
MACHINE . LANGUAGE
for the Com m odore 64 and other COI11I11<xiore com p uters

• Jim Butterfield •

Prepublication reviewers say

"This book dernvsnfies the magic of computers... It'S the machine
language masterpiece we've all been waiting for!"

" . an excellent introduction to machine language. .1 love the consis­
tent use of both hex and decimal, the overall readability, and the
numerous surnrnanesl"

MACHINE- LANGUAGE
for the Commodore 64 and other Commodore computers

• Jim Butterfield •

Nowl A comprehensive tutorial that Introduces programmers of all levels to the pnn­
ciples of machine language- what It IS, how It works, and how to program with ItI

Based on the author's own Intense machine language seminars, this learn-bv-domq
quide explores machine code In the real environment of Commodore personal com­
puters, examining Important concepts such as output address modes .linking
BASIC and machine language memory maps of the Interface chips .and much
morel I

CONTENTS
First Concepts/ Controlling Output/ Flags, Logic, And Input/ Numbers, Anthrnetic. And
Subroutmes/ Address Modes/ Linking BAS IC And Machine Language/ Stack, USR, In­
terrupt, And WedgelTlmlng, Input, Output, And Conclusion

i'

o

I
08930

II I!

'I ,!'
I, ,I 'II

36528

ISBN 0-89303-652-8

IMM ZPAG Z,X (I,X) (I),Y ABS A,X A,Y
2 2 2 2 2 3 3 3

ORA 09 05 15 01 11 00 10 19
AND 29 25 35 21 31 20 3D 39
EOR 49 45 55 41 51 40 50 59
AOC 69 65 75 61 71 60 70 79
STA 85 95 81 91 80 90 99
LOA A9 A5 B5 A1 B1 AD BO B9
CMP C9 C5 05 C1 01 CD DO 09
SBC E9 E5 F5 E1 F1 ED FO F9

Op Code ends In - 1, - 5, - 9, or - 0

IMM ZPAG Z,X Z,Y ABS A,X A,Y
2 2 2 2 3 3 3

ASL 06 16 OE 1E
ROL 26 36 2E 3E
LSR 46 56 4E 5E
ROR 66 76 6E 7E
STX 86 96 8E
LOX A2 A6 B6 AE BE
DEC C6 06 CE DE
INC E6 F6 EE FE

Op Code ends In - 2, - 6, or - E

BPL 10 BMI 30 ABS (INO)
BVC 50 BVS 70
BCC 90 BCS BO JSR 20
BNE DO BEQ FO JMP 4C 6C

Branches -0 Jumps

IMM ZPAG Z,X ABS A,X
2 2 2 3 3

BIT 24 2C
STY 84 94 8C
LOY AO A4 B4 AC BC
CPY CO C4 CC
CPX EO E4 EC

Misc. -0, -4, -C

0- 1- 2- 3 - 4- 5- 6- 7 8- 9 - A- B- c- D- E- F-

- 0 BRK RTI RTS

-8 PI-IP CLC PLP SEC PHA CLI PLA SEI DEY TVA TAY CLV INY CLD INX SED

-A ASL-A ROL-A LSR·A ROR-A TXA TXS TAX TSX DEX NOP

Single-byte Op Codes - 0, - 8, - A

MACHINE
LANGUAGE
FOR THE

COMMODORE 64
and Other

Commodore
Computers

James Butterfield

Brady Communications Company, Inc., Bowie, MD20715
A Prentice-Hall Publishing Company

Machine Language for the Commodore 64 and Other Commodore Computers

Copynght © 1984 by Brady Commurucanons Company, Inc
All nghts reserved. No part of this publication may be reproduced or transmitted In any
form or by any means, electronic or mechanical, including photocopying and recording, or
by any Information storage and retrieval system. without permission In wnting from the
publisher. For information, address Brady Communications Company, Inc, Bowie, Maryland
20715.

ISBN 0-89303-652-8
Library of Congress Cataloging In Publication Data

Butterfield, Jim
Machine language for the Commodore 64 (and other

Commodore computers)

Includes Index.
1 Commodore 64 (Computen-c-Proqrarnmmq 2. Commodore

computers-Programming. 3 Programming languages
(Electroruc computers) I Title.
QA76 8.C64B88 1984 001 64'2 84-6351

Prentice-Hail lnternatronal, Inc, London
Prentice-Hail Canada, Inc., Scarborough, Ontano
Prentice-Hail of Australia, Pty, Ltd , Sydney
Prentice-Hail of India Pnvate Limited. New Delhi
Prentice-Hail of Japan, Inc, Tokyo
Prentice-Hail of Southeast ASia Pte. Ltd , Singapore
Whitehall Books, limited, Petons. New Zealand
Edrtora Prentice-Hail Do Brasil LTDA., RIO de Janeiro

Printed In the United States of Amenca

84 85 86 87 88 89 90 91 92 93 94 1 2 3 4 5 6 7 8 9 10

Publishing Director David T Culverwell
Acquismons Editor Terrell W Anderson
Production Editor/Text Desiqn Lisa G Kolman
Art Director. Don Sellers
ASSistant Art Director' Bernard Vervm
Manufactunng Director John Kosma

Cover desiqn and Illustration Dave Joly
Copy Editor Keith Tidrnan
Indexer William 0 Lively
Typesetter Harper Grapmcs. Vvaldrof. MD
Printer R R Donnelly & Sons, Harrisonburg, VA
Typefaces Helvetica (text, drsplavl.Tirnes Roman (display)

Contents
Note to Readers
Preface
Introduction
1 First Concepts

The Inner Workings of Microcomputers
Computer Notation: Binary and Hexadecimal
The 650x's Inner Architecture
Beginning Use of a Machine Language Monitor
A Computer's "Memory Layout"
First Machine Language Commands
Writing and Entering a Simple Program

2 Controlling Output
Calling Machine Language Subroutines
The PRINT Subroutine
Immediate Addressing
Calling Machine Language from BASIC
Tiny Assembler Programs
Indexed Addressing
Simple Loops
Disassembly

3 Flags, Logic, and Input
Flags that hold Status Information
Testable Flags: Z, C, N, and V
Signed Numbers
The Status Register
First Concepts of Interrupt
Logical Operators: OR, AND, EOR
The GETIN Subroutine for Input
The STOP Subroutine

iii

vi

vii

ix

1

23

39

4 Numbers, Arithmetic, and Subroutines 57
Numbers: Signed and Unsigned
Big Numbers: Multiple Bytes
Arithmetic: Add and Subtract
Rotate and Shift Instructions
Multiplication
Home-Grown Subroutines

5 Address Modes 71
Non-addresses: Implied, Immediate, Register
Absolute and Zero Page
Indexing
The Relative Address for Branches
Indirect Addressing
Indirect, Indexed

6 Linking BASIC and Machine Language 91
Where To Put a Machine Language Program
Basic Memory Layout
Loading and the SOV Pointer
Basic Variables: Fixed, Floating, and String
Exchanging Data with BASIC

7 Stack, USR, Interrupt, and Wedge 111
The Stack for Temporary Storage
USA: An Alternative to SYS
Interrupts: IRQ, NMI, and BRK
The IA Chips: PIA and VIA
Infiltrating BASIC: The Wedge

8. Timing, Input/Output, and Conclusion 131
How To Estimate the Speed of Your Program
Input and Output from Tape, Disk, Printer
Review of Instructions
Debugging
Symbolic Assemblers
Where To Go from Here

iv

Appendix A The 6502/6510/6509/7501 Instruction
Set 147

Appendix B Some Characteristics of Commodore
Machines 155

Appendix C Memory Maps 161
Appendix D Character Sets 215
Appendix E Exercises for Alternative Commodore

Machines 225
Appendix F Floating Point Formats 231
Appendix G Uncrashing 233
Appendix H A Do-It-Yourself Supermon 237
Appendix I IA Chip Information 245
Appendix J Disk User's Guide 309
Glossary 317

Index 322

v

Note to Readers
This book introduces beginners to the principles of machine language: what it

is, how It works, and how to program with it.
It is based on an intensive two-day course on machine language that has been

presented many times over the past five years.
Readers of this book should have a computer on hand: students will learn by

doing, not just by reading. Upon completing the tutorial matenal In this book, the
reader will have a good Idea of the fundamentals of machine language. There will
be more to be learned; but by this time, students should understand how to adapt
other material from books and magazines to their OWI1 particular computers.

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisher of thrs book have used their best efforts in preparing
this book and the programs contained In it. These efforts include the development,
research, and testing of the programs to determine their effectiveness. The author
and the publisher make no warranty of any kind, expressed or rmpnec, With regard
to these programs, the text, or the documentation contained In this book. The
author and the publisher shall not be liable in any event for claims of Incidental
or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of the text or the programs.

At time of publication, the Commodore 264 is still undergoing desiqn changes.
The name is being changed to the "PLUS/4", a related machine, the Commodore
16, has also been announced. Detailed design information is not available; but
the Information given in this book for the Commodore 264 should be generally
accurate.

Note to Authors

Do you have a manuscript or a software program related to personal
computers? Do you have an Idea for developing such a project? If so, we
would like to hear from you. The Brady Co. produces a complete range of
books and applications software for the personal computer market. We invite
you to write to David Culverwell, Publishing Director, Brady Communications
Company Inc.. Bowie. Maryland 20715.

vi

Preface
This book IS primanly tutonal in nature. It contains, however, extensive reference

matenat, which the reader will want to continue to use.
No previous machine language experience IS required. It IS useful if the reader

has had some background in programming In other languages, so that concepts
such as loops and decisions are understood

Beginners will find that the matenal In this book moves at a fast pace. Stay with
it; if necessary, skip ahead to the examples and then come back to reread a difficult
area.

Readers with some machine language experience may find some of the matenal
too easy; for example, they are probably quite familiar with hexadecimal notation
and don't need to read that part. If this is the case, skip ahead. But do enter all
the programming projects: if you have missed a point, you may spot it while doing
an exercise.

Programming students learn by domq, The beginner needs to learn simple things
about his or her machine In order to feel In control. The elements that are needed
may be Itemized as:

• Machine language. rms IS the objective, but you can't get there without the
next two Items.

• Machine architecture. All the machine language theory In the world will have
little meaning unless the student knows such things as where a program may
be placed In memory, how to print to the screen, or how to Input from the
keyboard.

• Machine language tools. The use of a simple machme language monitor to
read and change memory is vital to the objective of making the computer do
something In machine language Use of a simple assembler and elements of
debugging are easy once you know them; but until you know them, it's hard
to make the machine do anything.

Principles of sound coding are important. They are seldom discussed explicitly,
but run as an undercurrent through the material. The objective is trus: it's easy to
do things the right way, and more difficult to do them the wrong way. By Introducing
examples of good coding practices early, the student will not be motivated to look
for a harder (and Inferior) way of coding.

It should be pointed out that this book deals primarily with machine language,
not assembly language. Assembler programs are marvellous things. but they are

vii

too advanced for the beginner. I prefer to see the student forming an idea of how
the bytes of the program lie within memory. After this concept is firmly fixed in
mind, he or she can then look to the greater power and flexibility offered by an
assembler.

Acknowledgements
Thanks go to Elizabeth Deal for acting as resource person In the preparation

of this book When I was hard to find, the publisher could call upon Elizabeth for
technical clarification.

viii

Introduction
Why learn machine language? There are three reasons. First, for speed; ma­

chine language programs are fast. Second, for versatility; all other languages are
limited in some way, but not machine language. Third, for comprehension; since
the computer really works in machine language only, the key to understanding
how the machine operates is machine language.

Is it hard? Not really. It's finicky, but not difficult. Individual machine language
instructions don't do much, so we need many of them to do a job. But each
mstruction is simple, and anyone can understand it if he or she has the patience.

Some programmers who started their careers in machine language find "higher
level" languages such as BASIC quite difficult by companson. To them, machine
language instructions are simple and precise, whereas BASIC statements seem
vague and poorly defined by comparison.

Where will this book take you? You will end up with a good understanding of
what machine language is, and the principles of how to program in it. You won't
be an expert, but you'll have a good start and will no longer be fnghtened by this
seemingly mysterious language.

Will the skins you learn be transportable to other machines? Certainly. Once
you understand the principles of programming, you'll be able to adapt. If you were
to change to a non-Commodore machine that used the 6502 chip (such as Apple
or Atari), you'd need to learn about the architecture of these machines and about
their machine language monitors. They would be different, but the same pnnciples
would apply on all of them.

Even if you change to a computer that doesn't use a chip from the 6502 family.
you will be able to adapt. As you pick through the instructions and bits of the
Commodore machine, you will have learned about the principles of all binary
computers. You will need to learn the new microprocessor's instruction set, but it
will be much easier the second time around.

Do you need to be a BASIC expert before tackling machine language? Not at
all. This book assumes you know a little about programming fundamentals: loops,
branching, subroutines, and decision making. But you don't need to be an ad­
vanced programmer to learn machine language.

ix

IJ

1
First

Concepts
This chapter discusses:

• The Inner workings of microcomputers

• Computer notation: binary and hexadecimal

• The 650x's Inner architecture

• Beginning use of a machine language monitor

• A computer's "memory layout"

• First machine language commands

• Writing and entering a simple program

1

2 MACHINE LANGUAGE FOR COMMODORE MACHINES

The Inner Workings of Microcomputers
All computers contain a large number of electrical circuits. Within any
binary computer, these circuits may be in only two states: "on" or "off."

Technicians will tell you that "on" usually means full voltage on the circurt
concerned, and "off" means no vOltage.There's no need for volume control
adjustments within a digital computer: each circuit is either fully on or fully
off.

The word "binary" means "based on two," and everything that happens
within the computer is based on the two possibilities of each circuit: on or
off. We can identify these two conditions in any of several ways:

ON or OFF

TRUE or FALSE

YES or NO

1 or 0

The last description, 1 or 0, is quite useful. It IS compact and numeric. If
we had a group of eight circuits within the computer, some of which were
"on" and others "off," we could describe their conditions Withan expression
such as:

11000111

This would signify that the two leftmost wires were on, the next three off,
and the remaining three on. The value 11000111 looks like a number; In

fact, It IS a binary number in which each digit IS 0 or 1. It should not be
confused with the equivalent decimal value of slightly over 11 million; the
digits would look the same, but in decimal each digit could have a value
from 0 to 9. To avoid confusion with decimal numbers, binary numbers
are often preceded by a percent sign, so that the number might be shown
as %11000111.

Each digit of a binary number IS called a tnt, which IS short for "binary
digit." The number shown above has eight bits; a group of eight bits is a
byte. Bits are often numbered from the right, starting at zero. The right­
hand bit of the above number would be called "bit 0," and the left-hand
bit would be called "bit 7." This may seem odd, but there's a good math­
ematical reason for using such a numbering scheme.

FIRST CONCEPTS

The Bus

3

It's fairly common for a group of circuits to be used together. The wires
run from one microchip to another, and then on to the next. Where a group
of wires are used together and connect to several different points, the
group IS called a bus (sometimes spelled "buss").

The PET, CBM, and VIC-20 use a microprocessor chip called the 6502.
The Commodore 64 uses a 6510. The Commodore B series uses a 6509
chip, and the Commodore PLUS/4 uses a chip called 7501. All these chips
are Similar, and there are other chips in the same family with numbers like
6504; every one works on the same principles, and we'll refer to all of
them by the family name 650x.

Let's take an example of a bus used on any 650x chip. A 650x chip has
little built-in storage. To get an instruction or perform a computation, the
650x must call up information from "memory"-data stored Within other
chips.

The 650x sends out a "call" to all memory ChiPS, asking for information.
It does this by sending out voltages on a group of sixteen wires called the
"address bus." Each of the sixteen wires may carry either voltage or no
voltage; this combination of signals is called an address.

Every memory chip IS connected to the address bus. Each chip reads the
address, the combination of voltages sent by the processor. One and only
one Chip says, 'That's me!" In other words, the specific address causes

-- -- - ---
~-
f----

650x ~-

t II I t II I

~
III.

If I "' III
MEMORY MEMORY

CHIP

Figure 1.1 Address bus connecting 650x & 3 chips

4 MACHINE LANGUAGE FOR COMMODORE MACHINES

that crup to be selected; It prepares to communicate with the 650x. All
other chips say, "That's not me!" and will not participate in data transfer.

The Data Bus
Once the 650x microprocessor has sent an address over the address bus
and It has been recognized by a memory chip, data may flow between
memory and 650x. This data is eight bits (it flows over eight wires). It
might look like this:

01011011

The data might flow either way. That is, the 650x might read from the
memory chip, in which case the selected memory chip places information
onto the data bus which is read by the microprocessor. Alternatively, the
650x might wish to wnte to the memory chip. In this case, the 650x places
information onto the data bus, and the selected memory chip receives the
data and stores it.

---ADDRESS BUS--- ----- --
--

~ ~ t....... ---
650x

DATA BUS -- •

f f fIII III HlIII III

MEMORY MEMORY MEMORY

CHIP CHIP CHIP
(" SELECTED") (NOT (NOT

SELECTED) SELECTED)

Figure 1.2: Two-way data bus

All other chips are stili connected to the data bus, but they have not been
selected, so they ignore the information.

The address bus is accompanied by a few extra wires (sometimes called

FIRST CONCEPTS 5

the control bus) that control such things as data timing and the direction
in which the data should flow: read or wnte.

Number Ranges
The address bus has sixteen bits, each of which might be on or off. The
possible combinations number 65536 (two raised to the sixteenth power).
We then have 65536 different possibilities of voltages, or 65536 different
addresses.

The data bus has eight bits, which allows for 256 possioumes of vottaqes.
Each memory location can store only 256 distinct values.

It is often convenient to refer to an address as a decimal number. This is
especially true for PEEK and POKE statements in the BASIC language.
We may do this by giVing each bit a "weight." Bit zero (at the nght) has
a weight of 1; each bit to the left has a weight of double the amount, so
that bit 15 (at the left) has a weight of 32768. Thus, a binary address such
as

0001001010101100

has a value of 4096+512+128+32+8+4 or 4780. A POKE to 4780
decimal would use the above binary address to reach the correct part of
memory.

1128164132116~
EIGHT BITS

SIXTEEN BITS

Figure 1.3

Direct conversion between decimal and binary is seldom needed. Such
conversions usually pass through an intermediate number system, called
hexadecimal.

Hexadecimal Notation
Binary IS an excellent system for the computer, but It IS Inconvenient for
most programmers. If one programmer asks another, "What address should

6 MACHINE LANGUAGE FOR COMMODORE MACHINES

I use for some activity?", an answer such as II Add re s s
%0001001010101100 II might be correct but would probably be UI1­

satisfactory. There are too many digits.

Hexadecimal is a code used by humans to conveniently represent binary
numbers. The computer uses binary, not hexadecimal; programmers use
hexadecimal because binary IS cumbersome.

To represent a binary number in hexadecimal, the bits must be grouped
together four at a time. If we take the binary value given above and split
it Into groups of four, we get

0001 0010 1010 1100

Now each group of four bits is represented by a digit as shown in the
following table:

0000-0
0001-1
0010-2
0011-3

0100-L;
0101-5
0110-6
0111-7

1000-8
1001-CJ
1010-A
1011-B

1100-C
1101-D
1110-E
1111-F

ThUS, the number would be represented as hexadecimal 12 AC. A dollar
sign is often prefixed to a hexadecimal number so that it may be clearly
recognized:$12 AC.

The same type of weighting is applied to each bit of the group of four as
was described before. In other words, the rightmost bit (bit zero) has a
weight of 1, the next left a weight of 2, the next a weight of 4, and the
leftmost bit (bit three) a weight of 8. If the total of the weighted bits exceeds
nine, an alphabetic letter is used as a digit: A represents ten; B, eleven;
C, twelve; and F, fifteen.

Eight-bit numbers are represented with two hexadecimal digits. Thus,
%01011011 may be written as $5B.

Hexadecimal to Decimal
As we have seen, hexadecimal and binary numbers are easily inter­
changeable. Although we will usually wnte values in "hex," occasionally
we will need to examine them In their true binary state to see a particular
information bit.

Hexadecimal isn't hard to translate into decimal. You may recall that in
early arithmetic we were taught that the number 24 meant, "two tens and
four Units." Similarly, hexadecimal 24 means "two sixteens and four units,"
or a decimal value of 36. By the way, it's better to say hex numbers as

FIRST CONCEPTS 7

"two four" rather than "twenty-four," to avoid confusion with decimal val­
ues.

The formal procedure, or algorithm, to go from hex to decimal is as follows.

Step1. Takethe leftmost digit; If It'S a letter A to F , convertIt to the appropriate
numenc value (A equals 10. B equals 11, and so on)

Step 2' If there are no moredigits, you're finished, you havethe number. Stop.
Step 3: Multiply the value so far by sixteen. Add the next digit to the result,
converting letters If needed Go back to step 2

Using the above steps, let's convert the hexadecimal number $12 AC.

Step t The leftmost digit IS 1.

Step 2: There are more digits, so we'll continue.

Step 3 1 times 16 is 16, plus 2 gives 18.

Step 2' More digits to come.
Step 3' 18 times 16 IS 288, piUS 10 (for A) gives 298

Step 2: More digits to come.

Step 3. 298 x 16 IS L;768, plus 12 (for C) gives L;780.

Step 2: No more digits: L;7 80 is the decimal value

This is easy to do by hand or with a calculator.

Decimal to Hexadecimal
The most straightforward method to convert from decimal to hexadecimal
is to divide repeatedly by 16; after each division. the remainder is the next
hexadecimal digit, working from right to left. This method is not too well
suited to small calculators, which usually don't give remainders. The fol­
lowing fraction table may offer some help:

.0000-0

.0625-1

.1250-2

.1875-3

.2500-L;

.3125-5

.3750-6

.L;375-7

.5000-8

.5625-9

.6250-A

.6875-B

.7500-C

.8125-D

.8750-E

.9375-F

If we were to translate 4780 usi ng this method, we would divide by 16.
giving 298.75. The fraction tells us the last digit is C; we now divide 298
by 16, giving 18.625. The fraction corresponds to A, making the last two
digits AC. Next we divide 18 by 16, getting 1.125-now the last three
digits are 2 AC. We don't need to divide the one by 16, although that would
work; we just put it on the front of the number to get an answer of $12 AC.

There are other methods of performing decimal-to-hexadecimal conver-

8 MACHINE LANGUAGE FOR COMMODORE MACHINES

sions. You may wish to look them up in a book on number systems.
Alternatively, you may wish to buy a calculator that does the job electron­
ically. Some programmers get so experienced that they can do conver­
sions in their heads; I call them "hex nuts."

Do not get fixed on the idea of numbers. Memory locations can always
be described as binary numbers, and thus may be converted to decimal
or hexadecimal at will. But they may not mean anything numenc. the
memory location may contain an ASCII coded character, an instruction,
or any of several other things.

Memory Elements
There are generally three types of devices attached to the memory busses
(address, data, and control busses):

• RAM. Random access memory. This is the read and wnte memory, where
we will store the programswe wnte, along with values used by the program
We may store information Into RAM, and may recall the Information at any
time

• ROM. Read only memory. This IS where the fixed routines are kept Within the
computer. We may not store information into ROM; ItS contents were fixed

TO
--OTHER

CHIPS

-

ADDRESS BUS--- ---- -- -
650x

MEMORY BUS ~ ~ t-- -.- --,...- ,...- t- ~t t
RAM ROM(READ IA
AND

(READ (SPECIAL)
WRITE)

ONLY)

CONNECTIONS
TO "OUTSIDE WORLD"

Figure 1.4

FIRST CONCEPTS 9

when the ROM was made We will use program units (subroutines) stored In
ROM to do special tasks for us, such as Input and output.

• I A. Interface adaptor chips These are not memory In the usual sense, but,
these chips are assigned addresses on the address bus, so we call them
"memory-mapped" devices Information may be passed to and from these
devices, but the Information IS generally not stored In the conventional sense
I A chips contain such functions as' Input/output (I/O) Interfaces that serve
as connecnons to the "outside world", timing devices, Interrupt control sys­
tems. and sometimes specrahzed functions, such as video control or sound
generation. I A chips come In a wide variety of designs, including the P I A
(peripheral Interface adaptor), the VI A (versatile Interface adaptor), the CI A
(complex Interface adaptor), the VIC (video Interface Chip), and the SID
(sound Interface device),

Within a given computer, some addresses may not be used at all. Some
devices may respond to more than one address, so that they seem to be
in two places in memory.

An address may be thought of as split in two parts. One part, usually the
high part of the address, selects the specific chip. The other part of the
address selects a particular part of memory within the chip. For example,
in the Commodore 64. the hex address $D020 (decimal 53280) sets
the border color of the video screen The first part of the address (roughly,
$ DO ..) selects the video chip; the last part of the address (.. 20)
selects the part of the chip that controls border color,

Microprocessor Registers

SP

A, X and Y (8 bits each)

SR

Within the 650x chip are several storage areas called reqtsters. Even
though they hold information, they are not considered "memory" since
they don't have an address Six of the registers are important to us. Briefly,
they are:

PC: (16 bits) The program counter tells where the next
Instruction will come from.

These registers noio data.

The status register, sometimes called PSW
(processor status word), tells about the re-
sults of recent tests, data handling, and so
on.

The stack pointer keeps track of a temporary .
storage area.

We will talk about each of these registers in more detail later, At the
moment, we will concentrate on the PC (program counter).

10 MACHINE LANGUAGE FOR COMMODORE MACHINES

I •
PC r

I ADDRESS BUSA

I X

I y

I SR .. •

I SP
DATA BUS

650x CHIP

Figure 1.5

Instruction Execution
Suppose that the 650x is stopped (not an easy trick), and that there is a
certain address, say $123L;, in the PC. The moment we start the micro­
computer, that address will be put out to the address bus as a read address,
and the processor will add one to the value In the PC.

Thus, the contents of address $123 L; will be called for, and the PC will
change to $1235. Whatever Information comes In on the data bus will
be taken to be an instruction.

The microprocessor now has the instruction, which tells it to do something.
The action IS performed, and the whole action now repeats for the next

PC

I $1234 I
Ii ~" -------- ----

ADDRESS
BUS

PC

I $1235 l=l -$1234

ADDRESS

INSTRUCTION~
___ BUS

DATA BUS

Figure 1.6 Arrow to addrs bus

FIRST CONCEPTS 11

instruction. In other words, address $1235 will be sent to memory, and
the PC will be incremented to $1236.

You can see that the processor works in the same way that most computer
languages do: an Instruction is executed, and then the computer proceeds
to the next instruction, and then the next, and so on. We can change the
sequence of execution by means of a "jump" or "branch" to a new location,
but normally, It'S one instruction after another.

Data Registers: A, X, and Y
Any of three registers can be used to hold and manipulate eight bits of
data. We may load information from memory into A, X, or Y; and we may
store information into memory from any of A, X, or Y

Both "load" and "store" are copying actions If I load A (LD A) from
address $ 2 3 L; 5, I make a copy of the contents of hex 23 L; 5 into A; but
23 L; 5 still contains its previous value. Similarly, if I store Y into $ 3 L; 56,
I make a copy of the contents of Y Into that address; Y does not change.

The 650x has no way of moving information directly from one memory
address to another. Thus, thrs information must pass via A, X, or Y; we
load it from the old address, and store it to the new address

Later, the three registers will take on individual Identities. For example,
the A register is sometimes called the accumulator, since we perform
addition and subtraction there. For the moment, they are interchangeable:
we may load to any of the three, and we may store from any of them.

First Program Project
Here's a programming task: locations $ 0 3 8 0 and $ 0 3 81 contai n in­
formation. We wish to write a program to exchange the contents of the
two locations. How can we do this?

We must make up a plan. We know that we cannot transfer information
directly from memory to memory. We must load to a register, and then
store. But there's more. We must not store and destroy data in memory
until that data has been safely put away. How can we do this?

Here's our plan. We may load one value into A (say, the contents of
$ 0 3 8 0), and load the other value into X (the contents of $ 0 3 81). Then
we could store A and X back, the other way around.

We could have chosen a different pair of registers for our plan. of course:

12 MACHINE LANGUAGE FOR COMMODORE MACHINES

A and Y, or X and Y. But let's stay with the original plan. We can code
our plan in a more formal way:

LDA $0380
LDX $0381
STA $0381
STX $0380

(bring In first value)
(bring In second value)
(store in opposite place)
(and again)

You will notice that we have coded" load A" as LDA, "load X" as
LDX, "store A" as STA, and" store X" as STX. Every command
has a standard three-letter abbreviation called a mnemonic. Had we used
the Y register, we might have needed to use LDY and STY.

One more command is needed. We must tell the computer to stop when
it has finished the four instructions. In fact, we can't stop the computer;
but If we use the command BRK (break), the computer Will go to the
machme language monitor (MLM) and wait for further instructions. We'll
talk about the MLM in a few moments.

We have written our program in a notation styled for human readability,
called assembly language. But the computer doesn't understand this nO­
tanon. We must translate It to machine language.

The binary code for LDA is %10101101, or hexadecimal AD. That's
what the computer recognizes; that's the instruction we must place in
memory. So we code the first line.

AD 80 03 LDA $0380

It's traditional to write the machine code on the left, and the source code
on the right. Let's look closely at what has happened.

LDA has been translated Into $AD. This is the operation code, or op
code, which says what to do. It will occupy one byte of memory. But we
need to follow the instruction with the address from which we want the
load to take place. That's address $ 0380; it's sixteen bits long, and so
it will take two bytes to hold the address. We place the address of the
instruction, called the operand, in memory immediately behind the instruc­
tion. But there's a twist. The last byte comes first, so that address $ 0 3 8 0
IS stored as two bytes: 80 first and then 03.

This method of storing addresses-low byte first-is standard in the 650x.
It seems unusual, but it's there for a good reason. That is, the computer
gets extra speed from this "backwards" address. Get used to it; you'll see
it again, many times

FIRST CONCEPTS 13

Here are some machine language op codes for the instructions we may
use. You do not need to memorize them.

LDA-AD
STA-8D

LDX-AE
STX-8E

LDY-AC
STY-8C

BRK-oo

Now we can complete the translation of our program.

AD 80 03
AE 81 03
8D 81 03
8E 80 03
00

LDA $0380
LDX $0381
STA $0381
STX $0380
BRK

On the right, we have our plan. On the left, we have the actual program
that will be stored in the computer. We may call the right side assembly
code and the left side machine code, to distinguish between them. Some
users call the right-hand information source code, since that's where we
start to plan the program, and the left-hand program object code, since
that's the object of the exercise-to get code into the computer. The job
of translating from source code to object code is called assembly. We
performed this translation by looking up the op codes and translating by
hand; this is called hand assembly

The code must be placed Into the computer. It will consist of 13 bytes:
AD 80 03 AE 81 03 8D 81 03 8E 80 03 00. That's the
whole program. But we have a new question: where do we put it?

Choosing a Location
We must find a suitable location for our program. It must be placed into
RAM memory, of course, but where?

For the moment. we'll place our program into the cassette buffer, starting
at address $ 0 3 3 C (decimal 828). That's a good place to put short test
programs, which IS what we will be writing for a while.

Now that we've made that decision, we face a new hurdle: how do we get
the program in there? To do that, we need to use a machine language
monitor.

Monitors: What They Are
All computers have a built-in set of programs called an operatmg system
that gives the machine its style and basic capabilities. The operating sys-

14 MACHINE LANGUAGE FOR COMMODORE MACHINES

tem takes care of communications-reading the keyboard, making the
proper things appear on the screen, and transferring data between the
computer and other devices, such as disk, tape, or printer.

When we type on the computer keyboard, we use the operating system,
which detects the characters we type. But there's an extra set of programs
built into the computer that must decide what we mean, When we are
using the BASIC language, we'll be communicating with the BASIC mon­
nor, which understands BASIC commands such as NEW, LOAD, LIST,
or RUN. It contains editing features that allow us to change the BASIC
program that we are writing.

But when we switch to another system-otten another language---;we'll
need to use a different monitor. Commands such as NEW or LIST don't
have any meaning for a machine language program. We must leave the
BASIC monitor and enter a new environment: the machine language mon­
itor. We'll need to learn some new commands because we will be com­
municating with the computer in a different way.

The Machine Language Monitor
Most PET/CBM computers have a simple MLM (machine language mon­
itor) built In. It may be extended with extra commands. The Commodore
PLUS/4 contains a very powerful MLM. The VIC-20 and Commodore 64
do not have a built-in MLM, but one can be added. Such a monitor may
be either loaded Into RAM or plugged in as a cartridge. Monitors may be
purchased or obtained from user clubs.

Most machine language monitors work in a similar way, and have about
the same commands. To proceed, you'll need an MLM in your computer.
Use the built-in one, plug it in, load it in, or load and run ... whatever the
instructions tell you. On a PET/CBM machine, typing the command SYS
L; will usually switch you to the built-in monitor. After an MLM has been
added to a VIC or Commodore 64. the command S YS {3 will usually get
you there. On the Commodore PLUS/4, the BASIC command MONITOR
will bring the monitor into play.

Monitor Display

The moment you enter the MLM, you'll see a display that looks something
like this:

FIRST CONCEPTS

B*

15

.. . PC SR AC XR YR SP
0005 20 5L; 23 6A F8

The cursor will be flashing to the right of the period on the bottom line.
The exact appearance of the screen information may vary according to
the particular monitor you are usmq. Other matertal may be displayed­
In particular, a value called IRQ-which we will ignore for the time be,ing.

The information you see may be interpreted as follows:

B*-we have reached the ML M by means of a "break," More about that later
PC-The value shown below this title IS the contents of the program counter.
This Indicates where the program "stopped." In other words, If the value shown
is address 0005, the program stopped at address OOOL;, since the PC IS
ready to continue at the follOWing address. The exact value (ODDL; versus
0005) may vary depending on the particular MLM.

SR-The value shown below shows the status register,which tells us the results
of recent tests and data operations We'd need to split apart the eight bits and
look at them Individually to establish all the Information here, we will do this at
a later time.
AC, XR, and YR-The values shown below mese three titles are the contents
of our three data registers: A, X, and Y

SP-The value shown below IS that of the stack pointer. which indicates a
temporary storage area that the program might use. A value of F B, for example,
tells us that the next Item to be dropped Into the stack area would go to address
$01FB in memory More on trns later.

The period is roughly the equivalent of the READY statement in BASIC.
It indicates that the computer is ready to receive a command from you.

You will notice that the display printed by the monitor (called the register
display) shows the internal registers within the 650x chip. Sometimes there
is another item of information, titled IRQ, in this display. It doesn't belong,
since it does not represent a microprocessor register. IRQ tells us to what
address the computer will go If an mterrupt occurs; this information is
stored in memory, not within the 650x.

ML MCommands
The machine language monitor is now waiting for you to enter a command.
The old BASiC commands don't work any more; LIST or NEW or SYS
are not known to the MLM. We'll list some popular commands in a moment.
First, let's discuss the command that takes us back to BASiC.

16 MACHINE LANGUAGE FOR COMMODORE MACHINES

• X exits the MLM and returns to the BASIC monitor. Try It. Remember
to press RETURN after you've typed the X, of course. You Will return to
the BASIC system, and the BASIC monitor will type READY. You're back
in familiar terntory. Now go back to the monitor with SY SL, or SY S8 or
MONITOR as the case may be. BASIC Ignores spaces: it doesn't matter
If you type SYS8 or SYS 8; Just use the right number for your machine
(L, for PET/CBM. 8 for VIC/64).

• R
• G O:3:3C

Remember: BASIC commands are no good in the MLM, and machine
language monitor commands (such as . X) are no good In BASIC. At first,
you'll give the wrong commands at the wrong time because it's hard to
keep track of which monitor system is active If you type In an ML M
command when you're in BASIC, you'll probably get a? SYNTAX ERROR
reply. If you type in a BASIC command when you're in the machine lan­
guage monitor, you'll probably get a question mark in the line you typed.

Some other ML M commands are as follows (the prompting penod is in­
cluded):

.M 1000 1010 (display memory from hex 1000 to
1010)
(display registers ... again!)
(go to 0:3:3 C and start running a pro­
gram)

Do not enter this last (. G) command. There IS no program at address
0:3:3C yet, so the computer would execute random instructions and we
would lose control.

There are two other fundamental instructions that we won't use yet: they
are • S for save and . L for load. These are tncky. Until you learn about
BASIC pointers (Chapter 6), leave them alone.

Displaying Memory Contents
You'll notice that there is a command for displaying the contents of mem­
ory, but there doesn't seem to be one for changing memory. You can do
both, of course.

Suppose we ask to display memory from $1000 to $1010 with the
command

.M 1000 1010

Be careful that you have exactly one space before each address. You
might get a display that looks something like this:

FIRST CONCEPTS

.:1000 11 3A E~ 00 21 32 O~ AA

.:1008 20 ~A ~~ ~D 20 ~2 55 5~

.:1010 5~ ~5 52 ~6 ~~ ~5 ~C ~~

17

The four-digit number at the start of each line represents the address in
memory being displayed. The two-digit numbers to the nght represent the
contents of memory. Keep in mind that all numbers used by the machine
language monitor are hexadecimal.

In the example above, $1000 contains a value of $11; $1001 contains
a value of $3 A; and so on, until $1007, which contains a value of $ AA.
We continue with address $1008 on the next line. Most monitors show
eight memory locations on each line, although some VIC-20 monitors show
only five because of the narrow screen.

We asked for memory locations up to address $1010 only; but we get
the contents of locations up to $1017 in this case The monitor always
fills out a line, even If you don't ask for the extra values.

Changing Memory Contents
Once we have displayed the contents of part of memory, we can change
that part of memory easily. All we need to do is to move the cursor until
It IS positioned over the memory contents in question, type over the value
displayed, and then press RETURN

This is quite similar to the way BASIC programs may be changed; you
may type over on the screen, and when you press RETURN, the new line
replaces the old. The general technique IS called screen edirmg.

If you have displayed the contents of memory, as in the example above,
you might like to change a number of locations to zero. Don't forget to
stnke RETURN so that the change on the screen will take effect In mem­
ory. Give another • M memory display command to confirm that memory
has indeed been changed.

Changing Registers
We may also change the contents of registers by typing over and pressing
RETURN. You may take a register display with command. R, and then
change the contents of PC, AC, XR, and YR. Leave the contents of SR
and S P unchanged-tricky things could happen unexpectedly if you ex­
penment With these two.

18 MACHINE LANGUAGE FOR COMMODORE MACHINES

Entering the Program
We might rewrite our program one last time, marking in the addresses
that each instruction will occupy. You will recall that we have decided to
put our program Into memory starting at address $ 0 3 3 C (part of the
cassette buffer).

033C AD 80 03
o33F AE 81 03
o3L;2 8D 81 03
03L;S 8E 80 03
o3L;8 00

LDA $0380
LDX $0381
STA $0381
STX $0380

Remember that most of the above listing is cosmetic. The business end
of the program is the set of tWO-digit hex numbers Shown to the left. At
the extreme left, we have addresses-that's information, but not the pro­
gram. At the right, we have the "source code"-our notes on what the
program means.

How do we put it m? Easy. We must change memory. So, we go to the
MLM, and display memory with

.M o33C o3L;8

We might have anything in that part of memory, but we'll get a display
that looks something like

.:033C xx xx xx xx xx xx xx xx

.:03L;L; xx xx xx xx xx xx xx xx

You won't see "x x," of course; there will be sorne hexadecimal value
printed for each location. Let's move the cursor back and change this
display so that it looks like this:

.:033C AD 80 03 AE 81 03 8D 81

.:03L;L; 03 8E 80 03 00 xx xx xx

Don't type in the "xx"-just leave whatever was there before. And be
sure to press RETURN to activate each line; if you move the cursor down
to get to the next line without pressing RETURN, the memory change
would not happen.

Display memory again (. M 033 C 03 L; 8) and make sure that the
program is in place correctly. Check the memory display against the pro­
gram listing, and be sure you understand how the program is being tran­
scribed into memory.

FIRST CONCEPTS 19

If everything looks In order, you're ready to run your first machine language
program.

Preparation
There's one more thing that we need to do. If we want to swap the contents
of addresses $ 0 3 8 0 and $ 0 381, we'd better put something Into those
two locations so that we'll know that the swap has taken place correctly.

Display memory With • M 0380 0381 and set the resulting display
so that the values are

.:0380 11 ~~ xx xx xx xx xx xx

Remember to press RETURN. Now we may run our program; we start it
up with

• G 033C

The program runs so quickly that it seems instantaneous (the run time IS
less than one fifty thousandth of a second). The last Instruction in our
program was BRK for break, and that sends us straight to the MLM With
a display of *B (for break, of course) plus all the registers.

Nothing seems to have changed. But walt. Look carefully at the register
display. Can you explain the values you see In the AC and XR registers?
Can you explain the PC value?

Now you may display the data values we planned to exchange. Give the
memory display command • M 0380 03 81-have the contents of
the two locations changed?

They'd better have changed Because that's what the writing of our pro­
gram was all about

Things You Have Learned
-Computers usebinary Ifwewant to workWith the Innertabncof the computer.

we must come to terms With binary values.
-Hexadecimal notation IS for humans, not for computers. It's a less clumsy

way for people to cope With binary numbers.
-The 650x microprocessor chip communicates With memory by sending an

address over ItS memory bus.
- The 650x has Internal work areas called registers.
-The program counter tells us the address from which the processor will get

ItS next Instruction.

20 MACHINE LANGUAGE FOR COMMODORE MACHINES

-Three registers, called A, X, and Y, are used to hold and manipulate data.
They may be loaded from memory, and stored Into memory.

-Addresses used In 650x Instructions are "flipped" the low byte comes first,
followed by the high byte.

