation of copy programs, but merely a statement of fact.

We are now approaching a level of protection that simply cannot
be overcome. This is mainly due to. the built 1in hardware
limitations of the 1541 Disk Drive. "

You may have noticed that the newest copy programs will only
copy specific programs. A few months 1later, an update 1is
offered that will copy a few more programs. This is the future
folks! Most of the copy programs today 1include a routine to
read the headers of the original disk. Once this information is
read, the program goes into a routine to duplicate THAT
specific disk. If it is not a disk that has been analyzed ‘in
house' and provided for through the copy program, you will
probably end up with an unsuccessful copy attempt. With the
introduction of non-standard sectors, altered density bits,
extra sectors, and the like, it is becoming increasingly more
difficult for a copy program to allow for and deal with all of
these possibilities. We can copy a disk that wutilizes all of
these techniques, but where these errors are to be placed on
the disk and which techniques will be used is the problem we
face now. This does not include what weé will encounter in the
future. Copying some of these schemes will require extensive
investigation of each track and sector of the original disk and
even then we have the problem of duplication. Some of the
schemes being developed today may, because of hardware
limitations, prove impossible for the 1541 disk drive to
duplicate.

Where does this leave the 1legitimate wuser? Although the
programmers intent is to keep his work safe from the ‘'pirate',
it is the legitimate user that comes up on the 'short end' in
this never-ending saga. It would seem that every program you
buy, requires that you also purchase an wupdated copy program
before you can exercise your right to make an archival copy of
your software. And what about those who own other types of disk
drives? Are they to be kept from wusing the Jlatest software
because the protection scheme being utilized by the programmer
can only be read from a 1541 disk drive? Copying some of these

PPMII THE FUTURE PAGE 17

schemes requires extensive investigation of each track and
sector of the original disk and even then we have the problem
of duplication.

Making a archival copy of your original program, still does not
allow you to exercise all of your rights. You are allowed by
law to make revisions to the programs that you own (provided
that these revisions are essential the 1lawful use of the
program). This may be a crucial factor in business software, or
utility programs. The programs you buy may not satisfy all of
“your needs. You may purchase a program and find yourself
wishing that it had one or two more features. If you could
access the code, you could add those features! A perfect copy
of the original disk will not allow you access to the code if
the program is protected. Let's not forget that some of these
programs still 'beat' your disk drive to death. A copy disk
will not eliminate this problem for you either.

The material presented 1in this book, along with it's
predecessor {PROGRAM PROTECTION MANUAL FOR THE C-64), 1is
designed to offer you an alternative. You can take control of
your software, or you can remain a passive victim. The road to
control may seem rocky at first, but it is worth the time and
effort. With the techniques and tools provided through these
manuals, you will learn to create your archival copies and have
the access necessary to alter the program code to suit your
needs. With time, patience, effort, and careful study, you will
no longer have to purchase those expensive ‘updates' to
exercise your rights.

Try out the techniques presented in this manual. If one doesn't
work, try another, You'll find that what you 1learn from one
program can be applied to another. Why not change a branch
statement, or hunt for an entry point instead of taking out
your check book to purchase the latest '99.999% EFFECTIVE COPY
PROGRAM' on the market?. Just a thought on those '99.999%
EFFECTIVE COPY PROGRAMS' - Why is it that every time I want to
copy something, it falls in that 0,001% group???? With our
methods the most you can lose is a little time, but we believe
you'll prefer that to losing money.

Don't be surprised if you learn something along the way. This
was one of our primary goals in the preparation of this manual.
LOAD and RUN is not enough for those who wish to know WHY. Why
do some programs run automatically? Why does the disk drive
rattle with some programs? How does SYS 64738 perform a RESET?
How can I make my programs re-start by pressing the RESTORE
key? You will find many of the 'hows' and 'whys' addressed 1in
these pages.

VA great deal of material is included on the 1inner working of
the disk drive. You will be able to see what the track and
sector editors do not show.

It's up to you now. Take charge and 1learn something 1in the
process. By the way, don't forget to have FUN!

PPMII THE FUTURE PAGE 18

INTRODUCTION TO MACHINE LANGUAGE

In this chapter, we will take an introductory look at MACHINE
LANGUAGE (ML). We will use a machine language monitor to enter
our programs. The monitor we have chosen is LOMON, which is on
the program disk that accompanies PROGRAM PROTECTION MANUAL
VOLUME II. This monitor resides at HEX $8000, and may be
activated from BASIC with SYS 32768.

We do not present this chapter as the wultimate 'MACHINE
LANGUAGE TEXTBOOK'. Our main objective is to get you started in
the right direction. Simple applications will be presented,
along with examples to help clarify what you learn. For those
wishing to continue their study of machine language, CSM Inc.
is planning to publish a text in the near future. Watch the
NEWSLETTER for further details.

Programming in machine language requires careful attention to
detail. A difference of one byte could easily 1lock-up your
computer. A condition of this kind will not do any damage to
your computer, but you may find that the only way to recover
control of your computer is to use your RESET button. If you do
not have one, you will have to power-down and start over. By
all me?ns, if you don't have RESET button, get one (see PPM
Vol. 1

WHAT IS BINARY?

You could go through life without ever needing to understand
the BINARY number system. You can even program 1in machine
language without a knowledge of BINARY. So why even look at it?
First, it's nothing to be afraid of. Second, it is the
microprocessor's native number system. Although we will use the
DECIMAL system to help explain BINARY, our emphasis will be on
the relationship between BINARY and HEXADECIMAL (HEX). HEX is
important because this is how we will code our programs. It s
not essential to know BINARY, so if this section confuses you,
just skip it. You can always come back to it later.

One unit of memory is called a BIT. BIT stands for BINARY
DIGIT, meaning a unit that can be switched one of two possible
ways. Thus a BIT can have only two different values, ON (1) or
OFF (0). If we have a set of eight BITS, called a BYTE, the
total number of different combinations of 0's and 1's possible
is 256 (count 'em!). This gives us 256 one-byte codes we can
use to represent our program instructions, data, etc.

In DECIMAL (BASE 10), the rightmost digit 1is the 1least
significant digit. The digit in this position stands for
multiples of 1, which is called the place value. As we move
left, the place value increases by a factor of 10 each time
(this is what makes it a BASE 10 number). The second position
has a place value of 10x1=10, the third position 10x10=100, the
fourth position 10x100=1000, etc. The total contribution made

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 19

by a particular digit in a number is calculated by wmultiplying
the digit itself times its place value. Let's look at the base
10 number 4321 as an example.

PLACE VALUE 1000 100 10 1
x DIGIT USED 4 3 2 1
= TOTAL VALUE 4000 300 20 1

Interpreted in DECIMAL this set of digits represents a value of
4000+300+20+1 = 4321. This should come as no surprise.

In BINARY (BASE 2) the rightmost digit position also has a
place value of 1. As we move left, however, the place value
increases by a factor of 2 rather than 10 (see below). Also, in
binary the only digits that can be wused are 0 and 1, so
multiplying the digit times its place value is very simple. If
the digit is 1, include the place value in the number's total
value; if the digit is 0, ignore it. Let's wuse the binary
number %10110110 as an example - (the % 1is wused to indicate
binary).

PLACE VALUE 128 64 32 16 8 4 2 1
x DIGIT USED 1 0 1 1 0 1 1 0

--

This set of BINARY digits represents a DECIMAL value of
128+32+16+4+2 = 182.

Now you try a couple.

PLACE VALUE 128 64 32 16 8 4 2 1
x DIGIT USED 0 1 0 1 1 0 1 1

= TOTAL VALUE 0 64 0 16 8 0 2 1
The value returned is 64+16+8+2+1 = ?

PLACE VALUE 128 64 32 16 8 4 2
x DIGIT USED T 0 0 0 1 1 0 1

= TOTAL VALUE
The value returned is ?
That's all there is to it. Now if the programmer had to program
in BINARY, it would be a real chore. After a while all those

O's and 1's start to dance around before your eyes. They are
difficult to remember, and hard to type in.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 20

HEX TO THE RESCUE!

Instead of BINARY we can use HEXADECIMAL (HEX). HEXADECIMAL is
BASE 16. We know that there are 10 different digits (0-9) in
DECIMAL and we've learned that there are only 2 different
digits (0-1) in BINARY. In HEX, therefore, we have to have 16
different digits. Wait a minute, you say. We <can wuse the
regular digits 0-9 for the first ten HEX digits, but what do we
do for the other six? Answer: we use the letters A through F to
stand for the 'digits' 10 through 15,

The following chart should make the relationship clearer:

jm
m
>

DECIMAL BINARY
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

AP LWN—=O0OWONONHLWN—O
TR R R PR 3L 2R IR IR 3R B3R IR 3R IR 3R IR 3R R
©F O O 6T O U0 OO I OB OO O A A A
—

OTMMOOWIPBPWOWONIOTNR_RWN—O

—h
O = OO

— et b it
QO it ok et el ik wd
QO ket OO it =2
O—0O—=0 =0

Once again, the rightmost digit position in HEX has a place
value of 1. As we move to the left, this time the place value
increases by a factor of 16 each time. Let's 1look at how we
determine the (DECIMAL) value of the HEX number $10A5 (the $
indicates HEX).

PLACE VALUE 4096 256 16 1
x DIGIT USED 1 0 A 5
= TOTAL VALUE 4096 0 160 5

The DECIMAL equivalent of $10A5 is therefore 4096+160+5 = 4261.
Note that the HEX digit 'A' stands for 10 as shown in the chart
above.

The reason we use HEX instead of BINARY is that it is easy to
convert from one to the other, and HEX numbers are easier to
remember. To convert from BINARY to HEX, you divide the BINARY
number into groups of four BITS (starting from the right end of
the number). Each group corresponds to exactly one HEX digit,
in fact the corresponding digit from the <chart above. For
instance % 0110 1100 is converted to HEX by substituting the
HEX digit $6 for %0110 and HEX digit $C for %1100. Thus % 0110
1100 equal $6C. Pretty neat, huh?

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 21

Converting from HEX to binary is just as simple. Look wup each
HEX digit in the chart above and substitute the <corresponding
group of four bits. For example, $F2 = %2 1111 0010.

Since one BYTE consists of eight BITS (two HEX digits), the
largest value that can be stored in one BYTE is %1111 1111 =
$FF = 255 DECIMAL. With two BYTES we have 16 BITS (four HEX
digits), which allows us to store values up to %1111 1111 1111
1111 = $FFFF = 65535 DECIMAL. A1l locations in the Commodore
64's memory have a two-byte ADDRESS associated with them. Thus
the highest address possible is $FFFF = 65535 DECIMAL. This
number is called 64K (1K = $0400 = 1024 DECIMAL)

So much for BINARY-HEX. Let's move on to DECIMAL-HEX
conversions. We've already seen how to convert from HEX to
DECIMAL, but we need to be able to go the other way, from
DECIMAL to HEX. This will be required on a regular basis in
machine language programming.

Let's do an easy one. Very often you will see a SYS command in
a program listing. This command will execute an ML routine
located in the computer's memory. The number you see after the
SYS is the DECIMAL equivalent for the ML routine's location.
For example, you might see a SYS 2049 in a program. Since most
ML monitors use HEX only, it would be your job to convert 2049
DECIMAL to its HEX equivalent before you could investigate the
ML routine through a monitor. Let's do it.

Since 2049 is larger than we <can store 1in one HEX digit
(limited to 15 = $F), we know we'll need several HEX digits.
Start by dividing 2049 by 16. The answer 1is 128 with a
remainder of 1 (128x16=2048). The remainder 1 is taken as the
least significant HEX digit (rightmost digit; one's digit).
What about the other HEX digits? Since 128 is still larger than
we can store in a single HEX digit, we have to divide 128 by 16
again. This gives us an answer of 8 with a remainder of 0
(8x16=128). The remainder 0 is taken as our second HEX digit.
Since 8 CAN be represented by a single HEX digit, we also have
found our third digit and can stop. Thus 2049 DECIMAL = $801.
However, most ML monitors require HEX numbers to contain an
even number of digits, so we'll pad our result with a 'leading’
zero to give us $0801. This won't change the value, of course.

By the way, some ML monitors such as HESMON have built-in
HEX-DECIMAL and DECIMAL-HEX conversion functions. This can
greatly simplify your ML programming. Still, there is no
substitute for actually knowing how to do these conversions
yourself.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 22

USING THE LOMON MONITOR

Load and execute LOMON with SYS 32768. Notice the number in the
SYS command. Our monitor resides at HEX $8000. Since we are
starting our monitor up from BASIC, we must tell the computer
in DECIMAL where the monitor is located. The DECIMAL equivalent
for HEX $8000 is 32768 (verify this yourself for practice).

Let's investigate the monitor. When you activate LOMON, you
should see the following display:

B*
PC SR AC XR YR SP
;803E 32 00 83 00 F6

The B*, that you see, indicates that we have entered the
monitor by way of a BRK. This is similar to a STOP command in
BASIC.

The second line contains the labels for the third 1line: PC
(PROGRAM COUNTER), SR (STATUS REGISTER), AC (ACCUMULATOR), XR
(X REGISTER), YR (Y REGISTER) and SP (STACK POINTER). In order
to understand machine Tlanguage, we must <investigate these
REGISTERS.

PROGRAM COUNTER

The program counter is a 16-bit register which contains the
address of the next instruction to be executed. It 1is merely
two 8-bit locations used together. After the program counter is
used to get a byte from memory it is incremented by 1, pointing
it to the next memory location to be used.

STATUS REGISTER

The status register is an 8-bit register that contains all the
FLAGS. A flag is a one-bit value which is said to be SET if ON
(=1) and CLEAR if OFF (=0).

76543210
NV-BDIZC
N FLAG - Negative flag. Always equal to the leftmost bit of

the most recently altered register. Also affected by BIT
command.

V FLAG - Overflow flag. Affected by addition (ADC),
subtraction (SBC) and bit test (BIT) commands. Mostly wused
for arithmetic in which the numbers are <considered to be
signed.

- - Bit five is not used. It is usually found to be SET

B FLAG - Break flag. SET to 1 after a BRK instruction is
executed; CLEAR otherwise. This helps distinguish a BRK
interrupt from an IRQ (see the chapter on interrupts).

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 23

D FLAG - Decimal mode flag. Changes operation of add and
subtract instructions from BINARY (D=0) to DECIMAL (D=1).
Always CLEARed on RESET in Commodore machines. Can be SET to
1 with SED (SEt Decimal mode) or CLEARed to O with CLD
(CLear Decimal mode).

I FLAG - IRQ Interrupt disable flag. Prevents an IRQ
interrupt signal from being recognized. SET to 1° with SEI
(Set IRQ disable) and CLEARed to O with CLI (CLear IRQ
disable).

Z FLAG - Zero flag. Used for comparisions, it will be SET to
1 if comparision is equal; otherwise it will be CLEARed to O.

C FLAG - Carry flag. Tests for greater than or equal to
conditions after comparisons with CMP, CPX or CPY. It will be
SET to 1 if the register (A, X or Y) is greater than or equal
to the compared value. CLEARed to 0 if the register is
smaller than the value.

ACCUMULATOR
This is the busiest register. Most of our operations will wuse
the accumulator.

X REGISTER

An index register. Used mainly as an offset for memory
references. By incrementing or decrementing X you can step
through memory conveniently.

Y REGISTER
Another index register. Similar in function to X.

STACK POINTER

Before we can understand the STACK POINTER, we must take a side
trip into the workings of the STACK. The STACK 1is Tlocated in
memory from $0100 to $O01FF. Its main function 1is to preserve
the return address during subroutine execution. This function
is carried out automatically. When a subroutine 1is executed,
the return address is pushed onto the STACK. The 1last address
put on the stack is always the next one available to be pulled
off. When the RTS is encountered (Return from Subroutine), the
top address on the STACK is pulled off and used as the return
address. If the stack has not been disturbed this address will
be the correct one.

Think of the STACK as a stack of plates. When you add a plate
to the stack, you will put it on top of the plates that are
already there. When you need to remove a plate, you must take
the top one off before you can safely get to the one below it.
The same principle works with our computer's STACK. When we
execute a subroutine with JSR, the computer places the return
address on the STACK. This way it knows where to return to when
it encounters an RTS, There are also commands available to us
to manipulate the STACK directly. Care must be taken to

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 24

properly prepare for this action, before and after the
operation. If we cause the wrong address to be pulled off the
STACK, we may crash the operating system. The processor will
try to return to the wrong location, which may contain invalid
instructions.

Once retrieved from the stack, the return address 1is placed
into the program counter and incremented by one. It now points
to the next instruction after the JSR which called on the
subroutine. The STACK is used backwards starting from $O0I1FF
down to $0100. The STACK "POINTER keeps track of the next
available location on the STACK. Since the high byte of the
stack address is always assumed to be $01, the STACK POINTER
holds only the low byte. For example, if the next available
stack location was $01A0, the STACK POINTER would have the
value $AO.

ENOUGH ALREADY - LET'S LEARN BY DOING!

The best way to learn 1is to work with a problem. We've
presented a 1ot of 'heavy stuff', so we'll let that settle and
take a programming break. Through this break, we will introduce
some more concepts such as: a few of LOMON's commands,
addressing modes, and machine language instructions.

We are going to begin by entering a machine 1language program.
In order to do that, we must go into ASSEMBLY mode. We will
place our program at $C000. We chose this area because there is
no fear of our program being overwritten by BASIC. We will lead
you through the program and then comment on the code.

1). If you have LOMON activated, your cursor should be blinking
beside a '.'. TYPE A C000 LDA #%48 and press the RETURN
key. If you did that correctly, you should see .A (€002 on
the next line with the cursor beside 1it. If you typed
something that the monitor did not 1like, you will be
prompted with a question mark (?). If you made an error,
just hit the return key and repeat the first instruction.
Your cursor is now blinking beside the .A C002. (How about
that, automatic line numbers!)

2). TYPE JSR $FFD2 and press RETURN. Notice that we did not
have to type the A again. The computer is now in Assembly
mode and will stay that way until we press the return key
to exit this mode. The computer will return with .A CO005.

3). TYPE BRK and press RETURN

4). Now press RETURN to take us out of Assembly Mode.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 25

5). Check that your code is correct. We will do this through
the DISASSEMBLY MODE. Type D C000 C005 and press RETURN.
This is the start and end 1locations of your code. You
should see the following:

., CO00 A9 48 LDA #$48
., C002 20 D2 FF JSR $FFD2
., C005 00 BRK

6). TYPE G CO00 and press RETURN to execute the code.

If you did everything correctly, you should have been returned
to the monitor after execution. The letter 'H' should appear
above the B* from the monitor start-up display. Not too
exciting, but it is a beginning. We will now explain how our H
was printed. Refer to the disassembly in step &5 above. The
first column of each line contains the memory address of the
corresponding instruction. This is like line numbers in BASIC.
The set of «columns is the MACHINE CODE (HEX) for the
instruction. The last section is the ASSEMBLY CODE (MNEMONIC)
version of the instruction.

Here's what we did through the instructions we typed in.

., CO00 A9 48 LDA #%$48 We placed the value of $48 into the
accumulator. This represents the
ASCII letter H.

., CO02 20 D2 FF JSR $FFD2 Jumps to a built-in ROM subroutine
that prints a character for us.
Since we did not specify a device,
the character will print to the
screen, We could print to the
printer, cassette, and disk drive
also. As with all subroutines it
ends with an RTS, which returns to
the next instruction in our
program.

., C005 00 BRK This will stop program execution
and jump back to the monitor. This
is like a BASIC STOP command.

Let's look at the program in another mode and 1learn another
command in the process. First press return twice to exit D
mode. Now type M C000. You should see the following:

.:C000 A9 48 20 D2 FF 00 00 0O

This display tells us what is stored in memory at €000, CO0O1,
C002, etc. The A9 1is stored in memory location $C000, the 48
is stored in memory location $C001, and so on. Notice that the
only difference between this display and our DISASSEMBLY is
that the Assembly code is missing. Only the MACHINE CODE is
presented in the MEMORY DISPLAY MODE. Our program occupies the

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 26

first six bytes. We placed 00's in the last two bytes, but they
could be anything. They will contain whatever was Tleft there
upon power-up. It doesn't matter what these bytes contain,
because our program will stop executing when it encounters the
BRK at $C005. Remember, a BRK in machine Tlanguage 1is 1like a
STOP in BASIC.

Before we get into all that we have experienced, let's try one
more thing. You should still be in M mode and your cursor
should be on the second character (:) of the MEMORY DISPLAY
.:C000 A9 48 etc. Using your cursor key, move over to the 48
and change it to a 49. When you press RETURN, the new value
will be entered into memory. Exit M mode - Remember how? TYPE
RETURN. Now type G C000. You should now see an I above the B*.
By changing the 48 to a 49, we loaded the accumulator with the
ASCII code for the letter 'I' instead of 'H'.

WHAT WE HAVE LEARNED
MONITOR COMMANDS:

A - ASSEMBLE command - This command allows us to enter a
machine language program using ASSEMBLY LANGUAGE
(MNEMONICS). This is the normal and most convenient method.

D - DISASSEMBLE command - We can check our code at any time
using this command. If the listing is extensive, we can
scroll up or down through the code with the cursor keys.