-The machine language rnorutor gives us a new type of communications path
Into the computer. Among other things, It allows us to inspect and change
memory in hexadecimal.

Detail: Program Execution
When we say • G 0:3:3 e to start up our program, the microprocessor goes
through the following steps:

1 It asks for the contents of $D:3:3C; It receives $AD, which It recognizes as
the op code 1I1oad A. II It realizes that It will need a two-byte address to
go with this instruction

2 It asks for the contents of $ 0 :3 :3 D, and men $ 0 :3 :3 E. As It receives the
values of $ B0 and $ 0:3 It gathers them Into an "instruction address"

3 The microprocessor now has the whole Instruction The PC has moved along
to $ 0 :3 :3 F The 650x now executes the instruction It sends address $ 0 :3 B0
to the address bus; when It gets the contents (perhaps $11), It delivers this
to the A register The A register now contains $11.

4. The 650x IS ready to take on the next instruction, the address $ 0 :3 :3 F goes
from the PC out to the address bus; and the program continues.

Questions and Projects
Do you know that your computer has a part of memory called "screen
memory"? Whatever you put into that part of memory appears on the
screen. You'll find this described in BASIC texts as "screen POKE-ing."

The screen on the PET/CBM is at $ 8 0 0 0 and up; on the VIC, it's often
(but not always) at $1 E 0 0 and up; on the Commodore 64, It'S usually at
$ 0L;00; and on the PLUS/4, It may be found at $ OeD o.

If you write a program to store Information In the screen memory address,
the appropriate characters will appear on the screen. You might like to try
this. You can even "swap" characters around on the screen. if you wish.

Two pitfalls may arise. First, you might write a perfect program that places
Information near the top of the screen; then, when the program finishes,
the screen might scroll, and the results would disappear. Second, the VIC
and Commodore 64 use color, and you might Inadvertently produce wrute­
on-white characters; these are hard to see.

FIRST CONCEPTS 21

Here's another question. Suppose I asked you to write a program to move
the contents of five locations, $ 0 380 to $ 0 3 8 L;, in an "end-around"
fashion, so that the contents of $ 0 3 8 0 moved to $ 0 381, $ 0 3 81 to
$0382, and so on, with the contents of $038L; moved to $0380. At
first glance, we seem to have a problem: we don't have five data registers,
we have only three (A, X, and Y). Can you think of a way of doing the
job?

IJ

2
Controlling

Output
This chapter discusses:

• Calling machine language subroutines

• The PRINT subroutine

• Immediate addressing

• Calling machine language from BASIC

• Tiny assembler programs

• Indexed addressing

• Simple loops

• Disassembly

23

24 MACHINE LANGUAGE FOR COMMODORE MACHINES

Calling Machine Language Subroutines
In BASIC, a "package" of program statements called a subroutine may
be brought into action with a GO SUB command. The subroutine ends with
a RETURN statement, which causes the program to return to the callmg
point, l.e., the statement Immediately following GO SUB.

The same mechanism is available in machine language. A group of in­
structions may be invoked with a jump subroutine (JSR) command. The
650x goes to the specified address and performs the instructions given
there until it encounters a return from subroutine (RT S) command, at
which time It resumes execution of instructions at the calling point: the
instruction Immediately following J SR.

For example, if at address $ 033 C I code the instruction J SR $123 L; ,
the 650x will change its PC to $123 L; and start to take instructions from
that address. Execution will continue until the instruction RTS is encoun­
tered. At this time, the microprocessor would switch back to the instruction
follOWing the J SR, which In this case would be address $ 0 3 3 F (the J SR
Instruction IS three bytes long).

As in BASIC, subroutines may be "nested;" that is, one subroutine may
call another, and that subroutine may call yet another. We will deal with
subroutine mechanisms in more detail later. For the moment, we'll concern
ourselves with calling prewritten subroutines.

Prewritten Subroutines
A number of useful subroutines are permanently stored In the ROM mem­
ory of the computer. All Commodore machines have a standard set of
subroutines that may be called up by your programs. They are always at the
same addresses, and perform in about the same way regardless of which
Commodore machine is used: PET, CBM, Commodore 64, PLUS/4, or VIC­
20. These routines are called the kernal subroutines. Details on them can
be found in the appropriate Commodore reference manuals, but we'll give
usage information here.

The original meaning of the term kernal seems to be lost in legend. It was
originally an acronym, standing for something like "Keyboard Entry Read,
Network and Link." Today, it's just the label we apply to the operating
system that makes screen, keyboard, other Input/output and control mech­
anisms work together. To describe this central control system, we might
choose to correct the spelling so as to get the English word, "kernel." For
now, we'll use Commodore's word.

CONTROLLING OUTPUT 25

The three major kernal subroutines that we will deal with in the next few
chapters are shown here:

Address

$FFD2
$FFEL;
$FFEl

Name

CAROUT
GETIN
STOP

What it does

Outputs an ASCII character
Gets an ASCII character
Checks the RUN/STOP key

Subroutine'
Address.
Action.

With the first two subroutines, we can Input and output data easily. The
third allows us to honor the RUN/STOP key, to guard against certain types
of programming error. In this chapter, we'll use CHROUT to print infor­
mation to the screen.

CHRauT-The Output Subroutine
The CHROUT subroutine at address $FFD2 may be used for all types
of output: to screen, to disk, to cassette tape, or to other devices. It's
similar to PRI NT and PRI NT#, except that It sends only one character.
For the moment, we'll use CHROUT only for sending information to the
computer screen.

CHROUT
$FFD
Sends a copy of the character In the A register to the
outputchannel.The outputchannelIS thecomputerscreen
unless arrangements have been made to switch It

The character sent is usually ASCII (or PET ASCII) When sent to the
screen, all special characters-graphics, color codes, cursor move­
ments-will be honored in the usual way.

Registers: All data registers are preserved dunng a CHROUT call.
Upon return from the subroutine, A, X, and Y will not have changed.

Status: Status flags may be changed. In the VIC and Commodore 64,
the C (carry) flag indicates some type of problem With output

To print a letter X on the screen, we would need to follow these steps:

Bnng the ASCII letter X ($58) Into the A register,

2. JSR to address $FFD2.

26 MACHINE LANGUAGE FOR COMMODORE MACHINES

Why Not POKE?
It may seem that there's an easier way to make things appear on the
screen. We might POKE information directly to screen memory; in ma­
chine language, we would call this a store rather than a POKE, of course.
The moment we change something in this memory area, the information
displayed on the screen will change. Screen memory is generally located
at the following addresses:

PET/CBM'

Commodore 64:

264/364

VIC-20.

$8000 and up (decimal 32768)

$0£;00 and up (declmaI102£;)

$OCOO and up (decimal 3072)

$lEOO and up (decimal 7680)

The screen memory of the VIC-20 in particular may move around a good
deal, depending on how much additional RAM memory has been fitted.

Occasionally, screen POKEs are the best way to do the job. But most of
the time we'll use the CHROUT, $FFD2 subroutine. Here are some of
the reasons why:

• As with PRINT, we won't need to worry about where to place the next
character, it will be posinoned automaticallyat the cursor pomt.

• If the screen IS filled, scrolling Will take place automatically.

• Screen memory needs special characters. For example, the character X has
a standard ASCII code of $58, but to POKE It to the screen we'd need to
use the code $18. The CAROUT subroutine uses $58.

• Screen memory may move around, dependinq on the system and the pro­
gram. The POKE address would need to change; but CHROUT keeps
workmg

• Special control characters are honored: $OD for RETURN, to start a new
hne; cursor movements; color changes. We can even clear the screen by

• loadmq the screen-clear character ($93) and callmq $FFD2.

• -To POKE the screen of the VIC or Commodore 64, the correspondmg color
nybble memory must also be POKEd (see the appropriate memory map rn
Appendix B). With the subroutine at $FFD2, color IS set automatically.

APrint Project
Let's write some code to print the letter H on the screen. Once again, we'll
use address $ 033 C, the cassette buffer, to hold our program. Reminder:
be sure to have your monitor loaded and ready before you start this project.

CONTROLLING OUTPUT

First, me plan; we layout the Instructions

LDA #$L;8

27

We're using a new symbol (#) to signal a special type of information. It
goes by a variety of names: pounds sign, sharp, hash mark, or numbers
Sign. A more formal name for the symbol IS octothorpe, meaning "eight
points." Whatever you call it, the symbol means "the following information
is not an address, It'Sa value." In other words, we don't want the computer
to go to address $ L; 8, we want it to load the A register with the value
$ L; 8, which represents the ASCII letter H. This type of Information access
is called Immediate addressing. In other words, take the information im­
mediately, don't go to memory for It.

JSR $FFD2

The previous Instruction brought the letter H Into the A register; this one
prints It to the screen. Now all we need to do is quit. BRK takes us to the
machine language monitor.

Monitor Extensions
We could repeat the steps of the previous chapter: hand-assembling the
source code Into machine language, and then placing It into memory. We
would need to know the Instruction codes, and then do a careful translation.
But there's an easier way.

Most machine language monitors contain extra commands to help us do
this type of mechanical translation. We'll use the assembler feature of
these monitors.

Most monitors contain the assemble (. A) command. The notable excep­
tion IS the built-in monitors within the PET/CBM; these, however, can be
extended by loading in a "monitor extension" program such as Supermon.
The Commodore PLUS/4 series contains an extended monitor, which
includes the • A command.

These assemblers are often called nonsymbolic assemblers. This means
that whenever an address IS needed, you must furnish that exact address.
You cannot type in a name sucn as CHROUT and expect tne tiny assem­
bler to know what address that represents; instead, you must type $F FD 2.

Load your monitor or monitor extension. Do any setup that may be needed.
Then type the toltowmq monitor command:

.A D33C LDA #$L;8

28 MACHINE LANGUAGE FOR COMMODORE MACHINES

We are asking the computer to assemble (• A) at address $ 0 3 3 C (note
we don't use the $ here) the command LD A, Load A, the Immediate value
of $L;8, which represents the ASCII letter H. When you press RETURN
after entering this line, the computer may do either of two things:

1. It may do notrunq except pnnt a question mark somewhere on the line. The
question mark indicates an error in your coding If the question mark appears
directly after the letter A, your monitor does not understand the . A assemble
instruction; get another rnorutor or properly set up the one you have.

2. Or, It will correctly translate your instruction, and put the object code Into
memory starting at the address specrhed, In this case, that would happen
to be $ A9 at address $ 03 3C and $L; 8 at address $ 033D. It would then
help you by pnnting part of the next expected instruction The computer
expects that you Will type a line starting with

. A 033E

It places the first pan of this line on the screen to save you typing. The
screen should now look like this:

• A 033C LDA #$L;8
• A 033E

You may now complete the Instruction by typing in JSR $FFD2 and
pressing RETURN. Again, the computer Will anticipate your next line by
printing • A 03 L; 1, which allows you to type in the final command, BRK.
The screen now looks like this:

• A 033C
• A 033E
• A 03L;1
.A03L;2

LDA
JSR
BRK

#$L;8
$FFD2

The computer IS stili waiting for another Instruction. We have no more
Instructions, so we press RET URN to signal that we're finished.

At trusPOint, our program is stored in memory. The instructions have been
assembled directly into place, and the object code is hopefully ready to
go

Note that this saves us the trouble of remembering-or looking up-the
op codes for each instruction. And we don't need to keep track of how
long each instruction should be; the assembler does It for us.

If you like, you can display memory and look at the object program with
the. M 033 C 03 L; 1. You'll see the bytes of your program in memory:

• :033C A9 L;8 20 D2 FF DO xx xx

CONTROLLING OUTPUT

The ftrst SIX bytes are your program. rne last two bytes don't matter: they
were whatever was in that part of memory before. We don't care what is
there, since the program will stop when it reaches the BRK ($ DO) at
address $ 0 3 L; 1; It won't be concerned with the contents of memory at
$ 0 3 L; 2 or $ 03 L; 3 .

Checking: The Disassembler
When we changed our source code Into object code, we called this process
of translation assembly, and we called a program tnat did the Job an
assembler.

Now we've written a program and it's safely stored In memory. We have
inspected memory and have seen the bytes there; but they are hard to
read. It would be convenient if we could perform an inverse assembly.
that is, take the contents of memory and translate It into source code. The
monitor has this capability, called a disassembler.

If we ask the computer to disassemble the code starting at $ 0 3 3 C, it will
examine the code there and establish that the contents ($ A9) correspond
to an LDA immediate command. It will then print for our Information LDA
$ L; 8, which is much more readable than the original two bytes, A9 L; 8.

Give the command • D 033 C and press RET URN. D stands for disas­
semble. of course. and the address must follow.

The computer Will now show a full screen of code. On the left is the address
followed by the bytes making up the instruction. On the right is the re­
constructed source code. The screen shows much more memory than our
program needs. Again, we Ignore all lines beyond address $ 03 L; 1, which
is the last instruction of our program. Anything following IS "Junk" left in
memory that the program does not use.

An interesting feature of most disassembly listings is that the cursor is left
flashing on the last line of the disassembly rather than on the line below.
When you have a large program, this allows you to type the letter D
followed by RET URN and the next part of your program will immediately
be displayed. On the other hand, if you don't want to disassemble more
code, press the cursor down key and move to a "clean" line before typing
your next instruction.

A disassembly is a good way to check for errors. If you find an error in
the listing, you may correct that line by re-assernblmq it, using the . A
command once again. Minor errors may be corrected directly on the left­
hand side of the disassembly listing. In other words, suppose that you had

30 MACHINE LANGUAGE FOR COMMODORE MACHINES

incorrectly coded L DA # $ 58 puring the assembly phase; when you per­
form the disassembly, this line wIll show as

. , 033C A9 58 LDA #$58

You recognize that the 58 should be c8: you may move the cursor up­
use cursor home if you wish-and type over the value on the left-hand
side. In this case, you place the cursor over the 5, type L; to change the
display to L; 8, and press RETURN. You will see from the display that the
problem has been fixed.

Running the Program
If necessary, move the cursor down to an empty line. Type the command
• G 033 C and the program will run. Again, it doesn't take long; the break
back to the MLM seems instantaneous. Where's the letter H that we were
supposed to print? It's hard to see, but it's there. Look at your • G 033 C
command and you'll see it.

Project for enthusiasts: Can you add to the program and print HI? The
ASCII code for the letter I is $L;9. Can you add again and print HI on
a separate line? The ASCII code for a RETURN is $ OD. Remember that
you can find all ASCII codes in Apoendix D; look In the column marked
ASCII.

Linking with BASIC
So far we have started up our programs with a • G (go) command from
the MLM, and we have terminated our programs with a BRK command
that returns us to the monitor. That's not a convenient way to run a program;
most users would prefer to say RUN out of BASIC and have the computer
do everything.

We can link to a machine language program from BASIC and when the
program is finished, it can return to BASIC and allow the BASIC program
to continue to run. The commands we need are

(BASIC) SYS-Go to a machine language subroutine at the stated address.

(Machine language) RTS-Return to whoever called this subroutine

Let's change our machine language program first. We must change the
BRK at the end to RT S (return from subroutine) so that when the program
is finished it will return to BASIC. If you like, you may change it directly
on the disassembly listing: disassemble and then type over the 00 byte

CONTROLLING OUTPUT 31

that represents BRK with a value of 60. Press RETURN and you'll see
that the Instruction has now changed to RTS. Alternatively, you may re­
assemble with

• A 033C LDA #$L;8
• A 033E JSR $FFD2
• A 03L;1 RTS

Now return to BASIC (using the • X command). The computer will say
READY; you may now call your program with a SYS command.

Address $ 0 3 3 C is 828 in decimal. Thus, we type SYS 828. When we
press RETURN, the letter H will be printed.

We're not finished. Any machine language suoroutine may be called from
a BASIC program. Type NE W, which clears out the BASIC work area; our
machine language program IS left untouched, since NEW IS a BASIC com­
mand. Now enter the following program:

100FOR J=1TO'10
110SYS 828
120 NEXT J

How many times Will our program at 828 ($ 033 C) be called? How many
times Will the letter H be printed? Will they be on the same line or separate
lines? Type RUN and see.

Project for enthusiasts: Again, change the machine language program
to say HI. Use your imagination. What else would you like the computer
to say? Would you like to use colors or reverse font?

We've achieved an important new plateau: BASIC and machine language
working together. It's easier on the user, who doesn't have to learn spe­
cialized rnorutor commands. It's easier on the programmer, too, since
things that are easy to do in BASIC can be written in that language; things
that are clumsy or slow In BASIC can be written in machine language. We
can get the best of both worlds.

Let's distinguish our three different types of subroutine calls:

GOS UB-calls a BASIC subroutine from a BASIC program.
SYS-ealls a machine language subroutine from a BASIC program
JSR-ealls a machine language subroutine from machine language.

Loops
We know how to send characters to the screen, one at a time But long
messages, such as THE QUICK BROWN CAT •. " might lead to te-

32 MACHINE LANGUAGE FOR COMMODORE MACHINES

dious coding if we had to write an instruction for each letter to be sent.
We need to set up a program loop to repeat the printmq activity.

Let's write a program to prmt the word HELLO followed by a RETURN.

We must store the word HELLO somewhere in memory. It doesn't matter
where. provided it doesn't conflict with anything else. I'll arbitrarily choose
address $ 0 3 L; A to $ 03 L; F. We'll put it there in a moment. Remember
that the characters that make up the word HELLO (pius the RETURN)
are not program instructions; they are simple data. We must put them in
place with a memory change-we must not try to assemble them.

We will need to count the characters as we send them. We wish to send
six characters, so a count of six IS our limit. Let's use the X register to
keep track of the count. First, we must set X to zero:

• A 033C LDX #$00

Note that we use the # symbol to denote an immediate value: we want
to load X with the value zero, not something from address O. Now, we'll
do something new. I want to take a character to be pnnted from address
$ 0 3 L; A. But wait, that's only the first time around. When we come back
to this point In the loop, I want to take a character from $ 03 L; B, and then
from $ 0 3 L;C, and so on.

How can we do this? It seems that we must write one address Into the
LDA Instruction, and that address can't change. But there is a way.

We can ask the computer to take the address we supply, and add the
contents of X or Y to this address before we use it. The computed address
IS called an effective address.

Let's look at our position. The first time around the loop, X is counting the
characters and has a value of zero. If we specify our address as 03 L; A+ X.
the effective address will be 03 L; A. That's where we will have stored the
letter H.

When we come back around the loop-we haven't written that part yet­
X should now equal one. An address of 03 L; A+ X would give an effective
address of 03 L; B: the computer would go there and get the letter E. As
we go around the loop, the letters, L, L, 0, and RETURN will be brought
in as needed.

As we enter the LDA Instruction, we don't type the plus sign. Instead, we
signal indexinq with a comma: L DA $ 03 L; A , X. We may use either X or
Y for indexing: they are sometimes called index registers. In this case, of
course. we use X. So we code

CONTROLLING OUTPUT 33

.A033E LDA$03L;A,X
• A 03L;1 JSR $FFD2

The first time, the computer loads the contents of address $ 0 3 L; A (the
letter H of HELLO) and prints it. When the loop comes back here, with
X equal to one, this instruction will load the contents of $ 0 3 L; B and print
the letter E.

The X register counts the number of letters printed, so we must add one
to the contents of X. There's a special command that will add one to the
contents of X: I NX, for increment X. A similar code, I NY, allows Y to
be incremented; and DEX (decrement X) and DEY (decrement Y) allow
X or Y to be decremented, or reduced, by one. At the moment, I NX is
the one we need for counting:

• A 03L;L; INX

Now we can test X to see if it is equal to six yet. The first time around, It
won't be since X started at zero and was Incremented to a value of 1. If
X IS not equal to SIX, we'll go back to $ 0 3 3E and print another letter.
Here's how we code it:

.A03L;S

.A03L;7
CPX #$06
BNE $033E

CPX stands for compare X; note that we are testing for an immediate
value of six, so we use the # symbol. BNE means branch not equal: If X
is not equal to six, back we go to address $ 033 E.

A little careful thought will reveal that the program will go back five times
for a total of six times around the loop. It's exactly what we want.

Let's show the whole code, completing it with RT S:

• A 033C LDX #$00
.A 033E LDA $03L;A,X
.A 03L;1 JSR $FFD2
• A 03L; L; INX
• A 03L;S CPX #$06
• A 03L;7 BNE $033E
• A 03L;9 RTS

We may now put the characters for HELLO into memory. These are data,
not instructions, so we must not try to assemble them. Instead, we change
memory In the usual way, by displaying and then typing over. We give
the command • M 03 L;A 03 L; F, and type over the display to show

• : 03L;A L;8 L;S L;C L;C L;F OD xx xx

34 MACHINE LANGUAGE FOR COMMODORE MACHINES

By a lucky coincidence, this data fits exactly behind our program.

Everything should be ready now Disassemble the program at $ 033 C
and check it. You may note that the data at $ 0 3 L; A doesn't disassemble
too well, but that's to be expected; these bytes are not instructions and
cannot be decoded.

When all looks well, return to BASIC (with. X) and try SYS 828. The
computer should say HELLO.

Once again, set up a BASIC loop program:

100 FOR J=1 TO 3
110 SYS 828
120 NEXT J

A Comment on SAVE
If you wished to save the program to cassette tape, you'd have a problem
on the VIC or Commodore 64. The machine language program is In the
cassette buffer; a save-to-tape command would cause the contents otthat
buffer to be destroyed before the program could be written to tape. Even
disk commands would not be completely safe: 4.0 BASIC disk commands
use the cassette buffer area as a work area; usrnq these commands would
probably destroy our machine language program.

But saving the program IS not the main problem, A correctly saved program
can give trouble when you try to bring it back and run it sately. The difficUlty
IS related to BASIC pointers, especially the start-ot-variables pointer. The
problem, and how to solve it, will be discussed in some detail in Chapter
6

A Stopgap SAVE
We can preserve short programs by making them part of DAT A state­
ments. The procedure IS not difficult If screen editing is used intelligently.

We note that the program extends from $ 033 C to $ 0 3 L; F, including the
message (HELLO) at the end. The decimal equivalents to these ad­
dresses are 828 to 8L;7. Enter the following BASIC line:

FOR J=828 TO 8L;7:PRINT PEEK(J); :NEXT J

Study the above line. You will see that It asks BASIC to go through the
part of memory containing your machine language program, and display
the contents (in decimal notation, of course). You'll see a result that looks
something like this:

CONTROLLING OUTPUT 35

162 0 1Il9 7L, 3 32 210 255 232 22L, 6 201l 2L,5 96

72 69 76 76 79 13

These are indeed the bytes that make up your program. With a little study,
you could reconstruct the 162-0 combination to be LDX #$00, or the
72-69-76-76-79 at the end to be the word HELLO in ASCII. It looks
different when it's in decimal, but it's still the same numbers.

You may try a little skill and artistry, using screen editing to perform the
next activity, or you may Just retype the numbers Into data lines a shown.
Either way, arrange the numbers as follows:

50 DATA 162,0,189,7~,3,32,21o,255,232,22~,6

60 DATA 208,2~5,96,72,69,76,76,79,13

We now have a copy of our program, exactly the way It appears In memory,
but stored within DATA statements. The DATA statements are part of a
normal BASIC program, of course, and will SAVE and LOAD with no
trouble at all.

We can now reconstruct our machine language program, placing it back
into memory, with a simple BASIC POKE program:

80 FOR J=828 TO 8~7: READ X:POKE J,X:NEXT J

Now our program is safe and sound-It handles like BASIC, but it will do
a machine language task for us as desrred, Let's display the entire BASIC
program

50 DATA 162,0,11l9,7L,,3,32,210,255,232,22L,,6

60 DATA 2oll,2L,5,96,72,69,76,76,79,13

en FOR J=1l21l TO /lL,7:READX:POKE J,X:NEXT J

100 FOR J= 1 TO 3

110 SYS 1l21l

120 NEXT J

This method of saving a machine language program is clean and trouble
free. but it becomes awkward where long programs are involved. More
advanced methods will be discussed in Chapter 6.

Things You Have Learned
-Subroutines can be called frommachine language usmq the JSR command.

There are several useful kernal subroutines permanently available.

-A BASIC program may call a machine language program as a subroutine:

36 MACHINE LANGUAGE FOR COMMODORE MACHINES

the BASIC command IS SYS The machine language subroutine returns to
the calling POint with an RTS (return from subroutine) Instruction

-The CHROUT subroutine at address $FFD2 allows output of a character,
usually to the screen In addition to printable characters, special cursor- and
color-control characters may be sent.

-Most machine language rnorutors have a small assembler to help program
preparation, and a disassembler to assist in program checking.

-s-tmmeaiete mode IS signaled by use of the # symbol. The computer IS asked
to take the value given, Instead of going to a specified address for ItS data.

-x and Yare called index registers. We may add the contents of X or Y to a
specified address, to create an effective address that changes as the program
runs. Ttus addition IS called mdexmg

-x and Y also have special instructions that Increase or decrease the selected
register by one These are called increment and decrement Instructions, and
are coded INX, INY, DEX, and DEY

Questions and Projects
Look through the table of ASCII characters in Appendix D. Note that hex
93 is "clear screen." Write a program to clear the screen and print" H0
HO! ".

You may have noticed that in our example, we had register X counting
up from zero to the desired value. What would happen if you started X at
5 and counted down? Try It if you like.

Remember that you can also Include cursor movements, color codes (if
your machine has color), and other special ASCII characters. Could you
layout the coding to draw a box? (Try it in BASIC first). Draw a box with
the word HELLO inside it.

IJ

3
Flags, Logic,

and Input
This chapter discusses:

• Flags that hold status information

• Testable flags Z, C, N, and V

• Signed numbers

• Tne status register

• First concepts of interrupt

• Logical operators OR, AND, EOR

• The GETIN subroutine for Input

• The STOP subroutine

39

40

Flags

MACHINE LANGUAGE FOR COMMODORE MACHINES

Near the end of Chapter 2, we coded a program that had the seemrngly
natural sequence

CPX #$06
BNE $ ••••

It made sense: compare X for a value of 6, and if not equal, branch back.
Yet it implies something extraordinary; the two instructions are somehow
linked.

Let's flash forward for a moment. Even when you have a machine language
program running, the computer "freezes" sixty times a second. The com­
puter undertakes a special activity, called interrupt processmg. It stops
whatever it was domq, and switches to a new set Of programs that do
several tasks: flashing the cursor, checking the keyboard, keeping the
clock up to date, and checking to see whether the cassette motor needs
power. When it's finished, it "unfreezes" the main program and lets it
continue where it left off.

This interrupt might take place between the two instructions shown above,
that is, after the CPX and before the BNE. Hundreds of interrupt instruc­
tions might be executed between the two, yet nothing is harmed. The two
instructions work together perfectly to achieve the desired effect. How can
the computer dO irus?

The two instructions are linked by means of a flag-a part of the 650x
that records that something has happened. The CPX instruction tests X
and turns a special flag on or off to signal how the comparison turned out:
equal or unequal. The BNE instruction tests that flag. If it's on (meaning
equal), no branch will take place and the program will continue with the
next instruction; if it's off (meaning not equal), a branch will take place.

In other words, some Instructions leave a "trail" of status information; other
instructions can check trus information. Tne status Information IS called
"flags." There are four flags that may be tested: Z, C, N, and V. They are
discussed below.

Z Flag
The Z (zero) flag is probably misnamed, and should have been called the
E flag (for "equals"). After any comparison (CPX to compare X, CPY to
compare Y, or CMP to compare A), the Z flag Will be set to "on" if the
compared values are equal; otherwise it will be reset to "off."

FLAGS, LOGIC, AND INPUT 41

(Load 23 to A)

(Load zero to X)

(store 23 to address $123 t;)

•

Sometimes the Z flag checks for equal to zero, hence its name, Z for
zero. This happens for every activity that may change one of the three
data registers. Thus, any load command WIll affect the Z flag status. The
same is true of increment and decrement instructions, which obviously
change registers. And later, when we meet other operanons such as ad­
dition and subtraction, they too wIll affect the Z flag.

There are many Instructions that don't affect the Z flag (or any flag, for
that matter). Store instructions (STA, STX, STY), never change a flag.
Branch instructions test flags but don't change them.

An example will help illustrate the way that some instructions change flags
and others do not. Examine the follOWIng coding:

LDA #$23

LDX #$00

STA $123t;

BEQ $

Will the branch (BE Q) be taken, or Will the 650x continue with the next
instruction? Let's analyze the Z flag's activity step by step. The first in­
struction (LDA #$23) resets the Z flag, since 23 IS not equal to zero.
The second Instruction (LDX #$00) sets the Z flag because of the zero
value. The third instruction (ST A $123 t;) does not affect the Z flag; In
fact, store Instructions do not affect any flags Thus, by the tune we reach
the BEQ instrucnon. the Z flag is set "on" and the branch will be taken.

650x reference manuals show the specific flags that are affected by each
instruction. In case of doubt, they are easy to check.

The Z flag is quite busy-It clicks on and off very often since many in­
structions affect it. It's an important flag.

If the Z flag is set "on," the BE Q (branch equals) instruction will branch
to the specified address; otherwise it will be ignored and the next instruction
In sequence will be executed. If the Z flag is reset "off," the BNE (branch
not equals) instruction will branch.

We can see In more detail how our program from Chapter 2 worked.
CPX #$06 causes the Z flag to be set "on" if X contains the value 6;
otherwise It causes the Z flag to be reset "off." BNE tests this flag, and
branches back to the loop only if the Z flag is off-In other words, only if
the contents of X is not equal to six.

MACHINE LANGUAGE FOR COMMODORE MACHINES

C Flag
The C (carry) flag is probably misnamed, too. It should have been called
the GE (greater/equal) flag, since after a companson (CPX, CPY, or CMP),
the C flag is set "on" if the register (X, Y, or A) IS greater than or equal
to the value compared If the register concerned is smaller, the C flag will
be reset "off."

The C flag is not as busy as the Z flag. The C flag IS affected only by
comparison instructions and by arithmetic activities (add. subtract. and a
type of multiplication and divisron called rotate or shift). When used in
antnrnenc, tne C flag IS properly named, since it acts as a "carry" bit
between various columns as they are calculated. For example, an LD A
instruction always affects the Z flag since a register is being changed, but
never affects the C flag since no arithmetic or comparison is being per­
formed.

If the C flag is set "on," the BCS (branch carry set) instruction will branch
to the specified address; otherwise it will be ignored and the next instruction
in sequence will be executed. If the C flag is reset "off," the BCC (branch
carry clear) instruction will branch.

The C flag may be directly set or reset by means of the instructions SEC
(set carry) and CLC (clear carry). We will use these instructions when we
begin to deal with addition and subtraction.

If you examine the last program of Chapter 2, you will see that the BNE
instruction could be replaced by BCC. Instead of "branch back if not equal
to 6," we could code "branch back if less than 6." The operation would
be the same in either case.

N Flag
The N (negative) flag is also probably misnamed. It should have been
called the HB (high bit) flag, since numbers are positive or negative only
if they are used in a certain way. The N flag is set to indicate that a register
has been given a value whose high bit is set.

The N flag is as busy as the Z flag; it changes with every instruction that
affects a register. The N flag IS affected by comparisons, but In this case
its condition is not usually meaningful to the programmer.

To sort out the operation of the N flag, It'S Important to become familiar
with hexadecimal-to-binary conversion. For example, will LD A #$ 65 set
the N flag? Rewrite it into binary: $ 6 5 equals %01100101. We can see

FLAGS, LOGIC, AND INPUT 43

that the high bit is not set, meaning that the N flag will be off after loading
this value. As another example. suppose we LDX #$DA. Hex DA is
11011010 bmarv. We see that the high bit is on and thus the N flag is
set.

If the N flag is set "on," the BMI (branch minus) instruction will branch
to the specified address; otherwise It will be Ignored and the next instruction
in sequence will be executed. If the N flag is reset "off," the BPL (branch
pius) instruction will branch

A Brief Diversion: Signed Numbers
How can a location-which is usually thought to contain a decimal value
from 0 to 25 5-contain a negative number? It's up to the programmer
to decide whether a memory value is unsigned, having a value range from
o to 255, or signed, having a value range from -128 to + 127. There
are still a total of 256 possibilities. The computer's memory simply holds
bits, while the programmer decides now the bits are to be used in a specific
case

Matnemancally, irs described this way: signed numbers, if desired, are
held in two's-complement form. We can hold -1 as hex FF, and - 2
as hex FE. all the way down to - 128 as hex 8 O. You may have noticed
that in all the examples, the high bit is set for these negative numbers.

We may need more intuitive help, however. If the computer loads the
decimal value 200 into the A register with LDA #$C8, the N flag will be
set and will seemingly indicate that 200 IS a negative number. It may be
more comfortable to simply think of 200 as a number with the high bit
set. But In a sense, 200 could be a negative number if we wanted It to
be. Let's examine the situation by means of examples.

If I were asked to count down in hexadecimal from 10, I'd start out $10,
$OF, $OE, and $OD, continuing down to $02, $01, and $OO.lf I needed
to keep going, I'd continue past $ DO with $FF; In trus case, hex FF WOUld
clearly represent negative one. Continuing, FE, FD, and FC would rep­
resent - 2, - 3, and - t;. And the high bit IS set on all these "negative"
numbers.

Let's discuss a decimal analogy. Suppose you have a cassette recorder
with a counter device attached, and the counter reads 0025. If you rewind
the unit a distance of 30 units, you would not be surprised to see a value
of 9995 on the counter and would understand that it meant a position of
- 5. If you had a car with 1,500 miles on the odometer, and "rolled back"

44 MACHINE LANGUAGE FOR COMMODORE MACHINES

the mileage by 1,501 miles, you'd see a reading of 99999, which would
mean - 1. (The author does not know this from personal experience, but
is assured by many machine language students that it is so.) In these
cases. based on the decimal system, the negative numbers are called
"ten's complement."

V Flag
As with the other flags, the V (overflow) flag is probably misnamed. It
should have been called the SAD (signed arithmetic overflow) flag, since
it is affected only by addition and subtraction commands, and is meaningful
only if the numbers concerned are considered to be signed.

The V flag IS used only occasionally in typical 650x coding. Many machine
language programs don't use signed numbers at all. The most typical use
of the V flag is in conjunction with a rather specialized command, BIT
(bit test). For this Instruction, the V flag signals the condition of brt 6 of
the memory location being tested. In this case, V and N work in a similar
way: N reflects the high bit, bit 7, and V represents the "next bit down,"
bit 6. The BIT command is used primarily for testing inpuUoutput ports
on I A (Interface adaptor) chips.

If the V flag is set "on," the BVS (branch overflow setl instruction will
branch to the specrnsd address; otherwise it will be Ignored and the next
instruction In sequence will be executed. If the V flag is reset "off," the
BVC (branch overflow clear) instruction will branch.

The V flag may be directly reset by means of the CL V (clear overflow)
instruction. Oddly, there is no equivalent instruction to set the flag.

One special feature of the V flag: on some 650x chips, the V flag can be
set by hardware. There is a pin on the chip that can be used so that an
external logic Signal will trigger the V flag.

A Brief Diversion: Overflow
The term overflow means "the result is too big to fit." For example, if I
add 200 to 200, the total is t; DO ... but this won't fit in a single byte.
If we have only a single byte to store the result, we say that the addition
has encountered overflow, and we can't produce a meaningful answer.

If we are using unsigned numbers, the C flag tells us about overflow. If
we are using signed numbers, V tells the story. We'll take this up again
in the next chapter.

FLAGS, LOGIC, AND INPUT

Flag Summary
A brief table may help review the four testable flags.

Flag Brief Activity
Name Meaning Level

Z Zero, equal Busy
C Carry, greater/equal QUiet
N Negative, high-bit Busy
V Signed arithmetic overflow QUiet

The Status Register

45

Branch Taken If:
Set Not-Set

BEQ BNE
BCS BCC
BMI BPL
BVS BVC

The preceding flags-and three others-may be viewed within the status
register (SR). You may recall that the machine language monitor gives
an SR display. If you know how to read it, you can see the condition of
all flags.

Each flag IS a bit within the status register. Again, it's useful to be able to
easily translate the hexadecimal display, so as to view the individual flags.
Here's a chart of the flags within the status register:

7 6 5 t; 3 210
NV-BDIZC

Taking the bits one at a time. starting at the high bit:

N-the N flag, as above

V-the V flag, as above.

Bit 5-Uflused You'll often find that this bit IS "on."

B-"Break" indicator. Whenan Interruptoccurs, this signalswhetheror not the
interrupt was caused by a BRK instruction.

D-Decimal mode indicator. Thrs changes the manner In which the add and
subtract instructions operate. In Commodore machines, thrs flag will always be
off. Don't turn it on unless you know exactly what you're domq, This flag may
be turned on with the SED (set decimal) Instruction, and turned off with the
CLD (clear decimal) instruction.

I-Interrupt disable. More exactly, thrs bit disables the IRQ (interrupt request)
pm activity. More on this control bit much later.This flag may be turned on with
the SEI (set interrupt disable) instruction, and turned off with the CLI (clear
interrupt disable) instruction

Z-the Z flag, as above.

C-the C flag, as above.

46 MACHINE LANGUAGE FOR COMMODORE MACHINES

Flags B, D, and I are not testable flags In that there are no branch Instructions
that test them directly D, the decimal mode flag, ana I, the Interrupt lockout
flag, may oe considered "control" flags. Instead of reporting conditions found
as the program runs, they control how the program operates.

When we see a value displayed in the SR, or status register, we may
examine it to determine the condition of the flags, especially the testable
flags Z, C, N, and V. For example, If we see an SR value of $ B1, we
translate to binary %1 0 11 0 0 Oland know that the N flag is on, the V
flag is off, the Z flag is off, and the C flag IS on.

You may change these flags by typing over the displayed value in the
machine language monitor Be careful you don't accidentally set the D or
I flags

A Note on Comparison
If we wish to compare two bytes with each other, we must perform a
comparison. One value must be in a register (A, X, or Y); the other must
either be stored in memory, or must be an lrnrnediate value we use in the
instruction.

We will use the appropriate compare lnstrucnon depending on the register
involved; CMP for the A reqrster, CPX for the X register, and CPY for the
Y register Following the comparison, we may use any of the following
branch tests:

BEQ-branches If the two bytes are equal

BNE-branches If the two bytes are not equal

BCS-branches If the value In the register IS greater than or equal to the other
value

BCC-branches If the value In the register IS less than the other value.

We can use more than one branch instruction after a comparison. Suppose
our program wanted to test the Y register for a value equal to or less than
5. We might code

CPY #$05
BEQ •• somewhere
BCC •• somewhere

We can see that our code will branch If the value is equal to 5 (using the
BE Q) or less than 5 (using the BCC); otherwise it will continue without
branching. In this case, we could make the coding more efficient by chang­
Ing it to read

FLAGS, LOGIC, AND INPUT 47

CPY #$06
BCC •• somewhere

A little common sense will tell us that testing a number to see if it is less
than 6 is the same as testmg it to see if It is less than or equal to 5.
Common sense is a valuable programming tool.

Instructions: A Review
We have looked at the three data registers-A, X, and Y-and have seen
three types of operation we can perform with them:

Load: LOA, LOX, LOY

Store: STA, STX, STY

Compare: CMP, CPX, CPY

Up to this pomt, the registers have identical functions, and we can use
any of them for any of these functions But new Instructions are creeping
in that give a different personality to each of the three.

We have noted that INX, INY. DEX. and DEY for increment and dec­
rement are restricted to X and Y only; and we've also mentioned that X
and Y can be used for indexing. Soon, we'll start to examine some of the
functions of the A register, which is often called the accumulator because
of its ability to do arithmetic.

We have seen J SR, which allows us to call a subroutine of prewritten
instructions. We've used RT S, which says, "Go back to the calling point,"
even if the calling point is a BASIC program. And we've almost abandoned
the BRK instruction, which stops the program and goes to the machine
language monitor BRK will be useful In checking out programs. Specifi­
cally, we can stop a program at any time by Inserting a BRK Instruction,
allowing us to see whether the program is behaving correctly and whether
it has done the things we planned.

There are eight branch Instructions. They have already been discussed,
but there is one additional piece of information that is important to keep
In mind. All branches are good only for short naps of up to a hundred
memory locations or so. So long as we write short programs, that won't
be a limitation; but we'll look at this more closely in Chapter 5.

Logical Operators
Three instructions perform what are called logical operations. They are:
AND (Logical AND); ORA (Logical OR); and EOR (Exclusive OR). These
instructions work on the A register only.

48 MACHINE LANGUAGE FOR COMMODORE MACHINES

Mathematicians describe these operations as commutative. For example,
a value of $ 3 A "A ND" $ 5 7 gives exactly the same result as $ 5 7
" AND" $ 3 A. The order doesn't matter. But we often use these func­
tions-and think of them-in a particular order. It's the same as with
addition, where we think of a "total" to which is added an "amount" to
make a "new total." With the logical operators we often think of a "value,"
which we manipulate with a "mask" to make a "modified value."

Logical operators work In such a way that each bit within a byte is treated
independently of all the other bits. This makes these instructions ideal for
extracting bits, or manipulating certain bits while leaving others alone.

We'll look at formal definitions, but the following intuitive concepts are
useful to programmers:

AND-turns bits oft.

ORA-turns bits on

EOR-flips bits Over.

AND-Logical AND to A
For each bit in the A register, AND performs the following action:

Original A Bit Mask Resultmg A Bit

0 0 0
1 0 0
0 1 0
1 1 1

Examine the upper half of this table. When the mask is zero, the original
bit in A is changed to zero. Examine the lower half. When the mask is

\

one, the original bit is left unchanged. Hence, AND can selectively turn
bits off.