G - GO command - This command allows us to execute the program.
You may begin execution at any location you wish by
specifying the address after the G. This is particularly
useful for checking a subroutine. A subroutine (JSR) will
end with a return subroutine (RTS). If you place a BRK in
the place of the RTS, you can execute the code in question
with a G. When it encounters the BRK we will be returned to
the monitor. If you type G with no address given, it will
use the address shown for the PC in the REGISTER DISPLAY
(see below). The G command is similar to a BASIC RUN
command.

M - MEMORY COMMAND - This will display the HEX values 1in an
area of memory, without any assembly code.

ADDITIONAL COMMANDS

C - Compare command - Will allow us to compare sections of
memory and will return the addresses that contain a
difference. TYPE C C000 CO05 C100. The computer responds
with: C004 C003 C002 CO0O1 CO00. This tells wus that C104,
C103, €102, C101 and C100 contain different values than
those found at $C004, C003, C002, C001, and CO00. The only
address that was not listed was C005. This 1indicates that
CO005 and C105 both contain the same value. TYPE D CO05. Now
TYPE D C105. Both addresses should contain a $00 (BRK).

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 27

Your results may vary depending on what is left over in
memory from previous operations.

F - The FILL command allows us to clean up memory. Upon
power-up, we find 'garbage' throughout memory. We can clean
this up with the FILL command. Type F C008 CFFF 00. We have
just filled the memory from CO008 through CFFF with 00
(BRK's). A1l of the 'garbage' has been replaced.

H - The HUNT command will allow us to search for a specific
sequence of bytes in memory. Type H CO000 CFFF A9 49. We are
asking the computer to search through the area $C000-CFFF
for the bytes A9 49 (LDA #%$49). We must use the MACHINE
CODE (HEX) version of the instruction when HUNTing. The
computer responds with C000. This tells us that these bytes
were found starting at C000. You can also search for the
ASCII equivalent of bytes by putting a SINGLE quote (')
before them. Try H C0O00 CFFF 'I to look for the I ($49). It
should be found at $CO001.

I - Interpret command - Displays the contents of memory in HEX
values and ASCII characters side by side.

L - Load command - Allows us to load a program from disk or
tape. For disk, you would type: L 'PROGRAM NAME',08

R - Register Display - Displays the current contents of the
registers. TYPE R. You will find that as a result of our
program, the registers have changed. The PC points to C005,
SR has changed to 30 as a result of our BRK, and AC now
contains a 49 (ASCII value for I). The 49 was 1loaded into
the accumulator by our program. The other registers have
stayed the same, because our program did not affect them.

S - Save command - Allows us to save a program. You would type:
S 'PROGRAM NAME',08,C000,C006. We first give the device
number (08) then the area of memory to save. Our program
only extends from $C000 to $C005 but we have to give the
ending address PLUS ONE (C005+1=C006). This extra byte is
not saved; CO005 would be the last byte saved. DON'T FORGET
TO ADD ONE TO THE ENDING ADDRESS!

T - Transfer command - Allows you to make a copy of a section
of memory to another area. TYPE T C000 CO05 C100. Now
cursor up and change the T to a C to compare the copy with
the original. No addresses will be listed because these two
section of memory are now identical. Check it with D C000
Co05 and D C100 C105. As you can see, the code is
identical. We will leave it up to you to clean up the
C100-C105 area with the F command.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 28

X - EXIT to BASIC - This command allows you to return to BASIC.
If we were to EXIT now, the monitor and our program would
still be in memory. Unfortunately, some 1info that BASIC
needs may be gone, so we probably can't RUN a BASIC
program., We can still execute a SYS 32768 to restart the
monitor if desired.

Other monitors provide additional commands such as TRACE,
VERIFY, and PRINTER OUTPUT and HEX-DECIMAL conversions. We
recommend a cartridge-based monitor such as HESMON for the more
sophisticated user. This type of monitor provides some options
not available on a disk-based monitor.

ADDRESSING

IMMEDIATE ADDRESSING :

Through the LDA #$49 instruction, we told the computer that we
want to load a value into the accumulator. The data to be
loaded into A was given directly in the next byte (49) after
the LDA instruction (A9). This is called immediate addressing.
We MUST include the pound sign (#) to distinquish between
immediate and absolute addressing (see below). Failure to use #
for immediate addressing is a common error when first learning
ML programming. You can pronounce the # as 'with the value' as
in 'Load A with the value $49',

ABSOLUTE ADDRESSING

Rather than specifying the data for LDA directly as in
immediate addressing, we can instead specify the LOCATION of
the data. This is called absolute addressing. An example of
this would be LDA $C020. In this case the CONTENTS of location
C020 will be loaded into A, rather than C020 itself. Absolute
addressing 1is actually much more common than immediate
addressing, which is why no special symbol 1ike # is wused to
indicate it. In our program, JSR $FFD2 wutilized absolute
addressing. The FFD2 was not an instruction itself but rather
the LOCATION of an instruction. We instructed the computer to
execute the instructions starting at memory location $FFD2.

ADDITIONAL ADDRESSING MODES

There are approximately 13 address modes wused by the 6510
processor. Space will not permit the use or explanation of all
of them in this chapter. Machine language books will contain a
complete explanation of these modes.

O0BJECT CODE

When we assembled our code, the computer converted the ASSEMBLY
CODE (MNEMONICS)to OBJECT CODE (HEX). OBJECT CODE is «called
that because it's the whole 'object' of the assembly process.
The idea is to allow us humans to deal with easily remembered
commands (assembly mnemonics) like LDA and have the assembler
convert them to HEX numbers T1ike A9, which the computer
understands.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 29

Our program used a JSR instruction. JSR is actually a mnemonic
(memory aid). The assembler converted the mnemonic to the
corresponding HEX code, also called the operation code or
opcode. Opcodes are always one HEX byte. For example, the
opcode for JSR is 20. Let's examine the rest of the OBJECT code
for our program.

C000 $A9 - The opcode for load the accumulator
C001 $49 - ASCII code for the letter 'I'

C002 $20 - The opcode for jump subroutine (JSR)
C003 $D2 - Low byte of the memory address $FFD2
C004 S$FF - High byte of the memory address $FFD2
C005 $00 - Opcode for BRK (BREAK)

SOME OF THE MORE COMMON MNEMONICS AND THEIR OPCODES

RTI = $40 - RETURN FROM INTERRUPT

JMP = $4C - DIRECT JUMP

EOR = $4D - EXCLUSIVE OR

RTS = $60 - RETURN FROM SUBROUTINE

SET = $78 - SET THE IRQ DISABLE FLAG
CMP = $C9 - COMPARE REGISTER TO MEMORY
BNE = $DO0 - BRANCH IF NOT EQUAL

The complete 1list 1is rather extensive. The Programmer's
Reference Guide describes all the opcodes starting on Page 256.

Let's get back to programming. The program we about to create
will clear the screen, change screen <colors, and print a
message to the screen.

Begin by cleaning up the work space with F CO00 CFFF 00. We'll
add a few commands to our list and have a 1little fun 1in the
process. We will now assume that you know how to get into
ASSEMBLY mode. We will not prompt you with the A's (ASSEMBLE),
but we will provide the memory addresses for a reference point.
You type only the assembly code, not the addresses. To get
started in ASSEMBLY mode, you must begin by typing A C000 JSR
$E544. This is the first instruction of the program below. If
you typed the instruction correctly, you will be prompted with
the next memory address (C003). Type the rest of the program as
given below. Remember, if you make a mistake, exit ASSEMBLY
mode with the return key and retype the 1line. TYPE the
following:

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 30

C003 LDA #$01
C005 STA $D020
C008 STA $D021
C00B LDX #%00
COOD LDA $C100,X
CO10 JSR $FFD2
CO13 INX

C014 CPX #%06
CO016 BNE $COO0D
C018 JMP $C003
C01B BRK

You're not done yet. The instruction at $C00D tells us to 1load
the accumulator with the values at memory address $C100,
indexed by X (LDA $C100,X). If we are going to pick wup some
values there, then we had better place them in these memory
locations (C100-C105). Following the code, we find that six
bytes will be read. The instruction CPX #306 tells us that.

Let's place the values using the M command at $C100. If \you
typed M C100, you should have a flashing cursor on the ":".
Begin typing after the memory address. Type in the values shown
and press return. These value are now stored in memory.

.:C100 53 55 50 45 52 21 00 00

Before we activate the program, we will advise you that the
instruction JMP $C003 will place this program in an endless
loop. To break out of the program, press RUNSTOP/RESTORE. Now
activate the program by typing G C000. There you have it, a
screen full of "SUPER!"™. Again, this program will not make you
a million dollars, but demonstrates a few more programming
techniques. Let's get out of the program and analyze the code.
Press RUNSTOP/RESTORE to stop. You will be returned to BASIC.
Re-activate LOMON, with SYS 32768.

Now let's analyze our program. Through the D command, we can
see the SOURCE CODE. We will present a great deal here, so bear
with us.

CO00 20 44 E5 JSR $E544 ‘20" IS THE OPCODE FOR JSR (JUMP TO
SUBROUTINE) AND '44 E5' IS STARTING
ADDRESS OF THE SUBROUTINE. NOTE 'THAT
THIS ADDRESS IS STORED IN LOW
BYTE/HIGH BYTE (REVERSE) ORDER. THIS
IS STANDARD PROCEDURE FOR THE
PROCESSOR. THIS INSTRUCTION OCCUPIES
3 BYTES OF MEMORY. WE ARE TELLING
THE COMPUTER TO GO TO MEMORY
LOCATION $E544 AND EXECUTE THE
BUILT-IN (ROM) SUBROUTINE LOCATED
THERE. IF YOU GET OUT YOUR MEMORY
MAP, YOU'LL SEE THAT THIS ROUTINE
WILL CLEAR THE SCREEN FOR US. ONCE
THIS TASK IS COMPLETED, WE WILL BE

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 31

coo3

€005

coos

coos

coobD

colo

co13

Co14

PPMII

A9

8D

8D

A2

BD

20

E8

EQ

01

20 DO

21 DO

00

00 C1

D2 FF

06

LDA

STA

STA

LDX

LDA

JSR

INX

CPX

#$01

$D020

$0021

#$00

$C100,X

$FFD2

#$06

RETURNED TO OUR PROGRAM, SINCE ROM
ROUTINES END WITH AN RTS.

WE WILL NOW LOAD THE ACCUMULATOR
(A9) WITH THE IMMEDIATE VALUE $01.
NOTICE THE POUND SIGN (#) FOR
IMMEDIATE ADDRESSING!

'8D' IS THE OPCODE FOR STORE THE
ACCUMULATOR. WE WILL STORE THE VALUE
FROM THE ACCUMULATOR ($01) - INTO
MEMORY LOCATION $D020, WHICH IS THE
LOCATION FOR BORDER COLOR. AGAIN,
NOTICE THAT THE ADDRESS IS STORED IN
LOW BYTE/HIGH BYTE ORDER.

HERE WE WILL STORE THE VALUE FROM
THE ACCUMULATOR ($01) INTO THE
BACKGROUND COLOR LOCATION. THE
RESULT OF THE LAST THREE
INSTRUCTIONS IS TO TURN BORDER AND
BACKGROUND TO THE COLOR WHITE. THIS
IS THE SAME AS THE BASIC COMMANDS
POKE 53281,1:POKE 53280,1.

OUR FIRST EXPERIENCE WITH THE X
REGISTER. THE OPCODE FOR LDX
IMMEDIATE MODE IS 'A2'. WE WILL
INITIALIZE X BY LOADING IT WITH THE
VALUE $00. KEEP IN MIND THAT X CAN
BE USED AS AN INDEX REGISTER.

ANOTHER NEW INSTRUCTION, USING WHAT
IS CALLED INDEXED ADDRESSING. THIS
INSTRUCTION WILL CAUSE THE COMPUTER
TO LOAD A FROM MEMORY LOCATION C100
+ X. AS WE INCREMENT X WE WILL CAUSE
IT TO LOAD FROM SUCCESSIVE MEMORY
LOCATIONS.

PRINT WHAT IS IN THE ACCUMULATOR

INCREMENT X. THE FIRST TIME THROUGH,
WE LOADED A FROM LOCATION C100,
SINCE X WAS $00. AFTER INX, X WILL
CONTAIN AN $01. INX IS SIMILAR TO
X=X+1 IN BASIC.

COMPARE X WITH THE IMMEDIATE VALUE
#$06. WE WILL PRINT . SIX BYTES
ALTOGETHER, USING A LOOP SET-UP.

INTRODUCTION TO MACHINE LANGUAGE PAGE 32

C016 DO F5 BNE $COOD ‘DO' IS THE OPCODE FOR BRANCH IF NOT
EQUAL. WE COMPARED X TO #$06. IF
THEY ARE NOT EQUAL, WE NEED TO
CONTINUE OUR PRINTING LOOP, SO WE
BRANCH BACK UP TQ $C00D. IF X DOES
EQUAL #$06, IT WON'T BRANCH BUT WILL
FALL THROUGH TO THE NEXT INSTRUCTION
AT $C018, ENDING THE LOOP. NOTE THAT
THE $COOD IS NOT TRANSLATED DIRECTLY
INTO HEX CODE, BUT RATHER GIVEN AS A
RELATIVE POSITION. THE F5 STANDS FOR
A BACKWARDS BRANCH OF 11 BYTES
($0100 - $F5 = $0B = 11 DECIMAL)

C018 4C 03 CO JMP $COO03 ‘4C' IS THE OPCODE FOR JMP. THIS IS
A DIRECT JUMP, LIKE BASIC'S GOTO. AS
A RESULT OF THIS INSTRUCTION, THE
PROGRAM WILL BE PLACED IN AN ENDLESS
LOGP,

Co01B 00 BRK THE PROGRAM WILL NOT REACH THIS
INSTRUCTION, BECAUSE OF THE JMP
INSTRUCTION BEFORE IT. IT'S GOOD
PRACTICE TO INSERT A BRXK FOR
DEBUGGING PURPOSES.

There's a lot to get a hold of here. Go through the explanation
until you understand it. Try changing the program to print more
characters. If you want to tell it to print more, add them to
your message at $C100 and change the CPX to accommodate the
additional letters. While we're on the subject, let's 1look at
$C100, with I C100. There's our message. The values next to the
message are the ASCII codes for the letters. You will recall
that we loaded the accumulator with these values. We printed
%hem %hrough the KERNAL subroutine that prints a character
FFD2).

By the way, the BNE instruction actually tests the Z FLAG. The
compare instructions such as CPX look at the difference between
the two number to be compared. If there is no difference, the Z
(ZERO) flag will be set (1). If there is a difference, Z will
be cleared (0) and the BNE will cause a branch.

We saved a great deal of program space and our time by using a
loop to do our printing, with the X register as an index. The
alternative would be to use a pair of instructions (load the
accumulator and jump to the print routine) for EACH byte to
print. Loops are one of the elementary techniques used in any
type of programming.

You may be asking another question at this time. How did we
know which ASCII codes to use and where the screen and border
color locations were? These were taken right out of a memory
map. Refer to the MEMORY MAP SECTION of this manual.

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 33

Through this chapter, we hope we have removed some of the fear
associated with machine 1language programming. This <chapter
should mark a beginning for those wishing to work with machine
lanquage. Don't stop here! Continue your investigation and
experimentation. Try altering the examples given by adding
features to them. Investigating your MEMORY MAP will also
reveal some interesting locations to work with. Once you have
exhausted the possibilities presented here, investigate other
machine language programs. There is much to be learned through
a study of this kind.

HAVE FUN!

PPMII INTRODUCTION TO MACHINE LANGUAGE PAGE 34

AUTO0-BOOTS

One of the more common forms of program protection is the use
of an auto-boot. Programs of this type are located in 1low
memory ($0100-0400). The purpose of a ‘boot' program is to load
and execute the 'main' program. An AUTO-BOOT that is set wup
properly and loaded with ,8,1, will do this automatically. This
makes the job of the 'unprotector' a bit more complicated, but
certainly not impossible. We must understand how a program of
this type is constructed before we can begin to unprotect it.
We will analyze three such programs.

Let's start with a boot program that will reside from $02A7
through $0303.

$02A7 - $0303

When we check a memory map, we find that $02A7-02FF 1is an
unused area of memory. Just past this at $0302-0303 is a vector
called the BASIC warm-start vector. Creating a boot that will
load into this area of 1low memory and replace BASIC's
warm-start vector with the program's starting address will
result in an AUTO-BOOT. We may examine this type of program
through LOMON, or we may make our corrections on the disk. The
more recent Track and Sector Editors include a disassembly
feature that can be very useful in the examination of a program
stored in this area.

If you attempt to capture the code after a reset, you will find
that the code has been erased. This is performed through the
normal initialization process. (Refer to the chapter on
INTERRUPTS for an extensive 1look at the RESET routine.)
Usually, an auto-boot program is used to hide the loading of a
second boot program. The second boot will load the main program
and do the actual error-checking, then JMP to the proper entry
point of the main program. Checking through the code of the
first boot will probably reveal the starting address of the
second boot.

After a program loads, the BASIC operating system in the C(-64
will perform the KERNAL CLALL ($FFE7) subroutine. This
subroutine will close all open files and perform an indirect
jump based on BASIC's warm-start vector located at $0302-$0303.
With that in mind, let's begin the construction of our first
auto-boot. '

Storing a boot program from $02A7 through $0303 makes it
possible for wus to utilize BASIC's warm-start vector
($0302-$0303) as a pointer for our program's starting address.
We will make this clear through the disassembly of our first
auto-boot program. We will design our program to begin at $02A7
and end at $0303. This will store our starting address ($02A7)
into BASIC's warm-start vector. When the KERNAL CLALL ($FFE7)

PPMII AUTOBOOTS PAGE 35

subroutine is called, it will end by Jjumping to our program
through this vector.

LOAD 'AUTOBOOT1',8,1 from your program disk. This program will
automatically load and run the program called 'ATB1'. The
disassembly of 'AUTOBOOT1' is as follows:

02A7 JSR $E544 CLEAR THE SCREEN

02AA LDA #$83 RESTORE BASIC'S WARM-START VECTORS

02AC STA $0302 IF WE DO NOT PLACE THE NORMAL VALUES IN
02AF LDA #3A4 THESE VECTORS, OUR PROGRAM MAY GO THROUGH
02B1 STA $0303 AN ENDLESS LOAD

02B4 LDA #3$98 LOAD AND STORE THE COLOR GREY INTO:

02B6 STA $D020 BORDER
02B9 STA $D021 BACKGROUND

02BC LDA #3%00 LOAD AND STORE THE COLOR BLACK INTO:
02BE STA $0286 CURRENT CURSOR COLOR

02C1-02C9 NOP SPACE FOR EXTRA CODE IF NEEDED

02CA LDA #3$37 NORMAL VALUE FOR BASIC

02CC STA $01 STORE AT $01

IF YOUR PROGRAM REQUIRES THAT YOU FLIP
OUT BASIC, YOU WOULD STORE A #3$36 IN
LOCATION $01.

02CE LDA #308 FILE NUMBER

0200 LDX $BA CURRENT DEVICE NUMBER

02D2 LDY #3%01 SECONDARY ADDRESS

02D4 JSR $FFBA KERNAL SETLFS - SET FILE SPECIFICATIONS
02D7 LDA #$04 LENGTH OF FILE NAME

02D9 LDX #$FO LOW BYTE .OF FILE NAME MEMORY ADDRESS
02DB LDY #$02 HIGH BYTE OF FILE NAME MEMORY ADDRESS
02DD JSR $FFBD KERNAL SETNAM - SET FILE NAME

02E0 LDA #$00 SELECT LOAD FUNCTION

02E2 JSR $FFD5 KERNAL LOAD - LOAD RAM FROM A DEVICE
02E5 JSR $A68E WE WILL NOW RESTORE BASIC POINTERS .
02E8 JSR $A660 CLOSE ALL FILES AND INITIALIZE BASIC
02EB JMP $A7AE BASIC'S INTERPRETER LOOP

ONCE WE ARE FINISHED LOADING, WE WILL JUMP

TO BASIC BECAUSE THE PROGRAM WE WILL BE

LOADING WILL BE STORED THERE.

IF YOUR PROGRAM IS IN MACHINE CODE, YOU

WOULD JUMP TO THE ENTRY POINT HERE.
02EE-O02EF NOP EXTRA SPACE

’ NEXT FOUR BYTES ARE FILE NAME IN HEX

02F0 41 A

02F1 54 T

02F2 42 B

02F3 31 1

02F4-02FF BRK SPACE FOR LONGER FILENAMES

0300 8B DEFAULT VALUE - DO NOT CHANGE

0301 E3 DEFAULT VALUE-- DO NOT CHANGE

0302 A7 LOW. BYTE OF OUR PROGRAM START ADDRESS
0303 02 HIGH BYTE OF OUR PROGRAM START ADDRESS
0304 7¢C

PPMII AUTOBOOTS PAGE 36

For those just starting out, we feel a bit more explanation s
in order.

There are many important concepts to be learned from this boot
construction. One important task is to restore BASIC pointers.
If your second program is stored in BASIC, the interpreter must
be intact. Fajlure to reset pointers may cause your program to
lock up. If your program is in machine language, you won't have
to worry about the 'clean-up' process.

The starting address and the program name may be changed
through the use of the M command of your ML monitor. To change
the name of the program to be 1loaded, simply store the new
programs name at $02F0. Use the M command to examine the area
of memory from $02F0 to $02F7 (M Q02F0 02F7). Now type in the
HEX (ASCII) values for your program name, beginning at $02FO0,
then press 'RETURN'. The same process is wused to store our
program's starting address at $02EC and $02ED. Remember, the
program's starting address must be stored in the standard 1low
byte/high byte fashion.

It should also be noted that we are wusing the most common
KERNAL calls. You may find programmers using $FFB4 (COMMAND
SERIAL TO TALK), $FFB1 (COMMAND THE SERIAL BUS TO LISTEN) and
others. The KERNAL calls are still easy to spot, because they
begin with $FF--. Keep your memory map handy when you are
tracing a program. This auto-boot made it easy for us to see
the next file to be loaded, because the LOAD message is printed
on the screen. Other programmers won't be so considerate. By
inserting the KERNAL routine $FF90 (CONTROL KERNAL MESSAGES),
we may hide the load message for the next program to be loaded.

Our second auto-boot example works by changing the KERNAL CLALL
VECTOR (whereas the first auto boot used the BASIC warm start
vector). The KERNAL CLALL VECTOR 1is 1located in memory at
$032C-%$032D. Just past this vector, at $0334-033B, is an unused
area of memory followed by the cassette buffer at $033C-03FB
and another unused area at $03FC-03FF. This gives us plenty of
room to put our auto boot program ($032C-$03FF).

$032C-$032D0 KERNAL CLALL VECTOR - CLOSE ALL FILES AND 1I/0
CHANNELS '

Through this programs construction, we will change the KERNAL
CLALL VECTOR to point to our program's starting address, which
is $0334. The normal operation of the CLALL VECTOR is to <close
all files that have been opened. The CLALL is part of BASIC's
normal load routine. As such, it is called automatically at the
end of a BASIC load, either direct from the keyboard or from a
program. Before we construct the boot, let's trace the KERNAL
CLALL routine.

PPMII AUTOBOOTS PAGE 37

FFE7 JMP $F32F
F32F LDA #$00

F331 STA $98 NUMBER OF OPEN FILES=0
F333 LDX #$03
F335 CPX $9A DEFAULT OUTPUT DEVICE NUMBER

F337 BCS $F33C SMALLER THAN 3 ‘

F339 JSR $EDFE SEND UNLISTEN COMMAND

F33C CPX $99 DEFAULT INPUT DEVICE NUMBER
F33E BCS $F343 SMALLER THAN 3

F340 JSR $EDEF SEND UNTALK COMMAND

FE43 STX $9A RESET OUTPUT TO SCREEN
F345 LDA #$00

F347 STA $99 RESET INPUT TO KEYBOARD
F340 RTS

Now let's look at our second auto-boot. Load the program,
through LOMON, with L 'AUTOBO0T2',08. The disassembly is as
follows:

032C 34 277 USE THE M COMMAND TO STORE OUR AUTO BOOT'S
032D 03 ?77? STARTING ADDRESS - DON'T FORGET LOW BYTE
FIRST!

032E - 0333 NO CHANGES IN THIS SECTION OF MEMORY

0334 JSR $FF8A RESTORE DEFAULT VECTORS
0337 JSR $FFE7 CLOSE ALL FILES

033A LDA #3%02 FILE NUMBER

033C LDX $BA CURRENT DEVICE NUMBER (08)

033E TAY SECONDARY ADDRESS ($02)

033F JSR $FFBA SET FILE SPECIFICATIONS

0342 LDA #3%04 LENGTH OF FILE NAME-4 BYTES LONG

0344 LDX #$5D LOW BYTE OF FILE NAME MEMORY ADDRESS
0346 LDY #3%03 HIGH BYTE OF FILE NAME MEMORY ADDRESS
0348 JSR $FFBD SET FILE NAME

034B LDA #5%00 SELECT LOAD FUNCTION

034D JSR $FFD5 LOAD RAM FROM A DEVICE
0350 STX $2D
0352 STY $2E SET START OF BASIC VARIABLES
0354 JSR $A68E PROGRAM POINTER TO BASIC START
0357 JSR $A660 CLOSE FILES AND INITIALIZE BASIC
035A JMP $A7AE BASIC'S INTERPRETER LOOP

NEXT FOUR BYTES ARE FILE NAME IN HEX
035D 41
035E 54
035F 42
0360 32

NN - >

Once you have examined the code, you may see it in action with,
LOAD 'AUTOBOQOT2',8,1 and press RETURN. The program will 1load
and execute a second program called 'ATB2'. As with AUTOBOOTI,
the program we are loading is stored in BASIC. If the progranm
is to execute properly, we must restore BASIC's pointers.
BASIC's pointer are reset by the code from $0354 to $035C. We
may also use this auto boot to load a machine language program,
by replacing the JMP to BASIC's INTERPRETER LOOP with a JMP to
your starting address. If you have stored routines beneath the
BASIC ROM don't forget to add the code to flip-out BASIC.

PPMII AUTOBOOTS PAG- 38

The second auto boot is aiso a simple boot. Keep in mind that a
RESET of the computer will erase this code through the
initialization process. Notice also that our code extends into
the CASSETTE BUFFER {$033C-$03FB). Most disk based programs
will not have any use for the cassette buffer.

Both of the auto boot programs we have investigated so far are
a source of aggravation to the 'unprotector', but the code is
still accessible. As long as we know where they are stored, we
may LOAD and examine the code from a machine language monitor.
The ‘'unprotector' may be faced with a job of hunting through
memory for the auto boot, but at least the code is accessible.
Not so with the next type of auto-boot. The program is
*AUTOBOOT3'. It will load and execute 'ATB3". LOAD
'AUTOBOOT3',8,1. If you try to 1load this program through a
monitor, you will find that the program takes control of the
computer. A1l efforts to regain control are foiled. A RESET
will only erase the code. This is due to the <construction of
the program and its place in memory. We will suggest ways to
gain access to the <code, but first let's cover the
construction.

This program will fill the STACK with our starting address.
What does it all mean? The concepts here are no more difficult
to grasp than those presented in the previous two programs, but
they do require a little knowledge of the STACK. Stay with it
and its operation should become clear to you. Stack operations
are explained in the chapter on machine language, but a review
may be in order.

The STACK is located in memory from $0100 to $01FF. The STACK
is used starting from its highest memory location $01FF to the
lowest $0100. The last address placed on the STACK is the first
address pulled out. In this auto boot, we are placing $02
throughout STACK memory ($0100-$01FF). The KERNAL LOAD routine
is a subroutine. A subroutine ends with a RETURN FROM
SUBROUTINE (RTS). As with all subroutines, the address of the
JSR $XXXX is pushed on the stack prior to executing the
subroutine. After the subroutine has executed, the return
address is pulled off the STACK and incremented. This address
is placed in the program counter, which contains the address of
the next command to be executed. Once the program counter gets
its address from memory, it is incremented by one, pointing to
the next memory location to execute. In this boot, $0202 will
be pulled off the STACK since it is full of $02's. After it is
incremented, it will point to $0203. This will be the start of
our program code. We could fill the STACK with other memory
locations, but be sure that the bytes you use are the same (03
03, 04 04). We cannot be sure which byte will be pulled off the
STACK first, so we make all these bytes identical. This way, we
may be sure of where our program will start. Remember, the
address pulled off of the stack is incremented by one prior to
being placed on the program counter.

PPMII AUTOBOOTS PAGE 39

0100 -01FF 02 THIS ENTIRE AREA WILL BE FILLED WITH 02'S.

0200 BRK UNUSED

0201 BRK UNUSED

0202 BRK UNUSED

0203 LDA #3504 LENGTH OF FILE NAME

0205 LDX #%$39 LOW BYTE OF FILE NAME MEMORY ADDRESS
0207 LDY #%02 HIGH BYTE OF FILE NAME MEMORY ADDRESS

0209 JSR $FFBD KERNAL SETNAM - SET THE FILE NAME
020C LDA #%$02 FILE 2

020E LDX #3%08 DRIVE 8

0210 LDY #%02 SECONDARY ADDRESS

0212 JSR $FFBA KERNAL SETLFS - SET FILE SPECIFICATIONS
0215 LDA #3500 SELECT LOAD FUNCTION

0217 JSR $FFD5 KERNAL LOAD - LOAD RAM FROM A DEVICE
021A STX $2D
021C STY $2E SET BEGINNING OF BASIC VARIABLES

THE FOLLOWING CODE IS FUN AND BRINGS IN A
NEW CONCEPT. NOTICE THE VALUES BEING
LOADED. IF WE CONVERT THESE TO DECIMAL, AND
LOOK UP THE CHR$ CODES, WE FIND THAT THE
WORD RUN AND A CARRIAGE RETURN ARE BEING
STUFFED INTO THE KEYBOARD BUFFER. THIS WILL
RESULT IN AN AUTO-RUN OF OUR BASIC PROGRAM.

021E LDA #3$52 R - DECIMAL 82
0220 STA $0277 THE KEYBOARD BUFFER IS LOCATED 1IN MEMORY
FROM $0277 THROUGH $0280.

0223 LDA #$55 U - DECIMAL 85

0225 STA $0278

0228 LDA #3%4E "N - DECIMAL 78

022A STA $0279

022D LDA #%$0D CARRIAGE RETURN - DECIMAL 13

022F STA $027A

0232 LDA #%$04 LOAD AND STORE 4 INTO

0234 STA $Cé6 NUMBER OF CHARACTERS IN KEYBOARD BUFFER

0236 JMP $A474 BASIC'S READY MESSAGE, READ KEYBOARD
NEXT FOUR BYTES ARE FILE NAME IN HEX

0239 41 A
023A 54 T
023B 42 B
023C 33 3

The main question before us is how to gain access to the code.
The easiest way is to purchase a Track and Sector Editor that
contains a disassembly feature. You may then examine the code
and make the necessary changes on the disk, If you do not have
such a program, there is another way.

Once you have determined, through your Track and Sector Editor,
that the program resides at $0100, you may change the starting
address to another value, say $C100 (see the PPM volume I). You
may accomplish this by locating the first block of the file in
question and change byte 04 from 01 to C1. Remember, the 3rd
and 4th bytes contain the starting address of the program. Once

PPMII AUTOBOOTS PAGE 40

this address has been changed, we may 1load it normally and
examine the code through LOMON. The code is now 1located from
$C100 - $C23C. You must keep in mind that the code would
normally reside at $0100, so you must think of the 'C's' as
‘0O's'. From here you may make any necessary changes. You would
now save out the altered program in the standard manner. The
last step is to go back in with your Track and Sector Editor
and change the starting address back from C1 to O1.

The program called 'AUTOBOOT3C100' on your PROGRAM DISK is a
copy of 'AUTOBOOT3', but it resides at $C100. Load the program
and compare the code with the original version 1included here.
You will find that the only difference is in where the code
resides in memory.

If you wish to use an auto-boot program that resides at $0100
and above, you must construct it in another area of memory and
change the load address on the disk. We suggest that you
construct it at $C100.

This type of auto-boot program requires that you work with your
Track and Sector Editor. The PROGRAM PROTECTION MANUAL VOLUME I
contains all the information you'll need to make alterations on
the disk, but for your convenience we will review a bit here.

Let's take a look at a typical TRACK 18 SECTOR 01. This is the
first block of the DISK DIRECTORY. There is a great deal of
information contained in a DIRECTORY listing. It will tell us
the names of the files contained on the disk, the file type,
the location of the files on the disk, and the number of blocks
in each file. This should become clearer through the print-outs
included here. Let's take a look:

PPMII AUTOBOOTS PAGE 41

ASCII MODE

0123 4567 89AB CDEF
0 . MOV E BA SIC
1 .
2 . . DIS K CH ECKE
3R .
4 . 1D CHEC KER
5
6 . APP END
7 . .
8 BLO CK A L &
9 FREE ..
AL . oo DI S K AD DR C
BHANG E .
C .DIS K DR
D . . .« s . « e e
E . «.BAC KUP 2 28
F . . .- %,
As you can see, there are eight programs listed on this block
of the directory. ASCII mode is very helpful, but it is HEX
mode that will reveal the information we will need to locate

our files. The next printout will be the HEX listing of 18/01.
HEX MODE |

NOYOY wh—O

@ > w0 o

MmMMmMoO

0123

12048211
AGAOAQAO
00008211
52A0A0A0

00008211
AOAQAOAQ
00008211
AOAOAQAO

00008211
46524545
00008211
48414E47

00008213
AOAOAQAOQ
00008210
AOAQOAOQAQ

PPMII

4 56 7

004D4F56
AQ0000O0O
01444953
A0000000

09494420
A0000000
09494420
A0000000

03424C4F
A0000000
11444953
45000000

00444953
A00Q00000
00424143
A0000000

8 9A8B

45204241
00000000
48204348
00000000

43484543
00000000
43484543
00000000

43482041
00000000
48204144
00000000

48204452
00000000
4B555020
00000000

CDEF

534943A0
00000900
45434B45
00000300

4B4552A0
00000400
4B4552A0
00000100

40202620
00000300
44522043
00000400

AOAOAOQAO
00001700
323238A0
00002500

AUTOBOOTS

PAGE 42

We will analyze the code in the first directory entry. 1If you
back up to ASCII, you will see that this is the file called
'"MOVE BASIC'. We chose this fiie because it is the first entry
and contains some additional information. Use the grid for
reference points.

GRID HEX CODE INFORMATION

0/0 1204 These two bytes contain the HEX values for the
1ink to the next track and sector. The decimal
eqivalent 1is 18/04. The next block of our
directory will be at TRACK 18, BLOCK 04.

0/2 82 This byte is where the type of file is given. The
82 tells wus that this 1is an active (not
scratched) program file. Check the P.P.M. VOL.I
for a description of the other file types.

0/3 1100 These two bytes contain the Track and Sector for
the first block of this file. The decimal
eqivalent is 17/00. The first block of the file
called 'MOVE BASIC' will be located at TRACK 17,
BLOCK 00.

0/5 4D4F ='M0' This is the beginning of our program name.
The name 'MOVE BASIC' will end at O0/E. Sixteen
bytes are reserved for a program name. If the
name is shorter than the space reserved, the
spaﬁe will be filled with shifted spaces (A0's in
HEX).

1/5 000000 These three bytes are reserved for relative file
entries. They would contain pointers wused by
files of this type.

1/8 00000000 These four bytes are normally 00.

1/C 0000 These two bytes are reserved for the D0S. They
will be used during a Save and Replace operation.

1/E 0900 The last two bytes tell us the number of blocks
that the program occupies on the disk, 1in low
byte/high byte order. MOVE BASIC occupies 9
blocks.

The other file entries follow the same format. The only
difference is in the first two bytes of the entry, which will
contain 00/00.

As you can see, the directory can offer a great deal of
assistance to those who know how to read it. We will now
examine the first block of the program called 'AUTOBOOTZ2', from
the disk that accompanies this manual. When you examine the
directory of the P.P.M.VOL.II disk, you find that ‘'AUTOBOOTZ2'
is a program file (82), bytes three and four tell you its
location on the disk, and you learn that it occupies 1 block on

PPMII AUTOBOOTS PAGE 43

the disk ($01 00). The first block of a file contains some very

special information. Let's take a look at

MODE.

"AUTOBOOT2'

~NOYOY W — O

Mmoo O o > O

0123

00392C03
E7FFA902
20BDFFA9
60A64CAE

00000000
00000000
000082AA
4CB24D54

3A973434
22009E0A
A7353030
4A454422

C800444E
20205748
545200EA
00885452

- HEX MODE

4 5 6 7

340366FE
A6BAA820
0020DSFF
A7415442

00000000
00000000
48B2B528
AB323536

2C483A80
F401AT141
00A40AFE
00BBO8BE

B23800E0
49434820
08DD0O053
B13137A7

8 9 AB

ASF4EDF5
BAFFA904
862D842E
32000000

00000000
00000000
4D54AD32
AC483A97

00000054
243A8B41
018E0000
008D3239

08DC0O085
54524143
4BB23230
53455831

GRID HEX CODE INFORMATION

0/0

00

This byte give us the next track in
the 00 tells us that this

link.

In this case,

CDEF

208AFF20
A25DA003
208EA620
00000000

00000000
00000000
3536293A
34332C4C

494E5545
24B22222
00414C59
30004C59

22931111
4B202238B
OOFBO8DE
38000C09

program

the last block of the file.

0/1 39 This byte would normally contain the sector for
the next link in the file. Since this is the last
block, this byte tells us and the disk drive
where the program ends. Check the grid at 3/9.
This is the last good byte of information for
this file. The rest of the information on this
block is 'garbage'.

0/2

2C This is the low byte of our memory address. This

is a MACHINE LANGUAGE program stored at $032C.

If
you

address.
address,

0/3 03 This is the high byte of our memory
you would like to change the Tload
would change these two bytes.

0/4 - 3/9 This is the data for the program.

Reading the information contained on the disk is essential to

those wishing to study 'AUTOBOOTS'. Beginning here can save you

a great deal of time. Your first attempts at altering disk
information should be done on a BACKUP disk. Do not make
alterations to the original disk if you can avoid it. If you
PPMII AUTOBOOTS PAGE 44

must, then make a note of the changes you made so that you may
return the disk to its original form.

You will find that all of this information will become clearer

with experience. Begin by working with the examples we have
included on your PROGRAM DISK.

PPMII AUTOBOOTS PAGE 45

INTERRUPTS AND RESETS

There are three types of interrupts built 1in to the 6510
processor used on the Commodore 64. An interrupt is a way to
force the processor to stop what it 1is doing and execute
another set of instructions. It is different from a RESET in
that it is only temporary, that is, the processor can pick wup
where it left off before it was so rudely interrupted. In this
chapter we will explore each type of interrupt and analyze the
corresponding KERNAL ROM routine. As we shall see, each ROM
routine is controlled by a RAM vector that may be <changed by
the programmer., The interrupts are:

INTERRUPT TYPE ROM VECTOR RAM VECTOR

NMI - NONMASKABLE INTERRUPT $FFFA-$FFFB $0318-$%0319
IRQ - INTERRUPT REQUEST $FFFE-S$FFFF $0314-%0315
BRK - BREAK $FFFE-$FFFF $0316-$0317

The initial response to any of the three interrupts is similar.
The processor will finish the dinstruction it is currently
executing and then take the following steps:

1). The current value of the program counter, which contains
the address of the next instruction, 1is pushed onto the
stack. The high byte is put on the stack first, followed by
the low byte. (Note: the stack grows backwards in memory
from $01FF to $0100).

2). The processor status register, which contains all the flags
(carry, etc.) is pushed onto the stack.

3). The processor then consults a specific place in memory for
the interrupt routine. For an NMI it looks to $FFFA-$FFFB
and for an IRQ or BRK it 1looks to S$FFFE-$FFFF. These
locations contain the STARTING ADDRESS of the corresponding
interrupt routine vector. The processor then jumps to the
starting address given and begins executing the code there.

WHERE it looks initially ($FFFA-B or $FFFE-F) in step 3 above
CANNOT BE CHANGED; the processor is designed at the hardware
level to do this. Since the KERNAL ROM normally occupies these
locations on the C-64, we cannot easily change the CONTENTS of
these locations either. So how can we change what happens at
interrupt? As we shall see, the interrupt routines pointed to
by these ROM vectors all check another location to decide where
to proceed. These other locations are in RAM (RAM vectors), and
we CAN alter them.

Once an interrupt routine has finished its job (whatever that
may be) it should be able to have the processor resume its
operations at the point it was interrupted. To do this it must
be able to restore the status register and program counter (PC)
to their pre-interrupt values. Remember, these values were

PPMII INTERRUPTS AND RESETS PAGE 46

pushed onto the stack in steps 1 & 2, so they are still
available. The 6510 processor has a special instruction called
RTI (RETURN FROM INTERRUPT) which automatically restores these
values. Since it restores the program counter, execution
continues at the same point it was interrupted. Every
interrupt routine should end with an RTI.

Although they share some similarities, the three interrupts
have important differences too. The 6502/6510 microprocessor is
housed in a plastic case with 40 connecting pins, two of which
are dedicated to IRQ and NMI. When a signal is applied to one
of these pins, the corresponding interrupt routine will be
executed. This is the only way to generate the IRQ and the NMI
interrupts.

The main difference between the IRQ (INTERRUPT REQUEST) and the
other two interrupts is that we can prevent (mask) the IRQ
signal from being recognized by the processor if we wish. We do
this by wusing the machine language instruction SEI (SET
INTERRUPT DISABLE). This instruction affects ONLY the IRQ
interrupt. No IRQ signal will be noticed until after we do a
CLI (CLEAR INTERRUPT DISABLE) or RTI (RETURN FROM INTERRUPT)
instruction.

The second type of interrupt is BRK (BREAK). It differs from
the others in that BRK 1is generated through the wuse of a
special machine 1language instruction (BRK) rather than an
electronic signal. When a BRK occurs it causes a special flag
(the BRK flag) to be set 1in the processor status register.
Although BRK and IRQ actually jump to the same ROM routine
initially, the BRK flag is used to tell them apart.

The third type of interrupt is the NMI (NONMASKABLE INTERRUPT).
As the name implies, NMI cannot be disabled (masked) using SEI.
It can occur at any time, even while an IRQ or BRK routine 1is
being executed. In fact, even if an NMI and another interrupt
occur simultaneously, the NMI is given priority.