Example: Turn off bits t;, 5, and 6 in the following value: $C7

Onginal value:

Mask. AND

Result

11000111

10001111 (hex BF)

10000111

xxx

Note that the bits marked have been forced to "off," while all other bits
remain unchanged.

FLAGS, LOGIC, AND INPUT 49

ORA-Logical 0 R to A
For each bit in the A register. 0 RA performs the following action:

Original A Bit Mask Resulting A Bit

000
101
011
111

Examine the upper half of this table. When the mask is zero, the original
bit in A IS left unchanged. Examine the lower half. When the mask is one,
the original bit is forced to "on." Hence, ORA can selectively turn bits on,

Example: Turn on bits t;, 5, and 6 in the following value: $C7

Onginal value: 11000111

Mask. EOR 01110000 (hex 70)

Result 11110111

xxx

Note that the bits marked have been forced to "on," while all other bits
remain unchanged.

EOR-Exclusive 0 R to A
For each bit in the A register. EOR performs the following action:

Original A Bit Mask Resulting A Bit

000
101
011
110

Examine the upper half of this table. When the mask is zero, the original
bit in A is left unchanged. Examine the lower half. When the mask IS one,
the original bit is inverted; zero becomes one and one becomes zero.
Hence, EOR can selectively flip bits over.

Example: Invert bits z , 5, and 6 In the tollowmq value: $C7

Onglnal value: 11000111

Mask: EOR 01110000 (hex 70)

Result 10110111

xxx

50 MACHINE LANGUAGE FOR COMMODORE MACHINES

Note that the bits marked have been flipped to the opposite value, while
all other bits remain unchanged.

Why Logical Operations?
We use these three commands-AND, ORA, and EOR-to change or
control individual bits within a byte of mforrnatron. The commands are
unusual in that each bit may be manipulated Independently of the others.

We don't seem to be working with numbers when we use these commands.
Rather, we're working with each individual bit, turning It on or off as we
wish.

Why would we turn individual bits on or off? There are several possible
reasons. For example, we might wish to control external devices through
the I A's (interface adaptors). Within the I A's input and output ports each
of the eight bits might control a different signal; we might want to switch
one control line on or off without affecting other lines.

When we're looking at Input from an I A port, we often read several input
lines mixed together within a byte. If we want to test a specific bit to see
if it is on or off, we might mask out all other bits with the AND instruction
(changing unwanted bits to zero); if the remaining bit is zero, the whole
byte Will now be zero and me Z flag will be set.

Why would we want to flip bits over? Many "oscillating" effects-screen
flashing or musical notes-can be accomplished this way.

Finally, the logical operators can be useful in code translation. For ex­
ample, here are the values for ASCII 5 and brnary 5.

ASCII %00110101

Binary %00000101

We must use the ASCII value for Input or output. We must use the binary
value for arithmetic, particularly addition and subtraction. How could we
get from one to the other? By taking bits out (AND) or putting bits in (0 RA).
Alternatively, we could use addition or subtraction; the logical operators,
however, are slrnplier.

Input: The GET I N Subroutine
We have seen how we can use CHROUT at $FFD2 to produce output
to the screen. Now we'll look at the input side-how to use the GET I N
subroutine at $FFE t; to get characters from the keyboard buffer.

FLAGS, LOGIC, AND INPUT 51

Subroutme:
Address.
Action:

You may be familiar with the GET statement In BASiC. If so, you'll find
the same characteristics in GET IN:

• Input IS taken from the keyboard buffer, not the screen.

• If a key IS held down, It will stili be detected once only.

• The subroutme returns Immediately

• If no key IS found, a bmary zero IS returned m A

• If a key IS found. ItS ASCII value will be rn A.

• Special keys, such as RETURN, RVS, or color codes, will be detected

To call for a key from the keyboard, code J SR $F FE L;. Values in X and
Yare not guaranteed to be preserved, so If you have important information
in either register, put it away into memory.

GETIN
$FFEL;
Takes a character from the mput channel and places It
intothe A register Theinputchannel IS the keyboard mput
buffer unless arrangements have been madeto swrtcn It

The character received IS usually ASCII (or PET ASCII). When read
from the keyboard, the action is simtlar to a BASIC GET statement:
one character will be taken from the buffer; it will not be shown on the
screen. If no character IS available from the keyboard input buffer, a
value or binary zero will be put into the A register. The subroutine will
not walt for a key to be pressed but will always return Immediately.

Registers: The A register will of course always be affected. X and Y
are likely to be changed; do not have data in these when calling GE­
TIN.

Status: Status flags may be changed. In the VIC and Commodore 64,

If we want keyboard input to appear on the screen, we should follow a
call to GETIN, $FFEL;, with a call to CHROUT, $FFD2, so that the
received character IS printed.

STOP
Machine language programs will ignore the RUN/STOP key . unless
the program checks this key itself. It may do so with a call to STOP,
address $FFE1. This checks the RUN/STOP key at that moment. To
make the key operational, $FFEl must be called frequently.

52 MACHINE LANGUAGE FOR COMMODORE MACHINES

A call to FFEl should be followed by a BEQ to a program exit so that
the program will terminate when RUN/STOP is pressed.

The RUN/STOP key IS often brought into play while programs are being
tested, so that unexpected "hangups" can stili allow the program to be
terminated. Coding to test the RUN/STOP key IS often removed once
testing IS complete, on the assumption that no one will want to stop a
perfect program. Incidentally, if you plan to write nothing but 100 percent
perfect programs, you will not need to use this subroutine.

Subroutine
Address
Action.

STOP
$FFE1
Check the RUN/STOP key. If RUN/STOP IS being pressed
at that Instant. the Z flag Will be set when the subroutine
returns.

In PET/CBM, the system will exrt to BASIC and say READY If the
RUN/STOP key IS being pressed. In this case, it will not return to the
calling machine language program.

Registers: A Will be affected. X will be affected only If the RUN/STOP
key IS being pressed.

Status: Z signals whether RUN/STOP is being pressed.

Programming Project
Here's our task: we wish to write a subroutine that will wait for a numeric
key to be pressed. All other keys (except RUN/STOP) Will be Ignored.

When a numeric key IS pressed, it will be echoed to the screen, and then
the subroutine Will be finished. One more thing. The numeric character
will arrive in ASCII from the keyboard: we Wish to change it to a binary
value before giving the final RT S statement. This last operation has no
useful purpose yet, except as an exercise, but we'll connect it up In the
next chapter.

Coding sheets ready? Here we go.

• A 033C JSR $FFEl

We will check the RUN/STOP key first But wait. Where will we go if we
find that the key IS pressed? To the RTS, of course; but we don't know
where that IS, yet. In these circumstances, we usually make a rough guess
and correct it later. Make a note to check this one ...

FLAGS, LOGIC, AND INPUT 53

.A033F

.A03L;1
BEQ
JSR

$0351
$FFEL;

Now we've gotten a character; we must check that it's a legitimate numeric.
The ASCII number set 0 to Cl has hexadecimal values $ 30 to $ 3 Cl. So
if the value is less than $ 3 0, it's not a number. How do we say "less
than?" After a compare, it's BCC (branch carry clear). So we code

• A 03L;L; CMP #$30
.A 03L;6 BCC $033C

Did you spot the use of immediate mode at address $ 0 3 L; L;? Make sure
you follow the logic on this. Another point: what If no key has been pressed?
We're safe. There will be a zero in the A register, which is less than hex
30; this will cause us to go back and try again.

Now for the high side. If the number is greater than hex 3 Cl, we must
reject it since it cannot be an ASCII numeric. Our first instinct is to code
CMP #$3Cl and BCS. But wait! BCS (branch carry set) means "branch
if greater than or equal to." Our proposed coding would reject the digit Cl,
since the carry flag would be set when we compared to a value of hex
3Cl.

We must check against a value that is one higher that $ 3 Cl. Be careful,
though, for we're in hexadecimal. The next value is $3A. Code it:

• A 03L;8 CMP #$3A
.A 03L;A BCS $033C

If we get this far, we must have an ASCII character from 0 to Cl; let's print
it to the screen so that the user gets visual feedback that the right key
has been pressed:

• A 03L;C JSR $FFD2

Now for our final task. We are asked to change the ASCII character into
true binary. We may do this by knocking off the high bits. We remember,
of course, that to turn bits off we must use AND:

· A 03L;F AND #$OF
.A0351 RTS

It's a good thing that we printed the character first, and then converted to
binary; the character must be ASCII to print correctly.

One last thing. We had a branch (on the RUN/STOP key) that needed to
connect up With the RT S. Old you make that note about going back and
fixing up the branch? Now is the time to do it, but before you go back,

54 MACHINE LANGUAGE FOR COMMODORE MACHINES

terminate the assembly with an extra RETURN on the keyboard (the
assembler gets confused if it prompts you for one address and you give
another; get out before you go back).

By a fortunate stroke of luck, we happen to have guessed the right address
for the BEQat address $ 0 3 3 F. But if we hadn't, you know how to change
it, don't you?

Check your coding, disassemble, go back to BASIC and run with a SY S
828. Tap a few letter keys and note that nothing happens. Press a num­
ber, and see it appear on the screen. The program will terminate. SY S it
again and see if the RUN/STOP works. Try a BASIC loop to confirm that
BASIC and machine language work together.

Project for enthusiasts' Try modifying the program so that it checks for
alphabetic characters only. Alphabetic characters run from $ L; 1 to $ 5 A,
inclusive.

Things You Have Learned
-Flags are used to link Instructions together. This might be an activity such

as load or compare, followed by a test such as branch on a given condition

-Some instructions affect one or more flags, and some do not affect flags.
Thus, an Instruction that sets a flag might not be followed Immediately with
the Instruction that tests or uses that flag

-There are four testable flags' Z (zero, or equals); C (carry, or greater/equal),
N (negative, or high bit), and V (signed arithmetic overflow). The flags are
checked by means of "branch" Instructions such as BEQ (branch equal) or
BNE (branch not equal)

-Flags are stored In the status register, sometimes called the processor status
word The SR contains the four testable flags, plus three other flags: B (break
Indicator), D (decimal mode for add/subtract); and I (Interrupt lockout). The
hexadecimal value In SR can be changed to binary and used to determine
the exact condition of all flags.

-Usually, the processor IS mterrupted sixty times a second to do special high­
priority Jobs. Everything, mctudinq the status register flags, IS carefully pre­
served so that the main program can continue as though nothing had
happened.

-A number stored In memory can be constdered as Signed If we decide to
handle It that way. The value of a Signednumber IS held In rwo 's-complemenr
form The high bit of the number IS zero if the number IS posrtrve, one If the
number IS negative The computer doesn't care It handles the bits whether
the number IS consrdered signed or not, but we must write our program
keeping In mind the type of number being used.

FLAGS, LOGIC, AND INPUT 55

-There are three logical operator mstructions: AND, ORA, and EaR These
allow us to modify bits selectively within the A register AND turns bits off,
ORA turns bits on; and EaR Inverts bits, or flips them over.

Questions and Projects
Write extra coding to allow both numenc and alphabetic characters, but
nothing else.

Write a program to accept only alphabetic characters. As each ASCII
character is received, turn on its high bit with ORA #$80 and then print
it. How has the character been changed?

Write a program to accept only numenc digitS. As each ASCII character
is received, turn off its lowest bit with AND #$FE and then print it What
happens to the numbers? Can you see why?

IJ

This chapter discusses:

• Numbers' signed and unsigned

• Big numbers' multiple bytes

• Anthmetic add and subtract

• Rotate and shift instructions

• Multiplication

• Home grown subroutines

4
Numbers,

Arithmetic,
and

Subroutines

57

58 MACHINE LANGUAGE FOR COMMODORE MACHINES

Numbers: Signed and Unsigned
We have looked briefly at the question of signed versus unsigned numbers.
The most important concept is that you, the programmer, choose whether
or not a number is to be considered a signed number (for a single byte,
in the decimal range - 128 to + 127) or an unsigned integer (single­
byte range 0 to 255).

It makes no difference to the computer. If you consider a number signed,
you may wish to test the sign using the N flag. If not, you won't do such
a test.

Big Numbers: Multiple Bytes
You may use more than one byte to hold a number. Again, it's your
decision. If you think the numbers may go up to a million, you might allocate
three bytes (or more or fewer). If you are domq antnmetrc on mum-byte
numbers, the computer will help you by signaling in the carry flag that
there's something to be earned across from a lower byte to a higher one
But it's up to you to write the code to handle the extra bytes.

You may size numbers by using the following table:

Unsigned. Signed.

1 byte 0 to 255 - 128 to + 127
2 bytes 0 to 65,535 - 32768 to + 32767
3 bytes 0 to 16,777,215 -8,388,608 to +8,388,607
4 bytes to over 4 billion - 2 billion to + 2 billion

It's possible to work with binary fractions, but that IS beyond the scope of
this book. Many applications "scale" numbers, so that dollar-and-cents
amounts are held as integer quantities of pennies. Thus, two bytes un­
signed would hold values up to $ 655 . 35, and three bytes up to
$167,772.15.

When signed numbers are held in multiple bytes, the sign is the highest
bit of the highest byte only.

We will concentrate on single-byte arithmetic pnnciples here, touching on
multiple-byte numbers as a generalization of the same ideas.

Addition
Principles of addition are similar to those we use in decimal anthmetic;
for decimal "columns," you may substitute "bytes." Let's look at a simple
decimal addition:

NUMBERS, ARITHMETIC, AND SUBROUTINES

1L;2856
+ 389217

59

Rule 1. We start at the right-hand column (the low-order byte).

Rule 2' We add the two values, plus any carry from the previous column. A new
carry may be generated, It can never be greater than one (ADC Includes any
carry from a previous activity, and may generate a new carry bit, which ISeither
o or 1)

Rule 3. When we start at the nght-hand column, there IS no carry for the first
addition (We must clear the carry with CLC before starting a new addinon.)

Rule 4 When we have finished the whole addition, If we have a carry and no
column to put It In, we say the answer "won't fit." (If an addition sequence of
unsigned numbers ends up with the carry flag set, It'S an overflow condmon.)

HIGH BYTE LOW BYTE

START:

00101011 10111001 NO CARRY

1- 00001010 11100101~
10011110

/
CARRY

/
00110110

Figure 4.1

How do we translate these rules into machine language addition?

1 Before we start an addition sequence, clear the carry with CLC •

2. If the numbers are more than one byte In Size, start at the low byte and work
up to the high ones Addition will take place in the A register only; you may
add the contents of an address or an Immediate value. The carry flag Will
take care of any carnes.

3. When the addition sequence is complete, check for overflow:
a) if the numbers are unsigned, a set C flag indicates overflow;
b) If the numbers are signed, a set V flag Indicates overflow.

Thus, to add two unsigned numbers located at addresses $ 0380 and
$ 0381 and to place the result at $ 0382, we might code

60 MACHINE LANGUAGE FOR COMMODORE MACHINES

CLC
LDA $0380
ADC $0381
STA $0382

We might also BCS to an error routine, if desired.

To add a two-byte number located at $ 03 A0 (low) and $ 0 3 A1 (high)
to another two-byte number located at $03BO (low) and $03B1 (high),
placing the result at $ 03 C0/1, we might code

CLC
LDA $03AO
ADC $03BO
STA $03CO
LDA $03A1
ADC $03B1
STA $03C1

Again, we might BCS to an overflow error routine

If we had two-byte signed numbers In the same locations, we'd add them
exactly the same way, using the same code as above. In this case, how­
ever, we'd check for overflow by adding the instruction BVS, which would
branch to an error routine The carry flag would have no meaning at the
end of the addition sequence.

Subtraction
Subtraction might be defined as "upside down" addition. The carry flag
again serves to link the parts of a multibyte subtraction, but its role is
reversed. The carry flag IS sometimes called an "Inverted borrow" when
used In subtraction. Before performing a subtraction, we must set the C
flag With SEC. If we are worried about unsigned overflow, we look to
confirm that the carry ISset at the completion of the subtraction operation.
If the carry is clear, there's a problem,

Thus, to perform a subtraction, we follow these rules'

1 Before we start a subtraction sequence, set the carry With SEC
2. If the numbersare morethan one byte In Size, start at the low byte and work

up to the high ones Subtraction will take place In the A register only; you
may subtract the contents of an address or an Immediate value The C flag
Will take care of any "borrows."

3 When the subtraction sequence IS complete, check for overflow
a) if the numbers are unsigned, a clear C flag indicates overflow;

NUMBERS, ARITHMETIC, AND SUBROUTINES 61

b) if the numbers are signed, a set V flag indicates overflow.

Thus, to subtract two unsigned numbers located at addresses $ 0 380
and $ 0 3 81 and to place the result at $ 0 3 82, we might code

SEC
LDA $0380
SBC $0381
STA $0382

A BCC could go to an error routine

Comparing Numbers
If we have two unsigned numbers and wish to know which one is larger,
we can use the appropriate compare instruction-CMP, CPX, or CPY­
and then check the carry flag. We've done this before. If the numbers are
more than one byte long, however, it's not quite so easy. We must then
use a new tecnruque,

The easiest way to go about such a cornpanson is to subtract one number
from the other. You need not keep the result, all you care about IS the
carry flag when the subtraction is complete. If the C flag is set, the first
number (the one you are subtracting from) is greater than or equal to the
second number. Why? Because carry set indicated that the unsigned
subtraction was legal; we have subtracted the two numbers and have
obtained a positive (unsigned) result. On the other hand, If the C flag ends
up clear, this would mean that the first number IS less than the second.
The subtraction couldn't take place correctly since the result-a negative
number-can't be represented in unsigned arithmetic.

Left Shift: Multiplication by Two
If we write the decimal numbers 100 and 200 in binary, we see an
Interesting pattern:.

100: %01100100
200: %11001000

To double the number, each bit has moved one position to the left. This
makes sense, since each bit has twice the numenc "weight" of the bit to
its right.

The command to multiply a byte by two IS ASL (arithmetic shift left). A
zero bit is pushed Into the low (or "right") side of the byte; all bits move

MACHINE LANGUAGE FOR COMMODORE MACHINES62 ------------"------------....:....:..:.----"--=-

left one position; and the bit that "falls out" of the byte-in this case, a
zero bit-moves into the carry. It can be diagrammed like this:

(2~~~~)--+ +++++++r-~
ASL

IN AN ASL (ARITHMETIC SHIFT LEFT), EACH BIT
MOVES ONE POSITION LEFT. A ZERO MOVES INTO THE
LOW-ORDER BIT.

Figure 4.2

That's good for doubling the value of a single byte. If a "one" bit falls into
the carry flag, we can treat that as an overflow. What about multiple bytes?

It would be ideal if we had another instruction that would work just like
ASL. Instead of pushing a zero bit Into the right hand side of the byte,
however, it would push the carry bit, that is, the bit that "fell out" of the
last operation. We have such an Instruction: ROL

R0 L (rotate left) works exactly like ASL except that the carry bit IS pushed
Into the next byte. We can diagram it as follows:

CARRY

r++++++++r-J
CARRY

IN A ROL (ROTATE LEFT), THE CARRY MOVES INTO
THE LOW ORDER BIT; EACH BIT MOVES LEFT; AND THE
HIGH ORDER BIT BECOMES THE NEW CARRY.

Figure 4.3

Thus, we can hook two or more bytes together. If they hold a single
multibyte number, we can double that number by starting at the low-order
end. We ASL the first value and ROL the remainder. As the bits fall out
of each byte, they will be picked up in the next.

Multiplication
MultiplYing by two may not seem too powerful. We can buuc on this starting
point, however, and arrange to multiply by any number we choose.

NUMBERS, ARITHMETIC, AND SUBROUTINES 63

--- --- ---
HIGH ORDER BYTE

TO MULTIPLY A THREE-BYTE NUMBER BY TWO, WE
SHIFT THE LOW ORDER BYTE WITH ASL; THEN WE USE
ROL TO ALLOW THE C FLAG TO "L1NK" FROM ONE
BYTE TO THE NEXT.

Figure 4.4

We won't deal with a generalized multiplication routine here, but a couple
of specific examples can be shown.

How can we multiply by four? Multiply by two, twice. How can we multiply
by eight? Multiply by two, three times.

Here's an Important one We often want to multiply by ten. For example,
If a decimal number is being typed in at the keyboard, the number will
arrive one digit at a time. The user might type 217, for example The
program must then Input the two and put It away; when the one arrives,
the two must be multiplied by ten, giving twenty, and the one added; when
the seven IS typed, the twenty-one must be multiplied by ten before the
seven is added. Result· 217 in binary. But we must first know how to
rnuttlply by ten.

To multiply by ten, you first multiply by two; then multiply by two again.
At this point, we have the onqmat number times four. Now, add the onqmat
number, giving the onqmat number times five. Multiply by two one last
time and you've got it. We'll see an example of this in Chapter 7

Right Shift and Rotate: Dividing by Two
If we can multiply by two by shifting (aoo rotating) left, we can divide bV
two by moving the bits the other way. If we have a rnultibyte number, we
must start at the high end.

L SR (logical shift right) puts a zero Into the left (high-order) bit, moves all
the bits over to the right, and drops the leftover bit into the carry. ROR
(rotate right) puts the carry bit into the left bit, moves everything right, and

64 MACHINE LANGUAGE FOR COMMODORE MACHINES

(/J LSR

'-ftt+tt++h
C FLAG

IN AN LSR, ZERO MOVES INTO THE HIGH BIT, AND ALL
BITS MOVE RIGHT ONE POSITION; THE LOWEST BITS
BECOME THE CARRY.

ROR

~ I I I I I I I I-- --- -- --- --- --- --- --I I I I I I I I

I
:It

C
IN A ROR, THE CARRY MOVES INTO THE HIGH BIT AND
ALL BITS MOVE RIGHT ONE POSITION; THE LOWEST
BIT BECOMES THE NEW CARRY.

ROR---
ROR-----

o LSR

+------~c-f l--
I ~_+ ~

C

TO DIVIDE A THREE-BYTE NUMBER BY TWO, WE SHIFT
THE HIGH-ORDER BYTE WITH LSR; THEN WE USE ROR
TO ALLOW THE C FLAG TO "L1NK" FROM BYTE TO
BYTE.

Figure 4.5

drops the leftover bit into the carry once again. At the end of a right-shifting
sequence, the final carry bit might be considered a remamder after dividing
by two.

Comments on Shift and Rotate
As you might expect of arithmetic instructions, the shift and rotate instruc­
tions normally operate in the A register. But there's an extra bonus: these
instructions also can operate directly on memory. In other words, the
computer can go to any address in memory and shift the bits at that address
directly, Without loading the data Into a register.

For thrs reason, YOU'll often see the instructions coded with the identity of
the A register coded In the address part of the instruction. We would code

NUMBERS, ARITHMETIC, AND SUBROUTINES 65

L SR A so as to distinguish from L SR $123 L;, where the contents of
memory IS being shifted.

When a rotate or shift is performed directly on a memory location, the Z,
N, and C flags are affected according to the contents of memory. Z will
be set If the contents of the location ends up as zero; N If the high bit is
set; and C performs ItS standard role of catchmq the leftover bit.

Some programmers wonder about the terms logical and arithmetic, used
as part of the definition. The distinction is related to the way that signed
numbers are treated. "Logical" means that the sign of a number Will prob­
ably be lost if the number was Intended to be signed "Anthmetic" means
that the sign Will probably be preserved. It's purely a terminology question:
the bits themselves move exactly as you would expect them to do.

Subroutines
We have written programs that are subroutines called by BASIC We have
written subroutine calls to buut-in operations such as $FFD2 or $FFEL;.
Can we also wnte our own subroutine and arrange to call It?

Of course we can. RT S (return from subroutine) does not mean "return
to BASIC." It means "return to whoever called this routine" If BASIC
called up the machine language routine, RT S takes you back to BASIC.
If another machine language program called up the subroutine, RT Swill
return to the calling POint.

We wrote a useful subroutine in the last chapter. Its purpose was to accept
only numeric keys, echo them to the screen, and convert the ASCII value
to binary Now we'll use this subroutine to build a more powerful program.
Here It is. Be sure it's entered in your computer.

• A 033C JSR $FFE1
.A 033F BEQ $0351
.A 03L;1 JSR $FFEL;

• A 03L;L; CMP #$30
.A 03L;6 BCC $033C

• A 03L;8 CMP #$3A

• A 03L;A BCS $033C

• A 03L;C JSR $FFD2

• A 03L;F AND #$OF

• A 0351 RTS

66 MACHINE LANGUAGE FOR COMMODORE MACHINES

The Project
Here ISour mission: usmq the above subroutine, we wish to buitd a simple
addition program. Here's how we want it to work. The user will touch a
numeric key, say II 3 11 . Immediately, "3 +" will appear on the screen.
Now the user will touch another key, say "L;", and the program will
complete the addition so that the screen shows "3 + L; = 7 II. We will
assume that the total is In the range 0 to 9 so that we don't have to worry
about printing a two-digit answer-don't try 5 + 5 or you'll get a wrong
answer

Here we go. We must start our coding at address $ 0 352 so as not to
disturb our subroutine. We'll need to give SYS 850 to make this one go.

• A 0352 JSR $033C

We call our prewritten subroutine, which waits for a nurnenc key, echos
it to the screen, and converts the value to mnary In the A register.

Our next action IS to print the plus sign We know how to do this, once
we look up the ASCII code for this character. Appendix D tells us that It'S
$2B, so we'll need to LDA #$2B and JSR $FFD2. But walt a minute!
Our binary value is in the A register, and we don't want to lose it. Let's
store the value somewhere:

.A 0355
• A 0358
• A 035A
.A 035D

STA
LDA
JSR
JSR

$03CO
#$2B
$FFD2
$033C

We picked $ 0 3 CO, since nobody seems to be usmq It, and put the binary
number safely away there. Now we print the plus sign, and go back to
ask for another digit.

When the subroutine returns, it has a new binary value In the A register;
the digit has been neatly printed on the screen behind the plus sign. Now
we need to print the equal Sign. But aqarn, walt! We must put our binary
value away first.

We could place the value into memory-perhaps $ 0 3 C1 would do-but
there's another way. We don't seem to be using X or Y for anything at
the moment, so let's slip the value across into one or the other. We have
four "transfer" commands that will move Information between A and either
index register:

NUMBERS, ARITHMETIC, AND SUBROUTINES 67

TAX-Transfer A to X

TXA-Transfer X to A

TAY-Transfer A to Y

TYA-Transfer Y to A

Like the load series of commands, these Instructions make a copy of the
information. Thus. after T AX. whatever information was in A IS now also
in X. Again like the load commands, the Z and N status flags are affected
by the information transferred. It doesn't matter whether we use X or Y.
Let's pick X.

• A 0360
• A 0361
· A 0363

TAX
LDA #$3D
JSR $FFD2

We have put our second value into X and printed the equal sign ($ 3D).
Now we can bring the value back and do our addition. The next two
Instructions can come in any order:

• A 0366
• A 0367
· A 0368

TXA
CLC
ADC $03CO

We have our total in the A register. It's almost ready to print, except for
one thing: It'S In binary. We want It In ASCII.

Assuming the total is In the range 0 to 9, we can convert It directly to a
single ASCII digit with an 0 RA operation. (If it's greater than nine. you're
cheating and the answer won't make sense.)

• A 036B
• A 03 6D

ORA #$30
JSR $FFD2

Are you basically a neat person? Then YOU'll want to print a RETURN to
start a new line:

.A 0370

.A 0372

.A 0375

LDA
JSR
RTS

#$OD
$FFD2

Check it with a disassembly. If you disassemble starting with the subrou­
tine, you'll need more than one screen full of instructions to see it all. No
problem. When the cursor flashes at the bottom of the screen, press the
letter D and RETURN and you'll see a continuation of the listing.

Back to BASIC. This time we do notgive SYS 82 8-that's the SUbroutine
and we want the main routine, remember?

Give the SYS 850 command. Tap a couple of numeric keys that total
nine or less. Watch the results appear instantly on the screen.

68 MACHINE LANGUAGE FOR COMMODORE MACHINES

If you like, set up a BASIC loop and call the routine several times.

Project for enthusiasts' You couldn't resist, could you? You had to type
In two digits that totaled over 9 and got a silly result OK, your project is
to try to expand the above code to allow for two-digit results. It's not that
hard, since the highest possible total is 9 + 9 or 18; so if there are two
digits, the first one must be the digit 1. You'll need to compare for the
result over binary nine, and then arrange for pnntmq the one and sub­
tracting ten if necessary. Sounds like fun

Things You Have Learned
-We may decide to use a number as a signed value; In trus case, the ruqn on

of the number Will be 0 If tne number IS positive and 1 If the number IS
negative It's up to us As far as the computer is concerned, It'S Just bits In

either case

-When a number might have a value that won't fit Into an eight-bit byte, we
may use more than one byte to hoio the value. We have already done thrs
to hold addresses In two bytes' there's a high byte to hold the high part of
the value and a low byte to hold the low part

-We may add two numbers together usmq the ADC instruction with the A
register; we should always clear the carry flag before starting an addition.
The carry flag wtll take care of rnulnbyte numbers for us. providing we re­
member to start the addition at the low end

-We may subtract two numbers usmq the SSC Instruction With the A register,
we should always set the carry flag before starting a subtraction. The carry­
whiCh IS sometimes called an Inverted borroW-Will take care of multibyte
numbers for US, providing we remember to start the subtraction at the low
end

-For unsigned numbers, the carry should end up as It started (clear for addition,
set for suotracnon), otherwise we have overflow In the result For signed
numbers, the carry doesn't matter, the V flag Will be set If we have overflow,

-We may rnulnoly a byte by two With the ASL (anthmetic shift left) instruction
If we have a multiple-byte number, we may carry the multiplication through
to other bytes oy usmq the ROL (rotate left) instruction, starting at the low
byte of the number

-We may divrde a byte by two With the LSR (logical shift nght) instruction. If
we have a rnulnple-bvte number, we may carry the divrsion tnrough to other
bytes by usmq the ROR (rotate nght) instruction, starting at the high byte of
the number

- The shift and rotate instructions may be used on the contents of the A register
or directly on memory, The Nand Z flags are affected, and the C flag plays
an Important role In the shift/rotate action,

NUMBERS, ARITHMETIC, AND SUBROUTINES 69

-If we wish to multiply by a value other than two, we may need to do more
work but we can get there

-As we might have expected, we may wnte subroutines In machine language
and then call them from machine language It's a good way to organize your
code.

Questions and Projects
Write a program to SUbtract two single-digit numbers, similar to the one
In the above exercise. You may continue to use the subroutine from the
previous chapter

Write a program to Input a single-digit number. If the number is less than
five, double it and print the result. If the number is five or over, divide It
by two (discarding any remainder) and print the result. Try to produce a
neat output.

Write a program to Input a single-digit number. Print the word ODD or
EVEN behind the number, depending on whether It is odd or even. Use
the L S R instruction followed by aBC C or Be S test to check for odd or
even

If you've been following the logic, you have developed quue a bit of ca­
pability in machine language. You can input, you can output, and you can
do quite a bit of arithmetic in between.

By now. you should have developed skills with the machine language
monitor and feel much more comfortable zipprnq In and out. These skills
are not difficult, but they are Important to the beginner. Without them, you
can never get comfortably into the real meat: how to code machine lan­
guage itself.

IJ

This chapter discusses:

• Non-addresses: Implied, Immediate, register

• Absolute and zero-page

• Indexing

• The relative address for branches

• Indirect addressing

• Indirect, Indexed

5
Address

Modes

71

72 MACHINE LANGUAGE FOR COMMODORE MACHINES

Addressing Modes
Computer Instructions come In two parts: the Instruction Itself, or op code,
and the address, or operand. The term "address" is a little misleading,
since sometimes the operand does not refer to any memory address.

The term address mode refers to the way In which the instruction obtains
information. Depending on how you count them, there are up to 1.3 ad­
dress modes used by the 650x microprocessor. They may be summarized
as follows:

1 No memory address. tmplted, accumulator

2 No address, but a value supplied. Immediate.

3 An address designating a single memory location. absolute; zero-page.

4. An Indexed address designating a range of 256 locations. eoeotute,x; eo­
solute.y; zero-page,x, zero-page,y

5. A location In which the real (two-byte) Jump address may be found: mdirect

6 An offset value (e.g., forward 9, back 17) used for branch Instructions.
reteuve

7. Combination of indirect and Indexed addresses, useful for reaching data
anywhere In memory: motrect, mdexed; mdexed, indirect

No Address: Implied Mode
Instructions such as INX (increment X), BRK (break), and TAY (transfer
A to Y) need no address; they make no memory reference and are com­
plete in themselves. Such Instructions occupy one byte of memory.

We might say that such instructions have "no address." The precise term
is "implied address," which seems to say that there is in fact an address
but we do not need to state it.

Perhaps the word "implied" is used in this manner: an instruction such as
I NX implies the use of the address register; and an instruction such as
BRK implies the address of the machine language monitor. If so, there's
an instruction that still defies this definition: NOP.

The Do-Nothing Instruction: NOP
NOP (no operation) is an instruction that does nothing. It affects no data
registers or flags. When a NOP Instruction is given, nothing happens and
the processor continues to the next instruction. It seems inappropriate to

ADDRESS MODES 73

me that we say that NOP has an Implied address. It doesn't do anything;
It doesn't have an address at all On the other hand, I suppose that logicians
might say, "Yes, but it does nothing to the X register."

The NOP Instruction, whose op code is $E A, IS surpnsingly useful. It's
not simply that If you're a contract programmer getting paid by the byte
you might be tempted to put a large number of NOP instructions into your
program. NOP can serve two Important program testing functions: taking
out unwanted instructions. or leaving space for extra instructions.

It's not as easy to change a machine language program as It is to change
a BASiC program. As you have seen, the Instructions are placed in specmc
locations. If we wish to eliminate an Instruction, we must either move all
the following instructions down or fill In the space with NOP Instructions
If we move the Instructions, we may need to correct some of the addresses.

Examine the following code:

0350
0352
0355

LDA #$00
STA $123L;
ORA $ 3L;56

If we decide to eliminate the Instruction at 0352 (S TA $123 L;), we must
remove all three bytes. So we place code $E A In locations 0352, 0353,
and 035L;

Suppose we are testing a moderately large program Most programs will
break into distinct "modules," each of which does a specific Job. One
module might clear a portion of memory to zero, another might do a
calculation, and so on. When we are checking out this program, It might
be wise to look at each module as it runs

In this case, we might deliberately code a BRK (break) command between
each program module. The program Will start to run, and then it Will break
to the machine language monitor. Within the monitor, we can examine
memory to ensure that thrs module has done the Job as we planned it.
When we are satisfied, we can start the next module using the • G com­
mand. In this way, we can have tight testing control over our program.

That's all very well, but when we have finished testing our program and
are satisfied that It runs correctly, we don't want the BRK Instructions
there That's easy to fix. We replace the BRK codes ($00) with NOP's
($ E A), and the program will run through to the end

If we are writing a program and suspect that we may need to Insert one
or two extra instructions within a certain area of the code, we can put a

74 MACHINE LANGUAGE FOR COMMODORE MACHINES

number of NOP instructions there The space will be available for use
when we need it.

No Address: Accumulator Mode
We have observed that the shift and rotate instructions, ASL, ROL, LSR,
and ROR, allow data rnampuatlon in either the A register or directly in
memory. When we want to use the A register, or accumulator, you should
note this fact as you code your program. For example, you would write
ASL A.

Where accumulator mode addressing IS used, It has the same character­
rstics as implied addressing: the whole instruction fits into one byte.

Where the shift/rotate instruction refers to a memory location, an address
will of course be needed. These address modes will be described later.

Other than the shift and rotate instructions, there is one other set of in­
structions that manipulates memory directly. You may recall INX, INY,
DEX, and DEY increment or decrement an index register.

INC (increment memory) adds one to any memory location. DEC (dec­
rement memory) subtracts one from any memory location. Both Instruc­
tions affect the Z and N flags.

When an instruction modifies memory, the address mode IS neither Implied
nor accumulator. Memory reference addressing will be discussed later.

Not Quite an Address: Immediate Mode
Coding such as L DA # $ 3 L; does not reference a memory address. In­
stead, It designates a specific value (in this case, $3L;). An instruction
With immediate addressing takes up two bytes: one for the op code and
the second for the Immediate value.

We have used immediate addressing several times It has a "natural" feel,
and it's fast and convenient. There is one potential pitfall: immediate ad­
dressing is so easy to use that it may be abused. Each time you code an
immediate address, ask yourself, "Could this value ever change?" By
writing a value Into a program, rather than a variable, you may be freezing
that value forever

An example: a program is wntten for a VIC-20, which has 22 columns on
the screen. At various places in the program, values are compared to 22
(hex 1.6), and 22 is added or subtracted to various screen addresses. In

ADDRESS MODES 7S

each case, immediate mode addressing is used to provide the value of
22 Some time later, the programmer decides to convert to the Com­
modore 64, which has L;0 columns on the screen, The programmer must
change each Immediate mode reference from 22 to L;0 (hex 28).

If the value 22 had been stored in a memory location so as to be used
as a variable, all this recoding would not be needed, The moral is clear:
excessive use of immediate mode can call for extra programming work at
a later time,

There are certain Instructions for which Immediate addressing is not pos­
sible For example, we can LD A # $ DO. that is. bring In the actual value
zero rather than the contents of an address, but we cannot ST A imme­
diate-we must store the information somewhere in memory,

A Single Address: Absolute Mode
An instruction might specify any address within memory-from $ 0 0 0 0
to $FFFF-and handle Information from that address. Giving the full
address IS called absolute addressing; If you like, you can deal with In­
formation absolutely anywhere In memory.

r:r'.10RY------------ /" •
Figure 5.1 Absolute Mode Specifies One Address Anywhere Within Memory.

We have used absolute addresses several times, When we exchanged
the contents of memory locations $ 0 3 8 0 and $ 0 3 81, we named these
addresses as we used them. When we stored a value from the keyboard,
we named locanon $ 0 3 CD. We have also used absolute addresses for
program control: subroutines at $ F FD 2 and $ 033 C were called up sim­
ply by giving the address

The JSR (jump SUbroutine) Instruction calls up a subroutine anywhere in
memory by usmq absolute addressing. There is also a J MP (jump) in­
struction, which can transfer program execution to any location in memory;
it's similar to the BASIC GOTO statement JMP can use absolute ad­
dressing-it can go anywhere.

There's a limitation to absolute addressinq, however. Once you have writ­
ten the instruction, you can go only to the address stated. You cannot
reach a range of locations: only one.

One-location addressing can be good for any of several Jobs. On the PET/

76 MACHINE LANGUAGE FOR COMMODORE MACHINES

CBM, we might want to swrtch between text and graphics modes by ma­
nipulating address 5 g L;68 (hexadecimal E 8 L;C). On the VIC-20, we might
like to set the volume level of the sound generator by placing a value Into
location 36878 (hex g DDE). On a Commodore 64, the screen's back­
ground color can be changed by manipulating address 53 2 81 (hex DD21)
In each case, It'S one specific address that we want; absolute addressing
will do the job for us. And we will also use absolute addressing to reference
the various RAM locations that we have picked for our own program "var­
iables"

Zero-Page Mode
A hexadecimal address such as $ D381 IS sixteen bits long and takes up
two bytes of memory. We call the high byte (in this case, $ D3), the
"memory page" of the address. We might say (but usually don't) that this
address is in page 3 at position $ 81.

$00 $FF $100I 1--------------

'"Figure 5.2 Zero-Page Mode Specifies A Single Address from $00 to $FF

Addresses such as $DDL;C and $DDF7 are In page zero; in fact, page•zero consists of all addresses from $ DDDD to $ DDFF. Page-zero lo-
cations are very popular and quite busy. There's an address mode spe­
cially desiqned to quickly get to these locations. zero-page addressing.
We may think of It as a short address, and omit the first two digits. Instead
of coding LDA $DDgD, we may wnte LDA $gD, and the resulting code
will occupy less space and run slightly faster.

Zero-page locations are so popular that we'll have a hard time finding
spare locations for our own programs. As a result, we tend to conserve
zero-page locations on Commodore machines. We'lI need the few that
are available for a special addressing mode, Indirect, indexed, that will
be discussed later.

There are many locations in zero page that are useful to read. For example,
the BASIC system variable S T, which is important in input/output handling,
may be examined there (location $ g 6 in PET/CBM, location $ g D in VIC­
20 and Commodore 64). If you need to know whether the user IS holding
down a key, there's an address In zero page that will tell you that (location
$g7 In PET/CBM, $CB In VIC and 64).

Zero-page addressing, like absolute addressing, references one location

ADDRESS MODES 77

only. It's good for a specific value; but for a range of values we need
something more.

A Range of 2 5 6 Addresses: Absolute,
Indexed Mode

Indexing has already been used in Chapter 2. We give an absolute ad­
dress, and then indicate that the contents of X or Y should be added to
this address to give an ettecuve address.

I

I
I

\ I

'-- INDEX
VALUE

BASE
ADDRESS

Figure 5.3

Indexing is used only for data handling: It'S available for such activities as
load and store, but not for branch or jump. Many instructions give you a
choice of X or Y as an index register; a few are limited specifically to X
or Y. Instructions that compare or store X and Y (Cp X, Cp Y, STX, and
STY) do not have absolute, indexed addressing; neither does the BIT
instruction.

An instruction usmq absolute, indexed addressing can reach up to 256
locations. Registers X and Y may hold values from 0 to 255, so that the
effective address may range from the address given to 255 locations
higher. Indexing always mcreases the address; there IS no such thing as
a negative index when used with an absolute address. If the address given
is above $FFDD, a high value In the Index may cause the address to
"wrap around" and generate an effective address in the region of $°0 0 0;
otherwise, the effective address IS never lower than the instruction ad­
dress.