I want to emphasize the similarities and differences noted
above are a function of the processor itself, rather than the
Commodore 64 as a whole. Now let's take a detailed look at each
of the KERNAL ROM routines executed by these interrupts to see
what the C-64 wuses them for. We'll start with the NMI
interrupt.

NMI (NONMASKABLE INTERRUPT) ROM $FFFA-B ($FE43)
RAM $0318-9 ($FE47)

PPMII INTERRUPTS AND RESETS PAGE 47

Here is the main NMI interrrupt routine for reference 1in the
following discussion:

FE43
FE44
FE47
FE48
FE49
FE4A
FE4B
FE4C
FE4E
FESI
FE54
FE56
FE59
FESB
FESE
FE61
FEG4
FE66
FE69
FE6C
FE6F
FE72
FE73
FE76
FE77
FE79
FE7B
FE7E
FE8O
FE82
FE85
FE88
FE8B
FE8C
FESE
FE90
FE92
FE94
FE97
FESA
FE9D
FEAQ
FEA3
FEA4
FEA6
FEAS8
FEAB
FEAE
FEAF
FEBI

PPMII

SEI
JMP
PHA
TXA
PHA
TYA
PHA
LDA
STA
LDY
BMI
JSR
BNE
JMP
JSR
JSR
BNE
JSR
JSR
JSR
JMP
TYA
AND
TAX
AND
BEQ
LDA
AND
ORA
STA
LDA
STA
TXA
AND
BEQ
AND
BEQ
JSR
JMP
JSR
JSR
JMP
TXA
AND
BEQ
JSR
JMP
TXA
AND
BEQ

($0318)

#$7F
$DDOD
$DDOD
$FE72
$FDO2
$FESE
($8002)
$F6BC
$FFE1
$FE72
$FD15
$FDA3
$E518
($A002)

$02A1

#$01
$FEA3
$DD00
#$FB
$B5
$DDOO
$02A1
$DDOD

#$12

$FE9D
#$02

$FE9A
$FED6
$FEID
$FFO7
$EEBB
$FEBG

#$02

$FEAE
$FEDG
$FEBG6

#3510
$FEBG

SET INTERRUPT DISABLE (NO IRQ INTERRUPTS)
NMI RAM VECTOR (CONTAINS $FE47 NORMALLY)

THIS CODE WILL SAVE THE A, X, AND Y
REGISTERS

CIA #2 INTERRUPT CONTROL REGISTER

BRANCH IF RS-232 ACTIVE

CHECKS FOR CBM80 AT $8000

IF NOT, CONTINUE

IF PRESENT, JUMP TO WARM-START ROUTINE
SET FLAG FOR STOP-KEY

SCAN STOP KEY

BRANCH IF STOP KEY NOT PRESSED
RUN/STOP-RESTORE PRESSED - SET I/0 VECTORS
INITIALIZE I/0

INITIALIZE 1/0 AND CLEAR SCREEN

TO BASIC WARM-START

NMI INTERRUPT CONTROL CIA

DATA PORT A-SERIAL BUS, RS-232

CIA #2 INTERRUPT CONTROL REG

RS-232 IN
RS-232 0OUT

RS-232 OUTPUT
RESTORE AND EXIT

INTERRUPTS AND RESETS PAGE 48

FEB3 JSR $FFO07 RS-232 0OUT

FEB6 LDA $02A1

FEB9 STA $DDOD '

FEBC PLA THIS CODE RESTORES THE A,X AND Y REGISTERS
FEBD TAY

FEBE PLA

FEBF TAX

FECO PLA

FEC1 RTI RETURN FROM INTERRUPT AND CONTINUE PROGRAM

On the Commodore 64, an NMI can be generated by a device on the
RS-232 (user) port or by the RESTORE key. In either case, the
processor will consult locations $FFFA-$FFFB. These two bytes
contain a vector (pointer) to the interrupt routine in ROM. The
values found here are $43 FE, respectively, which means the
routine is at $FE43 (remember the address bytes are stored in
reverse order). The processor will then proceed to $FE43 and
begin executing the routine there.

The routine at $FE43 immediately disables the IRQ (with an SEI
instruction) so that it won't be interrupted itself. Next, it
consults (through JMP ($0318)) another vector located at $0318
& $0319, which is in RAM. The values found there tell it where
to proceed next. Normally, this RAM vector points to $FE47
which simply continues the NMI routine. Since this vector is
in RAM, however, it can be easily changed to point to our own
routine if desired, -

In the normal ROM routine at $FE47, it immediately pushes the
values of the A, X and Y registers onto the stack because it
needs to use them. Next the NMI routine checks a 1location on
CIA #2 to see if the NMI was generated by an RS-232 device,
such as a printer or modem. If so, it jumps to the routine to
handle RS-232 communications. We're not concerned with RS-232,
so we won't discuss it further, In the following discussion
we'll assume the NMI was generated by the RESTORE key.

The NMI routine next checks for the presence of CBM80 at $8000.
This indicates an autostart program, usually a cartridge. If
the CBM80 is present, the values stored at $8002 & $8003 will
be used as a 'warm start' vector. Processing will continue at
the location indicated at $ 8002 & $8003 (vectors). We may fool
the computer into thinking that a <cartridge 1is present by
storing a CBM80 at $8000. This allows a programmer to wutilize
the NMI routine to restart a program 1in progress. For more
detailed information on the CBM80, refer to the original
PROGRAM PROTECTION MANUAL.

If there is no CBM80 at $8000, the NMI routine <checks the
RUN/STOP key. If it dis being pressed it 1is a signal to
warm-start BASIC. In this case the routine performs some 1[/0
initialization and clears the screen. Finally, it consults the
BASIC warm-start vector at $A002 & $A003 and Jjumps to the
location specified there.

PPMII INTERRUPTS AND RESETS PAGE 49

If RUN/STOP is not pressed the routine will continue through
some code and evenually restore the A, X and Y registers from
the values that were saved on the stack. Finally it executes an
RTI which restores the processor status, re-enables IRQ's and
continues execution at the point it was interrupted by the NMI.

Before we continue our study of the other dinterrupts, let's
explore the CBM80 set-up in terms of program protection. During
our detour, we'll need to explore the RESET and RAM TEST
ROUTINES. An understanding of these routines can be invaluable
in program protection.

We find a great deal of built-in security for programs that
utilize the CBM80. The auto-start feature for cartridges is
designed to keep the code from being exposed on RESET. The same
protection is provided to any program that uses CBM80 and the
RESTORE key to auto-start itself. We have already explored and
utilized the techniques used to protect a cartridge 1in the
PROGRAM PROTECTION MANUAL VOLUME I, but auto-start programs
that reside in RAM require another look.

If the CBM80 is in RAM, it can be defeated by simply preventing
the computer from seeing this part of memory. A cartridge uses
the EXROM and GAME lines of the cartridge port to control the
memory configuration of the C-64. See the chapter on the 6510
and the PLA for a complete breakdown of how this is done. For
our purposes here we only need to 1look at the function of
EXROM.

Normally, the EXROM line stays at a HIGH level (+5 wvolts). In
this state we will have RAM available at $8000-39FFF (assuming
everything else is normal). If EXROM is forced to a LOW level
(0 volts) by grounding it, the computer expects to see
cartridge ROM there instead of RAM. However, REGARDLESS of
whether there is anything plugged into the <cartridge port or
not, the computer will NOT be able to see the RAM in this area.
If EXROM is grounded after loading and running a CBM80-based
program, all of a sudden the program can't see 1its auto-start
when we hit RESTORE. If the computer is RESET, we'll see the
familiar blue screen and start-up message, except that we'll
see 30719 BASIC BYTES FREE instead of the normal 38911. Also, a
$55 will have been put at $8000 (RAM). Why all this happens is
a matter for further exploration.

We need to examine the RESET routine with concentration on the
RAM TEST routine ($FD50). The RESET routine is located at $FCE2
in ROM. The decimal address for this location is 64738. To
execute a RESET from BASIC, we enter SYS 64738. O0f course we
can also force a RESET through our familiar RESET switch.,

PPMII INTERRUPTS AND RESETS PAGE 50

RESET ROUTINE

FCEZ2
FCE4
FCES
FCE6
FCE?7
FCEA
FCEC
FCEF
FCF2
FCF5
FCF8
FCFB
FCFE
FCFF

LDX
SEI
TXS
CLD
JSR
BNE
JMP
STX
JSR
JSR
JSR
JSR
CLI
JMP

#$FF

$FDO2
$FCEF
($8000)
$D016
$FDA3
$FD50
$FD15
$FF5B

($A000)

PREVENT IRQ INTERRUPTS

SET THE STACK POINTER TO TOP - IMPORTANT!

CLEAR DECIMAL FLAG TO ENABLE HEX ARITHMETIC

CHECKS FOR CBM80 AT $8000

SKIP TO $FCEF IF NOT PRESENT

JUMP TO CARTRIDGE COLD START

SET SCREEN TO 38 COLUMNS

INITIALIZE I/0

RAM TEST - EXPLAINED BELOW

SET HARDWARE & I/0 VECTORS (0314-0333)
INITIALIZE VIC CHIP (INCL. COLORS)
ALLOW IRQ INTERRUPTS AGAIN

JMP TO BASIC COLD-START

Let's break down the $FD50 routine (RAM TEST). This 1is
routine that initializes the work area and places the $55
$8000 ($A000 normally). The commented code is as follows:

INITIALIZE

FD50
FD52
FD53
FD56
FD59
FD5C
FD5D
FD5F
FD61
FD63
FD65
FD67
FD68
FD6A
FD6C
FD6E
FD70
FD71
FD73
FD75
FD77
FD79
FD7A
FD7C
FD7E
FD80
FD81
FD83
FD84
FD86
FD88
FD89

PPMII

LDA
TAY
STA
STA
STA
INY
BNE
LDX
LDY
STX
STY
TAY
LDA
STA
INC
LDA
TAX
LDA
STA
CMP
BNE
ROL
STA
CMP
BNE
TXA
STA
INY
BNE
BEQ
TYA
TAX

WORK AREA - RAM TEST

#3500

$0002,Y
$0200,Y
$0300,Y

$FD53
#$3C
#$03
$B2
$B3

#$03
$C2

$C2
($C1),Y

#$55
($Cc1),Y
($c1),Y
$FD88

($c1),Y
($c1),Y
$FD88

($c1),Y

$FD6E
$FD6C

THIS SECTION OF CODE WILL CLEAR ZERO
PAGE, PAGE 2 AND PAGE 3 TO ALL $00'S

NOTE THAT THE STACK AT $0100-3%01FF IS
NOT RESET (EXCEPT FIRST TWO BYTES)

INITIALIZE CASSETTE BUFFER POINTER

THIS SECTION PERFORMS THE RAM TEST

START TEST AT $0400

$C1-2 POINTS TO NEXT BYTE TO TEST
PRESERVE VALUE THERE NOW

TEST PATTERN = BINARY 01010101
TRY SAVING TO BYTE BEING TESTED

COMPARE VALUE THERE NOW WITH TEST PATTERN

BRANCH IF NOT THE SAME; WE'VE FOUND ROM
DOUBLE-CHECK WITH $AA = BINARY 10101010

BRANCH IF ROM FOUND

RESTORE ORIGINAL VALUE TO BYTE
NEXT BYTE

BRANCH IF NOT DONE WITH PAGE

NEXT PAGE (256-BYTE AREA)

GET LOCATION OF FIRST ROM BYTE...

the

at

INTERRUPTS AND RESETS PAGE 51

FD8A LDY $C2

FD8C CLC

FD8D JSR $FE2D ... AND SET TOP OF RAM POINTER TO IT
FD90 LDA #%08

FD92 STA $0282 SET PAGE NO. OF BASIC AREA START
FD95 LDA #$04

FD97 STA $0288 SET PAGE NO. OF SCREEN FOR EDITOR
FDO9A RTS ALL DONE

The RAM TEST routine starts at $0400 (screen memory) and works
its way up until it finds ROM (or no 1longer finds RAM). It
tests a location by storing a test pattern ($55) idinto it and
then trying to load it back out. If the value it gets back
matches the test pattern, then it must be in RAM (it
double-checks anyway with another pattern, $AA}. Since the
routine is not supposed to change RAM, it preserves the value
that was there originally and replaces it afterward. However,
if it stores out the test pattern and can't get it back, then
it assumes it's found ROM. Note that it DOESN'T replace the
original value in this case. The first test value of $55 is
left in memory.

Now we see why we get a $55 at $8000 when EXROM is grounded and
the computer is RESET. EXROM prevents the computer from reading
the RAM at $8000-$9FFF. When the routine stores out the $55 to
location $8000, it does go into RAM, however, wiping out what
was there! Since the routine can't read the $55 back because of
EXROM, it thinks 1it's found ROM and doesn't replace the
original value. It also records $8000 (32768) as the start of
ROM instead of the normal $A000 (40960). Since the BASIC BYTES
FREE is calculated by subtracting $0801 (2049) from this value,
we get 30719 instead of 38911,

The next interrupt routine is called the IRQ. Sixty times each
second an IRQ interrupt signal is given to the microprocessor
by the timing hardware. When an IRQ signal 1is received, the
processor will first check the I flag (IRQ disable flag). If
the I flag is set (by a SEI instruction), the signal will be
ignored. If the I flag is clear, the IRQ will be allowed. Since
an IRQ and a BRK are handled initially by the same same
routine, the processor must first check its BRK flag to tell
which type actually happened. It then selects the proper
routine. The IRQ routine performs several housekeeping chores
such as scanning the keyboard. If a program 1is 1in progress,
operation is suspended to allow for the interrupt sequence.
This operation takes place so quickly that we do not notice the
interruption.

PPMII INTERRUPTS AND RESETS PAGE 52

IRQ (INTERRUPT REQUEST) ROM $FFFE-F (FF48)
RAM $0314-5 (EA31)

1). As with the NMI interrupt, the current value of the program
counter will be placed on the stack in high byte/low byte
order,

2). The status register (FLAGS) will be pushed to the stack.
3). The ROM vector at $FFFE-FFFF is consulted for the actual

entry point of the IRQ routine. This vector points to a
routine located at $FF48 which will then be executed.

FF48 PHA THIS CODE WILL SAVE

FF49 TXA THE REGISTERS

FF4A PHA

FF4B TYA

FF4C PHA

FF4D TSX :

FF4E LDA $0104,X GET THE BREAK FLAG FROM THE STACK (BIT 4)
FF51 AND #%10 TEST BRK FLAG - CHECK IF INTERRUPT

IS FROM A BRK OR AN IRQ
FF53 BEQ $FF58 BRANCH IF IRQ
FF55 JMP ($0316) BRK ROUTINE VECTOR
FF58 JMP ($0314) IRQ ROUTINE VECTOR

Take particular notice of the last two addresses. An indirect
jump based on the contents of $0316-7 will occur 1if the BRK
flag is set. An indirect jump based on the contents of $0314-5
will be executed if the BRK flag is not set. This RAM 1IRQ
vector points to the ROM routine at $EA31. If you wish to add
some code to the IRQ routine, you would change the vectors at
$0314-%$0315 to point to your section of code. At the end of
your code, you should jump to the normal ROM routine at $EA31.
This will insure that the normal housekeeping chores are done
properly. They are as follows:

1). Update system clock and check STOP key. The system clock at
$A0-$A2 (BASIC variable TI) is incremented every sixtieths
of a second. Next, the STOP key is checked. If the stop key
is pressed a flag in zero page is set.

2). Flash the cursor. Every twentieth time the IRQ routine is
called, the character at the cursor position 1is reversed.
This causes the cursor to blink 3 times per second.

3). Perform tape 1/0. Datasette operation 1is handled through
the IRQ routine. If the datasette is not being controlled
by a program, the motor is switched on or off depending on
whether a key on the datasette is pressed or not.

4). Read the keyboard. If a key is pressed, the key <code is

determined and the corresponding ASCII value is placed in
the keyboard buffer.

PPMII INTERRUPTS AND RESETS PAGE 53

When all these
interrupt with

flag,

restores
program.

With the above

ROM routine
INTERRUPT
EA31 JSR
EA34 LDA
EA36 BNE
EA38 DEC
EA3A BNE
EA3C LDA
EA3E STA
EA40 LDY
EA42 LSR
EA44 LDX
EA47 LDA
EA49 BCS
EA4B INC
EA4D STA
EA4F JSR
EA52 LDA
EA54 STA
EA57 LDX
EAS5A LDA
EA5C EOR
EASE JSR
EAG1 LDA
EA63 AND
EAGS BEQ
EA67 LDY
EA69 STY
EA6B LDA
EA6D ORA
EAGF BNE
EA71 LDA
EA73 BNE
EA75 LDA
EA77 AND
EA79 STA
EA7B JSR
EA7E LDA
EA81 PLA
EAS82 TAY
EAE3 PLA
EA84 TAX
EAS5 PLA
EA86 RTI

PPMII

at

tasks have been completed, we return from the
RTI. This automatically clears the IRQ disable
the status register and resumes the interrupted

information in mind, let's take a 1look at the
$EA31.

ROUTINE
$FFEA INCREMENT TIME CLOCK

$CC

CURSOR BLINK: $00=0FF, $01=0N

$EAG] IF NOT BLINKING, THEN CONTINUE

$CD

DECREMENT CURSOR BLINK TIMER

$EAG] IF NOT ZERO, THEMN CONTINUE
#514 SET CURSOR BLINK TIMER TO 20 JIFFIES

$CD
$D3
$CF

GET CURSOR COLUMN
IF BLINK SWITCH IS $80 THEN SET CARRY

$0287 COLOR UNDER THE CURSOR
($D1),Y GET CODE OF CHARACTER UNDER CURSOR
SEASC IF THE BLINK SWITCH WAS ON, THEN CONTINUE

$CF
$CE

TURN BLINK SWITCH ON
SAVE CHARACTER UNDER CURSOR

$EA24 SYNCHRONIZE COLOR POINTER

($F3),Y GET COLOR CODE OF CHARACTER

$0287 CURRENT COLOR CODE UNDER THE CURSOR
$0286 BACKGROUND COLOR UNDER CURSOR

$CE

CHARACTER UNDER CURSOR

#3580 REVERSE CHARACTER VIDEO
$EAIC SET CHARACTER AND COLOR

$01

#3$10 CHECK FOR THE TAPE DRIVE KEY
$EAT7I DETERMINE IF PRESSED
#$00

$CO
$01

CLEAR TAPE INTERLOCK FLAG

#$20 TAPE DRIVE ON
$EAT79

$CO

$EA7B TO CHECK KEYBOARD

$01

#$1F TAPE DRIVE ON

$01

INPUT-OUTPUT REGISTER

$EAB7 CHECK KEYBOARD
$DCOD CIA INTERRUPT CONTROL REGISTER

RESTORE REGISTERS

RETURN FROM INTERRUPT

INTERRUPTS AND RESETS PAGE 54

We've looked at the code and analyzed the routines, but what
does it mean to us? We will explore that question in terms of
how you may utilize the interrupt in your own programming and
in terms of protecting a program.

The key to the interrupt sequence is that it will pass through
a RAM location. This allows the programmer the opportunity to
utilize the interrupt for his own purposes.

Let's get to 1it. Load and execute LOMON so that we may
experiment with the IRQ interrupt. Our task will be to add a
border color change to the normal interrupt sequence. Remember,
the interrupt occurs sixty times each second. We will point the
IRQ RAM vector to our routine at $2000.

1). With LOMON activated, type A 1000 SEI followed by RETURN.
This disables the IRQ flag, suspending the operation of the
normal IRQ interrupt sequence so that it will not interfer
with the job we have chosen to perform. A1l IRQ interrupt
sequences should begin this way.

2). The monitor will respond with the next memory 1location
(A1001). Type LDA #3$00 and press RETURN. We are now loading
the accumulator with the low byte of the 1location of our
interrupt code.

3). Again the monitor responds with the next memory 1location
(A1003). Type STA $0314 and press RETURN. Through this
instruction, we are storing the low byte address of our
interrupt routine in the low byte of the IRQ RAM VECTOR.

4). We are now at $1006. Type LDA #3%20 and press RETURN. This
is the high byte of the location of our routine.

5). Type STA $0315 and press RETURN. We will now store the high
address byte of our interrupt routine in the high byte of
the IRQ RAM VECTOR.

6). Type CLI followed by RETURN. This instruction will enable
the IRQ flag so that IRQ interrupts may occur. This is not
really necessary since RTI will do this automatically after
an IRQ (only). It's purpose is to remind us that must be
done.

7). Type RTI followed by RETURN. This will return us from the
interrupt sequence back to the program in progress.

Disassemble the code at $1000. Check your code with the

disassembly below. Make sure you have programmed the seguence
properly.

PPMII INTERRUPTS AND RESETS PAGE 55

PROGRAMING THE IRQ RAM VECTOR

.,1000 78 SEI SET THE INTERRUPT - NO INTERRUPTS
ALLOWED.
.»,1001 A9 00 LDA #%00 LOAD THE LOW BYTE OF THE

INTERRUPT SEQUENCE ADDRESS INTO
THE ACCUMULATOR - OUR INTERRUPT
ROUTINE WILL RESIDE AT $2000

.,1003 8D 14 03 STA $0314 STORE THE LOW BYTE OF OUR PROGRAM

ADDRESS INTC THE LOW BYTE OF THE
IRQ RAM VECTOR :

.»1006 A9 20 LDA #3$20 LOAD THE HIGH ADDRESS BYTE OF OUR

ROUTINE INTO THE ACCUMULATOR

.,1008 8D 15 03 STA $0315 STORE THE HIGH ADDRESS BYTE OF

OUR ROUTINE INTO THE HIGH BYTE OF
THE TRQ RAM VECTOR

.,100B 58 CLI ALLOW IRQ INTERRUPTS TO OCCUR

.»100C 40 RTI RETURN FROM INTERRUPT - BACK TO

THE PROGRAM IN PROGRESS

We will now store our interrupt sequence at $2000.

1).

™~
~—

3).

4).

Back to assembly wode. Type A 2000 PHA followed by RETURN.
We will preserve the registers so that a program in
progress may be resumed when we return to normal program
execution. This process must be done through the A
register. The PHA dinstruction will push the accumulator
onto the stack.

Type TXA followed by RETURN. We will now transfer the X
register to the accumulator. Remember we can only push
values to the stack through the A register. If we wish to
preserve X, we must first transfer it to the A register.

Type PHA and press RETURN. We are now pushing the
transferred X value to the stack.

Type TYA followed by RETURN. We will now preserve the Y
register, through a transfer to the A register.

Type PHA followed by RETURN. We will push the transferred Y
value to the stack.

PPMII INTERRUPTS AND RESETS PAGE 56

6).

7).

8).

9).

10).

11).

12).

13).

14).

15).

Now that we have preserved our registers, we will go about
the task of adding our <color change. Type LDA $D020
followed by RETURN. We are now loading the border color
into the accumulator.

Type CLC followed by RETURN. This instruction will <clear
the carry flag.

Type ADC #3%0) followed by a return. This adds memory to the
accumulator with carry.

Type STA $D020 followed by a return. The results will be
stored at the border color location.

With our color change done we must now retrieve the
registers. Type PLA and RETURN - pull the accumulator from
the stack.

Type TAY and RETURN. We will transfer that value to the Y
register.

Type PLA and RETURN. Pull the next value off the stack,
which was the X register.

Type TAX and RETURN. Transfer the value in the accumulator
to the X register,

Type PLA and RETURN. This is the last value to be pulled
from the stack. It is the value for the A register.

Type JMP $EA31 and RETURN. This is the ROM routine normally
pointed to by the IRQ RAM vector. This allows normal
housekeeping to be done.

PPMII INTERRUPTS AND RESETS PAGE 57

Disassemble the code at $2000 and see if your disassembly
matches the one given below.

ADD A BORDER COLOR CHANGE TO THE NORMAL INTERRUPT SEQUENCE

.,2000 48 PHA PUSH THE A REGISTER ON THE STACK

.,2001 8A TXA TRANSFER THE X REGISTER TO THE
ACCUMULATOR

.»,2002 48 PHA PUSH IT TO THE STACK

.,2003 98 TYA TRANSFER THE Y REGISTER TO A

.,2004 48 PHA PUSH IT ON THE STACK

.,2005 AD 20 DO LDA $D020 LOAD THE A REGISTER WITH THE BORDER
ADDRESS

.,2008 18 CLC CLEAR THE CARRY FLAG

.»,2009 69 01 ADC #$01 ADD WITH CARRY
.,200B 8D 20 DO STA $D020 STORE THE RESULT AT BORDER COLOR

.,200E 68 PLA PULL THE A REGISTER OFF THE STACK
.,200F A8 TAY TRANSFER TO THE Y REGISTER

.,2010 68 PLA PULL THE NEXT VALUE OFF THE STACK
.,2071 AA TAX TRANSFER IT TO THE X REGISTER
.,2012 68 PLA PULL THE NEXT VALUE OFF THE STACK

.,2013 4C 31 EA JMP $EA31 JMP TO THE IRQ ROM ROUTINE

We are now ready to activate our program with G 1000. If you
typed everything in properly, you should now be experiencing an
extremely irritating border color change 60 times a second.
Everything else should be functioning normally. Let's see.
Using the D command, type D 2000 2013. There's our program. Now
go up to 2005. Go to the end of the 1line and change the 20 to a
21. This will stop the flashing. Now move to $200B. Go to the
end of the line and again change the 20 to a 21. This should
really drive you up a wall. You'll have to use RUN/STOP-RESTORE
to stop it. Remember, the NMI (RESTORE key) cannot be masked
(disabled) by our SEI, thus we can use it to warm start BASIC
and return us to normal.

Not a very practical program, but through its simplicity we are
able to gain an understanding of the IRQ function.

PPMII LiiTERRUPTS AND RESETS PAGE 58

As you can see from our example, the IRQ routine is easily
accessible to the programmer. While this dis a joy for the
programmer, it can pose many problems for the ‘unprotector'.
The programmer can easily store a 'self-destruct' sequence in
his program to prevent access to the code through normal means.

In the program above, $2005-$200B contains the code to <change
the border color. You may also insert code to do whatever you
wish during the interrupt cycle.

Our last interrupt is BRK (BREAK).

BRK (BREAK INTERRUPT) ROM $FFFE-F ($FF48)
RAM $0316-7 ($FE66)

Recall that when an IRQ or BRK occurs, the microprocessor will
execute the ROM routine at $FF48. Through this routine, it will
determine if BIT 4 of the STATUS REGISTER has been set. This is
the BRK flag. If it is set, the last interrupt was caused by a
BRK and not an IRQ. The following steps will then be taken:

1). The microprocessor will increment the program counter (PC)
and store it on the stack (see SPECIAL NOTE below). The
status register will be saved on the stack and the BRK FLAG
set to indicate a BRK has occurred.

2). The normal IRQ interrupt sequence will be executed to
determine if the interrupt was caused by an IRQ or a BRK.
This is the ROM routine at $FF48.

3). The processor will execute the routine specified by the BRK
vector at 3$0316-%0317. Under normal circumstances, this
vector points it to $FE66, which is within the NMI routine.
The net effect 1is to warm-start BASIC exactly as if
RUN/STOP-RESTORE had been used.

The designers of the Commodore 64 chose to route the BRK
routine through a vector in RAM, which may be accessed and
changed by the user. This can be very useful. Many assemblers
and monitors will program the BRK vector to return us to the
monitor. This «can make the BRK instruction invaluable in
debugging machine 1language programs. We may insert a BRK
instruction in our program at some point to verify that
execution has reached this point. When the BRK is encountered,
we will be returned to the monitor. The <contents of all
registers will be displayed automatically. We can examine these
to determine if the program is executing properly, and then
resume execution with a G command (but see SPECIAL NOTE below).

PPMII INTERRUPTS AND RESETS PAGE 59

Let's do a Tittle experimenting with the BRK RAM vector. HWith
LOMON loaded and running, look at the code at $0316-%$0317, with
M 0316. You should see 3F 80 stored in this location. This is
the address in LOMON we will jump to when a BRK occurs. Let's
change that vector to point to the RESET routine at $FCE2 with
:0316 E2 FC. Now put a BRK ($00) instruction at $1000 with
:1000 00 or A1000 BRK. Now type G 1000. When the processor
executes the BRK, it consults the vector at $0316-$0317. Since
it finds the address of the RESET routine in this vector, a
software RESET is performed and we see the normal start-up
screen.

SPECIAL NOTE: Even though the BRK instruction is only one byte
long, THE PC IS INCREMENTED BY TWO before being pushed on the
stack in step 1 above. This only happens with BRK and not the
other interrupts. Thus when returning from the interrupt via
RTI, the processor will not resume execution at the next
location directly after the BRK dinstruction, but rather one
byte past that point. Most monitors compensate for this but it
can cause maddening problems if you are wusing BRK and RTI
directly in your own routines. TECHNICALLY this is not a bug
since it dis spelled out 1in the documentation (see the
PROGRAMMER'S REFERENCE GUIDE p.238) but it certainly qualifies
as a major quirk of the 6502/6510.

Understanding the three types of dinterrupts can open new
avenues of programming techniques. Begin by expanding the
programs illustrated here. The possibilities are wunlimited.
Give it a try!

PPMII INTERRUPTS AND RESETS PAGE 60

COMPILERS

Most home computers sold today come equipped with a version of
BASIC (Beginners All-purpose Symbolic Instruction Code). BASIC
is a simple, English-1ike computer lanquage created by Kemeny
and Kurtz at Dartmouth College 1in 1965. They designed it
originally to be easy to learn (and teach). It was popular
right from the start and today it is the most common computer
language in the world.

Its simplicity is probably the main reason for its success, but
not the only one. Some credit is also due to the way it is
usually designed to work (implemented). A language 1like BASIC
can generally be implemented in one of two main ways. The most
common form for BASIC is called an INTERPRETER. The alternative
form is called a COMPILER. To wunderstand the differences
between the two, we need to take a l1ook at the whole idea of a
computer language.

The heart of a computer is the processor, which actually does
all the work. The processor has been compared to someone of
very limited intelligence who nonetheless has a perfect memory
and works VERY fast. When dealing with the processor, you must
stick to commands that it can understand and be careful what
you tell it to do. The old saying is that it always does what
you TELL it, but not necessarily what you WANT!

In the prehistoric days of computing (before 1950), the only
way to change the operation of a computer was to hook and
unhook wires idinside it. By connecting the individual
components, called 1logic gates, in <carefully planned ways
computer scientists could produce the output they desired.

They soon realized that the binary number system could be wused
to represent the connections to be made. Binary numbers are
made up of only the digits 1 and 0. A 1 represents connection
and a 0 means no connection. By converting the planned
connections into binary, a set of numbers can be <created to
tell the computer how to switch its own wires, so to speak.

These numbers represent the first LOW-LEVEL computer Tlanguage,
called MACHINE LANGUAGE. Working with numbers instead of
physical wiring simplified the process of programming
considerably, but it was still far from convenient. It is safe
to say that today no one programs in actual machine Tlanguage
other than a few instructions here and there. Instead we use
the result of the next stage of development: ASSEMBLY LANGUAGE.

Assembly language is very similar to machine Tlanguage. It
consists of alphabetic codes called mnemonics which specify the
same operations as machine language, but are easier for humans
to remember. For example, the 6510 processor in the Commodore
64 has an idinstruction which din binary s 10101001. The
assembler mnemonic for this is simply LDA.

PPMII COMPILER PAGE 61

Before a computer can understand a program written in assembly
language, it is necessary to translate it. At first this was
done by hand, but computer scientists soon found a way to have
this tedious process done by the computer itself.

Thus the first ASSEMBLERS were born. An assembler takes a
program in assembly language, called the source program, and
translates it into a machine 1language program, called the
object program. Interestingly, the first assemblers were
written directly in machine code, but from then on the simple
assemblers could be used to write better ones!

Hand-in-hand with assemblers go programs called disassemblers.
As the name implies, these can take raw machine code and turn
it into assembly language (mnemonics). They can't reverse the
process completely without human intervention, though, because
of the problem of telling data from program instructions (does
this 10101001 really stand for LDA or simply hold a data value
for use by some other part of the program?).

A single assembly language instruction usually translates 1into
a single machine 1language instruction. Programs written in
either form are usually long and always hard to read. Also,
there are some common tasks that show up 1in almost every
program, like arithmetic or printing. In the mid-50's computer
scientists began to create the first HIGH-LEVEL 1languages to
solve some of these problems.

A high-level 1language consists of much more powerful and
flexible commands than assembly language. For example, the
PRINT command or its equivalent is often the most complicated
command in a language. A single PRINT statement can include
letters, numbers, variables, TABs and other spacing controls
like commas and semicolons. To actually perform the printing as
well as preparing the printer or screen to receive the data
could easily involve executing thousands of machine language
instructions.

Thus a program in BASIC, say, is far shorter and easier to
read, write and modify than the equivalent 1in assembly
language. Once again, however, it must be converted to a form
that the computer can understand. This is much more complicated
and time-consuming than with assembly language. Not only do you
have to expand the BASIC statements, you also have to keep
track of the program's data. In assembly language we must
specify where each piece of information is to be kept by giving
the locations directly. In BASIC we wuse variables and the
system has to keep track of them and reserve enough space.

Although high-level languages and ways of implementing them are
still evolving, we do have a basic (no pun intended) choice of
ways to proceed: a COMPILER or an INTERPRETER. Each has its own
advantages and disadvantages, depending upon the environment in
which it is to be used. An analogy may help to emphasize this.

PPMII COMPILER PAGE 62

Suppose you like Mexican food . Someone recommends a particular
cookbook, so you buy it. When you get home you discover that
it's in Spanish! Furthermore, it uses a 1ot of complicated
cooking procedures. You know nothing of Spanish, or cooking
either for that matter, but you ARE able to follow simple,
specific directions, just like a computer.

Fortunately, you also have a Spanish-speaking friend who is an
excellent cook. You will represent the processor, the cookbook
is a BASIC program, and your friend is going to be a compiler
or interpreter program.

You give him a copy of the book and ask his help. What would be
the best way to proceed? Probably the most obvious way would
be for your friend to translate the entire book. He <could
convert each recipe into English and explain the procedures
used. If there are procedures that are used by more than one
recipe, he might add the detailed explanations on to the end
and refer you to them at the proper time. This corresponds to
COMPILING the cookbook.

Now, this is going to be a 1ot of work! (hope you're not
hungry). Furthermore, the new version will be a lot longer than
the original because of the explanations. However, it does seem
to be a complete solution. Even though it involves a 1ot of
time and effort initially, this is more than repaid by the ease
and speed with which you can now follow the English
instructions. Also, you can now give out copies to other
friends who only know English (better check the copyright law
though!)

Also, if there are certain kinds of errors in the original book
your friend can catch them right away. Maybe they have an
obviously wrong amount of chili pepper (!!) or used a procedure
your friend doesn't understand. You wouldn't catch small errors
such as a little too much of one ingredient, though.

Historically, compiling is the approach that was used first in
computing, and is still very common on 1large computers with
lots of room to spare. There is another way we can use on our
home computer, which has relatively l1ittle room available.

To continue the analogy, we aren't going to need all the
recipes at the same time. In fact we might never get around to
using some of them at all. Why should your friend go through so
much work if it's not all necessary?

The alternative is to have your friend hanging on the phone
while you are fixing a meal. As you need some information, he
can look it up on his end and tell you directly. You <can then
execute his instructions immediately, so you won't have to
remember them at all. You save a lot of paper and work at the
start. This corresponds to INTERPRETING the cookbook.

PPMII COMPILER PAGE 63

This is going to be slower, though, and you will need to have
your friend and the original book available throughout the
whole process. Since you are a rank amateur, if a procedure is
used in different recipes he will have to explain it each time.
If there is an error, you won't find out until you get into the
middle of the procedure, thus potentially wasting time and
materials.

If you are going to use most of the recipes anyway over a
period of time, or if you use a few very often, you'll end up
taking up far more of your friend's time this way than the
other. If you don't use them extensively, though, the situation
is reversed.

Which way is best? By now you should have some idea why this
has no simple answer. Each method has advantages and
disadvantages relative to the particular situations 1in which
they will be used. We might also be able to mix the two methods
to some extent.

For instance, your friend could compile the most commonly
prepared recipes and you would only have to call him for the
others as needed. Or he could compile each recipe into a sort
of shorthand and then interpret this for you as needed. These
methods are indeed applicable to computing too.

Now let's look at a programming example to see the difference
in the methods and their pros and cons. Examine the following
BASIC program.

10 A=0

20 IF AC10 THEN 40
30 END

40 A=A+1

50 GOTO 20

A COMPILER processes the entire program in one chunk before any
execution takes place. It checks for syntax errors (typos) as
it goes. If there are any such errors, the program will not be
executed. The <compiler will proceed straight through the
program in order by the 1line numbers, ignoring any GOTOs,
GOSUBs, etc. that might be followed once the program is
executed. Each statement will be examined exactly once.

In processing our sample program, a compiler would simply
examine line 10, then 20, 30, 40 and 50 in that order. Each
would be converted to machine language and stored. Since there
are no syntax errors, when finished converting it would start
the new version executing. The processor would take over from
that point.

An INTERPRETER, on the other hand, processes the program one
statement at a time. If it finds a syntax error 1in the
statement just processed, it will stop. Otherwise, it will
execute the statement. If that involves a branch, it will

PPMII COMPILER PAGE 64

HI

PPMII

BLITZ

Lo
0 1 2 3 4 5 6 7 8 A B c D E F
= = = s T - [21 anD | or | - [nwor
add | sub neg 0
FOR | NEXT| Next | CLR POKE GOTO|Gosus| ON | ON | RE- | RE-
no var| var GOTO|GosuB| TURN | STORE 1
SGN | INT | ABS | USR | FRE | POS | SQR | RND | LOG | EXP | cOS | SIN | TAN | ATN | Peek | LEN |
2
STR$ | VAL | ASC |CHR$| LEFT |RIGHT| MID | DEF | FN SYS |PRINT|PRINT|PRINT|PRINT
$ $ s | FN FUNC| ;) 3
SPC | TAB PRINT PRINT| SET STOP|READ|READ WAIT | NEW | END
func STR ['Num 4
THEN|INPUT INPUT LOAD| SAVE | VER -
GOTO[STR NUM | FY | 5
OPEN |CLOSE|
6
7
8
9
A
]
B
1 J
.
B i °
\ E
F F
| | |
0 1 2 3 4 5 6 7 8 9 A 8 c D 3 F
COMPILERS PAGE 64A

Hi

PPMII

PETSPEED

Lo
0 1 2 3 4 5 6 7 8 9 A B o] D E F
Str
const
Num Num
const const
LOAD| - + W i AND OR
sub | add
NOT =
NEXT
OPEN (CLOSE! SGN | INT | ABS | USR | FRE | POS | SQR | RND | LOG | EXP | COS | SIN
TAN | ATN |PEEK | LEN | STR$ | VAL | ASC |CHR$| NEW | CLR | RUN STEP| FOR | POKE
PRINT| GOTO |GOSus! RE - LEFT |RIGHT]
TURN 3 3
WAIT PRINT[INPUT| Print | SYS Print | RE-
SPC TAB |STORE
)
separ.
0 1 2 3 4 -1] 7 8 9 A B C D E F
.
COMPILER PAGE 648

follow the branch. The statements skipped over by the branch
will not be processed at this time. If the branch takes it back
to previously processed statements, they will have to be
processed again.

In our example, an interpreter would process 1line 10 and
execute it, then line 20 and execute it. Since line 20 branches
to line 40, the interpreter will skip over 1line 30, Line 40
will be processed and executed, then line 50. Since 1line 50
goes back to 20, the interpreter will have to reprocess line 20
just as if it had never seen it before.

It will then branch to 40 again and have to reprocess it, etc.
Eventually A will equal 10. This time the branch to 40 will not
take place, and it will process line 30 next. This is the only
time line 30 will be processed. Executing it will then end the
program.

Here we see the main difference. The COMPILER will have to
process every line, but only once (in an idealized compiler).
The INTERPRETER will process only those 1lines it needs to
execute, but it may have to reprocess lines repeatedly.

In comparing the speed of the two methods, it is important to
remember that the compiler's use of time is divided into two
separate parts: First all the compiling, then the executing.
The compiling stage itself generally takes a lot of time but
reduces the execution time to a minimum. Also, compiling only
needs to be done once. The compiled program, including copies
of it, can then be executed any number of times, at high speed.

By contrast, an interpreter goes from processing a statement to
executing it, back to processing, etc. It may well finish
before the compiler is even done compiling. Once done, however,
the compiled program will be able to execute many times faster
than the interpreter. If the program is to be executed more
than a few times, compiling will save time.

What about memory requirements? Since the interpreter operates
one line at a time, it only needs a 1little extra space. The
compiler, however, has to store the entire compiled program,
which is invariably much larger than the original. This can be
a significant factor for home computers.

As far as syntax errors are concerned, the compiler will find
all of them in the compile stage, whereas the interpreter will
only find those it actually encounters during execution. This
can be very important in a large program. If an error exists,
and you test the program with an interpreter, you might not
happen to test that particular section. You <could put the
program into normal use, and then a month or a year Tlater it
suddenly fails because that one situation finally comes up.
Depending on what the program is used for, this could have
serious consequences.

PPMII COMPILER PAGE 65

This suggests that a program could be developed wusing an
interpreter for convenience. When it is finished, it <could be
compiled and used in that form. There may be times when you
want the program to stay in BASIC though, for example if you
want other people to be able to read it. In this case you can
still use the compiler to check the program for syntax errors.
Most compilers, however, are not able to handle 100% of the
BASIC interpreter commands, so it may signal some good
statements as errors.

Is there some happy medium between the two methods? Yes, in
fact true compilers as outlined above are rare on home
computers. Instead we have a hybrid type called a p-code
compiler. Essentially, a p-code compiler will process the
entire program like a true compiler would, but instead of
producing a machine language object program, it produces what
is called a p-code program.

P-code stands for pseudo-code (it's also sometimes called
speedcode). It is a special shorthand version of the BASIC
program. Since it cannot be executed directly, it must be
interpreted by a special program called the runtime package or
runtime 1ibrary (RTL). This interpreter operates much the same
as the BASIC interpreter. This may sound more like the worst of
both methods, since we have a compile stage and then have to
interpret too. However, it is a significant improvement for the
following reasons.