We've seen the use of Indexing. An Instruction can reference a certain
address, then, as the program loops or as the need for information changes,
the same instruction can reference the contents of a different address.
The maximum range of 256 locations is an important limitation.

78 MACHINE LANGUAGE FOR COMMODORE MACHINES

The "reach" of an absolute, indexed Instruction allows it to handle infor­
mation In buffers (such as the Input buffer, keyboard buffer, cassette buffer);
tables (such as the active file table); and short messages (such as HELLO
or error messages). It's not big enough, however. to reach all parts of
screen memory, all parts of a BASIC program, or all of RAM. For that,
we'll use indirect, Indexed addressinq, which will be described later.

All of Zero Page: Zero-Page, Indexed
Zero-page, indexed addressing seems at first glance to be similar to the
absolute, Indexed mode The address given (this time In zero-page) has
the contents of the selected index added to It. But there's a difference: In
thrs case, the effective address can never leave zero page

This mode usually uses the X register, only two Instructions, LD X and
STX, use the Yreqrster for zero-page, Indexed addressing In either case,
the Index is added to the zero-page address; If the total goes beyond zero
page, the address "wraps around" As an example, if an instruction IS
coded L DA $ EO, X and the X register contains 50 at the time of exe­
cution, the effective address Will be $0030. The total ($EO + $50 or
$130) will be tnmmed back Into zero page

$FF

I
I~-=-,--~ ~

BASE
ADDRESS

$00

I~~....I....-..-_-
~ ..)

Figure 5.4

Thus, any zero-page address can be Indexed to reach any other place in
zero page; the reach of 256 locations represents the whole of zero page.
Tms creates a new possibility: with zero-page, Indexed addressing, we
can achieve negative Indexing For thrs address mode only, we can index
in a downward direction by usmq Index register values such as $FF for
-1, $FE for - 2, and so on

On Commodore machines, zero page IS fairly well occupied. There is
limited opportunity to use zero-page, Indexed addressing.

ADDRESS MODES

Branching: Relative Address Mode

79

We have written several branch Instructions already, the assembler al­
lowed us to enter the actual addresses to which we want to branch The
assembler translates it to a different form-the relative address

Figure 5.5

Relative address means, "branch forward or backwards a certain number
of bytes from this point" The relative address IS one byte, making the
whole Instruction two bytes long. Its value IS taken as a signed number.

A branch Instruction with a relative address of $ 0 5 would mean, "if the
branch is taken, skip the next 5 bytes." A branch Instruction with a relative
address of $F7 would mean, "If the branch IS taken, back up 9 bytes
from where you would otherwise be." As a signed number, $F7 IS equal
to a value of - q

We can calculate a branch by performing hexadecimal subtraction; the
"target" address is subtracted from the PC address If we have a branch
at $ 03 L;1. that should go to $ 033 C, we would work as follows: $ 0 3 3 C
(the target) minus $ 0 3 L;3 (the location following the branch Instruction)
would give a result of $ F9, or minus 7. This IS tedious to do, and often
results In mistakes; such mistakes in calculating a branch address are
often fatal to the program run. We are much better off usmq an assembler
to work out the arithmetic for us.

The longest branches are $ 7 F, or 127 locations ahead; and $ 80, or
1.2 8 locations back. This poses no difficulties With short programs, such
as the ones we are writing here. But In larger programs, the branch may
not be able to reach far enough The usual solution to this IS to place a
JMP (jump) Instruction nearby, which IS capable of gOing anywhere In
memory; J MP uses absolute addressing. The appropriate branch instruc­
tion will go to the J MP, which In turn will take the program to the desired
location.

Advocates of programming style make the Iollowmq argument. All pro­
grams should be written into neat small modules. l.oqrc blocks should be

80 MACHINE LANGUAGE FOR COMMODORE MACHINES

broken into subroutines, and the subroutines into even smaller subrou­
tines; this way, everything is neat and testable. If you should find a branch
that won't reach, ask yourself whether it's time to break your program into
smaller chunks before the loqlc gets too messy By the liberal use of
subroutines, you can arrange your code so that all branches are short and
easily within reach If you do break up the program structure, the branches
will then always reach It's up to you to choose your coding style, but you
might give the question some thought.

An interesting aspect of relative addressing is that code containing branches
is easy to relocate. A piece of code containing a branch to six locations
ahead will work perfectly if the whole code is moved to a different location.
This is not true of jumps and subroutine calls, or any code using absolute
addressing-if the location changes, the address must be changed.

The ROM Unk-Jumps in Indirect Mode
We have mentioned the J MP instruction that will take the program to any
specified address. JM P has another address mode: indirect addressmg.

Indirect addressing IS signaled by the use of parentheses around the
address. It works this way. An address is supplied, but it's not the one we
will eventually use. We take this address, and at the location It specifies,
we'll find the effective address, or the tnatrect address. The Indirect ad­
dress IS two bytes long, of course, and IS stored in the usual 650x manner
of low byte first.

An example will help to make things clear. Suppose that at address $ 0:3:3 C
we have the instruction J MP ($12:3 L;). The parentheses tell us that in­
direct addressmq is involved. The machine code IS hex 6 C :3 L; 12; as
always, the address IS "turned around." Now suppose that at addresses
$12:3 L; and $12:3 5 we have stored values $ 2 L; and $ 6 (J. The jump
instruction would behave as follows: it would go to $12:3 L; and $12:3 5,
get the contents, and the program would transfer to address $ 6 (J 2 L;.

~[J _

INDIRECTJ\.. J
ADDRESS

Figure 5.6

ADDRESS MODES 81

Tne JMP indirect has a somewhat specialized use. Normally, If we want
to transfer control to some location, we just J MP there; no need for the
indirect step. But there's one Quite important case where indirect Jumps
serve an important function.

Within ROM, there are a large amount of permanent Instructions that the
computer uses to perform Its tasks Since it's In ROM, we can never change
this code. If the various programs were linked only by means of JMP and
J SR statements, they could not be changed, and we would not be able
to modify the behavior of the machine.

BUilt into the ROM program, there are a series of carefully planned indirect
Jumps. Instead of the BaM leaping from one Instruction directly to another,
it jumps indirectly via an address stored In RAM. We can change the
contents of RAM; and if we change the address stored In RAM, we can
modify the behavior of the system. The best-known indirect address IS
that associated with the interrupt sequence it's at $ 0 0 q 0 In PET/CBM
and $ 0 31 L; in VIC, 64, and PLUS/4.

You might not code many indirect jumps, but you'll be glad that they are
there in ROM.

Data From Anywhere: Indirect, Indexed
The problems with indexed addressing have been noted' the reach of only
256 bytes limits the data capability of this method

Indirect addressing seems to offer a total solution. We can write an In­
struction mat pomts at an Indirect address. Since we can change the
Indirect address at will, or add to or subtract from it, we can cause our
instruction to deal with data anywhere In memory.

In fact, we get a limitation and a bonus. First, the limitation' for Indirect,
indexed Instructions the indirect address must be in zero-page-two bytes,
of course, organized low byte first, as always. Next, the bonus: after the
indirect address is obtained, it Will be Indexed with the Y register to form
the final effective address.

Let's step our way tnrougn tne mecnanism and see how it works. Suppose
I code LDA ($CO), Y with values $11 in address $OOCO and $22 In
address $ DOC1. If the Y register contains a value of 3, the Instruction
will follow these steps: The address at $ DOC0-1 IS extracted, giving
$ 2 211; then the contents of Yare added to give the effective address
of $ 2 21 L;. If the contents of Y changed, the effective address would

82 MACHINE LANGUAGE FOR COMMODORE MACHINES

change slightly. If the indirect address at $CO and $C1 was changed,
the effective address would change radically.

The combination of indirect and Indexing may seem like overkill. If you
can designate any location in memory with an indirect address, why bother
with indexing? After all, anywhere plus one is still anywhere.

Indirect addressing plus Indexing proves to be an ideal combination for
the manipulation of data. Almost all data breaks up Into logical chunks of
some sort: records, table entries, screen lines, words, and so on. Here's
the technique. We position the indirect address at the stan of a given
logical data chunk, and use the Y register to scan through the information.
When we're ready to move to the next item, we move the indirect address
along, and repeat the same scanning of the Y register through the new
data.

00 FFI U I__~

INDIRECTJ\.),-)
INDEXED Y

Figure 5.7

One may think of it as a nsrunq analogy: We ancnor tne boat In a certain
spot (frx the indirect address) and then use the fishing line (the Y register)
to reach the data we need. When we're ready for the next Item, we pull
up the anchor and move along to a new place.

~DATA INMEMORY~

A

Figure 5.8

NAME, ETC.

B

NAME, ETC. NAME, ETC.

We'll be working through an elaborate example that uses indirect, indexed
addressing to manipulate the computer screen. First, a brief diversion.

ADDRESS MODES

A Rarity: Indexed, Indirect

83

There is another addressing mode that is little used In Commodore com­
puters' Indexed, indirect. It uses the X register rather than the Y, and is
coded as in the following example: LDA ($CO, X). In this case, indexing
takes place first. The contents of X are added to the indirect address (in
this case, $ C0) to make an effective Indirect address. If X were equal to
L; in this example, the effective indirect address would be $ 0 0 CL;, and
the contents of $ 0 0 CL; and $ 0 0 C5 would be used as the effective
address of the data

INDEXED, INDIRECT ALLOWS ONE OF SEVERAL
INDIRECT ADDRESSES TO BE CHOSEN USING
THE X INDEX REGISTER

Figure 5.9

In certain types of control processing, this is a quite useful address mode.
X will contain an even number; since each indirect address IS two bytes
long, we will need to skip from one to the other, two bytes at a time.

Let's take a hypothetical communications system that is connected to four
telecommunications lines and see how indexed, indirect addressmq might
be used. Characters are being received from the four lines almost simul­
taneously. As each character arrives, it must be put away Into a memory
buffer belonging to that particular line; in that way, traffic received from
the various sources won't get mixed together. Zero-page will contain four
indirect addresses, one for each line; each indirect address points at an
input area for one line. Suppose a character is received into the A register
from one of the lines, the line number (times two) is in the X register. We

84 MACHINE LANGUAGE FOR COMMODORE MACHINES

could then put the character away with the instruction ST A ($ 6 0 , X).
Thus, if line zero was involved, Its Indirect address at address $ 6 0/61
would be used; for line 1, the address at $ 6 2/6 3 would be used: and
so on. After we had stored the character concerned, we'd need to bump
the indirect pomter so that the next character will go into a new position:
INC $ 6 0, X would do the tnck.

Tne above example IS a ratner specialized use of the Indexed, indirect
address mode. You may never need to use this mode. Indeed, most
programmers lead full, rich lives without ever writing code that uses in­

dexed, indirect addressinq.

The Great Zero-Page Hunt
Indirect, indexed addresses are very Important. They are your gateway to
reaching any part of memory from a single Instruction. But you must have
two bytes available In zero-page for each Indirect address you want to
use.

The Commodore ROM system helps itself to liberal amounts of zero-page
memory You don't have much empty space left over. How can you find
space for these Indirect pointers?

First, look for unused locations. There are only a few of them: on the VIC
and Commodore 64, you'll find four locations at locations $ 0 0 FC to $ 0 0 F F.
That's enough for two Indirect addresses

If you need more, look through the memory maps for locations designed
as "work areas" or "utility pointers." They can usually be put to work for
a temporary Job

Finally, you can take working parts of zero-page and copy them to some
other parts of memory You can use these locations, carefully putting back
the onqinal contents before returning to BASIC. Don't try this with any
values that are used by the interrupt routines (involved with screen, key­
board, or RS-232); the interrupt can and does strike while your machine
language program is running And if the interrupt program changes these
zero-page values, your program is going to behave badly.

Project: Screen Manipulation
This project is intended to show how indirect. indexed addressing can be
used effectively. We'll change something on the screen-enough so that
we reach more than 256 addresses. Ordinary indexing, therefore, won't
do.

ADDRESS MODES 85

We'll select a number of lines on the screen; within each line, we'll change
a certain group of characters. In other words, we will write the code so as
to manipulate a wmdow on the screen

To do this, we'll need to code two steps: setting up the start of a screen
line, and later moving on to the next line when needed. Within each line,
we'll work our way through the range of screen columns that we nave
selected. In fact, it's a big loop (for the lines) containing a small loop (for
the columns within that line). We'll use Indirect addressing to point to the
start of each line, and indexing (the Y register) to select the portion of that
line to change.

Since there's a variety of Commodore machines, we have some problems
to resolve. All Commodore screens are "memory mapped," that IS, the
information appearing on the screen IS copied directly from some part of
memory. We may change the screen by changing the appropriate memory
But different machines use different memory addresses; and In VIC and
Commodore 64, the screen may be moved around. Another thing to con­
sider IS that the length of line varies between different machines-it might
be 22 or L; 0 or 50 columns.

No problem. If you have a 40-column machine, L; 0 equals $ 2 5; code

.A 033C LDA #$25

For a 22-column machine, change the above to LDA #$16; and for an
aO-column PET, code LDA #$50.

Have you coded the correct value? Let's proceed with our next decision.
In the PET/CBM, screen memory starts at address $5000; In VIC or
Commodore 64, the screen starts at whatever page is designated In ad­
dress $ 025 5. Let's code as follows:

PET/CBM: . A 033E LDX #$50
.A 03L;0 NOP

VIC/Commodore 64: • A 033E LDX $0255

The NOP instruction does nothing. but It makes the coding the same length
so that we may continue with address $ 0 3 L; 1 In either case. The A
register tells us our line length, and the X register tells us the page number
on which the screen starts. Let's put them away. The line length will be
needed for addition later, so we may put it anywhere safe; the screen
address will be part of an Indirect address, so it must go into zero-page.

It's hard to find a zero-page address that may be used in all Commodore

86 MACHINE LANGUAGE FOR COMMODORE MACHINES

machines: we'll choose $OOBB and $OOBC. $BB contains the low byte
of the address, of course. Let's code

• A 03L;1 STA $03AO
.A 03L;L; STX $BC

Note that we are using the zero-page addressing mode for the instruction
at address $ 03 L; L;. That puts the high byte of the address m place. Now
we'll set the low byte to zero:

.A 03L;6 LDA #$00

.A 03L;8 STA $BB

Our mdirect address IS now pointing at the start of screen memory. Let's
discuss in more detail what we want to do with the screen. Specifically,
we want to change a number of lines, let's say 14, on the screen. We
will step along our indirect address by adding to the 'Indirect address:
maybe 22, maybe L; 0, maybe 80; whatever is in address $ 03 AO. And
we won't do the whole line; we'll start In column 5 and go to column 18.
Let's count the lines in the X register; we'll start X at zero

• A 03L;A LDX #$00

Now we're ready to do a screen line. Later, we'll adjust the indirect address
and come back here to do another line. We should make a note to our­
selves: "Come back to $ 03 L; C for the next screen line."

The Indirect address is pomtmq at the start of the line. We want to start
work In column 5, That means that Y should start with an offset of 4 (the
start of the line plus L;). Let's do It:

• A 03L;C LDY #$OL;

We're going to walk Y up, and loop back to this point for the next character
on the line. We might note: "Come back to $ 0 3 L; E for the next character."

We're ready to go. Let's dig out the character that's currently on the screen:

• A 03 L; E LD A ($ BB) , Y

Thrs is worth a review. Locations $BB and $BC contain the address of
the start of screen memory; on the PET/CBM, for example, this would be
$ 8000. To ttus, we add the contents of Y (value L;) to create an effective
address of $ 8 0 0 L;; and from location $ 8 0 0 L; we get the screen char­
acter.

We decide that we will leave spaces alone. The space character shows
on the screen as a value of decimal 32, hex 20. Let's skip the next
operation if it's a space:

ADDRESS MODES

.A 0350 CMP #$20

.A 0352 BEQ $0356

87

We have to guess at the address to which we will skip ahead, since we
haven't gotten there yet. Make a note: "This address may need correction."

• A 035L: EOR #$80

This is where we manipulate the character. The EOR is a "flip-over"
command; we're flipping the high bit of the screen value. You may look
up screen codes to see what this does, or you may wait and see what
happens. At this point, our code from $ 0 3 5 2 JOins up. As it happens, we
were lucky aqam: the address is exactly nght to rejom at $ 0 3 56. But If
it were not, you know how to fix it, don't you? Exit the assembler, then go
back and type over.

Now we put the modified character back to the screen:

.A 0356 STA ($BB) ,Y

We have done one character. Let's move along the line to the next char­
acter, and if we have passed column 18 (Y = 17) we should quit and go
to the next line.

• A 0358
.A 035C1
.a035B

INY
CPY #$12
BCC $03L;E

Y moves along to the next character position: five, then six the next time
around, and so on. So long as Y is less than 18 (hex 12) we'll go back,
since BCC means "branch less than." If we get past this point, we have
completed the line and must move to the next one.

We move to the next line by adding to the indirect address. We must add
22, or L; 0, or 80; the value IS in address $ 0 3 A0 (you may remember
that we stored it wrtn tne Instruction at $ 0 3 L; 1). We must remember to
clear the carry flag before starting the addition, and to add starting at the
low byte of the address (at $BB).

• A 03 5D
• A 03 5E
.A0360
.A0363
.A 0365
.A0367
.A036C1

CLC
LDA $BB
ADC $03AO
STA $BB
LDA $BC
ADC #$00
STA $BC

88 MACHINE LANGUAGE FOR COMMODORE MACHINES

The last three instructions seem odd. Why would we add zero to the
contents of $BC? Surely that changes nothing. The answer is obvious
after a little thought: there might be a carry from the previous addition.

Now we're ready to count the lines: we had decided to use X as a counter.
Let's add one to X, and test to see whether we nave done the 1 L; lines:

• A 036B INX
• A 036C CPX #$OE
• A 036E BNE $03L;C

If we've done the required number of lines, we have nothing more to do
other than return to BASIC:

• A 0370 RTS

Disassemble and check it. Again, you'll find that the code occupies more
than one full screen. Return to BASIC.

This time, we'l! write a small BASic program to exercise the machine
language code. Type NEW to clear out any old BASIC code, and enter

100 FOR J =1 to 10
110 SYS 82B
120 FOR K = 1 to 200
130NEXTK,J

The extra loop IS to slow things down Machine language runs so fast that
the effect might not be properly visible if run at full speed.

Project for enthusiasts: Can you change the program to do a different
set of columns? Could you change It so that it affected only the letter" S II

wherever It appeared on the screen?

Comment for VIC-20 and
Commodore 64

This exercise will work as intended Other types of screen work might call
for you to set the color nybble memory values before you can successfully
work directly with screen memory. The rules for machine language are no
different from those for BASIC' if you wish to POKE to the screen, you
may need to take the color nybble area Into account.

Things You Have Learned
- Three address modes are not addresses at all. Implied addressmq means

no address at all, accumulator addressinq uses the A register and means
the same thing, and immediate addressing uses a value, not an address

ADDRESS MODES 89

-Absolute addresses reference one location oruy, somewnere In memory.
Zero-page addresses reference a single address In the range $ 0000 to
$ooFF-the high byte of the address (00) IS the memory page. These
address modes are used for fixed locations containing work values or system
interfaces.

-Absolute, indexed and zero-page, indexed allows the named address to be
adjusted by the contents of an index reglster-X or Y. These instructions can
reach a range of up to 256 addresses They are commonly used for tables
of data or temporary storage areas

-Relative addresses are used exclusively with branch instructions. They have
a limited "reach" of about 127 locations forward or backward It takes a little
arithmetic to calculate the proper values, but the computer usually works this
out for us.

-s-tnarect addressing IS used only for jumps, most often to allow a fixed ROM
program to take a vanable jump. The average machine language programmer
will seldom need these, but the prmople of Indirectaddressing is worth learning.

-Indirect, mdexed addressing is the most Important way to deal with data
anywhere in memory. We may reach anywhere by setting the indirectaddress,
then we may "fine aqust" that address by Indexing It wrtn the contents of Y.

-Indirect, indexed addressing requires the indirect address to be In zero-page.
We need to conserve zero-page locations for this use

-An addressmq mode called indexed, mdirect IS rarely used when program­
ming Commodore computers, but It'S there If you want it.

Questions and Projects
Write a program to clear the screen of your computer-check Appendix
C for the location of screen memory if you've forgotten. Don't just print
the clear screen character ($C13); do it another way. Can you write the
entire program without using Indirect, indexed addressing?

Write the program again using indirect, indexed addressing. The program
may be a little shorter. Can you think of any other advantages of writing
this way?

A user wishes to type in a line of text on the keyboard, ending with aRE T URN.
He then wants to have the program repeat the hne ten times on the screen.
What addressing mode or modes would you use to handle the user's text?
Why? You may try your hand at writing the program if you wish.

Take one of the previous exercises and try to write it again without usmq
immediate addressing. Is it hard to do? Can you see any reason to want
to code without using immediate addressing at all?

6
Linking

BASIC and
Machine

Language
This chapter discusses:

• Where to put a machrne language program

• BASIC memory layout

• Loading and the SOY pointer

• BASIC vanabies fixed, floatrng and stnng

• Exchangrng data with BASIC

91

92 MACHINE LANGUAGE FOR COMMODORE MACHINES

Siting the Program
Up to this POint, we have been placing all programs In the cassette buffer.
This is a good place for short test programs, but we need to examine
alternatives that are often more attractive

BASIC Memory Layout
BASIC RAM is organized according to the diagram below. The following
locations are of particular interest:

1. Below the BASIC area. we have the cassette buffer area This IS available
to us, providing we are not engaged in input/output activity

2. Start-of-BASIC (SOB) IS usually a fixed address within the machine In PETI
CBM, It'S at $0L;01 (decimal 1025) In Commodore 64, it's at $0801
(decimal 20L;'1) In the PLUS/4 series, It'S at $1001 (decimal L;OQ7) In
the VIC-20, It may be at one of several places $ OL; 01, $1001, or $1201.
A pomter marks this location. The pomter is located at $ 281$ 2 '1 (decimal
L;O and L;1) In PET/CBM, and at $2B/$2C (decimal L;3 and L;L;), In VIC­
20, Commodore 64, and PLUS/4.

You should Inspect the pomter and confirm that It contains an appropriate
address. You may notice that it's much easier to do this using the machine
language monitor, since the address IS split between the two bytes (low order
first, as always).

3 End-of-BASIC is signaled by three zero bytes somewhere after the SOB. If
you command NEW In BASIC, you'll find the three bytes right at the start of
BASIC, there IS no program, so start and end are together. There IS no
pomter that indicates end-of-BASIC, Just the three zeros; but the next location
(SOV) Will often be directly behind the end-of-BASIC

The BASIC program that you type In Will occupy memory space from start­
of-BASIC to end-of-BASIC If you add lines to a program, end-of-BASIC Will

BASiC RAM
A

Figure 6.1

SOB SOV SOA EOA BOS TOM

LINKING BASIC AND MACHINE LANGUAGE 93

move up as extra memory IStaken up by your programs. If you delete lines,
end-of-BASIC will move down

4 Start-ot-vanables (S0 V) ISoften posmoned directly behind the end-of-BASIC.
When the BASIC program runs, the vanabies will be wntten Into memory
starting at this pomt: each variable IS exactly seven bytes long A pointer
marks this location. The oomter is located at $ 2 A/$ 2B (decimal L; 2 and
L;3) In PET/CBM, and at $2D/$2E (decimal L;5 and L;6) in VIC-20, Com­
modore 64, and PLUS/4

The SOy pointer IS extremely Important dunng BASIC load and save acnv­
ttles If we give the BASIC command SAVE In direct mode, the computer
will automatically save all memory from SOB to Just before the SOY. Thus,
It saves the whole BASIC program, including the end-of-BASIC marker of
three zero bytes, but does not save any vanabies If we give the BASIC
command LOAD In direct mode, the computer Will automatically load the
program, and then place the SOy pointer to Justbehind the last byte loaded
In trus way, vanables Will never be stored over the BASIC program; they Will
be wntten above the end-of-BASIC More on this later

If the BASIC program IS changed, the SOV may move up or down as needed

5. Start-of-arrays (S 0 A) also represents one location beyond the end-of-BASIC
variables, and thus could be named end-ot-vanabtes. Arrays created by the
BASIC program, either by use of a DIM statement or by default dimensiorunq,
Will occupy memory starting at thrs pomt. A pomter marks this location. The
pomter IS located at $2C/$2D (decimal L;L; and L;5) In PET/CBM, and at
$2F/$30 (decimal L;7 and L;8) in VIC-20, Commodore 64, and PLUS/4.
If the BASIC program IS changed, the SOA pomter ISset to match the SOy
Thus, all BASIC variables are wiped out the moment a change IS made to
the program

6. End-of-arrays (EOA) IS set one location beyond the last array location In
BASIC. Above thrs point ISseemingly "free" memory-but It'Snot really free,
as we'll see soon. A pomter marks this location The pomter IS located at
$2E/$2F (decimal L;6 and L;7) In PET/CBM, and at $31/$32 (decimal
L; g and 50) In VIC-20, Commodore 64, and PLUS/4

If the BASIC program ISchanged, the EOA pointer ISset to match the SOA
and SOY • Thus, all BASIC arrays are wiped out the moment a change is
made to the BASIC program

Let's change direction and start to work our way down from the top of BASIC
memory.

7. Top-of-memory (TOM) ISset one location beyond the last byte available to
BASIC On the PET/CBM and VIC-20. its location depends on the amount
of memory fitted; a 32K PET would locate TOM at $ 8 000. On the Com­
modore 64, the TOM Will normally be located at $AOOO. A pomter marks
thrs location The pomter IS located at $3L;1$35 (decimal 52 and

94 MACHINE LANGUAGE FOR COMMODORE MACHINES

53) in PET/CBM, and at $37/$38 (decimal 55 and 56) in VIC-20, Com­
modore 64, and PLUS/4

If you examine the TOM pointer, you may find that it does not pornt at the
expected position. That may be because of the machine language monitor,
which has taken up residence at the top of memory and stolen away some
memory

8. Bottom-of-strings, (BaS) is set to the last "dynamic" string that has been
created. If there are no BASIC stnngs, the BaM will be set to the same
address as TOM. As new dynamic stnngs are created, this pointer moves
down from the top-of-memory towards the EaA address A pomter marks
this location The pomter IS located at $ 30/$ 31 (decimal L; 8 and L; g) m
PET/CBM, and at $33/$3L; (decimal 51 and 52) in VIC-20, Commodore
64, and PLUS/4.

A dynamic string is one that cannot be used directly from the program
where it is defined; you might like to think of it as a manufactured string.
If, within a BASIC program,l type: 100 X$="HAPPY NEW YEAR",
the BASIC interpreter will not need to store the string in upper memory;
it will use the string directly from where it lies within the program. On the
other hand, if I define strings with commands such as R$ = R$ + " *" or
INPUT N$, the strings must be built into some spare part of memory.
That's where the BOS pointer comes in: the computed string is placed
high in memory, and the BOS moved down to mark the next free place.

If the BASIC program is changed, the BOS pointer is set to match the
TOM. Thus, all stnngs are Wiped out the moment a change IS made to
the BASIC program.

Free Memory: The Dangerous Place
It seems to beginners that there is a great deal of free memory available
above the end-of-arrays and below the bottom-of-strings, and that this
would be an ideal place to put a machine language program. This is a
pitfall: it usually won't work.

Here's the danger. As more and more dynarruc stnngs are created, the
bottom-of-strings location keeps moving down. Even when strings are no
longer needed, they are abandoned and left dead in memory, taking up
space.

The B0 S keeps moving down. Only when it touches the EO A will the
dead strings be cleaned up and the good ones repacked, an action called
garbage collection. It's important for BASIC programmers to know about
garbage collection: except on BASIC 4.0 and Commodore PLUS/4 sys­
tems, it can be a cause of serious program slowdown.

LINKING BASIC AND MACHINE LANGUAGE 95

It's evident that the space between EOA and BaS is not sate. It you put
a program there, the stnngs will eventually destroy it. We must look else­
where.

Where to Put Your ML Program
First, you may put your program in the cassette buffer. Providing you are
not performing input/output activity, your program will be sate. Your space
here is limited to 190 characters or so.

CB

SOB

1i~E:~I--_...J1 BASIC TVAR TARR 'tas

s~ I
Figure 6.2

Second, move down the top-ot-memory pointer and place the program in
the space that has been treed. Your space here is unlimited. Programs
placed here will take up permanent residence until the power is turned
off. Many monitors, such as Supermon, live here.

sov SOA EOA BOS NEW OLD

---l-----[-...JD
SOB

] /C.B.

Figure 6.3

SOB

] [C.B.

Figure 6.4

Third, move up the start-ot-variables pointer, and place the program after
the end ot BASIC and betore the new start-of-variables. Your space here
IS unlimited. Programs placed here will tend to "join company" with the
BASIC program; the two will save and load together.

96 MACHINE LANGUAGE FOR COMMODORE MACHINES

After moving a pointer-as was done In the last two methods-it's a good
idea to return to BASIC and command CLR, so that all other variable
pointers will align correctly with the ones that have moved.

These three areas will be discussed more in a few moments. First, there
are one or two extra locations available to VIC-20 and Commodore 64.

Extras for VIC and Commodore 64
The Commodore 64 has a free block of RAM at locations $ COD0 to
$CFFF (decimal L;9152 to 532L;7) That's 4K of RAM not being used;
you may write your programs there. Before you do so, check to make sure
that the memory IS not being used by any other programs It's a popular
place in the Commodore 64, and many utilities and commercial"programs
zero in on this available memory.

If you intend to write programs entirely In machine language, WIth no BASIC
content at all, you may completely remove BASIC from the Commodore
64 system and claim the space as available RAM. This gives you the
whole block from $ 08 0 1 up to $ CFFF for programs and data-a whop­
ping 94K-and even more could be liberated if necessary. BASIC may
be made to disappear from the Commodore 64 with the equivalent of
POKE 1, 5L; (LDA #$36, STA $01). It may be reinstated with the
equivalent of POKE 1, 55 (LDA #$37, STA$01). Be very careful.
With BASIC gone, the computer doesn't even know how to say READY.

On all Commodore machines It'S possible to move up the start-of-BASIC
pointer and use the space freed below. To do so, it's essential to store a
value of zero Into the location immediately before the new start-of-BASIC,
and to align all other pointers, usually by going to BASIC and commanding
NEW.

Thrs works, and will make as much space available as is needed. BASIC
programs will relocate as they load. But since the computer needs to be
reconfigured before the main program is loaded, and often needs to be
restored to its original configuration after the program is run, the method
is not popular in most Commodore machines. It's used fairly often in the
VIC-20, however.

The video chip in the VIC-20 can "see" RAM memory only in the memory
space $0000 to $1FFF (decrrnat 0 to 8191). Whatever variable in­
formation appears on the screen must be taken from this memory area.
The VIC-20 can also get information from $8000 to $9FFF, but there's
no RAM there; we can't manipulate this memory area.

LINKING BASIC AND MACHINE LANGUAGE 97

It we want to perform special visual effects on the VIC-20, we must ma­
nipulate data in the area $ 0 0 0 0 to $1 FFF. Let's look at what is available.
$ 0 0 DOt0 $ 0 3 F F is used by the "system;" other than the cassette
buffer, we must leave it alone. $DL;DD to $DFFF contains no memory
unless a 3K RAM expansion IS added. $1000 to $1 DF F contains the
BASIC program, and $lEDD to $lFFF is screen memory. Details may
vary, but the answer always comes out the same: there's no space to do
our video effects.

A popular VIC-20 solution, especially where 8K or more at RAM expansion
has been added, is to increase the start-at-BASIC pointer, thus liberating
space in low memory. This may now be used tor visual effects and tor
machine language programming, too, it any space is left over. In the VIC­
20, this approach is necessary, but it's still a bit clumsy.

The Wicked SO V
The start-at-variables pointer can be the cause of many troubles, It it's not
understood. The rules covering it are as tallows:

1. Variables are written starting at the SOY.

2. BASIC SAVEs will savefrom memory beginning at start-of-BASIC and stop­
ping at SOY.

3. Directcommand BASIC LOADs Will bnnga program Intomemory, relocating
If appropriate, and then set the Sav pointerto the location tollowmq the last
byte loaded.

4. Changes to BASIC programs cause memory to be moved-Up or down­
starting from the pornt where the change IS made and stopping at the SOy
The SOY Will then be moved the appropnate distance up or down.

These seem to be innocent rules. Rule 1 defines the purpose at the SOV.
Rule 2 shows how the SOY controls the SAVE command so that the
entire BASIC program is saved, but not the variables. Rule 3 arranges
that short programs will have a large amount at variable space available;
long ones Will have less. Rule 4 ensures that a BASIC change makes
extra room in memory or reclaims memory space.

But it the SOV gets the wrong address, we're in trouble. The rules work
against us. Variables may be written Into disastrous places. SAVEs will
cause too much or too little to be saved. LOADs may tix things, since
SOV will be changed by the load action. An attempt to change a program
with a bad SOV may cause too little or far too much memory to be moved
around. We must get the SOV right.

98 MACHINE LANGUAGE FOR COMMODORE MACHINES

How can the SOV go bad on us? Let's take three examples, corresponding
to the three major places that we might put machine language programs:

We have a program in the cassette buffer, and a BASIC program that
goes with it. We enter or load the BASIC program (the SOV IS all right so
far), and then we LOAD the machine language program; the SOV ends
up disastrously somewhere in the cassette buffer area.

We're in trouble. The program seems to list correctly, but it's sick. If we
RUN, variables will start to be placed In the cassette buffer area; as more
variables are created, they are placed in progressively higher memory
locations. Eventually, the variables start to write over the BASIC program.
Everything stops. The poor programmer says LIS T to see what's hap­
pened; his BASIC program is gone, and all that's left is gibberish.

We're in more trouble. Alternatively, the programmer decides to save his
BASIC program and commands SA VE. BASIC starts to save memory
beginning at start-ot-BASIC ... and keeps saving, and saving, and saving.
It won't stop until it reaches the SOV, but that's below where we started.
We won't get there until the address "wraps around" and comes back up
through zero. The poor programmer-if he or she waits long enough­
discovers that the tiny tive-line BASIC program has been saved as over
2 5 0 blocks on disk, or fifteen minutes worth of tape. And the saved
program is useless.

We're in still more trouble. Alternatively, the programmer lists the program,
and decides to delete one character from a line of BASIC. BASIC im­
mediately starts to move memory, starting at the change point. It won't
stop moving memory until It reaches SOV, but that, again, is below where
we started. It will move everything that can be moved. RAM will be moved
along, which may not hurt anything; then the I A chips will be moved,
which may scramble colors or make the display go crazy; then it will try
to move ROM, which won't work because ROM can't be changed; then it
will wrap around to zero-page and move everything there, which is fatal
to the system. Eventually, it will collapse before reaching SOV since it
destroys its own working pointers.

All this could have been avoided if the programmer had loaded the machine
language program first, and then loaded the BASIC program. The SOV
would be placed behind the BASIC program, which is where it belongs in
this case.

Quiet Interlude
It's easy to see how the problem occurs, once you understand about the
SOV and its role. But if you don't understand the SOV, the results can

LINKING BASIC AND MACHINE LANGUAGE 99

shake your self-confidence. Many programmers have given up on machine
language because of a bad experience with Sav .
It works this way The student writes a perfect program into the cassette
buffer and saves it using the machine language monitor Later, with a
BASIC program in place, the student recalls the program and inadvertently
moves SOY to an impossible location. When BASIC runs, the variables
will start to be written behind the machine language program, ahead of
the BASIC program. As more and more vanables come into play, they
creep relentlessly toward the BASIC coding.

Our eager student-with a perfect machine language program and a per­
fect BASIC program-now decides to say RUN. The BASIC program runs
for a while, and then grinds to a halt, usually with a crazy screen or reporting
an error in a nonexistent line. We know what's happened, of course: the
variables have started to write over the BASIC program. But our unfor­
tunate student doesn't know that. The command LIST is entered, and
out comes nonsense

What goes through the programmer's mind at this time? "I was so sure
that the program is correct [In fact, it is]; but it's so bad that it's destroyed
memory! I suppose that machine language is much more difficult than I
thought."

And the student loses hope and gives up, not knowing that there's only
one small piece of information needed to fix everything up. This is only
one of the things that might go wrong when the SOY pointer is Improperly
placed; even an attempt to change or save a BASIC program can cause
system failure.

Such experiences destroy confidence. They are responsible for the myth
that machine language is hard and only super-Clever programmers can
cope with it.

The Machine Language Monitor SAVE
Now that we're becoming aware of the SOY pitfall, we're ready to discuss
how to save a program in machine language. You probably understand
why I've been delaying this command until this time. The MLM save com­
mand typically goes

• S "PROGRAM", 01, 033C, 0361

This would be the tape format. The command is • S and is followed by
the program name. The device is tape, so we type 01-be sure to give
two digits. Next comes the beginning address (in the example $ 0 3 3 C)

100 MACHINE LANGUAGE FOR COMMODORE MACHINES

followed by the end address plus one. In the example, the last location
saved will be $ 0360. For disk saves, we might want to add the drive
number:

.s 1I0:PROGRAMII,08,033C,0361

These programs, once saved, may be loaded directly from BASIC, but
watch the SOV carefully. VIC-20 and Commodore 64 BASIC LOAD com­
mands should contain the extra field to defeat relocation: LOAD "PRO­
GRAM" , 8 , 1 will insist that the program load back into the same memory
locations from which it was saved

More on LOAD
There is a machine language • L command to do a program load without
changing any pointer (especially SOV). There are a number of different
machine language monitors around, and the . L command does hot work
the same way on all of them. You might check out the one you are using:
ideally, the. L command (format: • L IIPROGRAMII, 01) should bnnq
back the program wthout relocation.

The • L command is of limited value. A program user often cannot be
expected to load up a machine language monitor and use it to go through
a • L load sequence. The program should take care of things for the user.

We have been careful to say that the BASIC LOAD command changes
the SOV when given as a direct command. If a LOAD command is given
from within a program, SOV is not changed; but there's a new item to be
taken care of.

Programmed LOAD has been carefully designed to perform a function
called "chaining." That's a BASIC technique, and not within the scope of
this book. Chaining, hOwever, has two important characteristics:

1 No pomters are affected. The program Will not lose any vanabies when It
performs a LOAD. That's good: we will not loseany of our computations.

2 Oncea LOAD is complete, the BASIC program Will resume execution at the
first statement It will not continue from where It left off; It Will go back to the
beginning. For our application, that's bad; we seem to have lost our place
in BASIC.

If we understand the problem that Item 2 creates, we can easily fix It by
using item 1. Here's an example to illustrate the problem: we have a
program on disk written for the cassette buffer called II ML II , and we want
to have a BASIC program bring it in. We could code as a first line: 100
LOAD II ML II , 8-but we'd have a problem. First, the program would load

LINKING BASIC AND MACHINE LANGUAGE 101

ML. Then it would go back to the beginning and load ML. Then It would
go back to the beginning . and so on. This is not satisfactory. Let's use
rule 1 to fix everything:

100 IF A= 1 GOTO 130
110 A=1
120 LOAD "ML'I,B,1
130 ••• continues

When we say RUN, the first line IS executed. A is not equal to one, so
we continue on line 110. A is set to one, and line 120 causes a load
of the desired program. BASIC goes back to the beginning, but all variables
are preserved, so A is stili equal to 1. Line 100 tests A and goes to line
130, the next statement beyond the load. Everything works as required.
If there are multiple LOADs, line 100 might be changed to 100 ON A
GOTO 130,150,170. • • as necessary.

Caution: we are discussing the programmed LO AD command only in the
context of loading machine language modules, If you want to have a
program load in another BASIC program (chaining or loading) the above
rules still apply but may need to be used differently.

Other Sav Blunders
We have discussed the horrible results of loading a machine language
program into the cassette butter (using a direct command) after BASIC
has been loaded. By now, we should have learned to avoid making this
mistake. What about programs stored in other areas, such as high memory
or after BASIC?

Suppose we want to place a program Into high memory, either by moving
the top-of-memory pornterdown to make room, or by using the spare RAM
at $COOO to $CFFF of the Commodore 64. We also have a BASIC
program to load. Will loading in the wrong order harm SOV?

The answer is yes, although the problem is not so severe. You can see
that after loading a program to high memory using a direct command,
SOV will be positioned immediately above it. But that's too high-there's
no room for variables and we'll get an OUT OF MEMORY error for almost
anything we do.

Obviously, we can't leave SOV in the upper stratosphere. We must load
the high memory first, and then the BASIC program. The second load will
straighten out the SOV pointer. If you try this, you'll find that it is necessary
to fix up the top-of-memory pointer and command NEW between the two

102 MACHINE LANGUAGE FOR COMMODORE MACHINES

loads; you cannot even give the next La AD command if you're apparently
totally out of memory.

Review: Fixing Pointers
If in doubt, examine the pointers by displaying them with a • M command.
For VIC/64/PLUS/4, the command would be . MOO 2 BOO:3 A; with
PET/CBM, use . MOO 2 BOO:3 7; in either case, be sure that the start­
of-vanabies pomter IS set to a "sound" value.

As always, you can change an incorrect memory value-in this case, an
incorrect vector-by moving the cursor back, typing over the values to be
changed, and pressing RETURN.

After End-of-BASIC-Harmony
Suppose we place the machine language program behind the end-of­
BASIC-that's the three zeros in memory-and move up the SOV so that
variables won't disturb this program. How will everything work now?