First, the p-code object program is somewhat smaller than the
BASIC source program. This is because the compiler removes all
remarks, line numbers, statement separators (:) and spaces
(except those in quotes, of course). In GOTOs and GOSUBs it
uses the actual memory location instead of line numbers. Also,
it keeps a list of all variables used, so that in place of
variable names it can use a variable number. If you count the
runtime package, though, a single small program will become
larger overall. If you have a set of interrelated programs,
however, you need only include the runtime package with the
first program (usually a menu) and from then on just 1load in
the p-code programs. This can save both disk space and 1load
time.

Second, and most important, the p-code program can be
interpreted much faster than straight BASIC. In BASIC, when a
GOTO or GOSUB is performed, the interpreter must search through
your program looking for the desired line. On the (64, there
are built-in links to the next statement to help speed this up,
but in a large program it will still take up considerable time.
With p-code, it just jumps directly to the correct location.

The regular BASIC interpreter stores its variables 1in tables
based on the type and the order they were encountered. When it
needs to find one, it must search through the proper table
trying to match the variable name. ~The P-code compiler
represents its variables by their position 1in the table, so

PPMII COMPILER PAGE 66

again the runtime package can go directly to the correct
location. This is especially important in programs with large
arrays.

In BASIC programs, numbers are stored exactly as they appear,
that is, as ASCII digits. Before one can be wused it must be
converted to a binary form suitable for calculation. In fact,
this must be done each time the number is encountered.If the
number is encountered repeatedly,as in a loop, this can take a
significant amount of time. In p-code, all this conversion 1is
done only once, at compile time. This speeds up numerical
calculations and IF statements as well as loops.

Finally, a single BASIC statement can be split into several
pieces when compiled, and the pieces rearranged to improve the
speed of execution. Rather than process the statement
sequentially, p-code uses a technique <called reverse Polish
notation (RPN). This is not a joke; it's named for a Polish
mathematician whose name is hard to spell. This 1involves the
use of a stack much the same as the stack in the 6510
processor. Without going into detail, this simplifies the logic
and reduces the time necessary to match up operations and the
data they use. As a result, most statements are stored in
reverse, with the data coming first and the p-code command
lTast.

A further advantage of some p-code compilers 1is that they
actually add features to BASIC or allow it to use regular
features in new ways. The most popular compilers for the C64
are Petspeed from Oxford Computer Systems and Blitz! from
Skyles Electric Works. Each has 1ts own advantages and
disadvantages. The new features they offer are useful, but
they're not major improvements. You may not want to wuse them
since they will cause syntax errors when testing your BASIC
source program,

Also, neither of these compilers can handle 100% of Commodore
BASIC. The limitations are different for each one but they are
relatively minor. However, you do have to take them into
account when you write your BASIC source program. Overall,
Blitz! seems to compile faster and have more features and fewer
limitations. Abacus Software has just come out with a compiler
offering both p-code and true compiler options, but we have not
had a chance to evaluate it.

Using a compiler is usually very simple. You just run it and it
asks for the filename of your program. It then analyzes your
program in several passes, while building the p-code version.
It will create some temporary files to help it keep track of
things. Finally it saves out the p-code version along with the
runtime package. The whole process takes anywhere from a few
minutes to half an hour, depending on the compiler and the
length of your source code.

PPMII COMPILER PAGE 67

When pirates look at the compiled code, they see a large,
complex program. They may try to trace the program but since it
goes about its job in a roundabout way, this is going to be a
long process. Chances are they will give up in frustration long
before they get to the protection part of your code.

Let's look at an example of a compiled program. The following
table shows a comparison of a BASIC program and its p-code
equivalent. This particular program was compiled by Blitz!,
Petspeed produces superficially similar code that differs
substantially in the details. :

BASIC PROGRAM BLITZ! P-CODE (HEX)
(no equivalent) 15

10 OPEN 15,8,15,"I" E9 49 BF B8 BF 60 04

20 OPEN 2,8,2,"#" E9 23 B2 B8 B2 60 04

30 PRINT#15, "“U1:2 0 35 01" BF 42 E7 0D 55 31 3A 20 32
20 30 20 33 35 20 30 31 43

40 GET#15, AS$ BF 48 80 46

50 IF A$="2" THEN 70 80 E9 32 02 52 1F D5

60 SYS 64738 A8 90 7C E2 00 00 18 3A

70 CLOSE 2 B2 61

80 CLOSE 15 BF 61

90 LOAD “MAIN",8,1 B1 B8 EC 4D 41 49 4t 5D 03

100 REM THIS IS A SAMPLE REMARK (no equivalent)
(no equivalent) 4F

Both the BASIC and Blitz! versions are included on the program
disk if you want to examine them further. I've included the
Petspeed version as well. The BASIC version is called
"UNCOMPILED' and the other two are 'COMPILED.B' (Blitz!) and
*COMPILED.P' (Petspeed).

When you examine the Blitz! version, note that the runtime
package occupies the first 6K of the BASIC area and the p-code
version comes at the end. Actually, the p-code is preceded by
six two-byte pointers at $1F93-$1F9E. These are similar to the
regular BASIC pointers at $2D-$38. They indicate the 1locations
of the variable tables, DATA statement table, etc. of
particular interest is the pointer at $1F9D-E, which points to
the start of the p-code program. In this case it is at $1FAIl.
The Petspeed version is organized in a similar way except the

PPMII COMPILER PAGE 68

pointers come at the beginning of the runtime package and the
package itself is 8k long. The Petspeed p-code starts at $281B.

The example I've used might be part of a protection scheme. As
you can see, it checks for an error at track 35, sector 1 (any
one will do). If it doesn't find it, it resets the computer.
Otherwise it loads the main program file. This may not be a
realistic scheme but it will serve as an example.

At the end of this chapter I have included a table giving a
partial list of the Blitz! p-codes and their BASIC equivalents.
A Petspeed table is also included. (WARNING: These were derived
by experimenting and may not be totally accurate. This applies
to the following discussion too.) Let's use the Blitz! table
to examine the above p-code program.

First of all, note again that there are no line numbers at the
beginning of p-code 1lines. The first 1line of the p-code
contains a $15 byte, which does not correspond to anything in
the BASIC program. This is actually a CLR command which is
inserted automatically at the beginning of the program.

Line 10 (p-code) starts right off with the codes for 'I'. This
is the string at the end of the OPEN statement (remember most
statements are stored in reverse). In this case we have what is
called a literal string or string constant, that is, a quoted
string as opposed to a string variable. If less than 8
characters long, string constants are preceded by a extra byte,
which is $E8 plus the length of the string ($E8+1 = $E9). No
quotes are used. Next comes the 'I' itself in ASCII ($49).

Numbers less than 16 are stored as a $BO plus the hex
equivalent. Thus $BF stands for 15 ($0F), $B8 for 8 and then
another $BF. Again, these codes are in reverse of their normal
order. The $60 code stands for OPEN. It is followed by an $04
which indicates that all possible parameters of the OPEN
statement are specified (file no., device no., secondary
address and string). With fewer parameters, this second byte
would be lower.

The next line is similar ($23 is ASCII for '#'). The following
line starts with $BF 42, which stands for output to file 15
($BF). The next TWO bytes stand for the length of the string to
be printed. In this case, the string 1is 1longer than 8
characters so it uses a different format than our previous
examples. The $E7 indicates that the next byte is the actual
string length ($0D = 13). Following this is the string itself.
Finally, $43 stands for PRINT# for strings.

The next 1ine has $BF 48 for input from file 15. The $80 stands
for the variable A$. Non-array variables are represented by an
$80 plus the variable number. The number is based on the order
they were first encountered in the program, starting at number
zero. The $46 represents GET# for strings.

- PPMII COMPILER PAGE 69

Line 50 checks for the error. First we have $80 for A$, then
$E9 32 for the string '2'. The $02 byte stands for =. The $52
is for THEN when it is followed by a line number (as opposed to
being followed by a statement such as PRINT). The next two
bytes, $1FD5, are actually the address to go to (the 1location
in memory of line 70). Note they are reversed from their normal
lo-byte/hi-byte (backwards) order!

The following line contains a $3A for SYS preceded by a binary
form of 64738 ($FCE2). Line 70 has a $B2 (=2) followed by $61
for CLOSE. Line 80 is similar.

Line 90 is similar to lines 10 and 20. First we have $B1 for
secondary address 1, then $B8 for device 8. Next is the 1length
of the filename ($E8+4 = $EC) followed by the four-byte
filename ($4D 41 49 4E = ASCII for 'MAIN'). At the end is $5D,
which stands for LOAD, and $03 which indicates a LOAD with
three parameters specified.

Notice that there is no p-code corresponding to line 100, since
the compiler removes REM statements completely. Finally, in the
p-code program there is a $4F. This stands for END, which s
added on automatically.

Whew!. This may seem fairly simple once it 1is explained, but
figuring it out from scratch is another thing. And this was
just a short program! It doesn't have any of the more obscure
situations, such as FOR/NEXT.

It also doesn't have any LET statements, which should be
mentioned. LET is not represented by a separate code; instead
the number of the variable to receive the value 1is added to
$C0. For example, LET A=1 could appear as $B1 CO. The $B1 s
for the number 1. If A is the first variable in the program it
would be number 0, hence $CO.

In summary, let me say that compiling remains a very viable
program protection option for BASIC programs. It is unmatched
in convenience and offers a speed advantage too. It is not
totally unreadable, as we have seen, but requires a 1ot more
work than machine language to understand. 0f course, this s
because of a total lack of documentation. The tables of p-code
equivalents I've given required several days of solid work to
produce, as incomplete and possibly inaccurate as they are.
Applying them to a compiled program is not simple, either.

It is certainly possible in theory to <create a ‘'decompiler'
program which would be able to read p-code and reproduce the
original BASIC source program (aside from variable and FN
names). There have been rumors about them for years, but to
date none have materialized. Here's your chance to make a mark.
If you come up with a more complete p-code table, or even a
decompiler, send it in. If it meets our standards we'll pass it
along to our readers through the newsletter or future volumes
of the Program Protection Manual. Good luck!

PPMII COMPILER PAGE 70

UNDOCUMENTED OPCODES

The Commodore 64 contains a MOS 6510 microprocessor. It 1is a
slightly revised version of the 6502 processor, which 1is used
in Commodore's VIC-20 computer and 1540/41 disk drives, as well
as the Apple and Atari computers.

A1l microprocessors are similar in that they understand only a
limited set of commands. These commands are organized into
groups of related commands which are similar 1in function but
differ in where the actual data comes from or goes to. Each
group of related commands is called an INSTRUCTION, and the
location of the data is determined by what is <called the
addressing mode.

For example, take the LDA instruction. This is the most common
instruction used on the 6510. LDA actually 1is a mnemonic
(memory aid) which stands for LoaD the Accumulator, also called
the A register. The accumulator is like a variable in BASIC 1in
that it can hold a value, but in this case the value is limited
to one byte, which means a range of 0 to 255 ($00 to $FF).

Now, the accumulator can 1load a value from a variety of
sources. Therefore, the LDA instruction has several different
forms. Each form is denoted by a different one-byte operation
code, or OPCODE for short. The particular opcode that is wused
tells the processor WHAT to do. It also determines the
addressing mode, which tells the processor HOW to get its data.
Each form usually requires one or two additional bytes of
information which actually specify WHERE the data is <contained
(or contain the data itself). This other info 1is generally
called the OPERAND, and it is usually an address (location in
memory)

Let's look at some examples. One form of LDA has the opcode $A9
(the '$' indicates a number specified in hexadecimal or hex).
This form of LDA specifies what is called immediate addressing,
meaning that the next byte actually contains the value to be
loaded into A, say a $05. Here's how this would 1look wusing a
monitor such as HIMON:

HEX CODE MNEMONIC ENGLISH
OPCODE OPERAND OPCODE OPERAND EXPLANATION

A9 05 LDA #3%05 Load A with value $05

The '#' in the operand's mnemonic is a sign to the assembler to
use immediate addressing, so that it can substitute the correct
opcode form for LDA. Thus the microprocessor knows the
addressing mode by the actual opcode, whereas assemblers (and
us humans) find it easier to use a single mnemonic (LDA) for
the instruction and indicate the address mode separately (#).

PPMII UNDOCUMENTED OPCODES PAGE 71

Actually, the operand is NOT usually the actual value to be
loaded, but rather it is the ADDRESS or location of the value.
Let's 1ook at some other forms of LDA:

HEX CODE MNEMONIC EXPLANATION
OPCODE OPERAND OPCODE OPERAND LoaD A from

AD 34 12 LDA $1234 Location $1234

BD 00 20 LDA $2000,X Location $2000+X

A5 05 LDA $05 Location $05

B5 09 LDA $09,X Location $09+X

Note the different hex opcodes for each form. The first form
uses what is called absolute addressing. The data to be 1loaded
into the accumulator is the one-byte value found at Tlocation
$1234. In the hex form, the address is always stored with the
low-order (least significant, $34) byte FIRST and the
high-order (most significant, $12) byte second.

The second form is <called absolute, indexed by X. The X
register is similar to the accumulator, and in this case is
used to hold a one-byte INDEX, or offset. The actual address of
the data is calculated by adding the current value of X (say
$07) to the operand ($2000, often called the base address).
Thus the accumulator would be loaded from location $2007.

The other forms are merely zero-page forms of the first two.
This means the high-order byte of the address is assumed to be
$00, so that only a single operand byte is needed, in order to
specify the low-order byte. Thus the address of the data in the
third form would be $0005, and in the fourth it would be $0009
plus the contents of X. The reason there are separate zero-page
forms for LDA is to save memory space and execution time.

There are several other forms of LDA, but these should
illustrate the point that a single [INSTRUCTION can be
represented by many different OPCODES. The difference is in the
addressing mode: how the operand bytes will be interpreted
{value or location). If you consult a standard reference book
on the 6510 processor, you will see a total of 56 different
instructions listed (this applies to the 6502 as well). With
the different addressing modes, there are a total of 152
different 'official' (documented) opcodes.

Now, each combination of instruction and address mode 1is
represented by a separate one-byte opcode. Since a byte <can
have 256 different values, this leaves 256 - 152 = 104 'unused'
opcodes. Actually, most or all of these opcodes are useable, so
we prefer to call them 'undocumented' opcodes. Other sources
may call them ‘unimplemented', ‘undefined' or 'illegal’
opcodes.

PPMII UNDOCUMENTED OPCODES PAGE 72

Whatever you call them, these undocumented opcodes can be very
useful in program protection. No normal monitor or disassembler
will recognize them (they usually appear as ???). Since there
is very little information available about them, a pirate will
have a tough time following your code. You can wuse them to
shorten a section of code, since they often combine several
regular instructions into a single one. You can also lengthen a
piece of code by 'burying' a couple normal opcodes in a stretch
of undocumented ones.

Let's take a look at some of these new opcodes. Table OP-]
shows the regular 6510 opcode set. Each opcode (byte) is
represented by two hex digits, called nybbles. The row headings
represent the high-order (most significant or left) nybble and
the columns represent the 1low-order (least significant or
right) nybble. The opcode $A9, for instance, is found where the
tenth ro; down ($A = 10) and ninth column across meet. Here you
see LDA #.

Notice all the blank spaces in the table. These correspond to
undocumented opcodes. All opcodes ending in 3, 7, B or F are
open, as are most ending in 2, 4, A or {. This certainly leaves
a Tot of possibilities! Some of these opcodes are 1listed in
table O0P-2. The capitalized mnemonics listed in the left margin
are mostly from published material by Joel C. Shepherd.
Following the mnemonic is a brief description of its function,
and below that is a list of the actual hex opcodes and their
corresponding addressing modes.

Take ANDX for example. This stands for store A AND X registers.
First, the values in the A and X registers are AND'ed together
(a standard logic operation). Neither is changed; the result is
placed in the memory location specified by the operand. Let's
use the absolute addressing form, opcode $8F, for our example.
This could be done by regular 'documented' opcodes but it would
take more memory space to store and more processor time to
execute: '

Documented opcodes Explanation Undocumented opcodes

8E 00 20 STX $2000 Store X value 8F 00 20 STAX $2000
2D 00 20 AND $2000 A = A AND value
8D 00 20 STA $2000 Store A in $2000

The difference is even greater if you want the regular code to
duplicate the wundocumented code exactly. The regqular code
changes the accumulator, which the undocumented code doesn't,

Here's another way to use them. The two pieces of code below
perform the same function (if you 4dignore things lijke the X
register). In this case, all they do is change the screen and
border colors to black.

PPMII UNDOCUMENTED OPCODES PAGE 73

Documented opéodes Undocumented opcodes

AD 00 08 LDA %0800 Get a 0 AF 00 08 LDAX %0800

8D 20 DO STA $D020 Border 8F 20 DO STAX $D020

8D 21 DO STA $D02] Screen 8F 21 DO STAX $D021

00 BRK Go to 00 BRK
monitor

The easiest way to try this out is to type in the regular code
from a monitor. Then go back and substitute the undocumented
opcode bytes in place of the others (they are the only things
different between the two routines). Execute the code by wusing
a 'G' command to the beginning of it. It works!

If a pirate tries to disassemble the undocumented codes using a
monitor, here is what he/she will see:

AF 227

00 BRK

08 PHP

8F ?2??

20 DO 8F JSR $8FDO
21 DO AND ($DO,X)
00 BRK

Quite a difference!

Upon seeing this most pirates would assume they made a mistake
in tracing your program flow, and go back over the code wup to
that point. Even if they knew about the undocumented codes,
many will not want to spend the time and effort to decode a
sizeable piece of it. Your main weapons against pirates here
are to confuse them and make them work for their ill-gotten
gains.

Note that some of the undocumented opcodes are not <covered 1in
the second table. These you may want to investigate further
yourself. There are a couple of approaches that may be helpful.

One way is to simply try executing the unknown operation. Start
by storing the opcode in memory followed by one or two bytes
(or possibly none) for the operand. After this you should place
a documented instruction to return control to you after
execution (like BRK). To test, 1load the registers and the
location you think will be used as the operand with some sample
values. If you are using a monitor Tike HIMON, it 1is easy to
load values into the registers. Use the 'R' command to display
the registers, then type your values over the displayed ones
and hit RETURN. Finally, execute the instruction. By examining
the registers and memory Jocation afterward, you may be able to
work out what happened.

PPMII UNDOCUMENTED OPCODES PAGE 74

Hi

PPMII

TABLE OP-1A DOCUMENTED
Lo
0 1 2 3 4 5 6 7 g8 9 A c D E F
| \
BRK | ORA ORA | ASL PHP | ORA | AsL ORA | ASL
0 t @ % \ z z # A M | M ‘ 0
" BPL | ORA T BIT | ORA | ASL cLc | ORA ORA | ASL
@, Y z |zx|zx | M, Y M, X | M, X 1
JSR | AND AND | ROL T PLP | AND | ROL BIT | AND | ROL
Z, % z | z 4 | A M| M| M 2
BMI | AND AND | ROL SEC | AND AND | ROL
@Y x| zx M, Y M, X | M, X ‘3
RT! | EOR EOR | LSR PHA | EOR | LSR JMP | EOR | LSR
@ % | z |z # | A MM M 4
BVC | EOR } EOR | LSR CLl | EOR EOR | LSR
@, Y ZX|zX M, Y M, X | M, X 5
RTS | ADC ADC | ROR PLA | ADC | ROR JMP | ADC | ROR
z X z z # A M| M| M 6
BVS | ADC ADC | ROR SEl | ADC ADC | ROR
@, Y ZX|zx M, Y M, X | M, X 7
STA STY | STA | sTX DEY TXA STY | STA ‘ STX
% z z |z M | M| M 8
BCC | STA STY | STA | STX TYA | STA | TXS STA
@, Y ZX|zx{zY M, Y M, X 9
LDY | LDA | LDX LDY | LDA | LDX TAY | LDA | TAX LDY | LDA | LDX
lzx!| # z z z # M| M M A
BCS | LDA LDY | LDA | LDX CLV | LDA | TSX LDY | LDA | LDX
| @,Y zx|zx|zy M, Y M, X M X MY |B
CPY | CMP CPY | cMP | DEC INY | cMP | DEX CPY | CMP | DEC
¢ |@x z z | z # M M| M c
BNE | CMP cMP | DEC CLD | CMP \ CMP | DEC
@, Y Z,X | zx M, Y M, X | M, X D
CPX | SBC CPX | SBC | INC iINX | SBC | NOP cPx | sBC | INC
4 @z lz]z | z # M | M| M E
BEQ | SBC SBC | INC SED | SBC SBC | ING
@, Y | Zx|zx M, Y M, X | M, x F
0 1 2 3 4 5 6 7 8 9 A cC D E F
UNDOCUMENTED OQPCODES PAGE 74A

HI

TABLE OP-1B - DOCUMENTED AND UNDOCUMENTED

Lo

0 1 2 3 4 5 6 7 8 9 A B C D E FE
| BRK | ORA oRA | AsL |sLor| pHe [ORA | AsL ora | asL [sLor

0 z, % B z z | z 4| A M| M| M|
BPL | ORA BIT | ORA ASL |SLOR| ¢Lc | oRA ora | asL [sLor

1 @. Y Z (ZX|zZXx(ZX M, ¥ M XM X[MX[T
JSR | AND AND | ROL |RLAN] PLP | AnD | ROL BT | AND | ROL | RLAN

2 @ % z |z {m 4 | A M (M| M| Mm]|2
BMI | AND AND | ROL [RLAN| SEC | AND AND | ROL |RLAN

3 @Y zxlzxlzx M, Y M XIMXIMX|3
RTI | EOR EOR | LSR |SREO| PHA | EOR | LSR JMP | EOR | LSR |SREO

4 Z % z z z # 1 A MMM om (4
BVC | EOR EOR | LSR |SREO| CUI | EOR EOR | LSR |SREO

5 @, Y zx|zx|zx M, Y M XM X M (5
RTS | ADC ADC | ROR |RRAD| PLA | ADC | ROR JMP | ADC | ROR |RRAD

6 Zx z z z # 1 A Mt MMM |8
BVS | ADC ADC | ROR |RRAD| SEI | ADC ADC | ROR [RRAD

7 @Y ZXx|zx|zx M, Y MXIMXIMX|7
STA STY | STA | STX |ANDX| DEY TXA |ANAX| STV | STA | sTX |ANDX

8 %N z |z | z z M I MMM |8
BCC | sTA sTY | STA | sTX |ANDX| TYA | STA | TXS STA | TSTA | TSTX

9 @, Y ZX|zxlzY|zY M, Y MX| M| m |8
LDY | LDA | LDX LDY | LDA | LDX |LDAX| TAY | LDA | Tax |LbAX| LDY | LDA | LDX |LDAX

Al w |zl z z z z # # M| M| M| M |A
BCS | LDA LDY | LDA | LDX |LDAX]| cLv | LDA | TsX |ANSP| LDY | LDA | LDX |LDAX

B @, Y Zx|zxlzylzy M, Y MY |MX|MX|{MY[MY|B
CPY | cmP CPY | cMP | DEC |[DCMP| INY | CMP | DEX |SUBX| CPY | CMP | DEC |DCMP

Sl ¢ |zx L z z | z | z # ¢« { M| M| M| m]|C
BNE | CMP CMP | DEC |DCMP| CLD | CMP CMP | DEC |DCMP

b @Y zx|zx]|zx M, Y M X |MXiMx]|D
CPX | sBC GpPx | ssc | INc [1sBC | INX | sBC | NOP CPX | sBC | ING | 1SBC

Bl lzx z |z |z | ™ # M| M| M| m|E
BEQ | SBC sB8C | INC | 1sBC | SED | SBC SBC | ING | ISBG

F__J(Z).Y J__J zZ, x|z x M,x{ M, Y M x| Mx|mx|F
o} 1 2 3 4 4 6 7 8 g A B C D E F

PPMII UNDOCUMENTED OPCODES PAGE 748B

As an example, let's test opcode $87. First, load in one of the
monitors on the program disk. Using the ':' memory modify
command, enter the test bytes at location $1000. Use the Go
command 'G' to start execution.