Things will work very well indeed. This time, we need to load our BASIC
program first; the SOV will go Immediately behind BASIC. Then we may
load our machine language program, and the SOV moves right behind it.
The SOV is in exactly the right place, assuming we load in the right order.
(If we don't, the variables will destroy our machine language program.)

Once our two programs are together. and we say SAVE. the combination
program-BASIC and machine language together-will be saved. A little
thought will reveal that memory from start-of-BASIC to just before start­
of-variables contains everything we need. A subsequent load will bring
everything back in, and position SOV to exactly the nght place. We now
have a "unit" program-BASIC and machine language working together,
loading and saving as one program.

There's one small problem in this arrangement. Once we have married
the BASIC and machine language programs, we must not change the
BASIC program. If we added to or subtracted from this program, the
machine language program would move up or down-the relocation of
memory goes right up to SOV. The program might not be able to work in
the new place, and, of course, our SYS commands would be wrong.

BASIC Variables
There are four types of entry In the BASIC variable table. All variables,
regardless of type, occupy seven bytes; the first two bytes are the name,

LINKING BASIC AND MACHINE LANGUAGE 103

and the remaining five bytes (not always fully used) contain the value or
definition. The variable type is signaled as part of the name: high bits are
set over one or both letters of the name to Signal a specific type

EACH VARIABLE IS EXACTLY 7 BYTES LONG.
VARIABLES APPEAR IN THE ORDER IN
WHICH THEY ARE USED.

Figure 6.5

For example, if a floating point variable had a name AB, the name would
be stored in the two bytes as $ L; 1, $ L; 2-the ASCII codes for A and B.
The same would be true if the variable were named ABACUS, since only
the first two letters of the name are kept. In contrast, if the variable were
named AB%, meaning that it was an Integer variable, the name would be
stored as $Cl, $C2. The ASCII codes are the same, but the high bit
has been set over them. To complete the picture, a stnng variable named
AB$ would be coded with the name $L;1, $C2-the high bit is set over
the second character only

HIGH I S FO IN G R VARIABLES AND FUNCTIONS

R AND STRING VARIABLES

BT ET R TE E

rHIGH BIT SET FOR INTEGE

NAME VALUE

2 BYTES 5 BYTES
I I I I I

Figure 6.6

There's a fourth type of entry that can go into the variable table, but it's
not a vanable: it's a function definition. If we give the variable command
DE F F NA (••. an entry will be made in this table. It will be distinguished
by the high bit being set over the first character only.

String variables use only three of the five bytes provided: the first byte
signals the length of the string, and the next two bytes give the string's
address. This group of three bytes IS called a aesctiotor.

104 MACHINE LANGUAGE FOR COMMODORE MACHINES

There are two types of numenc variables: floating point and Integer. Float­
ing pomt variables use all five bytes; integer variables use the first two
bytes only. It's possible to extract the value from a floating point variable
and put 'It to work, but It'S not a simple procedure. A description of how
to do this IS given in AppendiX F. In contrast, It'S qurte easy to take the
value from an integer variable and use It.

Let's try an example. Type NEW, followed by A = 5 : B% = 5. This creates
two different variables: A and B%. Now go to the machine language mon­
itor. The variables should be near the start-of-BASIC, but if you Wish you
can find their exact address by examining the SOV pointer ($2A/$2B on
PET/CBM, or $2D/$2E on VIC, Commodore 64 or PLUS/4). On the
Commodore 64, we might find that the vanables start at $ 0 B0:3; to display
both of them, we type • MOB 0:3 0 B1 O. We see the floating point
vanable, A:

L;1 00 B:3 20 00 00 00

The first two bytes are the name-L; 1 is ASCII for A, and the zero signifies
no second letter-but where's the 5? Embedded within the B:3 20 00
00 00, that's where; and it's a good deal of work to extract the 5 for
further processing.

Behind this variable, we see the integer vanable, B:

C2 eu 00 05 00 00 00

Hex C2 is the ASCII for the letter B (L; 2) with the high bit set. BOis zero
with the high bit set-again. there's no second letter. The value is In the
next two bytes, and it's easy to read. The last three bytes are not used.

Which is easier for machine language to Interface with? Obviously, the
integer variable. It's often quite suitable for the program work at hand:
counting characters, setting pointers, and Similar tasks.

Exchanging Data: BASIC and Machine
Language

If BASIC and machine language wish to pass data back and forth, there
are several approaches. Perhaps the simplest is to have BASIC POKE
the values into a given location, and machine language load them as
needed; in the opposite direction, machine language will store the values
and BASIC will PEE K them.

Another method is more sophisticated. BASIC variables are stored in

LINKING BASIC AND MACHINE LANGUAGE 105

memory: why can't a machine language program go after the variables
exactly where they lie and extract their value or change them? It sounds
like a good idea.

By now, we know how to ask machine language to search for a specific
BASIC variable. Given the name, we can get the address of the first
variable from the SOV pointer and store It as an indirect address. Using
indirect, indexed addressing and stepping the Y register from 0 to 1 we
can see if the name matches. If not, we add seven to the indirect address
to take us to the next variable. If it does match, our indirect address is set
up at the start of the variable; we can set Y to 2, 3, L;, 5, and 6 and
extract the whole value. If the variable IS type integer, we need only extract
the first two bytes (Y = 2 and 3). If the variable IS not in the variable table,
we'll step our indirect address until it matches the start-of-arrays; at that
point, we know that we have missed the variable

For a small number of variables, there's a short cut. Variables are placed
into the variable table in the order in which they are defined: whichever
variable is defined first In the BASIC program will be first in the variable
table. So if we arrange for our variables to be defined in a certain order,
we can streamline our machine language search to "first variable," "sec­
ond variable," and so on, with no need to examine the names

Let's, take this one step further. If we want to use the first variable, all we
need to have is the address of the first variable somewhere in zero-page
so that we may use it as an Indirect address. We already have that ad­
dress-it's the SaV, the start-of-variables, and it's there pomtinq helpfully
at the first variable for us. By increasing the value of Y appropriately. we
can reach beyond the first variable and into the second or, for that matter, •
the third or the thirty-sixth.

Project: We plan to place the machine language program behind the end­
of-BASIC. This will vary, dependmg on the machine bemg used. The
following code shows the correct addresses for the Commodore 64. Refer
to Appendix E for other machines.

First, let's do our BASIC coding to estimate its size. We need to guess at
the location of the end-ot-BASIC so as to place our machine language
program. This program will ask machine language to take a value, V%,
and multiply it by ten. Remember to say NE W. We write the BASIC program
as follows:

100 V%=O
110 FOR J=l TO 5
120 INPUT "VALUE'''; V%

106 MACHINE LANGUAGE FOR COMMODORE MACHINES

130 SYS ++++
1L;0 PRINT "TIMES TEN" ="; V%
150 NEXT J

It seems likely that our BASIC program will occupy less than 127 bytes.
We may check this later, but it seems safe to plan to start our machine
language program at around 20 L; 9 + 127 ,or 2176 (hexadecimal BB0).
On that basis, we may change line 130 to SYS 2176. Do not try to run
the program yet.

At this point, we could save the BASIC program to tape or disk and develop
the machine language program. This would allow us to refine each of the
two parts independently. For the sake of brevity-and because our ex­
ample is an easy one and won't need touching up-we'll write the machine
code directly into memory.

Switch into the machine language monitor. Assemble the following code:

.A OBBO LDY #$02

.A OBB2 LDA ($2D), Y

.A OBBL; STA $033C

.A OBB7 STA $033E

.A OBBA LDY #$03

.A OBBC LDA ($2D) , Y

.A OBBE STA $033D

.A OB91 STA $033F

We have now extracted two bytes from the first variable, V%. The high
byte has been stored at both $03 3C and $0 33E; we'll see why in a
moment. The low byte of the value has gone to $ 033 D and $033 F.

Project for enthusiasts: You might be able to code the above more com-
pactly by more effective use of indexing. ..

.A

.A

.A

.A

OB9L;
OB97
OB9A
OB9D

ASL
RaL
ASL
RaL

$033D
$033C
$033D
$033C

We have multiplied the contents of $033D/$ 033 C by two, and then we
have multiplied It by two again. These locations now contain the original
value times four. Note that we ASL the low byte and then RaL the high
byte. Perhaps we should be checking for overflow; but let's trust the num­
ber to be within range for now.

Since we have the original number times four in $0 33D/$ 033C, we can

LINKING BASIC AND MACHINE LANGUAGE 107

add It to the original number in $033F/$ 03 3E to get the original number
times five:

· A oBAo CLC
.A oBAl LDA $033D
.A DBAL; ADC $033F
.A DBA? STA $o:3:3D
.A oBAA LDA $033C
.A DBAD ADC $o:3:3E
· A oBBD STA $D33C

Now locations $03:3 C/$ 03:3 D contain the original number times five. If
we double the number one last time, we'll have the value times ten:

.A
• A

DBB3 ASL
oBB6 ROL

$D33D
$033C

We have rnultiphed the number by ten. Now let's put It back Into the variable

.A

.A
• A
.A
.A
.A
.A

oBB9
oBBB
oBBE
oBCD
DBC2
DBCS
oBC?

LDY
LDA
STA
LDY
LDA
STA
RTS

#$02
$033C
($2D),y
#$03
$D33D
($2D),y

The numbers go back exactly the same way we drew them out. We must
be careful to keep the high and low bytes correct. Integer variables have
the high-order byte first, followed by the low-order byte; this is exactly the
reverse of the way we use 650x addresses.

We must perform one more task before wrapping up the program. We
must change the state-of-variables pointer to a location above the machine
language program. That would be $DBCB, and so we display the SOV
pointer With • MOO 2 DOD 2 E and change the pointer to

· : oD2D CB DB .

Check ... disassemble and then back to BASIC. List, and YOU'll
see your BASIC program again. There's no sign of the machine language
program, of course, but SAVE will now save everything together.

RUN the BASIC program. Enter numbers as requested. Confirm that they
are multiplied by ten.

You may recall that our machine language program does not check for

108 MACHINE LANGUAGE FOR COMMODORE MACHINES

overflow. RUN the program again, and see if you can find the highest
number that can be multiplied by ten without error. What happens at time
of overflow? Is it what you expected?

Project for enthusiasts: Can you add checks for overflow to the above
program? You must decide what to do if overflow occurs: print a message;
set the value to zero; or whatever you decide. But you shouldn't stop the
program or break to the monitor. Such a thing would upset the program
user. Your program will be longer. Don't forget, therefore, to change the
SOV pointer at $ 2D/$ 2E so that your program is safe from variables

Things You Have Learned
-Small machine language programs can be conveniently wntten and checked

out In the cassette buffer. We have been domq this dunng the exercises This
area IS not satisfactory for large programs, or programs we want to save on
tape.

-Programs can take up semi-permanent residence near the top-of-BASIC
memory: the top-of-memory pointer needs to be moved down to protect it
These programs often need a separate "setup" to place them.

-Programs can be placed behind the end-of-BASIC, which IS marked by three
consecutive zero bytes In memory. The start-of-variables pointer must be
Increased so that vanables don't wnte over the program Care must be taken
not to change the BASIC program after this ISdone.

-The VIC-20 frequently has the start-of-BASIC moved up to make room for
video Information In lower memory. As long as we're moving thiS pomter, we
might move /t a httla further and make room for some machine code.

- The Commodore 64 has an unused block of RAM at addresses $ COD0 to
$CFFF; check to see that no other programs are usmq this area.

- The start-of-variables pomter IS Intimately tied in with BASIC's SAVE and
LOAD commands. It IS extremely important to ensure that any LOAD se­
quence leaves this oomter in a safe place, so that vanables cannot wnte over
program code and thus cause program destruction.

-Machine language morntor • S (save) and. L (load) commands can be used
for staging programs In various parts of memory. Again, great care should
be taken to ensure that the pomters are sound after the use of SUch instruc­
nons.

-A BASIC program may contain LOAD commands that will bring in any of the
following: a different BASIC program, a machine language program, or data.
Again, careful handling is needed.

-BASIC vanabies are of three major types. Integer, real (floating POint), and
string. Machine language programs are capable of reading and usmq any of
them; in particular, integer variables are quite straightforward.

LINKING BASIC AND MACHINE LANGUAGE 109

-If we want, we can simplify the task of searching for BASIC vanabies by
deliberately creating them in a certain sequence.

Questions and Projects
Write a simple BASIC and machine language program set that allows
BASIC to input a number less than 256; POKE it somewhere in memory;
call machine language that will divide the number by two; PEE K It back
and print it.

A program that brings in other programs is called a "boot," or, more
accurately, a bootstrap program. Write a simple BASIC boot program to
bring in a previous program exercise that was located in a cassette buffer
(say, the program from Chapter 2 that printed HELLO), and then call it
with a SYS.

Bootstrap programs are especially popular with VIC, Commodore 64, and
PLUS/4 for bringing in chunks of data such as sprites, new character sets,
or whole display screens of information. You might like to try your hand
at setting up such a system.

Try your hand at this. I have a BASIC program that reads

100 X=5
110SYS .••
120 P HINT A

Write the machine language to be called by the SYS so that It changes
the name of the variable X to A. Caution: this may be fun, but it's dangerous
In real programs since you may end up with two variables that have the
same name.

7
Stack, USR,

Interrupt,
and Wedge

This chapter discusses:

• The stack for temporary storage

• US R: an alternative to SYS

• Interrupts: IRQ, NMI, and BRK

• The IA chips' PIA and VIA

• Infiltrating BASIC: the wedge

111

112 MACHINE LANGUAGE FOR COMMODORE MACHINES

A Brief Intermission
If you have been following along and performing the vanous projects, you
should know a great deal about the principles of machine language. You
should be capable of trying your hand at a number of small projects, and
investigating areas that may be of special Interest.

This is a good time to stop and take stock. The remaining chapters are
"icing on the cake" ... they give extra detail and fine tuning on aspects
of machine language. If you feel uncertain about any matenal covered so
far, go back Fix the fundamentals firmly in focus before you proceed and
plunge Into ponderous points of Interest.

Temporary Storage: The Stack
The stack is a convenient place to put temporary information. It works like
a stack of documents: you may drop (or "push") an item onto the stack;
when you take an Item back again (or "pull"), YOU'll get the last one that
you put there. Formally, it's called a last-In, first-out (LIFO) discipline; it's
natural and easy to understand.

The Important rule to keep in mind about the stack is: "Leave these prem­
ises as clean as when you found them." In other words, if you push three
Items onto the stack, be sure you pull those three items back off again.
Don't ever branch away and leave the stack littered.

The stack is in memory at page 1. The stack pointer (S P) IS one of the
Items displayed In the register. To look for the information on the stack,
you must add $ 0 100 to the value to get the next available stack position.
As an example, if the SP shows a value of $F8, the next item to go on
the stack will go into address $ 0 1 F 8; the moment we put an item onto
the stack, the pointer will move down so that it becomes $ F7 .

As the stack is filled, the stack pointer goes down. As the items are brought
back out of the stack, the stack pointer goes up. A low value in the stack
pointer means a full stack. a value below $ L;0 signals trouble.

The 650x Chip Itself ccesrst give the stack any special treatment. If a
machine language program-probably because of a coding error-wanted
to push one thousand items onto the stack, that would be OK as far as
the microprocessor was concerned. The stack would never leave page 1:
as the stack pomter went down beyond zero, it would wrap around to $ FF
and keep gOing. You'd never get those thousand distinct items back, of
course. Similarly, if a program wanted to pull a thousand items from the

STACK, USR, INTERRUPT, AND WEDGE 113

01FF

01FE

01FD

01FC

01FB

01FA

01F9

01F8

P USED

I F8 I USED•
USED

USED

USED

USED

USED

FREE

NEXT ITEM

S

PUSHED WILL GO
TO ADDRESS $01 F8

NEXT ITEM
PULLED WILL COME
FROM ADDRESS $01F9

Figure 7.1

stack-whether or not they had been put there before-the processor
would happily move the stack pointer round and round page 1, delivering
bytes. There would only be 256 different values delivered, of course, but
the processor doesn't care.

Within the BASIC environment, the stack pointer stans around $ F A (the
first item will go into the stack at address $01FA), and goes down from
there. When the stack pointer goes below about $L; 0, BASIC will signal
OUT OF MEMORY. That's over 160 available locations on the stack,
plenty of room for most applications

PH A (push A) and PL A (pull A)
How may we use the stack? Suppose we have a value in the A register
and in a moment we will want to use it. First we need to print something,
and the character to be printed must be loaded into the A register How
can we put away the value In A and bring it back later? We could slip it
into another register with a transfer instruction (T AX or TAY) and bring
It back from there; or, we could store It Into memory and load it back.
Alternatively, we could PUSH the A register (PHA) to the stack and PULL
(PLA) the value back later.

Again, let's do an example. Suppose the A register contains 5, and the

114 MACHINE LANGUAGE FOR COMMODORE MACHINES

stack pointer is at $F:3. If the program says PHA, the value 5 is stored
at address $ 01 F:3, and the stack pointer changes to $ F 2. Later in the
program, we encounter the Instruction PLA: the stack pointer moves back
to $F:3 and the value 5 is read from address $ 0 1F:3 and placed into
the A register.

It's a handy way to put away a value in A for a moment.

PH P (push processor status) and PLP
Sometimes when we are wntlng a program, we want to test for a condition
now but act on the result of that test later. We can arrange to do this by
putting the flags away for the time being, and then bringing them back
when we want to test the flags. We use the instruction PHP (push the
processor status word) to place all the flags on the stack, and PLP (pull
the processor status word) to restore the flags to the status register (S R).

Why would we need to do this? Perhaps an example will illustrate. Suppose
we are reading a file of customer purchases, and as we input a data item,
we discover that this is the last one-it's the end of the file. That means
that we want to close the file and summanze the customer's actlvlty­
though not Just yet. First, we must handle the item of information that we
have input. So we can "stack" our end-of-file information, handle the last
record in the same way as previous records, then bnng back the status
to see whether it's time to close the file and print the totals. We'll be using
PHP and PL P for exactly this kind of task in the next chapter

PHA and PHP both put exactly one item onto the stack; PL A and PL P
pull one item. There are other commands that handle more than one stack
location.

JSR and RTS
We know these commands. What are they doing here?

When a J SR command is executed, the return address is placed onto
the stack. When an RTS command IS executed, the return address is
picked from the stack, and that's where the program returns to.

More precisely, when a J SR occurs, the processor places onto the stack
the return address minus one as two bytes; the high-order part of the
address goes to the stack first. When an RTS IS encountered, the pro­
cessor takes the two bytes from the stack, adds one, and then proceeds
from the address so formed

Example: If address $ 0:35 2 contains the command J SR $ 0 :3 :3 C, the

STACK, USR, INTERRUPT, AND WEDGE 115

following events occur. The return address would be $ 0355, the instruc­
tion directly behind the JSR; but an address of $035L; is calculated­
the 03 goes to the stack first, and the 5 L; below it. The subroutine at
$ 033 C now starts to run. Eventually, it encounters an RT S. The values
5 L; and 03 are pulled from the stack and formed Into address $ 035 L;;

one IS added, and the processor resumes execution at address $0355.

You hardly need to know this. We have been using subroutines for some
time without knowing that all this happened. But sometimes, it's useful to
be able to examine the stack, asking, "Who called this subroutine?" The
answer is there.

Interrupts and RTI
There are three types of Interrupt: IRQ, NMI, and the BRK instruction.
IRQ (Interrupt request) and NMI (non-maskabte interrupt) are pins on
the 650x. A suitable signal applied to the appropriate pin will cause the
processor to stop what it's doing and run an Interrupt routine. The BRK
instruction might be tnouqnt of as a fake Interrupt-It behaves In a similar
manner to IRQ.

When an interrupt signal occurs, the processor completes the instruction
It is currently working on. Then It takes the PC (the program counter, which
contains the address of the next instruction) and pushes It onto the stack,
high byte first. Finally, it pushes the status register to the stack. That's a
total of three bytes that go to the stack.

The processor then takes ItS execution address from one of the following
locations:

IRQ or BRK-from $FFFE and $FFFF

NMI -from $FFFA and $FFFB

Whatever value is found In these pointers becomes the Interrupt execution
address' the processor starts to run at this address. Eventually, the pro­
cessor encounters an RT I instruction. The status register and the PC
address are taken from the stack, and the interrupted program resumes
where it left off.

Note that the address on the stack is the return address. This differs from
J S R/RT S, where the return address minus one is stored.

On all Commodore machines, the IRQ strikes about sixty times a second.
The NMI is unused (but available) on PET/CBM; it isn't available in the

116 MACHINE LANGUAGE FOR COMMODORE MACHINES

264 series; and on VIC-20 and Commodore 64, it is used for the RE­
STORE key and for RS-232 communications.

The BRK command can be dlstlnquished from the IRQ signal by means
of a bit In the status register. Bit L; is the B, or break flag: if it's set. the
last interrupt was caused by a B RK and not by an IRQ.

Later, we will discuss using the Interrupt routines for our own programming.
By the time we can "catch" the Interrupt, several more things will have
been pushed to the stack: the A, X, and Y registers. This is done by a
ROM program, not the processor; but it will prove handy since we can use
these registers, safe In the knowledge that they will be restored at the end
of the interrupt.

Mixing and Matching
The processor uses the stack mechanically. If we know how to manipulate
the stack, we can use it for surprising things. For example, an RT Scan
be given even though there was no subroutine call; all we have to do is
prepare the stack with the proper address. Try to figure out what the
following code will do:

LDA #$2L;
PHA
LDA #$68
PHA
RTS

This coding is identical to J MP $ 2 L; 69. We have placed a "false return
address" onto the stack, and RT S has removed It and used it. This may
not seem very useful, since we could easily have coded the J MP $ 2 L; 69
directly. But look at the following code:

LDATABLE1, X
PHA
LDATABLE2, X
PHA
RTS

The prlnctole of coding is the same, but now we can "fan out" to any of
several different addresses, depending on the value contained In X.

USR: A Brother to SYS
We have used SYS a number of times. It means, "Go to the address
supplied and execute machine code there as a subroutine." USR is similar

STACK. USA. INTERRUPT, AND WEDGE 117

in many respects: it means, "Go to a fixed address and execute machine
code there as a subroutine." The fixed address may be POKEd into the
USR vector. On most Commodore machines this is at addresses 1 and
2; on the Commodore 64, it's at addresses 785 and 786 (hex 0311
and 0312).

There's another difference that seems important at first. SYS is a com­
mand; USR is a function. You cannot type the command USR (0)-all
you'll get is SYNTAX ERROR. You must say something like PRINT
USR (0) or X = USR (0), where USR is used as a function. It seems
as If SYS was meant to connect to action programs, and USR was meant
to link to evaluation programs. In reality, the difference in usage is not that
great.

Whatever value is within the parentheses-the argument of the USR func­
tion-is computed and placed into the floating accumulator before the
USR function IS called. The floating accumulator IS located at $ 5E to $ 63
in most PET/CBM computers, and at $ 61 to $ 6 6 in VIC-20, Commodore
64, and PLUS/4. Floating-point representation is complex, as we have
hinted In Chapter 6. Most beginning programmers prefer to leave this area
alone and pass values through memory POKEs or integer variables.

When the USR function returns control to BASIC, the function value will
be whatever is In the floating accumulator. If we have not modified it, this
will be the same as the argument,so that In many cases PRI NT USR (5)
would print a value of 5.

Interrupts: NMI, IRQ, and BRK
We have mentioned the mechanical aspects of interrupt Now let's look
at how to use the interrupt for simple jobs.

The IRQ connects through a vector in RAM; if we change the address
within the vector, we Will change the address to which the interrupt goes.
The interrupt vector is located as follows.

Most PET/CBM: 0090-0091 (declmaI1L;L;-1L;5)

VIC/Commodore 64: 031L;-0315 (decimal 788-789)

Before we change this vector, we should realize something quite important:
the interrupt does a lot of work sixty times a second. It updates the clock,
Checks the RUN/STOP key, gives service to the cassette motors, flashes
the cursor, and handles keyboard input. If you thoughtlessly change the
IRQ vector. it will stop doing these things: and it's hard to handle a

118 MACHINE LANGUAGE FOR COMMODORE MACHINES

computer when It has a dead keyboard. You could try to program all these
functions yourself; but there's an easier way.

Suppose we use the vector to temporanly divert to our own program, and
at the end of our program we allow the interrupt to continue with whatever
it was going to do anyway. That way, our program would get service sixty
times a second, and the usually interrupted jobs would still get done.

It's not hard to do, and we can achieve many interesting effects by diverting
the interrupt. Remember that the interrupt runs all the time, even when
no BASIC program is running By playing with the interrupt, we can make
a permanent computer system change that is In effect even when no
programs are in place

Care must be taken in changing an Interrupt vector. Suppose we are
beginning to change the two-byte address; we have changed the first byte,
and suddenly, the interrupt strikes. It will use an address that's neither
fish nor fowl: half is the old address, and half IS the new In such a case,
It'S likely that the interrupt will become confused; and if the Interrupt is
confused, the whole computer is In trouble. We must find a way to prevent
interrupt from striking when we change the vector

We could do this in machine language: before a routine to change the
IRQ vector, we could give the instruction SE I (set Interrupt disable). After
this instruction IS given, the IRQ cannot interrupt us. We may set the
vector and then re-enabte the Interrupt with the Instruction CLI (clear
interrupt disable) Be sure that you do this, since the interrupt routine
performs many vital functions. We may say that we have masked off the
interrupt in the time period between execution of SEI and CL I. The NMI
Interrupt, however, is non-maskable, and SEI will have no effect on it.

There's a second way of turning off the Interrupt-that IS, by shutting off
the interrupt source Something makes an interrupt happen-it might be
a timer, it might be an external signal. or it might even be a screen event.
Whatever it is, we can get to the source of the Interrupt and disconnect
it.

Almost all Interrupt signals are delivered through an I A (interface adaptor)
chip; and these chips invariably allow the path of the Interrupt signal to
be blocked ternporanly. We'll discuss the IA chips later, for the moment,
the normal interrupt signals can be blocked with the following actions:

Commodore 64 Store $7F Into address $DCOD (POKE 56333,127)
to disable; store $81 Into the same address (POKE 56333,129) to
re-enable.

STACK, USR, INTERRUPT, AND WEDGE 119

VIC-20: Store $7F into address $912E (POKE 37166,127) to dis­
able; store $ C0 into the same address (POKE 37166, 192) to re­
enable.

PET/CBM: Store $3C into address $E813 (POKE 59L; 11,60) to dis­
able; store $ 3 D into the same address (P0 KE 59 L;11 , 61) to re-enable.

It goes without saying that the above POKEs should not normally be given
as direct commands; the first POKE in each case will disable the keyboard
(among other things), and you won't be able to type the restoring POKE.

A warning about interrupt programs: changing the I RQ vector is likely to
make it difficult to load and save programs. You may need to put the vector
back to its original state before you attempt any of these activities.

An Interrupt Project
The following project is written for the Commodore 64 only. The equivalent
coding for PET/CBM may be found in Appendix E.

Let's write the coding for the interrupt itself. Sixty times a second, we'd
like to copy the contents of address $ 91 to the top of the screen. Here
goes:

.A
• A
• A

033C
033E
03L;1

LDA
STA
JMP

$91
$0£;00
($03AO)

Why the indirect jump? We want to "pick up" the regular interrupt routine,
but we don't know where it is yet. When we find the address, we'll put it
into locations $ 03 A0/$ 03 A1 so that the Indirect jump will link things up
for us.

Now let's write the routine to enable the above interrupt coding. First, let's
copy the interrupt address from $03 1 L; into the indirectaddress at $ 03 A0:

• A
• A
• A
• A

03L;L;
03L;7
03L;A
03L;D

LDA
STA
LDA
STA

$031L;
$03AO
$0315
$03A1

Now we are ready to put the address of our own interrupt routine (at
$033C) into the IRQ vector:

.A 0350 SEI

.A 0351 LDA #$3C

.A 0353 STA $031L;

120 MACHINE LANGUAGE FOR COMMODORE MACHINES

• A
• A
• A
• A

0356
0358
035B
035C

LDA
STA
CLI
RTS

#$03
$0315

We will enable the new interrupt procedure by a SYS to $ 0 3 L;L;, above
(SYS 836). Before we give that command, let's write the coding to put
everything back'

• A 035D SEI

• A 035E LDA $03AO

• A 0361 STA $031L;

• A 036L; LDA $03A1

• A 0367 STA $0315

• A 036A CLI

• A 036B RTS

As you can see, we put the original address back, copying it from the
indirect address area where it was saved.

Once this code is in place, disassembled, and checked, you may return
to BASIC. SYS 836 Will Invoke the new Interrupt code; SYS 861 Will
turn it off. Note that the character (a copy of the contents of address $ 91)
appears at the top left of the screen. The character seems to be affected
by pressing some keys; can you establish how many keys are involved?

Some models of Commodore 64 may print blue-on-blue when screen
memory is POKEd, as we are doing now. If so, the character may not
always appear in the left-hand corner. Project for enthusiasts: Fix this
problem by storing a value Into the color nybble table at address $D8 00.

The I AChips: PI A, VI A, and CI A
The interface adaptor (I A) chips are richly detailed. To understand them
fully, you'll need to read the specifications in some detail. Here, we'll give
their main functions.

PI A stands for peripheral Interface adaptor, VI A for versatile interface
adaptor, and CI A for complex Interface adaptor. There is speculation
among Commodore owners that the next interface chip will be called "FBI."

The functions performed by an interface adaptor are:

1 Event latching and interrupt control We havenoted that these chips can be
manipulated to block the interrupt signal In fact, theydo morethan "gating"
the signal-allowing It through to the processor's IRQ tnggeror alternatively

STACK, USR, INTERRUPT, AND WEDGE 121

blocking It. They also often latch a signal Into an event flag, sometimes called
an tnterrupt flag.

Latching ISImportant A triggering event may be bnet, so short, In fact, that
the onqmal signal causing Interrupt might go away before the processor can
look at It An I A event flag locks in the signal and holds It until the program
turns It off.

NEAR liTHE IA CHIPS. II

I
COMPUTER

ACKNOWLEDGEMENT

ON OFF
INTERRUPTING-----.-J~ •
EVENT ---.-

EVENT
FLAG

Figure 7.2

If an event has time importance-that is, if the event's timing must be ac­
curately measured, or If the event flag must be cleared quickly so as to allow
for the detection of a new event-we may link the event flag to the interrupt
line If we do so, the occurrence of the event will cause the processor to be
Interrupted. We must wnte coding linked to the Interrupt routines to detect
trns event, clear the flag, and do whatever processing IS needed We set up
this link to the interrupt line by means of a register usually called the interrupt
enable register.

On the other hand, the event might not be particularly time cntical. In this
case, you can simply check the appropnate event flag from time to time.
When the event occurs, you may then clear the flag and handle It. No Interrupt
IS needed. Even when an event flag IS not connected to the Interrupt, it may
be called an interrupt flag; don't let the terminology confuse you.

Whether or not you handle these events through interrupt sequences, it's
Important to know that It'S your Job to turn the event flag off. The flag Will
hold the signal until it's turned off-and It usually won't turn off unless your
program takes some action to do this.

The vanous flags are triggered by timers or external signals You can read
a flag's state by checking the mterrupt flag register. Several flags will be
packed together InthiSregister; as always, you Will use the logical operators­
AND, ORA, or EOR-to extract or modify the particular flags In which you
are interested. You may also use the IFR (interrupt flag register) to clear
the flags

2. Timing. Certain addresses within the I A chip are often assigned as "timers."
These timers count down; in other words, if we place a value of $ g 7 into a

122 MACHINE LANGUAGE FOR COMMODORE MACHINES

timer and lookat the value Immediately, we mightfind that it has gonedown
to $ g3 Timers come in many shapes and sizes-again. check the chip
reference for details-but most of them toggle an interrupt flag when they
have counted down to zero. As discussed, you may choose whetheror not
this flag will really cause an interrupt signal.

3. Input/output Certain addresses within the I Achip are connected to "ports,"
whichextendoutsidethe computer Thus, the computer can detect external
events or control external devices Output srqnals are usually latching In
nature: in other words, a store command might be taken to mean, "turn on
port 5 and leave it on."

Tips on I A Chips
Many addresses within an I A chip have a different meaning, depending
on whether they are being written to (stored) or read (loaded). Watch for
this when you are reading the chip specifications.

Often, the action required to turn an interrupt flag off is odd. It looks like
the kind of thing you should do to turn the flag On. Keep In mind that a
flag may be turned on only by the external activity to which it is linked.
So, although It may seem odd to turn the flag in bit zero off by storing a
value of 1 (which would seem to want to turn bit zero on), don't worry.
You'll get used to it.

The IE R (interrupt enable register) is often a source of problems. In many
cases, the high bit of a value we are storing has a special meaning: if it's
set, the other bits will cause the appropriate interrupt connections to turn
on; if it's clear, the other bits will cause the appropriate interrupt connec­
tions to be turned off. You may recall that we shut off the Commodore 64
interrupt by storing $7F into address $DCOD. This may seem odd: we're
storing a binary value of $ 01111111, which might seem to be turning
bits on. In fact, the high bit of zero signals that all the remaining bits
are"turn off" signals: so the value causes all interrupts to be blocked.

Infiltrating BASIC: The Wedge
In zero-page, there's a subroutine that the BASIC interpreter uses fre­
quently to obtain information from your BASIC program. It's used to get
a character from your BASIC program, and to check it for type (numeric,
end-of-command, or other).

The routine is normally entered at either of two points: CHRGET, to get
the next character from your BASIC program; and CHRGOT, to recheck
the last character. The subroutine is located at $ 0 07 0 to $ 0 0 8 7 in most

STACK, USR, INTERRUPT, AND WEDGE 123

PET/CBM computers, and at $ 0 073 to $ 0 0 8 A In VIC-20 or Commodore
64. You may disassemble It there if you wish. The coding is described
below.

Since CHRGET IS in different locations, depending on the machine, the
following coding IS shown with symbolic addresses That IS, instead of
showing the hex address value, the address is given a name, or symbol.
Thus, CHRGOT might represent address $0079, CHRGOT + 1 would
represent address $007 A, and so on.

CHRGET INC CHRGOT + 1
BNE CHRGOT
INC CHRGOT + 2

CHRGOT LDA xxxx

This subroutine IS self-modifymg. that is, it changes part of Itself as it runs.
That's not always a good programming technique, but it works well here.

The first part of the subroutine adds one to the address used by instruction
CHRGOT. This is a standard way of coding an address increment: add
one to the low byte of the address; if that makes it zero, the low byte must
have gor-,e from $ FF to $ 00, in which case, add one to the high byte.

The address loaded by CHRGOT IS Within your BASIC program, or within
the input buffer if you have just typed a direct command. Before we follow
the next piece of code. let's look at our objectives:

1. If we find a space, go back and get the next character

2. If we find a zero (BASIC end of line) or a colon (hex $3A, BASIC end-of­
statement), we Wish to set the Z flag and eX11.

3. If we find a nurnenc, we Wish the C flag to be clear; If we do not find a
numeric, we Wish the C flag to be set

CHRGOT LDA xxxx
CMP #$3A
BCS EXIT

If the character is a colon ($3 A), we'll leave the subroutine with the Z
flag set. That's one of our objectives. Here's pan of another one: if tne
character is $ 3 A or higher, it can't possibly be an ASCII numeric­
numerics are in the range of $30 to $ 39.

CMP #$20
BEQ CHRGET

If the character is a space, we go back and get another character.

124 MACHINE LANGUAGE FOR COMMODORE MACHINES

The following coding looks rather strange, but it's correct. After the two
subtractions, the A register will be back where it started:

SEC
SBC #$30
SEC
SBC #$DO

After this, the A register is not changed; but the C flag will be set if the
number is less than $ 3 0, which means that it is not an ASCII numeric.
Additionally, the Z flag will bet set If A contains a binary zero. We have
met all our objectives and may now return:

EXIT RTS

Breaking Into BASIC
Since BASIC comes to tnis subroutine often, we can Infiltrate BASIC by
changing this subroutine. Extra coding in this area is often called a "wedge"
program. We must be very careful:

• We must leave A, X, and Y unchanged, either we must not use them or we
must save them away and bnng them back.

• We must not interfere with the flags.

• We must be careful not to slow BASIC down too much.

This is a tall order. The last requirement is often helped by two techniques:
use the wedge to implement extra commands in direct mode only; and
make use of a special character to identify our special commands.

In PET/CBM, we may choose to modify this subroutine in either of two
places: near the beginning, In CHRGET; or after the LDA, in CHRGOT.
Each location has its advantages. In the CHRGET area, we don't need
to preserve the A register or status flags, since CHRGOT will fix them up
for us. In the area followmq CHRGOT, we have the character we wish to
examine in the A register.

But in either case, it's an exacting job.

VIC-20 and Commodore 64 have made the job much more easy by pro­
viding a vector at address $ 0 3 0 8/$ 0 309 that will give us control of the
computer, if we wish, immediately before each BASIC command is exe­
cuted. We still need to use due care, but we have much more latitude.

Tne address oftne instruction at CHRGOT IS often referred to as TXTPTR,
the text pointer. This address always points to the BASIC command being

STACK, USR, INTERRUPT, AND WEDGE 125

executed at the moment. If we want to participate in reading BASIC, we
must learn to use TXTPTR to get the information-usually by means of
indirect, indexed addressing-and to leave this address pointing at a suit­
able place when we return control back to the normal BASIC handling
programs.

Project: Adding a Command
let's add a simple command to the VIC and Commodore 64 by using the
$ 0 3 0 B vector. The ampersand (&) character Isn't used in most BASIC
programs, so we'll make It mean this: whenever you see the code II &II

print ten astensk (*) characters to the computer screen, followed by a
carnage return.

As with our interrupt program, we'll copy the old address from $ 030 [\ /
0309 into an indirect address location, so that we can link up with the
normal computer routines as necessary.

An important pomt: the vector will give us control, if we want it, with
TXTPTR posnloned Immediately before the next instruction. When we
return control to BASIC, we must be sure tnat TXTPTR IS Similarly po­
sitioned.

Here's our instruction "intercept":

• A 033C LDY #$01

We're going to use Indirect, indexed addressing to "look ahead" at the
instruction. Let's look, usmq TXTPTR as an indirect address:

.A 033E LDA ($7A) ,Y

Since Y equals one, we'll look just beyond the address to which TXTPTR
is pointing:

• A 03L;0 CMP #$26
• A 03L;2 BEQ $03L;7
• A 03L;L; JMP ($03AO)

If the character is an ampersand, we'll branch ahead to $ 03 L; 7. If not,
we'll connect through the indirect vector to the regular BASIC interpreter
code:

• A 03L;7 JSR $0073

We may call CHRGET to move the pointer along. Now TXTPTR points
squarely at the ampersand character. We are ready to print ten asterisks:

#$00
#$2A
$FFD2

$0308
$03AO
$0309
$03A1
#$3C
$0308
#$03
$0309

126 MACHINE LANGUAGE FOR COMMODORE MACHINES

.A 03L;A LDY

.A 03L;C LDA

.A 03L;E JSR

.A 0351 INY

.A 0352 CPY #$OA

.A 035L; BCC $03L;E

.A 0356 LDA #$OD

.A 0358 JSR $FFD2

.A 035B JMP $03L;L;
The above code prints an asterisk ($ 2 A) ten times and then prints a
RETURN ($OD). It then goes to the regular BASIC interpreter, which will
look behind the ampersand character for a new BASIC command.

Now we need to set up the link to our program. We'll wnte the code to do
this starting at $035E, so that SYS 862 will put the new command
(ampersand) into effect:

.A 035E LDA

.A 0361 STA

.A 036L; LDA

.A 0367 STA

.A 036A LDA

.A 036C STA

.A 036F LDA

.A 0371 STA

.A 037L; RTS
When you have completed and checked the code (remember this is for
VIC and Commodore 64 only), return to BASIC. Type NEW and write the
following program:

100 PRINT 3 L; :&:PRINT 5+6
110 &
120 PRINT "THAT I S ALL"

If you type RUN, you will get a SYNTAX ERROR in line 100. We have
not yet implemented our "ampersand" command. Type the command SY S
862. Now type RUN again. The ampersand command obediently prints
ten asterisks each time it is Invoked.

Infiltrating BASIC isn't an easy job. But it can be done.

Things You Have Learned
-The stack is located In page 1. from $ 01FF moving down to $ 01 00. It IS

used for holding temporary Information. A program maypush Information to

STACK, USR, INTERRUPT, AND WEDGE 127

the stack, and then pull It back later The last item that has been pushed onto
the stack will be the first item to be pulled back off

-Great care must be taken to ensure that your program pulls exactly the same
number of items back from the stack as It pushed In particular, be sure that
a branch or Jump does not Inadvertentlyomit a needed stack activity. A badly
handled stack is often fatal to the program run

-PHA pushes the contents of A to the stack; PLA pulls from the stack into
the A register. These two commands are often used to temporanly save A.
PHP pushes the status register (S R); PLA pulls It back.These two commands
are often used for "deferred decisions."

-JS R pushes a return address (minus 1) to the stack; RTS recalls this ad­
dress. We may use J SRand RTS Without needing to know the role the stack
plays, since the two commands take care of the details for us.

-Interrupts, includIng the BRK instruction, push three items to the stack; RTI
brings them back so that the interrupted program may resume

- USR IS a function, as opposed to SYS, which is a command. USR goes to
a preset address, takes a numenc argument, and can return a value. In
practice, USRand SYS are used in quite similar ways.

-Commodore ROM systems contain coding for the Interrupt sequences that
cause the data registers-A, X, and Y-to be pushed to the stack, and a
branch to be taken through an indirect address that the user can modify.
Since interrupt is active virtually all the time, It may be used to create activities
that are active even when no BASIC program IS running.

-The various I A chips-PI A, VI A, and CIA-perform many different func­
tions, Including: recording events In latching flags and controlling Interrupts,
timing; and connecting Input/output ports. The detailed specification sheets
must be studied for these rather complex details.

-A subroutine called CHRGET IS used frequently by the BASIC Interpreter
when a BASIC program IS running. We may modify or add to thiS subroutine
In order to add to or modify the BASIC language Itself

Questions and Projects
If you redirect the interrupt vector to your own machine language program,
you can copy all of zero page to the screen. Use Il1dexing; start X at zero;
and walk through the whole of zero page, loading the memory contents
and storing (indexed again, of course) to the screen. Don't forget to connect
up your code to the reqular Interrupt entry address.

You'll get a fascinating screen. There will be timers going, and as you
type on the keyboard you'll see various inner values changing around.
Enjoy the view.

It's sometimes suggested that a good way to pass information to a sub-

128 MACHINE LANGUAGE FOR COMMODORE MACHINES

routine is to push the information onto the stack and call the subroutine.
The subroutine can pull the Information from the stack. What's wrong with
this suggestion?

The above suggestIOn can be implemented. but it takes a lot of careful
stack work. You might like to work through the logic needed to do this.

There are some utility programs which, when placed in the computer,
allow a listing to be "scrolled." In other words, if the screen shows BASIC
lines 250 to L; 60, the user can take the cursor to the bottom of the screen
and continue to press the cursor-down key. New BASIC lines (followi'1g
L; 6 0) will then appear. This IS not an easy thing to code, but here's the
question: do you think that this feature IS done with a SYS command, a
wedge, or an interrupt technique? Why?

A SYS command from BASIC is like a subroutine call; so it must place
an address on the stack to allow RTS to return to BASIC. Take a look at
the stack and see if you can determine what address is used to return to
BASIC on your machine.

1
;

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I

IJ

Timing,
Input/Output,

and
Conclusion

This chapter discusses:

• How to estimate the speed of your program

• Input and output from tape, disk, and pnnter

• Review of Instructions

• Debugging

• Symbolic assemblers

• Where to go from here

131

For many applications, machine language programs seem to run instan­
taneously. The speed of the 650x is much greater than that of other
devices, including the human user. The machine language program usually
ends up waiting for something: waiting for the keyboard, waiting for the
printer, waiting for the disk, or waiting for the human to read and react to
information presented on the screen.

Occasionally, it may be important to get fairly precise timing for a machine
language program. If so, the following rules of thumb may be kept in mind:

-All timing estimates are crude If the Interrupt routines are stili active. The
effect of Interrupt on timing can be crudely estimated by adding 10 percent
to the running time.

-Remember to allow for loops. If an Instruction within a loop IS repeated ten
times, its timing will need to be counted ten times.

-The "clock speed," or memory cycle speed, of most Commodore machines
is roughly 1 rrucrosecond-e-one millionth of a second. The precise number
vanes from one machine to another. and also vanes between North Amenca
and other regions.

-Most instructions run at the fastest Imaginable speed. Count the memory
cycles, and that's how fast the Instruction will execute. For example,
L DA # $ 0D will need two memory cycles Just to get the instruction-and
that's how fast It runs L DA $ 0 5 0 0 , X will usually take four memory cycles.
three to get the Instruction, and one to fetch the data from page 5 Exceptions'
no Instruction runs In less than two cycles; and shift/rotate instructions, IN CI
DEC, and JSR/RTS take longer than you might expect by this rule.

-Branches time differently, depending on whether the branch IS taken (three
cycles) or not taken (two cycles)

-When a page boundary is crossed, the computer needs an extra cycle to do
the anthrnetrc, If the program branches from $ 0 FE L; to $102:3, there will
be an extra cycle; If we LDA $2L;E7 ,Y, there will be an extra cycle If Y
contains a value of $19 or greater.

Detailed timing values can be obtained from most tables of instructions.

Let's take a simple routine and estimate its timing. The following program
logically ANDs the contents of 100 locations from $17 EO to $1 B£; £; :

MACHINE LANGUAGE FOR COMMODORE MACHINES

81

In

TIMII

#$00
#$00
$17EO,X

LDX
LDA
AND
INX

033C
033E
03£;0
03£;3

132

Timing

!

Switching Output

Input and Output

133

#$6£;
$03L;0

CPX
BCC
RTS

03£;5
03£;7
03L;9

We use subroutine CHKOUT at address $FFC9 to switch output to a
logical file. When we want to restore output to the screen, we call sub­
routine CLRCHN at $FFCC. This is not the same as an OPEN and

We may work out timing as follows'

LDX #$DD-executed once' 2

LDA #$DD-executed once' 2
AND $17ED, X: 32 times at 4 cycles 128

68 times at 5 cycles (page cross) 340

I NX-100 times at 2 cycles 200

CPX #$6L;-100 times at 2 cycles. 200

BCC-99 times at 3 cycles 297

1 time at 2 cycles (no branch) 2
RTS-6 cycles. 6

Total time: 1171 cycles, or slightly over one thousandth of a second. We
might add 10 percent to allow for the effects of interrupt; and since this is
a subroutine, we could also add the extra SIX cycles needed to perform
the JSR.

Where timing is critical, the interrupt could be locked out with SE I Be
careful: it's seldom necessary, and is potentially dangerous.

We know that calling the kernal routine CHROUT at $FFD2 will send an
ASCII Character to the screen. Wemay also redirect output to any logical
file.

We have seen that we may obtain Input from the keyboard buffer into the
A register by calling kernal routine GETIN at $FFEL;. We may also
redirect the input so that we draw information from any logical file.

The same commands-$FFD2 and $FFEL;-still perform the input and
output. But we "switch" either of them to connect to a chosen device-or
more accurately, a chosen logical file. The file must be open; we may
switcn to the file, and then switch back to normal I/O as we wish.

TIMING, INPUT/OUTPUT. AND CONCLUSION

snucuons,

ore machines
eose number
orth America

9program
$18£;£;:

a cycle to do
3, there will
ra cycle if Y

t the memory
or example,
truction-and
mory cycles:
.Exceptions:
ctions, INC/
rule.

taken (three

for a machine
kept in mind:

till active. The
ing 10 percent

s repeated ten

E MACHINES

l to run lnstan­
I that of other
rogram usually
~altlng for the
,d and react to

I

KEYBOARD-, INPUT OUTPUT
I PROGRAM - SCREEN- - -

MACHINE LANGUAGE FOR COMMODORE MACHINES

a

TIN

II
OUTPUT
DEVICES

CHKOUT ($FFCS)
SETS THE

OUTPUT SWITCH

CLRCHN ($FFCC)
RESTORES BOTH

SWITCHES TO "NORMAL"

Subroutine:
Address
Action.

CHKOUT
$FFCCl
SWitches the output path (used by CHROUT, $FFD2)
so that output is directed to the logical file specified In the
X register. The logical file must previously have been
opened.

The character SUbsequently sent by $FFD2 IS usually ASCII (or PET
ASCII). When sent to the printer, special characters-text/graphics,
Width-will be honored in the usual way. Similarly, disk commands can
be transmitted over secondary address 15 if desired; a logical "com­
mand channel" file must be previously opened.

Registers: Registers A and X will be changed dunnq the CHKOUT
call. Be sure to save any sensitive data in these registers before calling
CHKOUT.

Status: Status flags may be changed. In VIC and Commodore 64, the
C (carry) flag indicates some type of problem with connecting to the
output channel.

CLOSE-we simply connect to the file and disconnect, and we can do
this as many times as we want.

Figure 8.1

((
INPUT

DEVICES

CHKIN ($FFC6)
SETS THE

INPUT SWITCH

To swrtch output to logical file 1, we would need to follow these steps:

134

135

Subroutine.
Address:
Action:

CLRCHN
$FFCC
Disconnects Input and output from any logical files and
restores them to the "default" Input and output channels,
keyboard and screen. The logicalfiles are not closed, and
may be reconnected at a later time.

Registers: Registers A and X will be changed during the CLRCHN
call. Be sure to save any sensitive data In these registers.

Status: Status flags may be changed. In VIC and Commodore 64, the
C (carry) flag Indicates some type of problem with output.

If we wanted to print the message HI on the printer, we might code as
follows.

First, we'll open the printer channel in BASIC. Let's use logical file num­
ber 1:

100 OPEN 1, L;

110 SYS 828
120 CLOSE 1

If you don't have a printer, you may open the file to cassette (OPEN
1,1,2) or to disk (OPEN 1,8,3, "0: DEMO, S, WII). The machine
language program won't care: it will send to logical file number 1 no matter
what it is; it might even be the screen (OPEN 1,3). Let's write the coding:

The logical file concept is important. I may send to any destination­
cassette, printer, disk, or screen-without knowing which device is in­
volved. I send the characters on their way and the operating system sees
that they are delivered wherever they need to go.

This simplifies the machine language programmer's job. It's a Simple task
to send the characters to some logical channel; the programmer does not
need to take special coding action depending on which device is involved.

1 Load a value of 1 Into X (LDX #$01)

2. JSR to address $FFC9.

Once the output is switched, we may send as many characters as we
wish usmq subroutine $FFD2. Eventually, we must disconnect from the
logical file and return to our default output, the screen. We do this by
calling subroutine CLRCHN at address $FFCC.

Output Example

TIMING, INPUT/OUTPUT, AND CONCLUSION

CHKOUT
fore calling

T
S

FFCSI
E
ITCH

ese steps:

, $FFD2)
cified in the
have been

SCREEN

II (or PET
t/graphics,
mandscan
ical "com-

d we can do

ore 64, the
ting to the

MACHINES

TIMINI

Subroutme
Address
Action.

CHKIN
$FFC6
SWitches the Input path (used by GET, $FFEL;) so that Input is
taken from the logical file specmed In the X register The logical
file must previously have been opened

The character subsequently obtained by $FFEL; Into the A register IS usually
ASCII(orPETASCII) A binaryzeroreceived fromafileusuallyrepresents exactly
that: an Inputcharacterwhose value IS CHR$(D), this IS different from keyboard
GET where a binary zero means "no key pressed" When accessing a file, ST
(address $ 9 0 for VIC and Commodore 64, $ 9 6 for most PET/CBM) IS used
for ItS usual functions of signalling end-of-file or error. Similarly, disk status in­

formation can be received oversecondary address 15 Ifdesired, a logical "com­
mand channel" file must be previously opened.
Registers: Registers A and X will be changed dUring the CHKI N call Be sure
to save any sensitive data In these registers before calling CHKIN.
Status. Status flags may be changed. In VIC and Commodore 64, the C (carry)
flag indicates some type of problemwith connecting to the input channel.

MACHINE LANGUAGE FOR COMMODORE MACHINES

Don't forget to send the RETURN-the printer needs It. Aherthe rnacrune
language program says HI, the program will return to BASIC and close
the file. Notice that the machine language program doesn't care what it's
saying HI to ... it sends the data to logical file 1.

We use subroutine CHKIN at address $FFC6 to switch input so as to
draw data from a logical file. When we want to restore Input from the
keyboard, we call subroutine CLRCHN at $FFCC. Again, this is not the
same as an OPEN and CLOSE-we simply connect to the file and dis­
connect, and we can do this as many times as we want.

To switch input to logical file 1, we would need to follow these steps:

136

Switching Input

.A 033C LDX #$01

• A 033E JSR $FFC9

Now the output is connected to logical file 1. Let's say HI:

• A 03L;1 LDA #$L;8

• A 03L;3 JSR $FFD2

• A 03L;6 LDA #$L;9

• A 03L;8 JSR $FFD2

• A 03L;B LDA #$OD
• A 03L;D JSR $FFD2 Inp,
• A 0350 JSR $FFCC

, ~

• A 0353 RTS

We can write a program to read an input file from disk or cassette. First,
let's write the file. We open the file according to its type:

Input Example

137

OPEN 1,8,:3,"0:DEMO,S,W"

OPEN 1,1,1

Disk'

Cassette:

Disk

Cassette:

100 OPEN 1,8,:3, "DEMOII

100 OPEN 1

110 INPUT #1, X$

120 PRINT X$

1:30 IF ST=O GOTO 110

MOCLOSE 1

We might alternatively have written lines 110 and 120 as

110 GET #1, X$
120 PRINT X$;

This more closely approximates the logic flow of our rnacnme language
program, since it will get the characters one at a time. If you are unsure
about the role of S T, read up on it. We will use the same variable (at its
address of $ 9 0 or $ 9 6) to do exactly the same thing in machine language.

Type NEW and enter the following program:

This may be done with a direct statement. Now let's write a few things to
the file:

PRINT#l, "HELLO THIS IS A TEST"
PRINT#l, "THIS IS THE LAST LINE"
CLOSE 1

If we have typed in the above statements correctly, we should have a
completed sequential file written on cassette or disk. Before writing the
machine language input program, let's examine how we might read the
file back in BASIC:

-Load a value of 1 Into X (LDX #$01)

-JSR to address $FFC6

Once the input IS switched, we may obtain as many characters as we wish
using subroutine $FFEL;. Eventually, we must disconnect from the logical
file and return to our default input-the keyboard. We do this by calling
subroutine CLRCHN at address $FFCC. This is the same subroutine that
disconnects output from a logical file.

TIMING, INPUT/OUTPUT, AND CONCLUSION
ACHINES

r is usually
ntsexactly
keyboard
a file, ST

M) is used
status in­
ical "com-

ut so as to
ut from the
is is not the
file and dis-

thatInput IS

. The logical

themachine
C and close

re what it's

A File Transfer Program

MACHINE LANGUAGE FOR COMMODORE MACHINES TIMIt\

$FFE£;
$FFD2

$03£;1
$FFCC

#$01
$FFC6

LDX
JSR

BEQ
JSR
RTS

033C
033E

• A
• A

Disk

Cassette:

.A 03£;9

.A 03£;B

.A 03£;E

.A 03£;1 JSR

.A 03£;£; JSR

100 OPEN 1,5,:3, IIDEMOII

100 OPEN 1

110 SYS 828

120 CLOSE 1

We will read the file and copy it to the screen entirely In machine language.
Let's start coding at $ 033 C :

Now the input is connected to logical file 1. Let's get information from it
and put it on the screen:

We must check ST as we would in BASIC. ST might be at either of two
addresses, depending on the system:

VIC, Commodore 64. • A 0:3£;7 LDA $90
CBM/PET • A 0:3£;7 LDA $96

If ST is zero, there IS more to come from the file: we may go back. If ST
is nonzero, there could be an error or we may be at the end of the file. In
either case, we don't want to read more from the file.

Let's write a program to transfer a sequential file from any common device
to any other. BASIC will sort out which files to handle; once the files are
opened, machine language will take from and deliver to the appropriate
logical devices as desired

It's not a good idea to switch input and output at the same time-in other
words. to call both $FFC6 and $FFCCJ without canceling either via $FFCC.
The kernal doesn't mind, but it confuses the peripheral devices, which
expect to have exclusive occupancy of the data bus to the computer. So
we'll follow the pattern: switching on, sending or receiving, switcrunq off,
and then going to the other device.

Check It and try It. The file is delivered to the screen quickly.

138

By this time, we have a character in the A register from the input source.

We'll work this out for the Commodore 64 computer; you can adjust it for
PET/CBM or VIC-20. The above BASIC program should not take up more
than 511 bytes; on a standard Commodore 64, that means that we'll have
clear space for our machine language program starting at $ 0 ADO (dec­
imal 2560). We'll move the start-of-variables along, of course, so that
our machine language program won't be disturbed by them.

When we first type line 2£; 0, we won't know what SYS address to use.
After the program is typed in (with SYS xxxx at line 2£; 0), we can easily
confirm that the machine language can start at $ 0 ADO by checking the
start-of-variables pointer. We go back and change 2 £; 0 to S YS 2560;
now we're ready to put In the machine language code:

, I
I

I:
I

139

#$01
$FFC6
$FFE£;

LDX
JSR
JSR

DADO
OA02
OA05

• A
.A
.A

One more thing. S T tells us the status of the last device handled. Consider:
if we input a character, then output a character, and then check the value
of ST. we have a problem. S T will not tell us about the input. since the
last device handled was output; thus, we won't know if we are at the end
of the file or not. In machine language, as in BASIC, we must code carefully
to solve this problem.

Here comes BASIC:

100 PRINT "FILE TRANSFER"
110 INPUT "INPUT FROM (DISK, TAPE)"; A$
120 IF LEFT$ (A$, 1) = "Til THEN OPEN 1: GOTO 160
130 IF LEFT$(A$,l)<> "D" GOTO 110
1£;0 INPUT "DISK FILE NAME"; N$
150 OPEN 1,8,3,N$
160 INPUT "TO (DISK, TAPE, SCREEN)";B$
170 IF LEFT$(B$,l) ="S" THEN OPEN 2,3:GOTO 2£;0
180 IF LEFT$(B$,l) ="D" GOTO 210
190 IF LEFT$ (B$, 1) <> "T" GOTO 160
200 IF LEFT$ (A$, 1) = "T" GOTO 160
210 INPUT "OUTPUT FILE NAME"; F$
220 IF LEFT$(B$, 1) ="D"
THEN OPEN 2,8,£;,"0:"+N$+",S,W"
230 IF LEFT$(B$, 1) ="T" THEN OPEN 2,1,1,N$
2£; 0 SYS xxxx
250 CLOSE 2: CLOSE 1

TIMING, INPUT/OUTPUT, AND CONCLUSIONE MACHINES

at either of two

chine language.

go back. If S T
nd of the file. In

ormation from it

time-in other
ervia $FFCC.

devices, which
computer. So

, sWitching off,

ommon device
ce the files are
the appropriate

MACHINE LANGUAGE FOR COMMODORE MACHINES

Important: Before running this program, be sure to move the start-of-

F

T

$FFD2
$FFCC

$FFCC
#$02
$FFC9

JSR
LDX
JSR
PLA

DADC
DADF
DAll
DA1L;

• A
• A
• A
• A

.A DA15 JSR

.A DA18 JSR

.A DA1C BEQ $DADD

.A DAlE RTS

We also have a value in S T, telling us if this is the last character. Let's
examine the S T problem: we must check its value now, since S T will be
changed after we do the output. But we don't want to take any action
based on S T yet; we must first send the character we have received. Let's
check S T, and put the results of the check onto the stack:

.A DAD8 LDX $90

.A DADA PHP

If S T IS zero, the Z flag will be set; we'll preserve this flag along with the
others until we call it back from the stack. If you are adapting this program
for the PET/CBM, don't forget that S T is at address $ 9 6 for your macrnne,

The next thing we want to do IS to disconnect the input by calling $FFCC;
but this will destroy the A register. How can we preserve this value? By
transferring to another register, or by pushing A to the stack. Let's do that.
There will now be two things on the stack.

· A DADB PHA

We are now free to disconnect from the input channel and connect to the
output. Here we go:

The A register gets back the last thing saved to the stack, and that, of
course, IS our input character. We're ready to send it to the output device:

Now we may pick up On the condition of S T that we stacked away earlier.
Here come the flags that we stored:

· A DA1B PLP

If the Z flag IS set, we want to go back and get another character. If not,
we're finished and can return to BASIC, allowing BASIC to close the files
for us:

140

8
Timing,

Input/Output,
and

Conclusion
This chapter discusses:

• How to estimate the speed of your program

• Input and output from tape, disk, and pnnter

• Review of Instructions

• Debugging

• Symbolic assemblers

• Where to go from here

131

132

Timing

MACHINE LANGUAGE FOR COMMODORE MACHINES

For many applications, machine language programs seem to run instan­
taneously. The speed of the 650x is much greater than that of other
devices, including the human user. The machine language program usually
ends up waiting for something: waiting for the keyboard, waiting for the
printer, waiting for the disk, or waiting for the human to read and react to
information presented on the screen.

Occasionally, it may be important to get fairly precise timing for a machine
language program. If so, the following rules of thumb may be kept in mind:

-All timing estimates are crude If the Interrupt routines are stili active. The
effect of Interrupt on timing can be crudely estimated by adding 10 percent
to the runrunq time.

-Remember to allow for loops. If an Instruction within a loop IS repeated ten
times, its timing will need to be counted ten times.

-The "clock speed," or memory cycle speed, of most Commodore machines
is roughly 1 rrucrosecond-e-one millionth of a second. The precise number
vanes from one machine to another. and also vanes between North Amenca
and other regions.

-Most instructions run at the fastest Imaginable speed. Count the memory
cycles, and that's how fast the Instruction will execute. For example,
L DA # $ 0D will need two memory cycles Just to get the instruction-and
that's how fast It runs L DA $ 0 5 0 0 , X will usually take four memory cycles.
three to get the Instruction, and one to fetch the data from page 5 Exceptions'
no Instruction runs In less than two cycles; and shift/rotate instructions, IN CI
DEC, and JSR/RTS take longer than you might expect by this rule.

-Branches time differently, depending on whether the branch IS taken (three
cycles) or not taken (two cycles)

-When a page boundary is crossed, the computer needs an extra cycle to do
the anthrnatrc, If the program branches from $ 0 FE L; to $102:3, there will
be an extra cycle; If we LDA $2L;E7 ,Y, there will be an extra cycle If Y
contains a value of $19 or greater.

Detailed timing values can be obtained from most tables of instructions.

Let's take a simple routine and estimate its timing. The following program
logically ANDs the contents of 100 locations from $17 EO to $1 B£; £; :

033C
033E
03£;0
03£;3

LDX
LDA
AND
INX

#$00
#$00
$17EO,X

TIMING, INPUT/OUTPUT. AND CONCLUSION 133

03L;S
03L;7
03L;9

CPX
BCC
RTS

#$6L;
$03L;O

We may work out timing as follows'

LDX #$DD-executed once' 2

LDA #$DD-executed once' 2

AND $17ED, X: 32 times at 4 cycles 128

68 times at 5 cycles (page cross) 340

I NX-100 times at 2 cycles 200

CPX #$6L;-100 times at 2 cycles. 200

BCC-99 times at 3 cycles 297

1 time at 2 cycles (no branch) 2

RTS-6 cycles. 6

Total time: 1171 cycles, or slightly over one thousandth of a second. We
might add 10 percent to allow for the effects of interrupt; and since this is
a subroutine, we could also add the extra SIX cycles needed to perform
the JSR.

Where timing is critical, the interrupt could be locked out with SEI Be
careful: it's seldom necessary, and is potentially dangerous.

Input and Output
We know that calling the kernal routine CHROUT at $FFD2 Will send an
ASCII Character to the screen. Wemay also redirect output to any logical
file.

We have seen that we may obtain Input from the keyboard buffer into the
A register by calling kernal routine GETIN at $FFEL;. We may also
redirect the input so that we draw information from any logical file.

The same commands-$FFD2 and $FFEL;-still perform the input and
output. But we "switch" either of them to connect to a chosen device-or
more accurately, a chosen logical file. The file must be open; we may
switch to the file, and then switch back to normal 1/0 as we wish.

Switching Output
We use subroutine CHKOUT at address $FFC9 to switch output to a
logical file. When we want to restore output to the screen, we call sub­
routine CLRCHN at $FFCC. This is not the same as an OPEN and

134 MACHINE LANGUAGE FOR COMMODORE MACHINES

KEYBOARD--, INPUT OUTPUT
I PROGRAM - SCREEN- -

((
INPUT

DEVICES

CHKIN ($FFC6)
SETS THE

INPUT SWITCH

II
OUTPUT
DEVICES

CHKOUT ($FFCS)
SETS THE

OUTPUT SWITCH

Figure 8.1

CLRCHN ($FFCC)
RESTORES BOTH

SWITCHES TO "NORMAL"

Subroutine:
Address
Action.

CLOSE-we simply connect to the file and disconnect, and we can do
this as many times as we want.

CHKOUT
$FFCCl
SWitches the output path (used by CHROUT, $FFD2)
so that output is directed to the logical file specified In the
X register. The logical file must previously have been
opened.

The character SUbsequently sent by $FFD2 IS usually ASCII (or PET
ASCII). When sent to the printer, special characters-text/graphics,
Width-will be honored in the usual way. Similarly, disk commands can
be transmitted over secondary address 15 if desired; a logical "com­
mand channel" file must be previously opened.

Registers: Registers A and X will be changed dunnq the CHKOUT
call. Be sure to save any sensitive data in these registers before calling
CHKOUT.

Status: Status flags may be changed. In VIC and Commodore 64, the
C (carry) flag indicates some type of problem with connecting to the
output channel.

To swrtch output to logical file 1, we would need to follow these steps:

TIMING, INPUT/OUTPUT, AND CONCLUSION 135

Subroutine.
Address:
Action:

1 Load a value of 1 Into X (LDX #$01)

2. JSR to address $FFC9.

Once the output is switched, we may send as many characters as we
wish usmq subroutine $FFD2. Eventually, we must disconnect from the
logical file and return to our default output, the screen. We do this by
calling subroutine CLRCHN at address $FFCC.

CLRCHN
$FFCC
Disconnects Input and output from any logical files and
restores them to the "default" Input and output channels,
keyboard andscreen. The logicalfiles are not closed, and
may be reconnected at a later time.

Registers: Registers A and X will be changed during the CLRCHN
call. Be sure to save any sensitive data In these registers.

Status: Status flags may be changed. In VIC and Commodore 64, the
C (carry) flag Indicates some type of problem with output.

The logical file concept is important. I may send to any destination­
cassette, printer, disk, or screen-without knowing which device is in­
volved. I send the characters on their way and the operating system sees
that they are delivered wherever they need to go.

This simplifies the machine language programmer's job. It's a Simple task
to send the characters to some logical channel; the programmer does not
need to take special coding action depending on which device is involved.

Output Example
If we wanted to print the message HI on the printer, we might code as
follows.

First, we'll open the printer channel in BASIC. Let's use logical file num­
ber 1:

100 OPEN 1, L;

110 SYS 828
120 CLOSE 1

If you don't have a printer, you may open the file to cassette (OPEN
1,1,2) or to disk (OPEN 1,8,3, "0: DEMO, S, WII). The machine
language program won't care: it will send to logical file number 1 no matter
what it is; it might even be the screen (OPEN 1,3). Let's write the coding:

136 MACHINE LANGUAGE FOR COMMODORE MACHINES

.A 033C LDX #$01

• A 033E JSR $FFC9

Now the output is connected to logical file 1. Let's say HI:

• A 03L;1 LDA #$L;8

• A 03L;3 JSR $FFD2

• A 03L;6 LDA #$L;9

• A 03L;8 JSR $FFD2

• A 03L;B LDA #$OD
• A 03L;D JSR $FFD2

• A 0350 JSR $FFCC

• A 0353 RTS

Don't forget to send the RETURN-the printer needs It. Aherthe rnacrune
language program says HI, the program will return to BASIC and close
the file. Notice that the machine language program doesn't care what it's
saying HI to ... it sends the data to logical file 1.

Subroutme
Address
Action.

Switching Input
We use subroutine CHKIN at address $FFC6 to switch input so as to
draw data from a logical file. When we want to restore Input from the
keyboard, we call subroutine CLRCHN at $FFCC. Again, this is not the
same as an OPEN and CLOSE-we simply connect to the file and dis­
connect, and we can do this as many times as we want.

CHKIN
$FFC6
SWitches the Input path (used by GET, $FFEL;) so that Input is
taken from the logical file specmed In the X register The logical
file must previously have been opened

The character subsequently obtained by $FFEL; Into the A register IS usually
ASCII(orPETASCII) A binaryzero received froma fileusuallyrepresents exactly
that: an Inputcharacterwhose value IS CHR$(0), this IS different from keyboard
GET where a binary zero means "no key pressed" When accessing a file, ST
(address $ 9 0 for VIC and Commodore 64, $ 9 6 for most PET/CBM) IS used
for ItS usual functions of signalling end-of-file or error. Similarly, disk status in­

formation can be received oversecondaryaddress 15 Ifdesired, a logical "com­
mand channel" file must be previously opened.
Registers: Registers A and X will be changed dUring the CHKI N call Be sure
to save any sensitive data In these registers before calling CHKIN.
Status. Status flags may be changed. In VIC and Commodore 64, the C (carry)
flag indicates some type of problem with connecting to the input channel.

To switch input to logical file 1, we would need to follow these steps:

TIMING, INPUT/OUTPUT, AND CONCLUSION 137

-Load a value of 1 Into X (LDX #$01)

-JSR to address $FFC6

Once the input IS switched, we may obtain as many characters as we wish
using subroutine $FFE4. Eventually, we must disconnect from the logical
file and return to our default input-the keyboard. We do this by calling
subroutine CLRCHN at address $FFCC. This is the same subroutine that
disconnects output from a logical file.

Input Example
We can write a program to read an input file from disk or cassette. First,
let's write the file. We open the file according to its type:

Disk

Cassette:

OPEN 1,8,:3,"0:DEMO,S,W"

OPEN 1,1,1

Disk'

Cassette:

This may be done with a direct statement. Now let's write a few things to
the file:

PRINT#l, "HELLO THIS IS A TEST"
PRINT#l, "THIS IS THE LAST LINE"
CLOSE 1

If we have typed in the above statements correctly, we should have a
completed sequential file written on cassette or disk. Before writing the
machine language input program, let's examine how we might read the
file back in BASIC:

100 OPEN 1,8,:3, "DEMO"

100 OPEN 1

110 INPUT #1, X$

120 PRINT X$

1:30 IF ST=O GOTO 110

MOCLOSE 1

We might alternatively have written lines 110 and 120 as

110 GET #1, X$
120 PRINT X$;

This more closely approximates the logic flow of our rnachme language
program, since it will get the characters one at a time. If you are unsure
about the role of S T, read up on it. We will use the same variable (at its
address of $ 9 0 or $ 9 6) to do exactly the same thing in machine language.

Type NEW and enter the following program:

Disk

Cassette:

138 MACHINE LANGUAGE FOR COMMODORE MACHINES

100 OPEN 1,5,:3, IIDEMOII

100 OPEN 1

110 SYS 828

120 CLOSE 1

We will read the file and copy it to the screen entirely In machine language.
Let's start coding at $ 033 C :

• A
• A

033C
033E

LDX
JSR

#$01
$FFCb

Now the input is connected to logical file 1. Let's get information from it
and put it on the screen:

.A 03£;1 JSR

.A 03£;£; JSR
$FFE£;
$FFD2

We must check ST as we would in BASIC. ST might be at either of two
addresses, depending on the system:

VIC, Commodore 64. • A 0:3£;7 LDA $90
CBM/PET • A 0:3£;7 LDA $96

If ST is zero, there IS more to come from the file: we may go back. If ST
is nonzero, there could be an error or we may be at the end of the file. In
either case, we don't want to read more from the file.

.A 03£;9

.A 03£;B

.A 03£;E

BEQ
JSR
RTS

$03£;1
$FFCC

Check It and try It. The file is delivered to the screen quickly.

A File Transfer Program
Let's write a program to transfer a sequential file from any common device
to any other. BASIC will sort out which files to handle; once the files are
opened, machine language will take from and deliver to the appropriate
logical devices as desired

It's not a good idea to switch input and output at the same time-in other
words. to call both $FFCb and $FFCCJ without canceling either via $FFCC.
The kernal doesn't mind, but it confuses the peripheral devices, which
expect to have exclusive occupancy of the data bus to the computer. So
we'll follow the pattern: switching on, sending or receiving, switcrunq off,
and then going to the other device.

TIMING, INPUT/OUTPUT, AND CONCLUSION 139

One more thing. S T tells us the status of the last device handled. Consider:
if we input a character, then output a character, and then check the value
of ST. we have a problem. S T will not tell us about the input. since the
last device handled was output; thus, we won't know if we are at the end
of the file or not. In machine language, as in BASIC, we must code carefully
to solve this problem.

Here comes BASIC:

100 PRINT "FILE TRANSFER"
110 INPUT "INPUT FROM (DISK, TAPE)"; A$
120 IF LEFT$ (A$, 1) = "Til THEN OPEN 1: GOTO 160
130 IF LEFT$(A$,l)<> "D" GOTO 110
1£;0 INPUT "DISK FILE NAME"; N$
150 OPEN 1,8,3,N$
160 INPUT "TO (DISK, TAPE, SCREEN)";B$
170 IF LEFT$(B$,l) ="S" THEN OPEN 2,3:GOTO 2£;0
180 IF LEFT$(B$,l) ="D" GOTO 210
190 IF LEFT$ (B$, 1) <> "T" GOTO 160
200 IF LEFT$ (A$, 1) = "T" GOTO 160
210 INPUT "OUTPUT FILE NAME"; F$
220 IF LEFT$(B$, 1) ="D"
THEN OPEN 2,8,£;,"0:"+N$+",S,W"
230 IF LEFT$(B$, 1) ="T" THEN OPEN 2,1,1,N$
2£; 0 SYS xxxx
250 CLOSE 2: CLOSE 1

We'll work this out for the Commodore 64 computer; you can adjust it for
PET/CBM or VIC-20. The above BASIC program should not take up more
than 511 bytes; on a standard Commodore 64, that means that we'll have
clear space for our machine language program starting at $ 0 ADO (dec­
imal 2560). We'll move the start-of-variables along, of course, so that
our machine language program won't be disturbed by them.

When we first type line 2£; 0, we won't know what SYS address to use.
After the program is typed in (with SYS xxxx at line 2£; 0), we can easily
confirm that the machine language can start at $ 0 ADO by checking the
start-of-variables pointer. We go back and change 2 £; 0 to S YS 2560;
now we're ready to put In the machine language code:

• A
.A
.A

DADO
OA02
OA05

LDX
JSR
JSR

#$01
$FFC6
$FFE£;

By this time, we have a character in the A register from the input source.

140 MACHINE LANGUAGE FOR COMMODORE MACHINES

We also have a value in S T, telling us if this is the last character. Let's
examine the S T problem: we must check its value now, since S T will be
changed after we do the output. But we don't want to take any action
based on S T yet; we must first send the character we have received. Let's
check S T, and put the results of the check onto the stack:

.A DAD8 LDX $90

.A DADA PHP

If S T IS zero, the Z flag will be set; we'll preserve this flag along with the
others until we call it back from the stack. If you are adapting this program
for the PET/CBM, don't forget that S T is at address $ 9 6 for your machme.

The next thing we want to do IS to disconnect the input by calling $FFCC;
but this will destroy the A register. How can we preserve this value? By
transferring to another register, or by pushing A to the stack. Let's do that.
There will now be two things on the stack.

· A DADB PHA

We are now free to disconnect from the input channel and connect to the
output. Here we go:

• A
• A
• A
• A

DADC
DADF
DAll
DA1L;

JSR
LDX
JSR
PLA

$FFCC
#$02
$FFC9

The A register gets back the last thing saved to the stack, and that, of
course, IS our input character. We're ready to send it to the output device:

.A DA15 JSR

.A DA18 JSR
$FFD2
$FFCC

Now we may pick up On the condition of S T that we stacked away earlier.
Here come the flags that we stored:

· A DA1B PLP

If the Z flag IS set, we want to go back and get another character. If not,
we're finished and can return to BASIC, allowing BASIC to close the files
for us:

.A DA1C BEQ $DADD

.A DAlE RTS

Important: Before running this program, be sure to move the start-of-

TIMING, INPUT/OUTPUT, AND CONCLUSION 141

variables pointer ($DD2D/$DD2E) so that It points at address $DA1F;
otherwise, the BASIC variables will destroy this program.

Review: The Instruction Set
We started with the load, save and compare for the three data registers:

LDA LDX LDY
STA STX STY
CMP CPX CPY

The instructions are almost Identical in action, although only the A register
has indirect, indexed addressing modes. We continued with the logical
and arithmetic routines that apply only to A'

AND ORA EOR ADC SBC

Arithmetic also Includes the shift and rotate Instructions, which may be
used on the A register or directly upon memory:

ASL ROL LSR ROR

Memory may also be directly modified by the increment and decrement
instructions, which have related instructions that operate on X and Y:

INC DEC
INX DEX
INY DEY

We may transfer control by means of branch instructions, which are all
conditional:

BEQ BCS BMI BVS
BNE BCC BPL BVC

The branch instructions can make only short "hops"; the Jump instruction
is unconditional:

JMP

Subroutines are called with the Jump-subroutine, and returned with return­
from-subroutine; we may also return from Interrupts:

JSR RTS RTI

We may modify any of several flags with the appropriate set or clear
command. Some of the flags control internal processor operation: for ex­
ample, the I (interrupt disable) flag locks out the interrupt; the D (decimal
mode) affects the way the ADC and SBC work with numbers.

142 MACHINE LANGUAGE FOR COMMODORE MACHINES

SEC SEI SED
CLC CLV CLI CLD

We may transfer information between the A register and X or Y; and for
checking or setting the stack location, we may move the stack pointer to
X, or X to the stack pointer. The latter is a powerful command, so use it
with care.

TAX TAY TSX
TXA TYA TXS

We may push or putl information from the stack:

PHA PHP
PLA PLP

There's a special test, used mostly for checking I A chips:

BIT

The BIT test is used only for specific locations: no indexing is allowed.
The high bit from the location being tested is transferred straight to the N
flag. The next highest bit (bit 6) goes straight to the V flag. Finally, the Z
flag is set according to whether the location has any bits set that match
bits set in the Aregister. Thus, we can check a location with BIT $ ••••

.followed by BMI to test the high bit, or BVS to test bit 6, or BNE to test
any selected bit or group of bits. It's a rather specialized instruction, but
useful for testing input/output ports.

Finally, the instruction that does nothing, and the BRK instruction that
causes a "false interrupt," usually taking us to the monitor:

NOP BRK

That's the whole set. With these instructions, you can write programs to
make the computer do whatever you choose.

Debugging
When a program has been written. the next step is to look for any possible
errors, or bugs. The process of searching for and systematically elimi­
nating these bugs is called debugging.

Most programs are made up of sections, each of which has a clear task
to perform. When a program misbehaves, it may be easy to go to the area
of the bug, since you can see which parts of the program are working and
where things start to go wrong.

TIMING, INPUT/OUTPUT, AND CONCLUSION 143

In case of doubt, you may insert breakpoints into your program. Replace
selected instructions with the instruction BRK, this may be done by re­
placing the instructions' op codes with the value DO. Run the program;
when it reaches the first breakpoint, it will stop and the machine language
monitor will become active. Examine the registers carefully to see whether
they contain the values expected. Display memory locations that the pro­
gram should have wntten; the contents will tell you whether the program
has been doing its job correctly.

When you have confirmed that the program is behaving correctly up to
the breakpoint, replace the BRK command at that POint with the original
op code. Command • G to that address, and the program will continue to
the next breakpoint. If It helps your investigation, you may even change
memory or registers before continuing program execution.

If you carried this procedure to the extreme, you might stop your program
after every Instruction. It would take time, but you would certainly track
down everything the program did.

The best debugging takes place at the time you write the program. Write
sensibly, not "super cleverly." If you fear getting caught in an endless
loop, insert a stop key test (JSR $FFE1) so that you'll still have control
of the computer.

Get to know your machine language monitor. The monitor uses a number
of locations in memory; youf have trouble debugging a program If It uses
the same storage addresses as does your program. Every time you try to
check the contents of a memory location to see what your program has
done, you'll see the monitor working values instead-and that would be
misleading and annoying.

Symbolic Assemblers
Throughout these exercises, we have used small, "nonsymbolic" assem­
blers such as would be found within a machine language rnorutor. These
are good for beginners; they parallel the machine code quite closely and
allow you to keep the working machine clearly In focus.

As you write bigger and better programs, these small assemblers will be
less convenient. Forward branches and subroutines we have not yet writ­
ten make it necessary for us to "guess" at the address and fix up our
guess later. There is the possible danger that an address will be typed in
wrongly ($ 0 3 L;5 instead of $ 0 3 5 L;), causing the program to fail.

To help us write more ambitious programs, we may wish to turn to com-

144 MACHINE LANGUAGE FOR COMMODORE MACHINES

mercrauy available assembler systems that allow labels or symbolic ad­
dresses. If we wish to write code to call a subroutine to input numbers­
we might not have written this subroutineyet-we can code JSR NUMIN.
When we write the subroutine, we'll put the identifying label NUMIN at the
start. As your program is assembled, the proper address of NUMIN is de­
termined, and this address will be inserted as needed.

It saves work and helps guard against errors. But symbolic assemblers
allow a more powerful capability: they help documentation and allow pro­
gram updating.

Your assembly may be listed to the printer. This allows you to examine
and annotate the program, and file the details away for later reference.
The assembler allows you to include comments, which improve the read­
ability of the listing but don't affect the machine language program.

The source program you have written may be saved and used again later.
If you find it IS necessary to change the program, bring back the source
code from cassette or disk, make the changes, and reassemble. In this
way, programs can be easily corrected or updated.

Where To Go From Here
Almost anywhere. Up to this point, we've been bulldinq confidence: trying
to give you a feel as to how the pieces work. Now, the real fun-the
creative programming-is up to you.

Users have varying objectives. You may want to do mathematical oper­
ations. You may want to Interact upon BASIC programs-analyzing,
searching, renumbering. Whatever SUitS you. Your Interest area may be
music, graphics, or animation. Machine language will open the door to all
of these; its amazing speed makes spectacular effects possible You may
plan to go into hardware and interface new devices to your computer; an
understanding of machine language, and I A chips in particular, will be
useful. The possibilities are endless.

Even if you have no immediate plans to write new programs in machine
language, you will have gained an insight into the workings of your ma­
chine. Everything that the machine does-BASIC, kernal, everything-is
either hardware or machine language.