:1000 87 FB 00 00
G 1000

Suppose $87 requires only one byte for its operand (data)
address. The next byte after the $87 is $FB, so this 1is the
address it will use ($FB is an unused location in zero-page).
Since the following byte is $00, it will then perform a BRK,
which returns us to the monitor.

Now suppose, on the other hand, $87 requires two operand bytes.
In this case the bytes it will use are $FB 00, forming the
address $00FB (remember the bytes are in reverse order). This
actually specifies the same zero-page location as before. The
next byte after $FB 00 is another $00, so the next instruction
executed would be BRK again.

So either way, we'll be sure to get back to the monitor. How do
we tell which of the two possibilities above actually
happpened? When you re-enter the monitor, it will display the
contents of all the registers, including the program counter
(PC). The PC tells you the address of the 1last instruction
executed (which $00 byte caused the BRK). From this we can
usually determine how many bytes the instruction required.

In the example above, we get a PC value of $1002. Thus it was
the $00 at $1002 that caused the BRK. This means that $87
requires only one operand byte (the $FB). If you check table
OP-2, you'll see that $87 is ANDX with =zero-page addressing,
which simply means it uses only one operand byte. This confirms
our experimental result.

In short, you can find the total number of bytes an instruction
used (including the opcode itself) by simply subtracting the
location of the instruction ($1000) from the PC value after the
instruction executes {($1002). Some monitors, such as HESMON,
return a PC value of $1003 in the test above. This simply means
you have to subtract 1 from your answer. There's no problem as
long as you know which way your monitor works.

You'll find that some of these codes will Jlock-up your
computer. This is not dangerous, just frustrating. Unlike all
those science fiction movies you've seen, you can't damage your
computer by typing in the wrong command (the disk drive is
another matter - see the editorial on bad blocks). This lock-up
can happen if the opcode you're testing performs a branch or
jump.

PPMIT UNDOCUMENTED OPCODES PAGE 75

On the 6510 processor, a branch instruction can go up to 127
bytes forward or 128 bytes backwards only. As 1long as you
surround your instruction with this many $00 (BRK) bytes, a
branch is sure to hit one and thus return you to the monitor. A
jump (JMP) or jump subroutine (JSR), however, can end up
anywhere in memory. To prevent lock-up, fill as much of memory
as possible with $00, and watch out what you use for your test
operand. Still, you may have to wuse your reset switch to
recover in some cases.

As you might guess, the trial and error method can be very
time-consuming. Another approach is to examine table O0P-1 for
patterns among the regular instructions and then apply the
patterns to the undocumented codes.

For instance, the regular opcode $05 1is ORA with zero-page
address (single operand byte), and regular opcode $06 is ASL
with zero-page. From this you might guess that the undocumented
code $07 also uses zero-page addressing. Likewise, since $15
and $16 are the X-indexed versions of $05 and $06,
respectively, you might conclude that $17 could be an X-indexed
version of $07. A glance at table OP-2 confirms these guesses.

You might also notice that the regular opcode $0E dis the
absolute (two-byte operand) form of $06. Since $0E = $06 + $08,
you might guess that the wundocumented opcode $0F is the
absolute form of $07 ($0F = $07 + $08). Also, $1E is the
X-indexed form of $0E, so $1F could be the X-indexed form of
$0F. These observations also turn out to be true.

In fact, the undocumented opcode $07 is actually a combination
of the regqular opcodes $05 and $06. We called it SLOR because
it first performs an ASL and then an ORA. Most of the codes in
columns 7 and F work this way, subject to the following general
rules:

1). If possible, the two functions are executed simultaneously.
Otherwise, the one with the higher opcode 1is executed
first. This explains why $07 (SLOR) first performs a $06
(ASL) and then an $05 (ORA).

2). If two values are to be stored into the same location (not
normally possible) the values will be AND'ed together
first. For example, this accounts for the operation of
ANDX, which first AND's the A and X registers together and
then stores the result in memory.

3). If the two functions it performs use different indexes,
i.e. one is indexed by X and the other by Y, then the new
opcode will use Y-indexing. For example, opcode $B5 is LDA
zero-page with X-indexing and $B6 1is LDX zero-page with
Y-indexing. Undocumented opcode $B7 loads both A and X from
zero-page, with Y-indexing.

PPMII UNDOCUMENTED OPCODES PAGE 76

The patterns do not always hold true (see code $9F for
example), but they can give you some idea of what to 1look for
when experimenting. Of course, you will have to use the trial
and error method outlined above to confirm your guesses.

A third approach 1is to study the internal design of the
microprocessor to predict how it will handle the wundocumented
opcodes. It must use a fairly simple system to decide which
functions to perform, based on 1looking at the bits of the
opcode. This is called instruction decoding and is what you are
trying to estimate from analyzing the patterns in the table.

Unfortunately, the required information is very hard to obtain.
It may well be proprietary (trade secret) and thus not
available to the public. It would, however, settle the question
once and for all - unless they redesign the processor!

This is not as unlikely as it sounds, and brings up some of the
disadvantage of these opcodes. Since there. is so little
information available, you should experiment with an opcode to
confirm its function, even for those we've included 1in .our
tables. To enter undocumented opcodes into a program you will
have to look up the opcode and store the hex value into memory
with a monitor one instruction at a time. This <can be very
tedious. An alternative would be to modify a standard assembler
or monitor to handle them, perhaps one written in BASIC.

Finally, and most important, 'Commodore Semiconductor Group
cannot assume-liability for the use of undefined opcodes’'. This
means that if the manufacturer redesigns the processor (to
correct bugs or reduce power use or size) there is no guarantee
that the unofficial opcodes will still function the same.

In fact, the 6502 processor upon which the 6510 1is based has
had several revisions. The unofficial <codes 1in this chapter
will work on some 6502's and not others, especially ones from
different manufacturers. We Commodore 64 owners have been lucky
so far; there are no reported differences between the 6510
processors in use. This is probably due to the fact that they
are manufactured by MOS Technologies, which 1is owned by
Commodore.

Undocumented opcodes have not been wused 1in many commercial
programs so far, although there have been some. In conclusion,
they offer excellent, if largely untapped, program protection
potential.

PPMII UNDOCUMENTED OPCODES PAGE 77

ANDX

ANXM

AXSP

DCMP

ISBC

LDAX

RLAN

! Table 0OP-2: UNDOCUMENTED OPCODES

{
Takes the accumulator and X-register, AND's them
together and stores the result in memory. The
accumulator and X-register are not changed.

MODES: 87 Zero page
97 Zero page, indexed by the Y-register
8F Absolute

Takes the accumulator, X-register and operand byte,
AND's them together and stores the result in the
accumulator. The X-register is not changed.

MODES: 8B Immediate

Takes the contents of the memory location, indexed by
the Y-register, AND's it with the stack pointer, and
stores the result in the stack pointer, accumulator
and X-register. The memory location is not changed.

MODES: BB Absolute

Decrements the memory location, subtracts the new
contents of the memory location from the accumulator
and puts the result in the accumulator.

MODES: C7 Zero page
D7 Zero page, indexed by the X-register
CF Absolute
DF Absolute, indexed by the X-register

Increments the memory location, subtracts the new
contents of the memory location and the carry flag
from the accumulator, and places the result in the
accumulator and carry flag.

MODES: E7 Zero page
F7 Zero page, indexed by the X-register
EF Absolute
FF Absolute, indexed by the X-register

Loads the accumulator and X-register from the memory
location. The memory location is not changed.

MODES: A7 Zero page
B7 Zero page, indexed by the Y-register
AF Absolute
BF Absolute, indexed by the Y-register
AB Immediate

Rotates the bits of the memory location left, AND's
the new contents of the memory location with the
accumulator and places the result in the accumulator.

MODES: 27 Zero page
37 Zero page, indexed by the X-register
2F Absolute
3F Absolute, indexed by the X-register

PPMII TABLE 0P-2 PAGE 77A

RRAD

SLOR

SREO

SUBX

TSTA

TSTX

Note:

Rotates the bits of the memory location right, adds
the new contents of the memory location and carry flag
to the accumulator, and places the result in the
accumulator and carry flag.

MODES: 67 Zero page
77 Zero page, indexed by the X-register
6F Absolute
7F Absolute, indexed by the X-register

Shifts the memory location left, OR's the new contents
of the memory location with the accumulator, and
places the result in the accumulator.

MODES: 07 Zero page
17 Zero page, indexed by the X-register
OF Absolute
1F Absolute, indexed by the X-register

Shifts the memory location right, EXCLUSIVE-OR's the
new contents of the memory location with the
accumulator, and places the result in the accumulator.

MODES: 47 Zero page
57 Zero page, indexed by the X-register
4F Absolute
bF Absolute, indexed by the X-register

Subtracts the value given from the X-register and
places the result back in the X-register.

MODES: CB Immediate

AND's the accumulator with the value $04 and places
the result in the memory location. The accumulator is
not changed.

MODES: 9F Absolute

AND's the X-register with the value $04 and places the
result in the memory location. The X-register is not
changed.

MODES: 9E Absolute

Addressing mode definitions

Absolute - A two-byte ADDRESS given in standard
lo-byte, hi-byte (reverse) order. Address $1234 would
be specified as $34 12.

Zero page - A one-byte ADDRESS, with the hi-byte
assumed to be $00. Address $0012 would be specified
as $12.

Immediate - A one-byte VALUE specified directly; not a
memory location.

PPMII TABLE OP-2 PAGE 778

ENCRYPTION

ENCRYPTION is a hot topic today, not only in program protection
but also in a lot of other applications. Everyone from the
federal government on down through businesses (including bookie
joints!) to game programmers seems to be interested in new ways
to scramble information so it can't be read - until the right
time. As much time as 1is spent on creating new encryption
methods, certainly a far greater amount 1is spent trying to
break these 'codes'.

What is encryption? In answering that question most people
would use the word 'code' somewhere along the line. The concept
of encryption does include the idea of codes but can go far
beyond them into some very advanced mathematics. Fortunately
for all of us, these methods are beyond the scope of this
manual, as well as most program protection schemes!

Strictly speaking, a code is a direct substitution of one unit
of information for another according to a set rule. These units
of information can be letters, words, digits, whole numbers,
even sounds or 1lights. Often, one type of information is
substituted for another. The rule used for encoding can be very
simple or very complex. For every encoding rule there is also a
corresponding decoding rule which reverses the original
substitution.

Encrypting includes straight encoding but is a more general
process. Encryption includes other methods too, including some
whereby the information is expanded as it is encrypted, either
by a mathematical method or simply by embedding it within a
larger body of information. Of course, all encryption methods
have corresponding decryption methods. Although this chapter
will involve techniques that are actually encoding methods,
I'1l use the general term encryption.

The history of encryption is a long story whose beginning is
lost. Archaeologists have traced it back at 1least as far as
ancient Babylonia. Clay tokens were used by merchants to label
sealed jars of merchandise for shipment. Robbers would not be
able to tell which jars contained valuables, yet the receivers
could inventory them without opening perishable goods.

Eventually the tokens' meanings became well known, and they
began to be used in everyday communication. Rather than make
the tokens themselves, people used them to make impressions in
clay tablets. This was the beginning of written 1language. Not
only is this the earliest known example of encryption, but also
the earliest case of breaking such a scheme! Imagine that,
piracy goes all the way back to 3500 B.C.!

PPMII ENCRYPTION PAGE 78

The Egyptians, Greeks and Romans all had military encryption
schemes. In building their pyramids, the pharoahs took
elaborate precautions to disguise the entrances and
passageways, yet they left clues so that the gods could enter.
This gives a whole new meaning to the word ‘encrypt'. The
Pythagorean Society of ancient Greece used a complex code
involving musical notes and mathematics. Leonardo Da Vinci
wrote all of his notes backwards, so that they had to be read
with a mirror. Other examples from history are common.

The United States has used encryption in war and peacetime as
well. Let's not forget Paul Revere, who arranged for a comrade
to signal 'One if by land, two if by sea'. In World War 1II,
Navaho Indians were used as encrypters. Their language is
different from any other, and no dictionary had ever been
compiled. A message in their language could only be wunderstood
by another Navaho.

Today we have the National Security Agency, which wuses the
world's most powerful computers to intercept and decrypt
telephone, telex and other communications. They have even been
involved in commercial encryption. The National Bureau of
Standards and IBM recently collaborated in the creation of a
standard encryption method called DES (Data Encryption
Standard). Originally it called for a 64-bit 'key'
(mathematical basis) chosen by the user. The NSA persuaded them
to reduce it to 60 bits, presumably so they could break it more
easily. Some people believe that the NSA was involved in the
design of the scheme right from the start, working through IBM,
and that it has a so-called 'trapdoor' built into it so the NSA
can break at will.

Perhaps the most secure encryption scheme ever invented is the
one called RSA, after the initials of 1its inventors. Without
going into detail, it involves taking huge numbers (200 digits)
to different powers based on the message to be sent. Breaking
it would be equivalent to solving one of the oldest problems in
mathematics, that of determining all the factors of a number
(other numbers that can be divided evenly into the original
number) in a reasonable amount of time. It 1is estimated that
with a 200-digit key, it would take the largest computers (like
the NSA's) billions of years to crack this code by trying all
the possibilities. The NSA tried to have publication of the
method halted for national security reasons, but they were not
successful.

Unfortunately, this method requires a lot of computer time to
encrypt or decrypt a message, so it is not practical for our
purposes., It does illustrate the point that the sky's the limit
on how hard a method can be to crack. Realistically, we do not
need anything this complex to protect programs. Most of the
methods used today are quite simple. They rank about as hard as
that Dick Tracy Secret Code you used as a child, and yet they
manage to confound most people.

PPMII ENCRYPTION PAGE 79

A really good method would require a <considerable amount of
design time on the part of the programmer and also a 1lot of
time to decrypt as the program is being Tloaded. Probably the
real reason we have not seen many high-caliber encryption
schemes is that such a scheme is only as secure as the machine
it is loaded into. That is, 1ifting a program from memory once
it is loaded and decrypted is generally a 1ot simpler than
cracking the encryption scheme from scratch. The main value of
encryption is to prevent direct modification of the program on
disk and to add a certain amount of overall difficulty to
breaking it,

With that in mind, let's 1look at a very common encryption
routine. This one uses the exclusive-OR (EOR) dinstruction of
the 6510 processor. Before we examine the scheme itself, we
need to review the characteristics of the EOR function. While
we're at it we'll look at two other logic instructions, namely
AND and ORA. These three functions are found on almost all
processors. In fact, these functions were discovered by
mathematicians long before computers were invented.

The following table summarizes EOR, AND and OR:

TABLE EN-1
EOR |0 |1 AND | O |1 ORA ;O |1
0]0]1 01010 0J0]1
11110 110 |1 11111

In each case, the function takes two binary digits (bits) as
input data and gives another bit as the result. The row and
column headings are used to select the inputs, and the result
is found in the square where the row and column meet. For
instance, performing EOR with a 1 as one input and a 0 as the
other input yields the result 1.

Notice that it does not matter which order the inputs are in.
Doing a O EOR 1 gives the same result as 1 EOR O, namely 1.
This is true for all three functions. The result of 1 AND O
equals 0 AND 1 (both equal 0) and 1 ORA 0 equals 0 ORA 1 (both
equal 1). Check for yourself that these are the results
predicted by the table.

Actually, the EOR, AND and ORA instructions on the 6510 each
take two whole BYTES as input., They perform their function on
pairs of corresponding BITS from each input BYTE. The answer is
a single byte made up of the individual result bits. Each pair
of bits is done independently, so these bit-pair results are
all we need to determine the byte result in any situation.

You may be wondering how the results in table EN-1 were

derived, or hoping there is some easier way to remember them
besides memorization. Rest assured, they represent very simple

PPMII ENCRYPTION PAGE 80

ideas. As their names imply, AND and ORA are related to the
English words 'and' and 'or'. EOR is a relative of ORA, and the
idea it represents is sometimes expressed in English using ‘or'
also. There are a number of ways to remember them; I'11 give
you a couple.

One way is to give a general rule that tells, based on the
inputs, when the function yields a result of 1. For AND, the
result is 1 only when BOTH inputs are 1; otherwise it is 0. You
can see this from the table. The ORA function gives a 1 result
when ANY of the inputs is 1; it gives a 0 only when both are 0.
AND and ORA are called dual functions since if you replace all
the 1's in the AND table with 0's and replace all the 0's with
1's (including the row and column headers) you will get the
table for ORA.

As for EOR, the rule is that it gives a 1 when EXACTLY ONE of
the inputs is a 1; that is, when EITHER input is a 1 but NOT
BOTH. It's called 'exclusive-or' because its rule for producing
a 1 'excludes' the case where both inputs are 1. It is closely
related to ORA, as you can see. They differ only in the case of
two 1 inputs. Regular ORA is sometimes called ‘'inclusive-or'
(IOR) since its rule for producing 1 'includes' the case where
both inputs are 1. :

Another way to remember them is to ask yourself a particular
question. If the answer is YES, then the function yields a 1.
If the answer is NO then the function gives a 0. For AND, ask
yourself 'Are BOTH inputs 17 '. For ORA, ask 'Is ANY input a 1?
'. For EOR, perhaps surprisingly, you can ask yourself 'Are the
inputs DIFFERENT ?°'.

One thing you should not rely on is the use of these words in
English, since they aren't used consistently. Much if not most
of the time when we use 'or' we really mean 'exclusive-or'. For
instance, if you tell your kids 'Clean up your room OR I'l1l
punish you' you mean either one or the other will happen, but
surely not both!

When you make a statement where you mean that either or both
things could be true, you are using the regular ORA, as in 'My
disk drive is out of alignment OR this disk 1is screwed wup'.
Maybe both! We can make this distinction clearer by wusing
‘either/or' for EOR and 'and/or' for ORA. Thus we could say
'"EITHER you clean your room OR I'11 punish you' and ‘'My disk
drive is out of alignment AND/OR this disk is screwed wup’'.
There are also some occasions where we use 'and' where we mean
‘or', but they are less common.

To reinforce your understanding of these functions, let's 1look
at a few examples involving whole bytes. Below I have given the
result when the same two sample bytes are AND'ed, ORA'ed and
EOR'ed. The two bytes were chosen so that every possible
combination of bits 1is illustrated (twice in .fact). To
distinguish the original bytes let's call the top one the INPUT

PPMII ENCRYPTION PAGE 81

and the bottom one the VALUE (but remember that you'll get the
same result regardless of which one is which). For reference
the hex equivalent for each byte is given and the corresponding
6510 code is shown.