With the elementary concepts we have introduced here, you will be able
to go deeper into more advanced texts Many programming books deal
with the abstract 650x chip. That's hard for the beginner; it's difficult to
see how the instructions fit within the architecture of a real machine, or

TIMING, INPUT/OUTPUT, AND CONCLUSION 145

how the programs can actually be placed within the computer. By now,
you should be able to take a piece of abstract coding and fit it into your
system.

Many things start to happen at once when you take your first steps in
machine language programming. You must learn how to use the monitor.
You must learn a good deal about how your machine IS designed. And
you must learn how to fit the pieces together. It takes a while to adapt to
the "information shock"-but things start to fit together. Eventually, you'll
have a stronger and sounder view of the whole computer: hardware, soft­
ware, languages, and usage.

What You Have Learned
-Machine language programs can have run times estimated fairly accurately

In many cases, however, machine language IS so fast that detailed speed
calculations are not needed.

-We can handle Input from devices other than the keyboard by swrtchmq the
Identity of the designated Input device If an Input channel has been opened
as a file, we may connect to it With JSR $FFC6 and disconnect With JSR
$FFCC

-We can handle output to devices other than the screen by switching the
Identity of the designated output device If an output channel has been opened
as a file, we may connect to It With JSR $FFCCl and disconnect With JSR
$FFCC

-Once input or output has been switched, we may receive In the usual way
With the subroutine at $FFEL;, or send In the usual way With the subroutine
at $FFD2.

-Be careful not to confuse connectmg to a channel With opening a file In a
typical program, we open a file only once, but we may connect to It and
disconnect from It hundreds of times as we read or wnte data

-You have met all the Instructions of the 650x microprocessor There are
enough for versanllty, but not so many that you can't keep track of them all.
You have made a worthwhile start In the art and screnceof machine language
programming.

Questions and Projects
Write a program to read a sequential file and count the number of times
the letter" A" (hex L; 1) appears in the file. Use a BASIC PEE K to pnnt
the value. You may assume that "A" Will not appear more than 2 5 5
times.

146 MACHINE LANGUAGE FOR COMMODORE MACHINES

Rewrite the above to count the number of occurrences of the RETURN
character ($ OD) in a sequential file. Allow for up to 65535 appearances.
Can you attach a meaning to this count?

Write a program to print HAPPY NEW YEAR to the printer ten times.

If you own a dISk system, you know that you can scratch a program named
JUNK by using the sequence:

OPEN 15,8,15: PRINT#15," SO: JUNK". Convert the PRINT#
statement to rnachme language and write a program to scratch JUNK.
Careful: don't scratch a program that you will need.

Write a "typewriter" program to read a line of text from the keyboard and
then transfer it to the printer. It will be a more useful program if you show
what is being typed on the screen and if you write extra code to honor
the DELETE key.

147

The 65021
6510/65091

7501
Instruction

Set
The four chips differ only in their use of addresses a and 1:

On the 6502, the addresses are normal memory.

On the 6510 and 7501, address 0 IS a directional register and address 1 IS an
Input/output register, used for such things as cassette tape and memory control.

On the 6509, address 0 IS used to switch program execution to a new memory
bank; address 1 IS used to swrtch the memory bank accessed by the two
Instructions LDA (••), Y and STA (.•), Y

the RETURN
appearances.

thePRINT#
ratch JUNK.

r ten times.

ogram named

keyboard and
m Ifyoushow

de to honor

Addressing Modes

148 MACHINE LANGUAGE FOR COMMODORE MACHINES

Accumulator Addressing-This form of addressing is represented with a
one byte instruction, implying an operation on the accumulator.

Immediate Addressing-In immediate addressing, the operand is con­
tained in the second byte of the instruction, with no further memory ad­
dressing required.

Absolute Addressing-In absolute addressing, the second byte of the
instruction specifies the eight low order bits of the effective address while
the third byte specifies the eight high order bits. Thus, the absolute ad­
dressing mode allows access to the entire 65K bytes of addressable mem­
ory.

Zero Page Addressing-The zero page instructions allow for shorter code
and execution times by only fetching the second byte of the instruction
and assuming a zero high address byte. Careful use of the zero page can
result in significant increase in code efficiency.

Indexed Zero Page Addressmg-(X, Y indexing)-This form of address­
ing is used in conjunction with the Index register and is referred to as
"Zero Page. X" or "Zero Page, Y." The effective address is calculated by
adding the second byte to the contents of the index register. Since this is
a form of "Zero Page" addressing, the content of the second byte refer­
ences a location in page zero. Additionally, due to the "Zero Page" ad­
dressing nature of this mode, no carry is added to the high order eight
bits of memory and crossing of page boundaries does not occur.

Indexed Absolute Addressing-(X. Y Indexing)-This form of addressing
is used in conjunction with X and Y index register and is referred to as
"Absolute, X," and "Absolute, Y." The effective address is formed by
adding the contents of X and Y to the address contained in the second
and third bytes of the instruction. This mode allows the index register to
contain the index or count value and the instruction to contain the base
address. This type of indexing allows any location referencing and the
index to modify rnultrple fields resulting In reduced COding and execution
time.

Implied Addressing-In the implied addressing mode, the address con­
taining the operand is implicitly stated In the operation code of the instruc­
tion.

Relative Addressing-Relative addressing is used only with branch in­
structions and establishes a destination for the conditional branch.

The second byte of the Instruction becomes the operand which is an
"Offset" added to the contents of the lower eight bits of the program counter

API

Ir

E MACHINES

address con­
of the mstruc-

149

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits In Memory With Accumulator

Branch on Result Minus

Branch on Result not Zero
Branch on Result Plus

Force Break

Bee

Bes

BEQ
BIT
BMI
BNE
BPL
BRK

when the counter IS set at the next instruction. The range of the offset is
- 128 to + 127 bytes from the next Instruction.

Indexed Indirect Addressmg-In indexed indirect addressing (referred to
as [Indirect, Xl), the second byte of the Instruction is added to the contents
of the X Index register, discarding the carry. The result of this addition
points to a memory location on page zero whose contents are the low
order eight bits of the effective address. The next memory location in page
zero contains the high order eight bits of the effective address. Both mem­
ory locations specifymq the high and low order bytes of the effective ad­
dress must be in page zero.

Indirect Indexed Addressing-In indirect indexed addressing (referred to
as [Indirect, Yl), the second byte of the instruction points to a memory
location In page zero. The contents of this memory location are added to
the contents of the Y Index register, the result being the low order eight
bits of the effective address. The carry from this addition is added to the
contents of the next page zero memory location, the result being the high
order eight bits of the effective address.

Absolute Indirect-The second byte of the instruction contains the tow
order eight bits of a memory location. The high order eight bits of that
memory location is contained In the third byte of the instruction. The con­
tents of the fully specified memory location are the low order byte of the
effective address. The next memory location contains the high order byte
of the effective address which IS loaded into the sixteen bits of the program
counter.

ADe Add Memory to Accumulatorwith Carry

AND "AND" Memory With Accumulator

ASL Shift Left One Bit (Memory or Accumulator)

APPENDIX A

Instruction Set-Alphabetic Sequence

nd byte of the
address while

e absolute ad­
ressable mem-

orshorter code
the instruction
zero page can

ith branch in­
branch.

resented with a
ulator.

rm of address­
referred to as

s calculated by
r. Since this is
nd byte refer­

ero Page" ad-
gh order eight
occur.

of addressing
referred to as
IS formed by

in the second
ex register to
tain the base

ncing and the
and execution

150 MACHINE LANGUAGE FOR COMMODORE MACHINES AP

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EaR "Exclusive-OR" Memory with Accumulator

INC Increment Memory by One

INX Increment Index X by One p
INY Increment Index Y by One

JMP Jump to New Location

JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift One Bit Right (Memory or Accumulator)

Nap No Operation

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)

ROR Rotate One Bit Right (Memory or Accumulator)

RTI Return from Interrupt

APPENDIX A

RTS

SBC
SEC
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Return from Subroutine

Subtract Memory from Accumulator with Borrow

Set Carry Flag

Set Decima' Mode

Set Interrupt Disable Status

Store Accumulator In Memory

Store Index X in Memory

Store Index Y In Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer Stack POinter to Index X

Transfer Index X to Accumulator

Transfer Index X to Stack Register

Transfer Index Y to Accumulator

151

Programming Model
7 0

I A I ACCUMULATOR

7 0

I Y I INDEX REGISTER

I X I INDEX REGISTER

15 7 0

I PCH [PCl I PROGRAM COUNTER

8 7 0

GJ S I STACK POINTER

A

Y

x

PC"

"s"
7 0

~. PROCESSOR STATUS REG "P"

ugl LCARRY 1 = TRUEL...::: ZERO 1 = RESULT ZERO
IRQ DISABLE 1 = DISABLE
DECIMAL MODE 1 = TI'lUE

&....-----I~ BRK COMMAND

Figure A.1

&....-------I~ OVERFLOW
&....--------I~ NEGATIVE

1 = TRUE
1 = NEG

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
-0 BRK RTI RTS
-8 PHP CLC PLP SEC PHA CLI PLA SEI DEY TYA TAY CLV INY CLD INX SED
-A ASL-A ROL-A LSR-A ROR-A TXA TXS TAX TSX DEX NOP

Single-byte OpCodes - 0, - 8, - A

Figure A.2

IMM ZPAG Z,X (I,XI (I),Y ABS A,X A,Y
2 2 2 2 2 3 3 3

ORA 09 05 15 01 11 OD 10 19
AND 29 25 35 21 31 2D 3D 39
EOR 49 45 55 41 51 4D 5D 59
ADC 69 65 75 61 71 6D 7D 79
STA 85 95 81 91 8D 9D 99
LDA A9 A5 B5 A1 B1 AD BD B9
CMP C9 C5 D5 C1 D1 CD DD D9
SBC E9 E5 F5 E1 F1 ED FD F9

Op Codeends in - 1, - 5, - 9, or - D

BPL 10 BMI 30 ABS (INDI
BVC 50 BVS 70
BCC 90 BCS BO JSR 20
BNE DO BEQ FO JMP 4C 6C

Branches -0 Jumps

IMM ZPAG Z,X Z,Y ABS A,X A,Y
2 2 2 2 3 3 3

ASL 06 16 OE 1E
ROL 26 36 2E 3E
LSR 46 56 4E 5E
ROR 66 76 6E 7E
STX 86 96 8E
LDX A2 A6 B6 AE BE
DEC C6 D6 CE DE
INC E6 F6 EE FE

Op Code ends in - 2, - 6, or - E

IMM ZPAG Z,X ABS A,X
2 2 2 3 3

BIT 24 2C
STY 84 94 8C
LDY AO A4 B4 AC BC
CPY CO C4 CC
CPX EO E4 EC

Misc. -0, -4, -C

~

UI
N

s::»o
I
Z
m
r»z
G>
c
~
m
'"T1o
JJ
oos::s::o
oo
JJ
m
s::
f;
I
Z
men

CONDITION
INSTRUCTIONS Immediate Absolute ze.c Page Ac:c:um Implied (Ind) X (Ind) V Z, Page. X Abs X Abs Y Relative Indirect Z, Page, Y CODES

Mnemonic Operation OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # NZCIDV

ADC A , M c C • A (4) (11 69 2 2 6D 4 3 65 3 ? 61 6 2 71 5 2 75 4 2 7D 4 3 79 4 3 """ "AND A M-A (1) 29 2 2 2D 4 3 25 3 ? 21 6 2 31 5 2 35 4 2 3D 4 3 39 4 3 ""- -

ASL c- rz::=::]]. 0 DE 6 3 06 5 ? OA 2 1 16 6 2 1E 7 3 ...- Y"Y" - -

BCC BRANCH ON C - 0 (2) 90 2 2 - -

BCS BRANCH ON C - 1 (2) BO 2 2

BEO BRANCH ON z: 1 (2) FO 2 2 -

BIT A M 2C 4 3 24 3 2 M7Y" - - M6

BMI BRANCH ON N - 1 (2) 30 2 2 - - -

BNE BRANCH ON l - 0 (2) DO 2 2 -

BPL BRANCH ON N = 0 (2) 10 2 2 -

BRK (See FIgure A-l) 00 7 1 - - 1

BVC BRANCH ON V - 0 (2) 50 2 2 - -

BVS BRANCH ON V - 1 (2) 70 2 2

CLC O->C 18 2 1 0 -

CLD o ·0 D8 2 1 - 0

CLI o -I 58 2 1 - - 0

CLV Q- ..v B8 2 1 - - - 0

CMP A - M (11 C9 2 2 CD 4 3 C5 3 2 C1 6 2 D1 5 2 D5 4 2 DD 4 3 D9 4 3 """ -

CPX X M EO 2 2 EC 4 3 E4 3 2 """ -

CPY Y M CO 2 2 CC 4 3 C4 3 ? " "" - -

DEC M - 1 ·M CE 6 3 C6 5 2 DB 6 2 DE 7 3 ",,-
DEX X 1 .X CA 2 1 """ """ - - - -

DEY Y 1 .y B8 2 1 "" -

EOR AVM-A (1) 49 2 2 4D 4 3 45 3 2 41 6 2 51 5 2 55 4 2 5D 4 3 59 4 3 ""- - -

INC M + 1 ·M EE 6 3 E6 5 2 F6 6 2 FE 7 3 ""- -

INX X • 1-X E8 2 1 ",,-
INY Y • 1 -->¥ C8 2 1 """ """ - - -

JMP JUMP TO NEW LOC 4C 3 3 6C 5 3 - - -

(See FIgure A-2) - -

JSR JUMP SUB 20 6 3

LOA M--A (1) A9 2 2 AD 4 3 A5 3 2 A1 6 2 B1 5 2 85 4 2 BD 4 3 B9 4 3 ",,- -

Figure A.3

»
lJ
'"0
m
Z
o
X
»

~

U1
~

~

~

s:»o
I
Z
m
s;:
z
G>
c»
G>
m
'"T1o
::D
oos:
s:
o
oo
::D
m
s:»o
I
Z
men

CONDITION

Figure A.4

INSTRUCTIONS Immediate Absoluto Zero Page Accum Implied (Ind) X (Ind) Y Z, Page, X Aba X AbsY Relative Indirect Z, Pago, Y
~ ---

Mnemonic Operation OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # OP N # NZCIDV

LOX M-X (1) A2 2 2 AE 4 3 A6 3 2 BE 4 3 B6 4 2 .,,,,----
LOY M-Y (1) AO 2 2 AC 4 3 A4 3 2 B4 4 2 BC 4 3 Y" Y" - - - -

LSR o--.rr:::::::Jil-.c 4E 6 3 46 5 2 4A '2 1 56 6 2 5E 7 3 o """""" - - -
NOP NO OPERATION EA 2 1 ------

ORA AVM-A 09 2 2 OD 4 3 05 3 2 01 6 2 11 5 5 15 4 2 10 4 3 19 4 3 Y" """ - - - -

PHA A-MS S - 1-S 48 3 1 ------

PHP P~MS S - ,~S 08 3 1 ------

PLA S + 1-8 MS~A 68 4 1 Y" """ - - - -

PLP S + 1_8 MS~P 28 4 1 (RESTOREO)

ROL Lrr::::m_~J 2E 6 3 26 5 2 2A 2 1 36 6 2 3E 7 3 """ Y" Y" - - -

ROR Lrm-.IL::::QJJ 6E 6 3 68 5 2 6A 2 1 76 6 2 7E 7 3 vvv

(See Figure A-1l 40 6 1 (RESTORED)
RTI RTRN INT

(See Figure A-1) 60 6 1 - - - - -
RTS RTRN SUB

sse A - M - C-A (1) E9 2 2 ED 4 3 E5 3 2 E1 6 2 Fl 5 2 F5 4 2 FD 4 3 F9 4 3 v v (3) - - v

SEC ,~C 38 2 1 - 1 - - -

SED '~D F8 2 1 - - - - 1 -

SEI '~I 78 2 1 ---1--

STA A~M 8D 4 3 85 3 2 81 6 2 91 6 2 95 4 2 9D 5 3 99 5 3 ------

STX X~M 8E 4 3 86 3 2 96 4 2 ------

STY Y~M 8C 4 3 84 3 2 94 4 2 ------

TAX A~X AA 2 1 """ Y" - - - -

TAY A~Y AS 2 1 Y" Y" - - - -

TSX ~X BA 2 1 """"""----
TXA X~A 8A 2 1 """ Y" - - - -

TXS X~S 9A 2 1 ------

TYA Y~A 98 2 1 vv----

(1) ADD 1 TO "N IF PAGE BOUNDARY IS CROSSED X INDEX X + ADD v MODIFIEO
(2) ADD 1 TO "N IF BRANCH OCCURS TO SAME PAGE Y INDEX Y - SUBTRACT - NOT MOOIFIED

ADD 2 TO N IF BRANCH OCCURS TO DIFFERENT PAGE A ACCUMULATOR /\ AND M7 MEMORY BIT 7
(3) CARRY NOT ~ BORROW M MEMORY PER EFFECTiVE ADDRESS V OR M6 MEMORY BIT 6
(4) IF IN DECIMAL MODE Z FLAG IS INVALID MS MEMORY PER STACK POINTER V EXCLUSIVE OR N NO CYCLES

ACCUMULATOR MUSr BE CHECKED FOR ZERO RESULT # NO BYTES

B
Some

Characteristics
of Commodore

Machines

155

156 MACHINE LANGUAGE FOR COMMODORE MACHINES

PET-Original ROM
The first PET. It can be recognized by the message seen at power up:

*** COMMODORE BASIC ***
using astensks but with no identifying number after the word BASIC.

The original machine 'may be upgraded to Upgrade ROM by fitting a new
set of ROM chips. This is a good Idea, since the original logic cannot
handle disk, does a poor Jobon cassette data files, has no built-in machine
language monitor, and has a zero page architecture that differs significantly
from all later PET/CBM's. The BASIC language on this unit is also limited;
arrays may not contain over 256 elements, for example.

This early machine is becoming rare.

PET/CBM-Upgrade ROM
The first PET that can handle disk. It can be recognized by the message
seen at power up:

COMMODORE BASIC

using the numbers sign (or octothorpe, if you like).

This IS much cleaner logic than the previous machine. Its internal structure
is similar to that of later PET/CBM units (the 4.0 machines), so that it has
much In common with them.

It does not have specialized disk commands such as CATALOG,
SCRATCH, or DLOAD (the 4.0 disk commands); but these are "conve­
nience" commands and the Upgrade ROM unit can do everything that the
later units do.

Upgrade ROM machines have a BASIC annoyance: under some circum­
stances, string variables need to be tidied up using a technique called
"garbage collection." This takes place automatically when needed; but
when it does, the machine will freeze and seemingly will be dead for a
period that may last from a few seconds to as long as a half hour or more.

PET/CBM-4.0 ROM and 80 Characters
This class of machine has been a mainstay of the Commodore line for
years. It may be recognized by the message seen at power up:

*** COMMODORE BASIC L;. 0 ***
For the first time, a number appears in the message.

APPENDIX B 157

These machines are characterized by new BASIC disk commands
(CATALOG, etc.) and elimination of garbage-collection delays. Their in­
ternal architecture, especially zero page, IS qutte similar to the previous
Upgrade ROM computers.

Some time after the initial prooucnon of 40-column machines, 80-column
machines were introduced, as well as a new 40-column version called the
"fat 40." The later machines are distinguished by new screen/keyboard
features, most noticeable of which is that the cursor movement keys repeat
automatically.

Subsequently, two memory-expanded machines became available. The
8096 came fitted with 96K of RAM; the extra 64K was "bank switched"
into memory as needed In blocks of 16K. The SuperPET, too, had an
extra 64K of RAM that was bank switched in 4K blocks; it also came with
an additional microprocessor (the 6809) used primarily for implementing
high-level languages. Both the 8096 and the SuperPET may be used as
conventional CBM 8032 computers; the extra memory may be Ignored.

VIC-20
The VIC-20 was a new design concept for Commodore. Color, graphics,
and sound were butlt into the computer The memory architecture changed
radically. Zero-page locations were shifted significantly as compared to
previous PET/CBM computers.

BASIC reverted to Upgrade ROM style-no special disk commands and
potentially slow garbagecollection. Other than that, BASIC was not trimmed.
All the functions and features remained, and some attractive new screen
editing features were added, such as automatic repeating keys.

The VIC comes with no machine language monitor, it's necessary to load
one. The S YS command has a new attractive feature that allows registers
A, X, and Y to be "preloaded" by POKEing values Into addresses 780,
781, and 782. Location 783 could also be used to set the status register,
but that's dangerous; unless It'S done carefully, the decimal mode or in­
terrupt disable flags might be set inadvertently.

The VIC-20 is somewhat vexing for machine language programming work.
Depending on the amount of extra memory fitted (none, 3K, or 8K and
over), the location of start-of-BASIC and of screen memory will vary.

Commodore 64
The Commodore 64 has much In common With the VIC-20. In particular,
its zero page organization IS almost identical to that of VIC. The Com-

158 MACHINE LANGUAGE FOR COMMODORE MACHINES

modore 64 comes with a 6510 microprocessor; addresses 0 and 1 are
reserved for "bank switching" of memory.

BASIC is identical to that of the VIC-no special disk commands and
potentially slow garbage collection. There's no built-In machine language
rnorutor, so one must be loaded. The SYS command, as with the VIC,
allows preloading of registers A, X, and Y if desired.

The Commodore 64 nas a more stable architecture than the VIC. BASIC
starts in a consistent place, and the screen is always at hex 0 L; DO unless
you move it. There's a bank of memory at $ COD0 to $ CFFF that is not
used by the computer system; it's useful for staging machine language
coding.

The Commodore 64 is the first Commodore machine in which it is some­
times desirable to wnte totally In machine language, with no BASIC at all.
BASIC can be swapped out to release extra RAM, and large applications
(word processors, spread sheets, and so on) are likely to do this.

Commodore PLUSI4
Similar to the Commodore 64 in many ways. The processor is a 7501,
which has the same instruction set as the 6502. Screen memory and
BASIC RAM have been moved a little higher. BASIC itself is greatly ex­
panded.

Color and sound are implemented differently to the Commodore 64.

There's a built-in machine language monitor with expanded features, such
as assemble and disassemble. This one is convenient for machine lan­
guage programmers.

The memory arrangement is more sophisticated than on previous ma­
chines; large implementations may require insight into the machine's de­
tailed architecture.

B Series
The B-128, B-256, CBM-128, and CBM-256 were designed as successors
to the 80-column PET/CBM units. Architecture has been radically changed:
the processor is a 6509, memory is bank switched, and zero page is
significantly different from that of other models

The cassette buffer is no longer at $ 0 :3 :3 0, so that the examples given
in this book will need to be moved to a new part of RAM (addresses
$ 0 L; DO to $ 0 7 FF are available). Bank switching is more complex than
on other models. Beginners will find that there are more things to be kept

APPENDIX B 159

track of in this machine. If possible, beginners should try to find a simpler
computer on which to take their first steps.

Implementation of large-scale programs require setting up a "transfer se­
quence" program to link the program's memory bank to that of the kernal.
Usually, a bootstrap program will be needed to set everything up.

A machine language rnorutor IS bunt Into thiS line of machines. A few new
commands have been made available: • V to switch banks, • «L to test
disk status.

c
Memory

Maps
A word about memory maps: they are always too big or too small for the
use YOlJ have in mind.

The beginner may feel swamped by the wealth of detail. There's no threat,
however. The information is there when you're ready for it. Browse through
the information; it may be thought-provoking. Try reading or changing
locations to see what happens.

The advanced programmer may want more: lengthy details on how each
location is used, which parts of the system use these locations, and so
on. Time and space don't permit such detail.

The maps are intended to be fairly complete. Those who want more detail
may find them cryptic; but at least each location will be associated with a
type of actlvlty. Different machines may be compared by checking their
respective maps. In some cases. programs may be converted with their
use, since they will help to find the corresponding memory location in the
target machine.

When you see a reference to a POKE or PEEK location-in this book or
from other sources-check it in these maps. They Will nelp add perspec­
tive.

161

162 MACHINE LANGUAGE FOR COMMODORE MACHINES

"Original ROM" PET
The Great Zero-Page Hunt

Most users help themselves to the high part of the input buffer ($ 0 OL; 0
to $ 0 0 59, which IS not used except when long lines of data are inputted.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. However, the pro­
grammer should take great care in modifying the following locations, which
are critical within the operating system or BASIC. $03, $05, $6L; to
$ 67, $ 7 Ato $87, $89, $ A2 to $ A3, $ B7, $ C2 to $ D9, $E 0 to $E 2,
$F5.

Memory Map
Hex Decimal Descnptton

0000-0002 0-2 USR jump
0003 3 Current I/O - prompt

suppress
0005 5 Cursor control position
0008-0009 8-9 Integer value (for SYS, GOTO,

and so on)
000A-0059 10-89 Input buffer
005A 90 Search character
005B 91 Scan-between-quotes flag
005C 92 Input buffer pointer; number of

subscnpts
005D 93 Default DIM flag
DOSE 9L; Type: FF = string;

DO = numeric
005F 95 Type: 80 = integer; 00 = floating

point
0060 96 Flag: DATA scan; LIST quote;

memory
0061 97 Subscript flag; FNX flag
0062 98 O=INPUT; $L;O=GET;

$98=READ
0063 Cl9 ATN sign/comparison

evaluation flag
006L; 100 Input flag (suppress output)
0065-0067 101-103 Pointers for descriptor stack

APPENDIX C 163

Hex Decimal Descnption

0068-0070 loL;-112 Descriptor stack (temporary
strings)

o071-oo7L; 113-116 Utility pointer area
0075-0078 117-120 Product area tor multiplication
o07A-007B 122-12~ Pointer: start-ot-BASIC
o07C-007D 12L;-125 Pointer: start-of-variables
o07E-007F 126-127 Pointer: start-ot-arrays
0080-0081 128-129 Pointer: end-ot-arrays
0082-0083 130-131 POinter: string-storage (moving

down)
008L;-0085 132-133 Utility string pomter
0086-0087 13L;-135 Pointer: limit-ot-memory
o088-oo8Cl 136-137 Current BASIC line number
o08A-008B 138-139 Previous BASIC line number
o08C-008D 1L;0-1L;1 Pointer:BASIC statement tor

CONT
o08E-008F 1L;2-1L;3 Current DATA line number
0090-0091 1L;L;-1L;5 Current DATA address
0092-0093 1L;6-1L;7 Input vector
o09L;-00Cl5 1L;8-1L;9 Current variable name
0096-0097 150-151 Current variable address
0098-0099 152-153 Variable pointer tor FOR/NEXT
o09A-009B 15L;-155 Y-save; op-save; BASIC

pointer save
o09C 156 Comparison symbol

accumulator
o09D-00A2 157-162 Miscellaneous work area,

pointers, and so on
00A3-00A5 163-165 Jump vector tor functions
00A6-0oAF 166-175 Miscellaneous numeric work

area
oOBo 176 Accum# 1: exponent
00B1-ooBL; 177-180 Accum#1: mantissa
00B5 181 Accum#1 :sign
00B6 182 Series evaluation constant

pointer
00B7 183 Accum#1 hi-order (overflow)
00B8-0oBD 18L;-189 Accum#2: exponent, and so on
OoBE 190 Sign comparison, Acc#1 versus

#2
ooBF 191 Accum#1 lo-order (roundmq)

164 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

00CO-00C1 192-193 Cassette buffer length/series
pointer

00C2-00D9 19L;-217 CHRGET subroutine; get
BASIe character

00C9-00CA 201-20[; BASIC pointer (within
subroutine)

OODA-OODE 218-222 Random number seed
00EO-00E1 22L;-225 Pointer to screen line
00E2 226 Position of cursor on above line
00E3-00EL; 227-228 Utility pointer: tape, scroll
00E5-00E6 229-230 Tape end address/end of

current program
00E7-00E8 231-232 Tape timing constants
00E9 233 Tape buffer character
OOEA 23L; Direct/programmed cursor:

0= direct
OOEB 235 Tape read timer 1 enabled
OOEC 236 EOT received from tape
ODED 237 Read character error
OOEE 238 Number of characters In file

name
OOEF 239 Current file logical address
OOFO 2L; 0 Current file secondary address
00F1 2L; 1 Current file device number
00F2 2L; 2 Line margin
00F3-00FL; 2L;3-2L;L; Pointer: start of tape buffer
00F5 2L; 5 Line where cursor lives
00F6 2L; 6 Last key/checksum/

miscellaneous
00F7-00F8 2L;7-2L;8 Tape start address
00F9-00FA 2L;9-250 File name pointer
OOFB 251 Number of INSERTs

outstanding
OOFC 252 Write shift word/read character

in
OOFD 253 Tape blocks remaining to write/

read
OOFE 25L; Serial word buffer
0100-010A 256-266 STR$ work area
0100-013E 256-318 Tape read error log
0100-01FF 256-511 Processor stack

APPENDIX C 165

Hex Decimal Description

0200-0202 512-513 Jiffy clock for TI and TI $
0203 515 Which key down: 255 = no key
020L; 516 snut Key: 1 if depressed
0205-0206 517-518 Correction clock
0207-0208 519-520 Cassette status, # 1 and # 2
0209 521 Keyswitch PIA: STOP and

RVS flags
020A 522 Timing constant for tape
020B 523 Load = 0; venfy = 1
020C 52L; Status word ST
020D 525 Number of characters in

Keyboard buffer
020E 526 Screen reverse flag
020F-0218 527-536 Keyboard input buffer

0219-D'21A 537-538 IRQ vector
021B-021C 539-5L;0 BRK interrupt vector
021D 5L;1 IEEE output: 255 = character

pending
021E 5L; 2 End-of-line-for-Input pointer
0220-0221 5L;L;-5L;5 Cursor log (row, column)
0222 5L;6 IEEE output buffer
0223 5L;7 Key image
022L; 5L;8 o= flash cursor
0225 5L;9 Cursor timing countdown
0226 550 Character under cursor
0227 551 Cursor in blink phase
0228 552 EOT received from tape
0229-02L;1 553-577 Screen line wrap table
02L;2-02L;B 578-587 File logical address table
02';C-0255 588-5q7 File device number table
0256-025F 598-607 File secondary address table
ll'2.bll blll) \n~u\ \fom screen/\fom

keyboard
0261 609 X save
0262 610 How many open files
0263 611 Input device, normally 0
026L; 612 Output CMD device, normally 3
0265 613 Tape character parity
0266 61L; Byte-received flag
0268-0269 615-616 File name pointer; counter

166 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Descnption

026C 620 Serial bit count
026F 623 Cycle counter
0270 62L; Tape writer countdown
0271-0272 625-626 Tape buffer pointers, #1 and

#2
0273 627 Write leader count; read pass

1/2
027L; 628 Write new byte; read error flag
0275 629 Write start bit; read bit

sequence error
0276-0277 630-631 Error log pointers, pass 1/2
0278 632 o=scan/1-15 = count/

$L; 0 = load/$ 8 0 = end
0279 633 Write leader length: read

checksum
027A-0339 63L;-825 Tape#l input buffer
033A-03F9 826-1017 Tape#2 input buffer
03FA-03FB 1018-1019 Monitor extension vector
0L;00-7FFF 102L;-32767 Available RAM including

expansion
8000-83E7 32768-33767 Screen RAM memory
COOO-E7F8 L;9152-5938L; BASIC ROM; part of kernal

ROM
E810-E813 59L;08-59L;11 PI A 1 (6520)-keyboard

interface
E820-E823 59L;2L;-59L;27 PI A 2 (6520)-IEEE interface
E8L;0-E8L;F 59L;56-59L;71 VI A (6522)-Miscellaneous

interface, timers
FOOO-FFFF 61L;L;0-65535 Kemal ROM routines.

PI A and VI A charts are the same as shown for Upgrade/4.0 units.

UPGRADE and BASIC 4.0 Systems
The Great Zero-Page Hunt

Zero-page locations are tough to find in these areas. Locations $1 F to
$ 27, $ L; B to $5 0, and $ 5 L; to $ 5D are work areas available for tem­
porary use. If tape is not being read or written, addresses $ B1 to $ C3
are available.

APPENDIX C 167

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however. in modifying the following locations, which
are critical within the operating system of BASIC: $10, $13 to $15,
$ 2 8 to $3 5, $3 7 , $ 5 0 to $ 51, $ 65, $7 0 to $87, $8D to $B0, $CL;
to $FA.

Memory Map
Where Upgrade ROM differs from 4.0, an asterisk ("') is shown and the 4.0
value is given. There are some differences In usage between the 40- and
aO-column machines.

Hex Decimal Description

0000-0002 0-2 U5R jump
0003 3 Search character
000L; L; Scan-between-quotes flag
0005 5 Input buffer pointer; number of

subscripts
0006 6 Detault DIM flag
0007 7 Type: FF = string; DO = numeric
0008 8 Type: 80 = integer;

00 = floating point
0009 9 Flag: DATA scan; LI5T quote;

memory
oOOA 10 Subscript flag; FNX flag
oOOB 11 O=INPUT; $L;o=GET;

$98=READ
OoOC 12 AT N sign/comparison

evaluation flag
OOoD-ooOF 13-15 *Disk status D5 $ descriptor
0010 16 "Current I/O device for prompt-

suppress
0011-0012 17-18 Integer value (tor 5Y5, GOTO,

and so on)
0013-0015 19-21 Pointers for descriptor stack
o016-001E 22-30 Descriptor stack (temporary

strings)
o01F-0022 31-3L; Utility pointer area
0023-0027 35-39 Product area tor multiplication
0028-0029 L;0-L;1 POInter: start-of-BASIC
o02A-002B L;2-L;3 Pointer: start-of-variables
o02C-002D L;L;-L;5 Pointer: start-ot-arrays

168 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Descnpuon

002E-002F L;6-L;7 Pointer: end-ot-arrays
0030-0031 L;8-L;9 Pointer: string-storage (moving

down)
0032-0033 50-51 Utility string pointer
003L;-0035 52-53 Pointer: limit-ot-memory
0036-0037 5L;-55 Current BASIC line number
0038-0039 56-57 Previous BASIC line number
003A-003B 58-59 Pointer: BASIC statement tor

CaNT
003C-003D 60-61 Current DATA Ime number
003E-003F 62-63 Current DATA address
00L;0-00L;1 6L;-65 Input vector
00L;2-00L;3 66-67 Current variable name
00L;6-00L;7 70-71 Vanable pointer tor FOR/NEXT
00L;8-00L;9 72-73 Y-save; op-save; BASIC

pointer save
~OL; A 7L; Comparison symbol

accumulator
00L;B-0050 75-80 Miscellaneous work area,

pointers, and so on
0051-0053 81-83 Jump vector tor functions
005L;-005D 8L;-93 Miscellaneous numeric work

area
DOSE 9L; Accum#1: exponent
005F-0062 95-98 Accum#1: mantissa
0063 99 Accum#1: sign
006L; 100 Series evaluation constant

pointer
0065 101 Accum# 1 hi-order (overflow)
0066-006B 102-107 Accumez: exponent, and so on
006C 108 Sign comparison, Acc#1 versus

#2
006D 106 Accum#1 lo-order (rounding)
006E-006F 110-111 Cassette butter length/series

pointer
0070-0087 112-135 CHRGET subroutine; get

BASIC character
0077-0078 119-120 BASIC pointer (within

subroutine)
0088-008C 136-1L;0 Random number seed
008D-008F lL;1-1L;3 Jiffy clock tor TI and TI $

APPENDIX C 169

Hex Decimal Descnption

0090-0091 1L;L;-1L;5 IRQ vector
0092-0093 1L;6-1L;7 BRK interrupt vector
009L;-0095 1L;8-1L;9 NMI interrupt vector
0096 150 Status word ST
0097 151 Which key down: 255 = no key
0098 152 Shift key: 1 if depressed
0099-009A 153-15L; Correction clock
009B 155 Keyswuch PIA: STOP and

RVS flags
009C 156 Timing constant for tape
009D 157 Load = 0; verify = 1
009E 158 Number of characters In

keyboard buffer
009F 159 Screen reverse flag
OOAO 160 IEEE output: 255 = character

pending
00A1 161 End-ot-line-tor-mput pointer
00A3-00AL; 163-16L; Cursor log (row, column)
00A5 165 IEEE output buffer
00A6 166 Key image
00A7 167 o= flash cursor
00A8 168 Cursor timing countdown
00A9 169 Character under cursor
OOAA 170 Cursor In blink phase
OOAB 171 EOT received from tape
OOAC 172 Input from screen/from

keyboard
OOAD 173 X save
OOAE 17L; How many open files
OOAF 175 Input device, normally 0
OOBO 176 Output CMD device, normally 3
00B1 177 Tape character parity
00B2 178 Byte-received flag
00B3 179 Logical address temporary save
OOBL; 180 Tape buffer character; MLM

command
00B5 181 File name pointer; MLM flag;

counter
00B7 183 Senal bit count
00B9 185 Cycle counter
OOBA 186 Tape writer countdown

170 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Descnpuon

OOBB-OOBC 187-188 Tape buffer pointers, #1 and
#2

OOBD 189 Wnte leader count; read pass
1/2

OOBE 190 Write new byte; read error flag
OOBF 191 Wnte start bit; read bit

sequence error
00CO-00C1 192-193 Error log pointers, pass 1/2
00C2 19L; o= scanl1-15 = count/

$L; 0 = load/$ 8 0 = end
00C3 195 Write leader length; read

checksum
00CL;-00C5 196-197 Pointer to screen line
00C6 198 Position of cursor on above line
00C7-00C8 199-200 Utility pointer: tape, scroll
00C9-00CA 201-202 Tape end address/end of

current program
OOCB-OOCC 203-20L; Tape timing constants
OOCD 205 0= direct cursor; else

programmed
OOCE 206 Tape read timer 1 enabled
OOCF 207 EaT received from tape
DODD 208 Read character error
00D1 209 Number of characters in file

name
00D2 210 Current file logical address
00D3 211 Current file secondary address
OODL; 212 Current file device number
00D5 213 Right-hand window or line

margin
00D6-00D7 21L;-215 Pointer: start of tape buffer
00D8 216 Line where cursor lives
00D9 217 Last key/checksum/

miscellaneous
OODA-OODB 218-219 File name pointer
OODC 220 Number of INSERTs

outstanding
DODD 221 Write shift word/read character

in
OODE 222 Tape blocks remaining to write/

read

APPENDIX C 171

Hex Decimal Descnption

OODF 223 Serial word buffer
00EO-00F8 221;-21;8 (40-column) Screen line wrap

table
00EO-00E1 221;-225 "(so-colurro) Top, bottom of

window
00E2 226 *(SO-column) Left window

margin
00E3 227 *(SO-column) Limit of keyboard

buffer
OOE1; 228 *(SO-column) Key repeat flag
00E5 229 *(SO-column) Repeat countdown
00E6 230 ..(SO-column) New key marker
00E7 231 *(SO-column) Chime time
00E8 232 *(SO-column) HOME count
00E9-00EA 233-231; *(SO-column) Input vector
OOEB-OOEC 235-236 ..(SO-column) Output vector
00F9-00FA 21;9-250 Cassette status, # 1 and # 2
OOFB-OOFC 251-252 MLM pointer/tape start address
OOFD-OOFE 253-251; MLM, DOS pointer,

miscellaneous
0100-010A 256-266 STR$ work area, MLM work
0100-013E 256-318 Tape read error log
0100-01FF 256-511 Processor stack
0200-0250 512-592 MLM work area; input buffer
0251-025A 593-602 File logical address table
025B-0261; 603-612 File device number table
0265-026E 613-622 File secondary address table
026F-0278 623-632 Keyboard input buffer
027A-0339 631;-825 Tape# 1 input buffer
033A-03F9 826-1017 Tape#2 input buffer
033A-0380 826-896 *DOS work area
03E9 1001 (Fat 40) New key marker
03EA 1002 (Fat 40) Key repeat countdown
03EB 1003 (Fat 40) Keyboard buffer limit
03EC 1001; (Fat 40) Chime time
03ED 1005 (Fat 40) Decisecond timer
03EE 1006 (Fat 40) Key repeat flag
03EE-03F7 1006-1015 (SO-column) Tab stop table
03EF 1007 (Fat 40) Tab work value
03FO-9 1008-1017 (Fat 40) Tab stops
03FA-03FB 1018-1019 Monitor extension vector

172 MACHINE LANGUAGE FOR COMMODORE MACHINES

FOOO-FFFF 611;1;0-65535

Hex

03FC
01;00-7FFF

8000-83E7
8000-87CF
9000-aFFF
BOOO-E7FF
E810-E813
E820-E823
E81;0-E81;F
E880-E881

oecimet

1020
1021;-32767

32768-33767
32768-31;767
36861;-1;5055
1;5056-59391
591;08-591;11
591;21;-591;27
591;56-591;71
59520-59521

Descnptton

*IEEE timeout defeat
Available RAM including
expansion
(40-column) Video RAM
*(80-column) Video RAM
Available ROM expansion area
BASIC ROM, part of kernal
PI A 1-keyboard I/O
PI A 2-IEEE-488 I/O
VIA-I/O and timers
(80-column and Fat 40) CRT
controller
Kernal ROM

6520

E810

E811

E812

E813

Diaq Sens!
EOlln Tape SWitchSense I Keyboard Row Select

Uncrash #1 #2

Tape#1 In (Screen Blank-Ong I DDRA I Tape#1 Input L
Latch ROM) EOI Out Access Control

Keyboard Input for selected row

Retrace Cassette#1 Motor I DDRB I Retrace Interrupt
Latch Output Access Control

59408

59409

59410

59411

Figure C.1
PIA 1 chart

6520

E820

E821

E822

E823

IEEE-488 Input

ATN Int I I NDAC Out I DDRA I ATN Int Control
Access

IEEE-488 Output

SRO Int I I DAV Out I DDRB I SOR Int Control
Access

59424

59425

59426

59427

Figure C.2
PIA 2 chart

APPENDIX C

6522

173

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D
E84E

E846F

DAV In INRFD InIRetrace I Tape#2j Tape IATN outl NRFD INDAC In
In Motor Output Out

Unused (See E84F)

Data Direcnon Register B (for E840)

Data Direction Register A (for E84F)

Timer 1- -

Timer 1 Latch
- -

Timer 2- -

Shift Register (unused)

T1 Control T2 Cont Shift Register Control
Latch Controls
PB PA

CB1 Cntl CA2 Control
CA1

CB2 (PUP) Control
Tape#2 Graphics/Text Mode

(PUP)
Control

Irq Stats Timer Timer CB1 CB2
SR

CA1 CA2
.... 1 2 Tape#2 (PUB)

Unused
(PUP) GiT Mode

Int Enabl Int Int Int Int Int unused

Parallel User Port Data ~eglster PA

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469
59470

59471

Figure C.3
VIA chart

CBM 8032 and FAT-40
6545 CRTController

NOTES: 1. Registers are write-only.
2. Avoid extreme changes in Register O. CRT damage could

result.
3. Register 0 will adjust scan to allow interfacing to external

monitor.
4. Register 12, Bit 4, will "invert" the video signal.
5. Register 12, Bit 5, switches to an alternate character set. The

character set IS not implemented on most machines except
Super-PET.