BINARY HEX BINARY HEX BINARY HEX
0011 1010 $3A 0011 1010 $3A 0011 1010 $3A

EOR 0101 1100 $5C AND 0101 1100 $5¢C ORA 0101 1100 $5¢C
0110 0110 $66 0001 1000 $18 0111 1110 $7E

A9 3A LDA #3$3A A9 3A LDA #3$3A A9 3A LDA #$3A

49 5C EOR #$5¢C 29 5C AND #$5C 09 5C ORA #$5C

Note again that each pair of bits (top and bottom) is operated
on independently to give the result bit. Be sure to verify each
result using table EN-1 to help complete your understanding.

There is an interesting phenomenon which we can illustrate with
our examples. If we take the result of the EOR function and EOR
it again with the value byte, we will get the input byte back!

BINARY HEX BINARY HEX

0011 1010 $3A Input 0110 0110 $66 Result
EOR Q0101 1100 $5C Value EOR 0101 1100 $5C Value

0110 0110 $66 Result 0011 1010 $3A Input

A9 3A LDA #$3A Input A9 66 LDA #$66 Result

49 5C EOR #$5C Value 49 5C EOR #$5C Value

We call EOR a reversible function because of this. Actually, we
can EOR the result with either original byte, value or input.
No information is lost in the EOR process; if we know the
result and one of the bytes we can always recover the other
one. This is a handy feature to exploit in an encryption scheme
since we can use the same routine to both encrypt and decrypt!
We'll see an example of this soon.

If we try this with AND or ORA, we won't be able to reverse
them.

BINARY HEX BINARY HEX

0011 1010 $3A Input 0001 1000 $18 Result
AND 0101 1100 $5C Value AND 0101 1100 $5C Vvalue

0001 1000 $18 Result 0007 1000 %18 Same

49 3A LDA #$3A Input 49 18 LDA #%$18 Result

29 5C AND #%$5C Vvalue 29 5C AND #3$5C Value

PPMII ENCRYPTION PAGE 82

BINARY HEX BINARY HEX

0011 1010 $3A Input 0111 1110 $7E Result
ORA 0101 1100 $5C Vvalue ORA 0101 1100 $5C Value
0111 1110 $7E Result 0111 1110 $7E Same
49 3A LDA #$3A Input 49 7E LDA #3%7E Result
09 5C ORA #3$5C Value 09 5C ORA #$5C Vvalue

Note that, in fact, in all cases the result stayed the same.
The original bytes have contributed all they can and can't
alter the result any more. So we can't reverse these functions
by repeating them with one of the original bytes. Can we
reverse them some other way? Unfortunately not, since
information has actually been lost in this process. Looking
back at table EN-1 we can see why this is true.

Suppose we know that the original value bit of an AND operation
was a 0 (top row of the AND table). If the result bit was a O,
we can't tell if the input bit was a 0 or a 1, since both would
have given a 0 (it's the only possible result). If we know the
original value was a 1 (second row of the table), then we CAN
tell what the input was: If the result is 0, the input was O0;
if the result is 1, the input was 1. This suggests that we
always make sure to AND with a value of 1 so as to be able to
get back the input. \Unfortunately, AND'ing with 1 doesn't
change the input at all!

The exact same thing happens with ORA, except for reversing the
roles of 0 and 1 (since they're dual functions as defined
above). The only way to be sure you can recover an input is to
have originally ORA'ed it with 0, but this does not change the
input. Not much of an encryption scheme!

With the preliminaries out of the way, let's look at the role
of EOR in encryption. One particular value is worth mentioning
for use with EOR. If you look back to table EN-1, you will see
that if the value bit is 1, the result bit will be the opposite
of the input bit. For whole bytes, this means that if we use a
value of $FF (binary 1111 1111) the result byte will equal the
input byte with all the bits 'flipped’', that is, all 0's will
be replaced with 1's and vice versa. This is a fairly common
value to see in program protection methods.

We'll use this value in our first encryption routine. The
following routine takes one page (256-byte chunk) of memory at
the beginning of the BASIC area, EOR's it with the value $§FF,
and puts it back in the same place, byte by byte. 1It's called
"ENCRYPT BASIC' on the program disk.

PPMII ENCRYPTION PAGE 83

1000 AO 00 LDY #%00 Start with offset of zero
1002 B9 01 08 LDA $0801,Y Load A from loc. $0801+o0ffset

1005 49 FF EOR #$FF Exclusive-or A with value $FF
1007 99 01 08 STA $0801,Y Put encrypted byte back

100A C8 INY Increase offset

100B DO F5 BNE $1002 Branch if more to do

100D 60 RTS Finished; return to BASIC

A few words of explanation are 1in order. The routine uses
indexed addressing to load and save the accumulator. This form
of addressing uses the Y register as an offset from the address
specified in the LDA instruction. Thus the actual address to be
loaded from or saved to is the sum of the address given ($0801)
and the value of the index (Y). As we increase the index (INY)
we step through memory one byte at a time. After Y reaches $FF
(255), it will reset to zero when incremented again. As long as
Y hasn't been reset to zero the branch instruction (BNE) will
continue the processing. Eventually Y will be reset to zero;
this time the branch is not taken and we fall through to the
RTS, which returns us back to BASIC.

This takes care of how the looping is set up. The actual work
of encrypting is done by the EOR instruction at location 1005.
This instruction EQR's the contents of the ACCUMULATOR (A)
directly with the value specified ($FF). This 1is called
immediate addressing and is specified by a '#' before the
value. The result is placed back in the accumulator.

To try this routine out, first load it from the program disk
with LOAD 'ENCRYPT BASIC',8,1 (don't do this from a monitor).
Next you need to load a BASIC program to try it out on. There's
one on the disk for just this purpose: LOAD 'BASIC SAMPLE',S8.
List it to see what it looks 1like normally. To encrypt it,
execute the routine with a SYS 4096 (= $1000) from BASIC.

Now try to list it again. Your nice BASIC program is a mess!
A11 is not lost, though; because we used EOR the program is
easily recovered by running the same routine over it again. Try
it! Do another SYS 4096 and list again. Voila!

You can go back and forth from encrypted to decrypted form as
many times as you wish. You can even save the encrypted version
with a regular BASIC save. However, loading it back in from
BASIC presents a bit of a problem. BASIC attempts to re-link
the statement 1ine pointers when it finishes the load (see PPM
Vol. 1 for a discussion of BASIC line pointers). In almost all
cases this will mess up the encrypted program.

The solution is to load the program back in from machine
language. You can kill two birds with one stone by putting the
loading and decryption routines into an autoboot program. You
will also have to set the BASIC variable pointers (loc.
$2D-$34) to enable the program to run. This is done by BASIC
automatically at the end of a load.

PPMII ENCRYPTION PAGE 84

Now let's look at a more general encryption routine. This one
is called 'ENCRYPT ANY' on the program disk. Here 1is what it
looks Tike:

CO00 A6 FD LDX $FD No. of pages to do

C002 A0 00 LDY #%00 Start with offset of zero
C004 B1 FB LDA ($FB),Y Load A indirect, indexed
C006 45 FE EOR $FE EOR A with contents of loc. $FE
co08 91 FB STA ($FB),Y Replace encrypted byte

COOA 8 INY Increase offset

cooB DO F7 BNE $C004 Repeat if not done with page
C00D E6 FC INC $FC Set pointer to next page
COOF CA DEX Decrease # pages left to do
C0O10 DO F2 BNE $C004 Repeat if not done

co12 00 BRK Jump back to monitor

Memory locations used:

00FB-FC Two-byte pointer to start of code being processed
00FD Number of pages (256-byte chunks) to process

O00FE Location of constant to be EOR'ed with code.

Now for the gory details. Locations $FB-FC hold a two-byte
POINTER to the beginning of the code to be processed. The code
itself doesn't start at $FB; it can be almost anywhere. This
pointer is in standard lo-byte, hi-byte order; that is, if you
wanted it to encrypt code starting at $1234 you would put a
value of $34 into location $FD and $12 into $FE.

Location $FD tells the routine how many 256-byte pages to
process, starting at the address given by $FB-FC. The minimum
value you should use is 1; if you put a 0 here it will try to
do all of memory!

Location $FE holds a constant which will be EOR'ed with each
byte of code to produce the encrypted version. You can use any
value you want here. Remember that a value of $FF (binary 1111
1111) will flip all the bits in the result byte to the opposite
of the original, as in our first routine. Note that a value of
$00 will not cause any change at all! Values in-between will
flip only those bits in the result byte that have a 1 1in the
corresponding position in your value.

When you execute the routine, it first loads X with the number
of pages to do and then sets Y to zero. The Y register is used
as an offset as in our first example. This time, the address to
load A from or store it to is formed by first getting the
starting address from $FB-$FC, then adding the contents of Y to
it. This is called indirect indexed addressing. The indirect
part is indicated by putting $FB in parentheses. You <can read
these parentheses as 'the contents of the two bytes starting
at'. The indexing by Y is indicated by the ',Y'.

Having gotten the byte of code to be encrypted into the

accumulator, it is then EOR'ed with the value you stored at
$FE. Note that it is not using the VALUE $FE; it is getting its

PPMII ENCRYPTION PAGE 85

value from LOCATION $FE. The encrypted byte is then stored back
into its original spot. Then Y is incremented. If Y has not
been reset to zero, we loop back to $C004 to continue the page.

When Y does reach zero, we have finished this page, so we
increment the hi-byte of the address pointer ($FC) to point to
the next page. Next we decrement X to reduce the number of
pages left to do. If X is not zero, we have more to do so we
again loop back to $1004. When X reaches zero we are done, so
we exit back to the monitor with a BRK instruction.

To use the routine, first load in a monitor that doesn't reside
at $C000 (LOMON from the program disk will do). Next, load the
routine from the program disk with L 'ENCRYPT ANY', 08. Then
load in your program to be encrypted. Make sure it doesn't use
the same area of memory as the monitor or encryption routine.
If necessary, you can transfer the encryption routine anywhere
you want in memory without having to <change it. The only
possible conflict would be if your program occupies locations
$FB to $FE. This is not very likely, but the routine is easily
changed to get around it if necessary.

Before executing the routine, you must put your values into the
memory locations at $FB to $FE. The memory command M O0OFB can
be used for this. It will display the current contents of these
locations., You can then type your values over the current ones
and hit RETURN. The monitor will store the values.

Let's try it out. We need a piece of code to wuse for an
example. Hmm... why not let it encrypt a copy of itself? Load
in your monitor and the routine from the disk. Transfer a copy
of the routine down to, say, $6000 with the transfer command: T
C000 CO012 6000. Now set the start pointer ($FB-$FC) to $6000
(remember to reverse the order of the bytes), set the number of
?gge§ ($FD) to $01, and put a value in the <constant location
FE).

After all this, you can execute the routine with a G 1000
command from the monitor. In a flash the code is encrypted and
you're back in the monitor. Now try to disassemble the
encrypted version at $6000. Depending on the constant you used,
you'll generally find absolute garbage. Occasionally you'll get
a few bytes here and there that look like a valid instruction.
This can even increase the protection value of encryption since
it may mislead a pirate looking at your code.

Now you want to get your code back. Before re-executing the
routine you'll have to go back and put the starting address at
$FB-FC again. This is because the routine alters the pointer
as it executes (actually, it only alters the high byte at $FC).
Do a G CO00 and look at the code again. It should be completely
restored.

PPMII ENCRYPTION PAGE 86

If you want to look at this from the pirate's point of view,
get set up with the monitor and encryption routine in memory.
Then load the program called 'ENCRYPTED' from the program disk.
It's less than one block long and starts at $6000. It was
encrypted with this routine using a constant of my own
choosing. Your task is to decrypt it. I'll even give you a
hint: I didn't use $00 or $FF. Happy hunting!

This 1ittle exercise will demonstrate that even knowing where
the code is and having the routine to decrypt it, you still
need to know the 'magic' value. This suggests having the value
loaded in separately from the decryption routine, perhaps based
on some other protection scheme. By combining schemes in this
manner, you multiply the difficulty involved in breaking the
program.

We've really only scratched the surface of encryption 1in this
chapter. We haven't even exhausted the possibilities of EOR.
For example, some protection schemes EOR each byte with the
preceding one, rather than the same constant each time. This
sets up a ‘'chain' that has to be followed to properly decrypt
the code.

Another idea is to use the ADC and SBC instructions of the 6510
(Add with Carry and Subtract with Carry). You can wuse these
alone or in combination with EOR. For instance, to encrypt a
byte, ADC a value and then EOR with another value. To decrypt,
first EOR and then SBC using the same two values respectively.

You might also find a way to use the shift and rotate
instructions (ASL, LSR, ROL and ROR), increment and decrement
instructions (INC and DEC) or even the BASIC multi-byte math
routines (+, -, *, / etc.).

Basically, anything you can do to a byte or group of bytes can
be an encryption scheme if it can be ‘'undone' reliably. This
chapter should serve as a springboard to give you a push in the
right direction. The possibilities are limited only by your own
creativity.

PPMII ENCRYPTION PAGE 87

PROGRAMMING EPROMS

Many times during the course of this manual we refer to
modifying the KERNAL ROM or some other ROM chip. You might just
wonder how this 1is to be accomplished. A ROM <chip is a
permanent memory chip. The instructions contained on the <chip
are a permanent part of the physical construction of the <chip
and may not be altered. How then do we modify the KERNAL ROM??
With an EPROM programmer, that's how.

Any program that may be on a ROM can be placed on an EPROM. An
EPROM (Eraseable, Programmable, Read Only Memory) may be
programmed, erased and reprogrammed thousands of times. When
the EPROM is programmed it will retain the information even
when power is turned off, just like a ROM. Whereas RAM (Random
Access Memory) will lose its memory shortly after power is
turned off. EPROM's may be considered as a way to permanently
store a program or other data, just as a disk may be considered
as permanent memory. An EPROM is similar to a disk in that
information may be stored on the EPROM and Tlater erased if
necessary, then more information may be stored back on the
EPROM.

EPROMs are not truly permanent memory. They may be damaged by
physical abuse, they are subject to electrical shocks, static
electricity and other forms of failure. In short, an EPROM is
similar to a disk, with the proper care they will last for
years. If an EPROM is abused it will not last very long.

Why then would we want to put our data on EPROMs?? EPROMs, 1like
ROMs, may be installed into the computer, the disk drive or the
cartridge port. We may modify the information contained on the
EPROM to perform custom operations and then re-install the
EPROM into the computer. We can have our own custom KERNAL,
BASIC, DOS or cartridge routine. When information is stored on
an EPROM we don't have to wait for it to load in from disk.

Earlier we discussed the RESET, INTERRUPT and BREAK functions
of the C-64. If, for instance, we wanted to modify the RESET
routine of the computer it would only be necessary to burn a
new EPROM and install it in your computer. If we wish to make a
custom DOS for the disk drive all that is required is to burn
an EPROM and install it in the drive. Pretty simple, isn't it??

Let's follow the procedure to make a new EPROM for the disk
drive. We will modify the DOS ROM that is located from $E000 to
$FFFF. This is the chip located at the right rear of the disk
drive and numbered 901229. In every drive that we have examined
this chip is socketed and may be easily removed. This way we
may easily replace the DOS ROM with our custom EPROM. Wait a
minute, even if we can just replace the DOS ROM with an EPROM
how do we program the EPROM with our special routine??? With an
EPROM programmer of course!! Just any old EPROM programmer

PPMII PROGRAMMING EPROMS PAGE 88

should work, but if you are going to buy one we have a
recommendation: the PROMENADE by JASON RANHEIM (available from
CSM). This is the most versatile, cost effective and durable
EPROM programmer we can find. It retails for around $100.00. It
can program more types of EPROMs than EPROM programmers costing
over $2000.00. The PROMENADE 1is packaged 1in an durable
aluminium housing and is really made to last. All of the
internal circuitry is protected from overloads and improperly
inserted EPROMs. So if you should happen to make a mistake in
the type of EPROM or how you install the EPROM you can not
damage the EPROM programmer (although it is possible to blow a
chip through a mistake).

Let's say that you have an EPROM programmer how do you decide
which type of EPROM to use? (The PROMENADE will program over 25
different types of EPROMs). Well, the EPROM that replaces the
ROM in the drive is a MCM 68764. The MCM 68764 is a pin for pin
replacement for the ROMs in the drive and the ROMs 1{n the-
computer. You just unplug the ROM and insert your custom EPROM,
pretty easy huh? The only problem with the MCM 68764 EPROM is
the price: they retail at $40.00 each (ouch). It can get very
expensive burning new EPROMs for the drive and the computer at
$40.00 each. But wait, there is a 1lower <cost solution. This
consists of a 2764 EPROM and an adapter (both available from
CSM). The ROM in the disk drive has 24 pins (as does the MCM
68764). The 2764 EPROM has 28 pins. The adapter allows you to
use the 2764 EPROM in the disk drive. Why bother with an
adapter and a 28 pin EPROM?? The price is why. The 2764 and the
adapter may be purchased for less that $20.00 for both items.
That's less than 1/2 the retail price of the MCM 68764. Now the
price to modify your drive and your computer is down within the
reach of the average person.

The 2764 EPROM has 8K of memory and directly plugs into the
cartridge boards for the C-64. Some 2764's have reached the
surplus market and sometimes can be found at HAMfests for as
little as $3.00 each for perfectly good wused EPROMs (a real
bargain). For our money we feel that the 2764 EPROM is the best
buy dollar for dollar. If you only need to put a 2K program on
an EPROM you may use the 2764. You can program only the amount
of memory that you need with the PROMENADE. Then, at a later
date, you can program the rest of the 8K chip. Just as you can
save to a disk until it is full, you may also save to an EPROM
until it is full. After you have programmed an EPROM you <can
erase it and reprogram it, just like you can erase disks. In
order to erase an EPROM it is necessary to use ultraviolet (UV)
light. ATl you have to do is expose the EPROM to UV 1light for
10-15 minutes and it is fully erased. There are many commercial
EPROM erasers on the market today, the one that we prefer is
call DATARASE by WALLING CO, priced under $40.00 (available
from CSM). EPROMs may be erased by other sources of UV 1light
(such as the sun), but we don't recommend it.

PPMII PROGRAMMING EPROMS PAGE 89

0.K. back to programming EPROMs. The PROMENADE plugs into the
modem port of the C-64 (don't use any EPROM programmer on the
SX-64 due to a power supply problem of the SX). The software
for the PROMENADE is included and may be loaded from the disk
and RUN. Type: LOAD"“PROMOS*",8: then (RETURN), now type RUN.
The screen will display a copyright message and return to the
‘READY' prompt. You are now ready to modify the DOS ROM, so
lets go.

1). Carefully remove the $E000 to S$FFFF ROM from the disk
drive.

2). Type: Z (RETURN) - this will zero the socket on the
PROMENADE.

3). Insert the DOS ROM into the PROMENADE socket and close the
lever on the socket. Be sure to insert the ROM as shown on
the PROMENADE.

4). Read the data from the ROM with the following commands: the
(L) = the English pound key:
(L)8192,16383,0,48 (RETURN)

5). The data from the DOS ROM has now been stored in the
computer from memory location 8192 decimal ($2000) to 16383
decimal ($3FFF). The '0‘' means to start reading from the
very first byte of the EPROM (byte 0) and the '48'
determines which type of EPROM (24 pin, 28 pin, 2K, 4K, 8K
etc). The PROMENADE manual fully describes the commands to
be used for various EPROMs.

6). If you wish to modify the DOS ROM or to make a disk copy of
the ROM now is the time to do this. If you only want to
burn an exact replacement of the ROM go to step 7 now. Load
a ML monitor and save the DOS ROM memory out to disk. You
should use a ML monitor that resides at $C000 (49152) so
that there is no chance of over writing the DO0OS ROM.
Remember that the DOS will reside in the computer from
$2000 to $3FFF. If you wish to modify the D0OS, it may be
accomplished very easily from the ML monitor and the
modified version may then be saved to disk. A little 1later
on we will give you some tips on where and how to modify
the DOS. If you have entered a ML monitor it may be
necessary to power down and reload the PROMOS software from
disk after you have saved out the modified version of the
ROM. Then reload the modified version of your DOS ROM.
NOTE: this depends upon the type of ML monitor that you are
using, some monitors may exit properly into PROMOS, others
do not.

7A). If you are going to use the 2764 EPROM to replace the ROM
all you have to do is insert the 2764 into the PROMENADE
and use the following commands to burn the EPROM. The (PI)
= the pi symbol (shifted up arrow)
(P1)8192,16383,0,5,7 (RETURN)

PPMII PROGRAMMING EPROMS PAGE 90

Remove the EPROM from the programmer when it has finished
programming (1-2 minutes) and insert it into an adapter.

7B). If you are going to wuse the MCM 68764 EPROM wuse the
following commands.
(P1)8192,16383,0,48,15 (RETURN)

8). Install the EPROM into the disk drive and you are done.
Programming an EPROM takes less that 10 minutes once you
have become proficient with the EPROM programmer.

MODIFICATION OF THE DOS

HARDWARE MODIFICATION OF THE OPERATING SYSTEM FOR MORE THAN
THIRTY-FIVE TRACKS OR FOR EXTRA SECTORS.

Caution: Some drives may not be physically able to go to track
40. The read/write head may become stuck at track 38 on some
drives. This is not serious, just go into the drive and free
the head with your hand if it gets stuck.

This method will require the 'burning' of replacement EPROMS
for the disk drive. You will be able to add extra tracks or
vary the number of sectors on a track when you use this
technique. One problem will be evident when you change the
number of tracks on the disk: You will only be able to 1ist the
directories of a disk with the same number of tracks as the
driv