174 MACHINE LANGUAGE FOR COMMODORE MACHINES

TYPICAL VALUES
(DECIMAL)

TEXT GRAPHICS

49 49

40 40

41 41

15 15

32 40

3 5
25 25
29 33

o 0

9 7
o 0

o 0

16 16
o 0

$E841$E840

t t
0 HORIZONTAL TOTAL

1 HOR. CHAR. DISPLAYED

2 H. SYNC POSITION

3 V SYNC "'{10TH H
4 XJ VERTiCAL TOTAL

5 ><1 VERT. TOT. ADJUST

6 X VERTICAL DISPLAYED

7 X VERT. SYNC POSITION

8 ><1 MODE

9 SCAN LINES

10

11
CURSOR START (UNUSED)-

12 ><lCIRI DISPLAY
13 ADDRESS-

NOTES: 1. REGISTERS ARE WRITE-ONLY
2. AVOID EXTREME CHANGES IN

REGISTER, OR CRT DAMAGE
COULD RESULT

3. REGISTER 0 WILL ADJUST SCAN
TO ALLOW INTERFACING TO
EXTERNAL MONITOR

4. REGISTER 12, BIT 4, WILL "INVERT"
THE VIDEO SIGNAL.

5. REGISTER 12, BIT 5, SWITCHES TO
AN ALTERNATE CHARACTER SET.
THE CHARACTER SET IS NOT
IMPLEMENTED ON MOST MACHINES
EXCEPT SUPER-PET.

Figure C.4

APPENDIX C

The6522VIA
6522

175

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D
E84E

E846F

DAV In NRFD InIRetrace ITape #2 I Tape IATN outl NRFD I"'JDAC In
In Motor Output Out

Unused (See E84F)

Data Direction Register B (for E840)

Data Direction Register A (for E84F)

Timer 1
"---- -

Timer 1 Latch
>--- -

Timer 2
"---- -

Shift Register (unused)

Tl Control T2 Cont Shift Register Control
Latch Controls
PB PA

CBl Cntl CA2 Control
CAl

CB2 (PUP) Control
Tape#2 Graphics/Text Mode

(PUP)
Control

Irq Stats Timer Timer C81 CB2
SR

CAl CA2
..--. 1 2 Tape#2 (PUB)

Unused
(PUP) GIT Mode

Int Enabl Int Int Int Int Int unused

Parallel User Port Data Register PA

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469
59470

59471

Figure C.S
VIA chart

VIC-20
The Great Zero-Page Hunt

Locations $FC to $FF are available. Locations $22 to $2A, $L;E to
$53, and $57 to $60 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. However, the pro­
grammer should take great care in modifying the following locations, which
are critical within the operating system or BASIC: $13, $16 to $18,
$2B to $38, $3A, $53 to $51;, $68, $73 to $8A, $90 to $9A, $AO
to $ A2, $B8 to $BA, $ C5 to $ F1; .

176 MACHINE LANGUAGE FOR COMMODORE MACHINES

Memory Map

Hex Decimal Description

0000-0002 0-2 USR jump
0003-0001; 3-1; Float-fixed vector
0005-0006 5-6 Fixed-float vector
0007 7 Search character
0008 8 Scan-quotes flag
0009 9 TAB column save
OOOA 10 0= LOAD, 1 = VERIFY
OOOB 11 Input buffer pointer/number of

subscripts
OOOC 12 Default DIM flag
DODD 13 Type: FF = string; 00 = numeric
OOOE 11; Type: 80 = integer;

00 = floating point
OOOF 15 DATA scan/L 1ST quote/

memory flag
0010 16 Subscript/FNx flag
0011 17 0= INPUT; $1;0 = GET;

$98=READ
0012 18 ATN sign/Companson

evaluation flag
0013 19 Current 1/0 prompt flag
0011;-0015 20-21 Integer value
0016 22 Pointer: temporary string stack
0017-0018 23-21; Last temporary string vector
0019-0021 25-33 Stack for temporary strings
0022-0025 31;-37 Utility pointer area
0026-002A 38-1;2 Product area for multiplication
002B-002C 1;3-1;1; Pointer: start-of-BASIC
002D-002E 1;5-1;6 Pointer: start-of-variables
002F-0030 1;7-1;8 POinter: start-of-arrays
0031-0032 1;9-50 Pointer: end-of-arrays
0033-0031; 51-52 Pointer: string-storage (moving

down)
0035-0036 53-51; Utility string pointer
0037-0038 55-56 Pointer: hrnit-of-rnernory
0039-003A 57-58 Current BASIC line number
003B-003C 59-60 Previous BASIC line number
003D-003E 61-62 Pointer: BASIC statement for

CONT

178 MACHINE LANGUAGE FOR COMMODORE MACHINES 1
I
I

Hex Decimal Description

0097 151 Register save
0098 152 How many open files
0099 153 Input device, normally 0
009A 15L; Output CMD device, normally 3
009B 155 Tape character parity
009C 156 Byte-received flag
009D 157 Direct = $ 8 O/RUN= 0 output

control
009E 158 Tape pass 1 error log/character

buffer
009F 159 Tape pass 2 error log corrected
00AO-00A2 160-162 Jiffy Clock HML
00A3 163 Serial bit count/E 0 I flag
OOAL; 16L; Cycle count
00A5 165 Countdown, tape write/bit count
00A6 166 Tape buffer pointer
00A7 167 Tape write leader count/read

pass/inbit
00A8 168 Tape write new byte/read error/

mbit count
00A9 169 Write start bit/read bit error/stbit
OOAA 170 Tape Scan;Cnt;Load;End/byte

assembly
OOAB 171 Write lead length/read

checksum/parity
OOAC-OOAD 172-173 Pointer: tape buffer, scrolling
OOAE-OOAF 17L;-175 Tape end address/end of

program
00BO-00B1 176-177 Tape timing constants
00B2-00B3 178-179 Pointer: start of tape buffer
OOBL; 180 1 = tape timer enabled; bit count
00B5 181 Tape EOT/RS232 next bit to

send
00B6 182 Read character error/outbyte

buffer
00B7 183 Number of characters in file

name
00B8 18L; Current logical file
00B9 185 Current secondary address
OOBA 186 Current device
OOBB-OOBC 187-188 Pointer to file name

APPENDIX C 177

Hex Decimal Description

003F-001;0 63-61; Current DATA line number
001;1-001;2 65-66 Current DATA address
001;3-001;1; 67-68 Input vector
001;5-001;6 69-70 Current variable name
001;7-001;8 71-72 Current variable address
001;9-001;A 73-71; Variable pointer for FOR/NEXT
001;B-001;C 75-76 Y-save; op-save; BASIC

pomter save
001;D 77 Comparison symbol

accumulator
001;E-0053 78-83 Miscellaneous work area,

pointers, and so on
0051;-0056 81;-86 Jump vector for functions
0057-0060 87-96 Miscellaneous numeric work

area
0061 97 Accum# L: exponent
0062-0065 98-101 Accum#1: mantissa
0066 102 Accum# 1: sign
0067 103 Series evaluation constant

pointer
0068 101; Accum#1 hi-order (overflow)
0069-006E 105-110 Accum#2: exponent, and so on
006F 111 Sign comparison, Acc#1 versus

#2
0070 112 Accum#1 lo-order (rounding)
0071-0072 113-111; Cassette buffer length/series

pointer
0073-008A 115-138 CHRGET subroutine; get

BASIC character
007A-007B 122-123 BASIC pomter (within

subroutine)
008B-008F 139-11;3 RND seed value
0090 11;1; Status word ST
0091 11;5 Keyswitch PIA: STOP and

RVS flags
0092 11;6 Timing constant for tape
0093 11;7 Load= 0; verify = 1
0091; 11;8 Serial output: deferred character

flag
0095 11;9 Serial deferred character
0096 150 Tape Eor received

APPENDIX C 179

Hex Decimal Description

ooBD 189 Wnte shift word/read inpu t
char

ooBE 190 Number of blocks remaining to
write/read

ooBF 191 Serial word buffer
OoCo 192 Tape motor interlock
00C1-OOC2 193-191; I/O start address
00C3-OOC1; 195-196 Kernal setup pointer
DOCS 197 Last key pressed
00C6 198 Number of characters in

keyboard buffer
00C7 199 Screen reverse flag
00C8 200 End-of-line for Input pointer
00C9-ooCA 201-202 Input cursor log (row, column)
ooCB 203 Which key: 6" if no key
OOCC 201; o = flash cursor
ooCD 205 Cursor timing countdown
oOCE 206 Character under cursor
ooCF 207 Cursor in blink phase
DODO 208 Input from screen/from

keyboard
00D1-ooD2 209-210 Pointer to screen line
00D3 211 Position of cursor on above line
ODD" 212 o = direct cursor; else

programmed
ODDS 213 Current screen line length
00D6 211; Row where cursor lives
00D7 215 Last inkey/checksum/buffer
00D8 216 Number of INSERTs

outstanding
00D9-ooFo 217-21;0 Screen link table
00F1 21; 1 Dummy screen link
00F2 2"2 Screen row marker
00F3-ooF1; 21;3-21;1; Screen color pointer
00F5-ooF6 21;5-21;6 Keyboard pointer
00F7-ooF8 21;7-21;8 RS-232 Rcv pntr
00F9-ooFA 21;9-250 RS-232 Tx pntr
00FF-01OA 256-266 Floating to ASCII work area
o1oo-103E 256-318 Tape error log
o1oo-o1FF 256-511 Processor stack area
0200-0258 512-600 BASIC input buffer

180 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Descnption

0259-0262 601-610 Logical file table
0263-026C 611-620 Device number table
026D-0276 621-630 Secondary address table
0277-0280 631-6L;0 Keyboard buffer
0281-0282 6L;1-6L;2 Start of BASIC memory
0283-028L; 6L;3-6L;L; Top of BASIC memory
0285 6L; 5 Serial bus timeout flag
0286 6L; 6 Current color code
0287 6L;7 Color under cursor
0288 6L; 8 Screen memory page
0289 6L;9 Maximum size of keyboard

buffer
028A 650 Repeat all keys
028B 651 Repeat speed counter
028C 652 Repeat delay counter
028D 653 Keyboard shift/control flag
028E 65L; Last shift pattern
028F-0290 655-656 Keyboard table setup pointer
0291 657 Keymode (Kattacanna)
0292 658 o= scroll enable
0293 659 RS-232 chip control
029L; 660 RS-232 chip command
0295-0296 661-662 Bit timing
0297 663 RS-232 status
0298 66L; Number of bits to send
0299-029A 665 RS-232 speed/code
029B 667 RS-232 receive pointer
029C 668 RS-232 input pomter
029D 669 RS-232 transmit pointer
029E 670 RS-232 output pomter
029F-02AO 671-672 IRQ save during tape I/O
0300-0301 768-769 Error message link
0302-0303 770-771 BASIC warm start link
030L;-0305 772-773 Crunch BASIC tokens link
0306-0307 77L;-775 Print tokens link
0308-0309 776-777 Start new BASIC code link
030A-030B 778-77CJ Get arlthrnsnc element link
030C 780 SYS A-reg save
030D 781 SYS X-reg save
030E 782 SYS Y-reg save
030F 783 SYS status reg save

APPENDIX C

Hex

o31L;-0315
0316-0317
o318-o31Cl
o31A-031B
o31C-031D
o31E-031F
0320-0321
0322-0323
o32L;-0325
0326-0327
0328-0329
o32A-032B
o32C-032D
o32E-032F
0330-0331
0332-0333
o33C-03FB
oL;oo-oFFF
looo-lFFF
2ooo-7FFF
8ooo-8FFF
9ooo-9ooF
Cl11o-912F
912o-Cl12F
9L;00-95FF
96oo-97FF
Aooo-BFFF
Cooo-FFFF

Decimal

788-78Cl
790-7Cl1
7Cl2-7Cl3
7ClL;-7Cl5
7Cl6-7Cl7
798-799
800-801
802-803
8oL;-805
806-807
808-8oCl
810-811
812-813
81L;-815
816-817
818-819
828-101Cl

lo2L;-L;095
L;oQ6-81Cl1
81Cl2-32767

32768-36863
3686L;-36879
37136-37151
37152-37167
37888-38399
38L;00-38911
L;096o-L;9151
L;Cl152-65535

181

Description

IRQ vector (EABF)
Break interrupt vector (FED2)
NMI Interrupt vector (FE AD)
OPEN vector (FL;oA)
CLOSE vector (F3L; A)
Set-input vector (F 2C7)
Set-output vector (F3 09)
Restore I/O vector (F3F3)
INPUT vector (F2oE)
Output vector (F27 A)
Test-STOP vector (F7 7 0)
GET vector (F1F5)
Abort I/O vector (F3EF)
USR vector (FED2)
LOAD link
SAVE link
Cassette buffer
3K RAM expansion area
Normal BASIC memory
Memory expansion area
Character bit maps (ROM)
Video interface chip (6560)
VI A (6522) interface-NMI
VI A (6522) interface-IRQ
Alternate color nybble area
Main color nybble area
Plug-in ROM area
ROM: BASIC and operating
system

182 MACHINE LANGUAGE FOR COMMODORE MACHINES

VIC 6560 Chip

$9000

$9001

$9002

$9003

$9004

$9005

$9006
$9007

$9008
$9009

$900A

$9008

$900C

$900D

$900E

$900F

Inter-
lace Left Margin (= 5)

Top Margin (= 25)

Scrn Ad
bit 9 # Columns (=22)

bit 0

I
Double

Rows (=23) Char

Input Raster Value: bits 8-1

Screen Address Character Address
bits 13-10 bits 13-10

Light Pen Input Horizontal-
Vertical

Paddle Inputs X
-

Y -

ON I Voice 1- -
ON I Voice 2 Frequency- -
ON I VOice 3--
ON I Noise

Multi-Colour Mode (= 0) Sound Amplitude

Screen Background Color Foregnd I Frame Color/Backg

36864

36865

36866

36867

36868

36869

36870
36871

36872
36873

36874

36875

36876

36877

36878

36879

Figure C.6

APPENDIX C

VIC 6522 Usage

183

$9110

$9111

$9112

$9113

$9114

$9115

$9116

$9117

$9118

$9119

$911A

$911B

$911C

$911 D

$911E

$911F

DSR I CTS I I DCD' I RI' I DTR I RTS
I

Data
In In In In out out In

RS-232 Interface
or, Parallel User Port

Unused - see $91 1F

DDRB (for $9110)

DDRA (for $911 F)

T1-L
RS-232 Send Speed;I- -

T1-H
Tape Write Timingf--- -

T1 Latch L
I- -

T1 Latch H

T2-L
RS-232 Input timingI- -

T2-H

Shift Register (*unused)

T1 Control T2 Cnt Shift Reg Control PBLE PALE

CB2 RS·232 Send CB1 C CA2 Tape motor ctrl CA1 Ctl

CB1: I CA1.
NMI' T1 T2 RS·232

I
Restore

in button

,ATN Tape• Joysticks Serial Senal
out sense Button I Left -I Down 1 Up Data in Clk in

37136

37137

37138

37139

37140

37141

37142

37143

37144

37145

37146

37147

37148

37149

37150

37151

Figure C.7

184 MACHINE LANGUAGE FOR COMMODORE MACHINES

VIC 6522 Usage

$9120

$9121

$9122

$9123

$9124

$9125

$9126

$9127

$9128

$9129

$912A

$912B

$912C

$912D
$912E

$912F

JOystU lJa~~Right Out
I-

Keyboard Row Select

Keyboard Column Input

DDRB (for $9120)

DDRA (for $9121)

T1-L
Cassette Tape Read;I- -

T1-H
Keyboard & ClockI--- -

T1-L Latch
Interrupt Timingf-- -

T1-H Latch

T2-L Serial Bus Timing
f-- -

T2-H Tape R/W Timing

Shift Register (*Unused)

T1 Control I T2Ctri Shift Register Contrl I PB LE PA LE

CB1 CA1
Senal Bus Data Out Conti Senal Clock Line out Conti

I I
CB1:* I I CA1:

IRQ. T1 T2 SRQ In Tape In

"Unused: see $9121

37152

37153

37154

37155

37156

37157

37158

37159

37160

37161

37162

37163

37164

37165
37166

37167

Figure C.S

APPENDIX C

Commodore 64:

The Great Zero-Page Hunt:

185

Locations $FC to $FF are available. Locations $22 to $2A, $L;E to
s 53, and s 5 7 to s 6 0 are work areas available for temporary use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations. which
are critical within the operating system or BASIC: $13, $16 to $18,
s 2B to $ 3 8, s 3 A, s 5 3 to s 5 L;, s 6 8, s 7 3 to s 8 A, s 9 0 to s 9 A, s A0
to sA2, sB 8 to sBA, sC5 to sFL;.

Memory Map
Hex Dectmei Desonption

0000 0 Chip directional register
0001 1 Chip I/O; memory and tape

control
0003-000.1:; 3-L; Float-fixed vector
0005-0006 5-6 Fixed-float vector
0007 7 Search character
0008 8 Scan-quotes flag
oooCl 9 TAB column save
oooA 10 0= LOAD, 1 = VERIFY
oooB 11 Input buffer pointer/number of

subscripts
OOOC 12 Default DIM flag
DODD 13 Type: FF = string;

00 = numeric
oooE lL; Type: 80 = integer;

00 = floating point
oooF 15 DATA scan/LIST quote/memory

flag
0010 16 Subscript/FNx flag
0011 17 0= INPUT;$L; 0 = GET;

$98=READ
0012 18 AT N sign/Comparison

evaluation flag
0013 lCl Current I/O prompt flag
oolL;-0015 20-21 Integer value

186 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Descnpuon

0016 22 Pointer' temporary string stack
0017-0018 23-2L; Last temporary string vector
0019-0021 25-33 Stack for temporary strings
0022-0025 3L;-37 Utility pointer area
o026-oo2A 38-L;2 Product area for multiplication
o02B-002C L;3-L;L; Pointer: start-at-BASIC
o02D-002E L;5-L;6 Pointer: start-of-variables
o02F-003o L;7-L;8 POinter: start-ot-arrays
0031-0032 L;9-5o Pointer: end-of-arrays
o033-oo3L; 51-52 Pointer: string-storage (moving

down)
0035-0036 53-5L; Utility string pointer
0037-0038 55-56 POinter: Iimit-ot-memory
o039-oo3A 57-58 Current BASIC line number
o03B-003C 59-60 Previous BASIC line number
o03D-003E 61-62 Pointer: BASIC statement for

CaNT
o03F-00L;0 63-6L; Current DATA line number
00L;1-ooL;2 65-66 Current DATA address
00L;3-ooL;L; 67-68 Input vector
00L;5-ooL;6 69-70 Current variable name
00L;7-ooL;8 71-72 Current variable address
00L;9-ooL;A 73-7L; Variable pointer for FOR/NEXT
ooL;B-ooL;C 75-76 Y-save; cp-save: BASIC

pointer save
ooL;D 77 Comparison symbol

accumulator
00L;E-0053 78-83 Miscellaneous work area,

pointers. and so on
o05L;-0056 8L;-86 Jump vector for functions
0057-0060 87-96 Miscellaneous numeric work

area
0061 97 Accume i: exponent
0062-0065 98-101 Accum#1: mantissa
0066 102 Accum#1: sign
0067 103 Series evaluation constant

pointer
0068 loL; Accum#1 hi-order (overflow)
o069-oo6E 105-110 Accum#2: exponent, and so on
o06F 111 Sign comparison, Acc#1 versus

#2
0070 112 Accum#1 lo-order (rounding)

APPENDIX C 187

Hex Decimal Descnpuon

0071-0072 113-11L; Cassette buffer length/series
pointer

o073-oo8A 115-138 CHRGET subroutine; get
BASIC character

o07A-007B 122-123 BASIC pointer (within
subroutine)

o08B-008F 139-1L;3 RND seed value
0090 1 L; L; Status word ST
0091 lL;5 Keyswitch PIA: STOP and

RVS flags
0092 lL;6 Timing constant for tape
0093 lL;7 Load = 0; verify = 1
o09L; lL;8 Serial output: deferred character

flag
DOgS 1.1:;9 Serial deferred character
0096 150 Tape EOT received
0097 151 Register save
0098 152 How many open files
0099 153 Input device. normally 0
oogA 15L; Output eMD device. normally 3
oogB 155 Tape character parity
O09C 156 Byte-received flag
o09D 157 Direct = $8o/RUN = 0 output

control
o09E 158 Tape pass 1 error log/character

buffer
o09F 159 Tape pass 2 error log corrected
00Ao-00A2 160-162 Jiffy Clock HML
00A3 163 Serial bit count/E0 I flag
ooAL; 16L; Cycle count
00A5 165 Countdown. tape write/bit count
00A6 166 Tape buffer pointer
00A7 167 Tape write leader count/read

pass/inbit
00A8 168 Tape write new byte/read

error/inbit count
ooAg 16g Write start bit/read bit error/stbit
ooAA 170 Tape Scan:Cnt:Load:

End/byte assembly
ooAB 171 Write lead length/read

checksum/parity
ooAC-ooAD 172-173 Pointer: tape buffer. scrolling

188 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex Decimal Description

ooAE-ooAF 17L;-175 Tape end address/end of
program

00Bo-00B1 176-177 Tape timing constants
00B2-ooB3 178-179 Pointer: start of tape buffer
ooBL; 180 1= tape timer enabled; bit

count
00B5 181 Tape EOT/RS232 next bit to

send
00B6 182 Read character error/outbyte

buffer
00B7 183 Number of characters in file

name
00B8 18L; Current logical file
ooBCl 185 Current secondary address
ooBA 186 Current device
ooBB-ooBC 187-188 Pointer to file name
ooBD 189 Write shift word/read input char
ooBE 190 Number of blocks remaining to

write/read
ooBF 191 Serial word buffer
ooCo 192 Tape motor interlock
00C1-ooC2 193-19L; I/O start address
00C3-00CL; 195-196 Kernel setup pointer
DOCS 1q7 Last key pressed
00C6 198 Number of characters in

keyboard buffer
00C7 1Y9 Screen reverse flag
00C8 200 End-of-line for input pointer
00C9-ooCA 201-202 Input cursor log (row, column)
ooCB 203 Which key: 6 L; if no key
OOCC 2oL; o = flash cursor
ooCD 205 Cursor timing countdown
ooCE 206 Character under cursor
ooCF 207 Cursor in blink phase
DODO 208 Input from screen/from

keyboard
00D1-ooD2 209-210 Pointer to screen line
00D3 211 Position of cursor on above line
ooDL; 212 0= direct cursor; else

programmeCl
ODDS 213 Current screen line length

APPENDIX C 189

Hex Decimal Description

00D6 21L; Row where cursor lives
00D7 215 Last inkey/checksum/buffer
00D8 216 Number of INSERTs

outstanding
00D9-ooF2 217-2L;2 Screen line link table
00F3-ooFL; 2L;3-2L;L; Screen color pointer
00F5-ooF6 2.1:;5-2.1:;6 Keyboard pointer
00F7-ooF8 2L;7-2L;8 RS-232 Rcv pntr
00F9-ooFA 2L;9-25o RS-232 Tx pntr
00FF-01OA 256-266 Floating to ASCII work area
o100-103E 256-318 Tape error log
0100-01FF 256-511 Processor stack area
0200-0258 512-600 BASIC input buffer
0259-0262 601-610 Logical file table
o263-026C 611-620 Device number table
o26D-0276 621-630 Secondary address table
0277-0280 631-6L;0 Keyboard buffer
0281-0282 6L;1-6L;2 Start of BASIC memory
0283-028L; 6L;3-6L;L; Top of BASIC memory
0285 6.1:; 5 Serial bus timeout flag
0286 6L; 6 Current color code
0287 6L;7 Color under cursor
0288 6L;8 Screen memory page
0289 6L;9 Maximum size of keyboard

buffer
028A 650 Repeat all keys
028B 651 Repeat speed counter
028C 652 Repeat delay counter
028D 653 Keyboard Shift/Control flag
028E 65L; Last shift pattern
028F-0290 655-656 Keyboard table setup pointer
0291 657 Keyboard shift mode
0292 658 o= scroll enable
0293 659 RS-232 control reg
029L; 660 RS-232 command reg
0295-0296 661-662 Bit timing
0297 663 RS-232 status
0298 66L; Number of bits to send
0299-029A 665 RS-232 speed/code
029B 667 RS232 receive pointer
029C 668 RS232 input pointer

190 MACHINE LANGUAGE FOR COMMODORE MACHINES

Hex

o29D
o29E
o29F-02Ao
o2Al
o2A2
o2A3
o2AL;
o2A5
o2Co-02FE
0300-0301
0302-0303
o3oL;-0305
0306-0307
0308-0309
o30A-030B
030C
o30D
o30E
o30F
0310-0312
o31L;-0315
0316-0317
0318-0319
o31A-031B
o31C-031D
o31E-031F
0320-0321
0322-0323
o32L;-0325
0326-0327
0328-0329
o32A-032B
o32C-032D
o32E-032F
0330-0331
0332-0333
o33C-03FB
o3L;0-037E
o38o-o3BE
o3Co-03FE
0L;00-07FF
o8oo-9FFF

Decimal

669
670
671-672
673
67L;
675
676
677
7oL;-766
768-769
770-771
772-773
77L;-775
776-777
778-779
780
781
782
783
78L;-785
788-789
790-791
792-793
79L;-795
796-797
798-799
800-801
802-803
8oL;-805
806-807
808-809
810-811
812-813
81L;-815
816-817
818-819
828-1019
832-89L;
896-958
960-1022

lo2L;-2oL;7
2oL;8-L;0959

Descnptton

RS232 transmit pointer
RS232 output pointer
IRQ save during tape I/O
CIA 2 (NMI) interrupt control
CI A 1 timer A control log
CI A 1 interrupt Log
CI A 1 timer A enabled flag
Screen row marker
(Sprite 7)
Error message link
BASIC warm start link
Crunch BASIC tokens link
Print tokens link
Start new BASIC code link
Get arithmetic element link
SYS A-reg save
SYS X-reg save
SYS Y-reg save
SYS status reg save
USR function jump (B2 L; 8)
IRQ vector (EA3 1)
Break interrupt vector (FE 66)
NMI interrupt vector (FE L; 7)
OPEN vector (F 3 L; A)
CLOSE vector (F291)
Set-input vector (F 2 DE)
Set-output vector (F 2 5 0)
Restore I/O vector (F333)
Input vector (F 157)
Output vector (F1CA)
Test-STOP vector (F6ED)
GET vector (F13E)
Abort 1/0 vector (F32F)
'USR vector (FE66)
LOAD link (FL;A5)
SAVE link (F5ED)
Cassette buffer
(Sprite 13)
(Sprite 1 L;)
(Sprite 15)
Screen memory
BASIC ROM memory

APPENDIX C 191

Hex Dectmst Descnpuon

DDoo-DDoF 56576-56591

Dooo-DFFF 532~8-5329~

Eooo-FFFF 573~~-65535

Eooo-FFFF 573~~-65535

Dooo-D02E 532~8-5329~

D~oo-D~lC 5~272-5~300

D8oo-DBFF 55296-56319
DCoo-DCoF 56320-56335

8ooo-9FFF 32768-~0959

Aooo-BFFF ~096o-~9151

Aooo-BFFF ~906o-59151

Cooo-CFFF ~9152-532~7

Alternative: ROM plug-in area
ROM: BASIC
Alternate: RAM
RAM memory, including
alternative
Video chip (6566)
Sound chip (6581 SID)
Color nybble memory
Interface chip 1, IRQ (6526
CIA)
Interface chip 2, NMI (6526
CIA)
Alternative: character set
ROM: operating system
Alternative: RAM

Commodore 64(6526)CIA 1 (IRQ)

$DCOO

$DC01

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

Paddle SEL I
I R

Joystick 0

A B L 0 u
Keyboard Row Select (inverted)

I Joystick 1

Keyboard Column Read

$FF - All Output

$00 - All Input

- Timer A -

- Timer B -

PRA 56320

PRB 56321

DORA 56322

DDRB 56323

TAL 56324

TAH 56325

TBl 56326

TBH 56327

$DCOD

$DCOE

$DCOF

I Tape I I
Timer Interr

input B A

Time Timer
One Out POL A
shot ,moae out stan

Time Timer
One Out PBC B
shot mode out start

lOR 56333

ORA 56334

CRB 56335

Figure C.9

192 MACHINE LANGUAGE FOR COMMODORE MACHINES

CIA 2 (NMI) (6526) Commodore 64

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0006

$0000

$OOOE

$OOOF

Senal Clocl(Senal Clock ATN RS·232
Video Black

In In Out Out Out Out

OSR I CTS I IDeo' I RI' I OTR I RTS IRS-232
In In In In Out Out In

Parallel User Port

In In Out Out Out Out Out Out
$3F

$06 For RS-232

- Timer A -

- Timer B -

I RS;~32 I I TI~er Timer
A

Timer
A Start

Timer
B Start

PRA

PRB

DORA

OORB

TAL

TAH

TBl
TBH

ICR

CRA

CRB

56576

56577

56578

56579

56580

56581

56582

56583

56589

56590

56591

Figure C.10

APPENDIX C

C64 Memory Map
6566 Video - Sprite Registers

193

Sprite Sprite Sprite Sprite
0 7 0 7

0000 OOOE Position g53248 53262

0001 OOOF 53263V 53249

0027 002E Color 153287 53294

Sprite Bit Positions

7 6 5 4 3 2 0

0010 X-position high 153264

0015 Sprite Enable 153269

0017 V-expand 153271

001B Background Priority 53275

001C Multicolor 53276

0010 X-expand 53277

001E Interrupt: Sprite collisn 53278

001F Interrupt: Sprite/Backgrd coli 53279

Figure C.11

194 MACHINE LANGUAGE FOR COMMODORE MACHINES

D405 D40C D413

Commodore 64

D404 D408 D412

D406 D40D D414 54278 54285 54292

54276 54283 54290

54277 54284 54291

V1 V2 V3
54272 54279 54286

54273 54280 54287

54274 54281 54288

54275 54289
54382

(6581)

Frequency
L

~ -
H

Pulse Width L
-

0 0 0
01

H

VOice Type
KEY

NSE PUL SAW TRI

Attack Decay
Time

I
Time

2ms-8sec 6ms-24sec

Sustain Release time
level I 6ms-24sec

SID

V3
D40E

D40F

D410

D411

V2
D407

D408

D409

D40A

V1
D400

D401

D402

D403

VOices
(write only)

D415

D416

D417

D418

0 0 0 0 01 L
-

Filter Frequency H

Resonance Filter voices

I EXT V3 V2 V1

Passband Master
V3

HI SO LO I Volume
OFF

54293

54294

54295

54296

Filter & Volume
(write only)

D419

D41A

D418

D41C

Paddle X

, Paddle Y

Noise 3 (random)

Envelope 3

54297

54298

54299

54300

Sense
(read only)

Special voice features (TEST, RING MOD, SYNC) are
omitted from the above diagram.

Figure C.12

APPENDIX C 195

Commodore PLUS/4 "TED" Chip­
Preliminary

At time of publication the Commodore 264 (alternatively called Plus/4) and
a related machine, the Commodore 16, are not commercially available.
Design details could change before commercial release.

On the prototype Units, much of zero-page is the same as for VIC and
Commodore 64; in particular, the Basic pointers (SOB, SOV, etc.) are the
same.

Memory Map, Preliminary
Much of zero-page is the same as for the Commodore 64. Some differ­
ences, and other information:

Hex Decimal Description

115-138
151
152
153
172
173
17L;

175-176
200-201
202
205
239

o073-oo8A
0097
0098
0099
ooAC
ooAD
ooAE
ooAF-ooBo
00C8-OOC9
ooCA
ooCD
ooEF

(CHARGET not present)
How many open files
Input device, normally 0
Output CMD device, normally 3
Current logical file
Current secondary address
Current device
Pointer to file name
Pointer to screen line
Position of cursor on above line
Row where cursor lives
Number of characters in
keyboard buffer

o31L;-0315 788-789 IRQ vector (CEDE)
0316 - 0 31 7 790 - 791 Break interrupt vector (F L;L;B)
03 18- 0 3 19 7 9 2- 7 93 OPEN vector (E F 5 3)

(Most other vectors are similar to the C64, but are two locations lower)

0500-0502 1280-1282 USR program jump
0509 -0 512 1289-1298 Logical file table
0513-051C 1299-1308 Device number table
o 51D-0 5 2 6 1309-1318 Secondary address table
o 5 2 7 - 0 5 3 0 1319-13 2 8 Keyboard butter
o8oo-oBE7 2oL;8-3oL;7 Color memory
oCoo-oFE7 307 2-L; 071 Screen memory

196 MACHINE LANGUAGE FOR COMMODORE MACHINES

ROM SELECT
RAM SELECT

T1
L

"""
-

H

T2 L- TIMERS -
H

T3 L- -
H

TEST ECM BMM BLANK I ROWS Y-ADJUST
RUS OFF PAL F~~~ZE MCMI COLUMNS X-ADJUST

KEYBOARD LATCH
IRQ FLAG :T3>< T2 T1 LP RASTr><
IER: T3>< T2 T1 LP RAST\

RC

CUR
SOUND-VOICE 1

"""
-

VOICE 2
VOICE 2 HI

-

SOUND SELECT I VOLUME
»->: _J BMB IRBANK VOICE 1 HI

CHARACTER BASE SCLOCKlsTATUS
VIDEO MATRIX l

~
I 0_

LUMINANCE I COLORI 1
I -
I 2

BACKGRO~ND COLORS -
3

I -
I 4

BRE
I

VL
H

>< BL I VSUB

FFOO 65280
FF01 65281
FF02 65282
FF03 65283
FF04 65284
FF05 65285
FF06 65286
FF07 65287
FF08 65288
FF09 65289
FFOA 65290
FFOB 65291
FFOC 65292
FFOD 65293
FFOE 65294
FFOF 65295
FF10 65296
FF11 65297
FF12 65298
FF13 65299
FF14 65300
FF15 65301
FF16 65302
FF17 65303
FF18 65304
FF19 65305
FF1A 65306
FF1B 65307
FF1C 65308
FF1D 65309
FF1E 65310
FF1F 65311

FF3E 1---------~___:.. ___i165342
FF3F . 65343

Figure C.13

APPENDIX C

1000-FFFF ~096-65535

BOOO-FFFF 3276B-65535
FFOO-FF3F 652BO-653~3

BASIC RAM memory
ROM: BASIC
TED I/O control chip

197

BSeries (B-128, CBM-256, etc.)
The Great Zero-Page Hunt

Zero page has a different meaning on the B series. There are several
zero pages. Usually, you'll want to use values from bank 15 (the ROM
bank, where system variables are kept); but if you are writing programs
that will reside in a different bank, you'll have all of zero page (except
locations 0 and 1) completely at your disposal.

If you need space in bank 15 zero page, you'll need to do some looking
around. Addresses $E6 to $FF are not used by the system. Locations
$20 to $2B and $6~ to $6E are work areas available for temporary
use.

Most zero-page locations may be copied to another part of memory so
that their original contents can be restored after use. The programmer
should take great care, however, in modifying the following locations, which
are critical within the operating system or BASIC: $1 A, $1 D to $1 F,
$2D to $~1, $~3, $5B, $7B, $B5-B7, $9E to $AB, $CO to $E5.

Memory Map
The following information applies to B systems released after April 1983,
which contain a revised machine language monitor. (If POKE 6,0: SYS
6 doesn't bring in a monitor display complete with a "period" prompt, you
have an incompatible version.)

Notable features as compared to previous Commodore products include:

-CHRGOT IS no longer in RAM. Wedge-type coding must be inserted at hnks
$02l:lE and $02AO, which is likely to make the job easier.

-BASIC vectors have "split." Now, for example, there are discrete "start of
variables" and "end of variables," distinct from end-of-BASIC and start-of­
arrays. Three-byte vectors (including bank number) are not uncommon.

- The "Jump table" at topof memoryis stillaccessible andreasonably consistent
with previous Commodore products.

-Simple machine language programs will fit into the spare 1K of ROM at
$OL;OO to $07FF Without trouble. Large programs must be implemented

198 MACHINE LANGUAGE FOR COMMODORE MACHINES

either by plug-in memory (RAM or ROM) In bank 15 or by being placed into
another bank (preferably bank 3). Supplementary code will be needed to
make all the coding components fit.

The following map contains BASIC addresses specific to the B256/80;
references to banks 0 to L; are also specific to that machine. Most of the
map is of general usage, however.

BANK 3: (B256 only)
oo02-7FFF 2-32767
8ooo-FFFF 32768-65535

BANK L;: (B256 only)
oo02-FBFF 2-6L;511

FCoo-FCFF 6L;512-6L;767
FDoo-FFFF 6L;768-65535

BANKS 5 to 14: Unused.
BANK 15:

oo02-oooL; 2-L;
0005-0008 5-8

ALL BANKS:
0000 0
0001 1

BANK 0: Unused.
BANK 1:

oo02-Fooo 2-61L;39
FA5E-FBoo 61L;L;0-6L;512

BANK 2:
B256:

oo02-FFFF 2-65535
B128:

oo02-FFFF 2-65535

oo09-oooB
OOOC
DODD
oooE

oooF
0010
0011

9-11
12
13
1L;

15
16
17

6509 execution register
6509 indirection register

BASIC program (text) RAM
Input buffer area

BASIC arrays in RAM

BASIC variables, arrays and
strings
Key definitions

Unused RAM.
BASIC variables in RAM

BASIC strings (top down) in
RAM
Unused RAM (descriptors?)
Current KEY definitions

USR jump
T I $ output elements:
H,M,S,T
Print Using format pointer
Search character
Scan-between-quotes Flag
Input point; number of
subscripts
Catalog line counter
Default DIM flag
Type: 255 = string, 0 = integer

APPENDIX C 199

0012 18 Type: 128 = integer,
0= tloating point

0013 19 Crunch tlag
001L; 20 Subscript index
0015 21 Input= 0; get= 6L;; read= 152.
0016-0019 22-25 Disk status work values
001A 26 Current I/O device tor prompt

suppress
001B-001C 27-28 Integer value
001D-001F 29-31 Descriptor stack pointers
0020-002B 32-L;3 Miscellaneous work pointers
002D-002E L;5-L;6 Start-at-BASIC pointer
002F-0030 L;7-L;8 End-at-BASIC pointer
0031-0032 L;9-50 Start-of-Vanabtes pointer
0033-003L; 51-52 End-at-Variables pointer
0035-0036 53-5L; Start-at-Arrays pointer
0037-0038 55-56 End-at-Arrays pointer
0039-003A 57-58 Variable work pointer
003B-003C 59-60 Bottom-at-Strings pointer
003D-003E 61-62 Utility string pointer
003F-00L;1 63-65 Top at string memory pointer
00L;2-00L;3 66-67 Current BASIC line number
00L;L;-OOL;5 68-69 Old BASIC line number
00L;6-00L;7 70-71 Old BASIC text pointer
00L;9-00L;A 73-7L; Data line number
OOL;B-OOL;C 75-76 Data text pointer
OOL;D-OOL;E 77-78 Input pointer
00L;F-0050 79-80 Variable name
0051-0053 81-83 Variable address
005L;-0056 8L;-86 For-loop pointer
0057-0058 87-88 Text pointer save
005A 90 Comparison symbol

accumulator
005B-005D 91-92 Function location
005E-0060 9L;-96 Working string vector
0061-0063 97-99 Function jump code
006L;-006E 100-110 Work pointers, values
006F 111 Exponent sign
0070 112 Acum string prefix
0071 113 Acum#1: exponent
0072-0075 11L;-117 Accum#1: mantissa
0076 118 Accum#1: sign

200 MACHINE LANGUAGE FOR COMMODORE MACHINES

0077 119 Series evaluanon constant
pointer

0078 120 Acum#1 hi order (overflow)
o079-oo7E 121-126 Accum#2
o07F 127 Sign comparison, Acc#1 versus

#2
0080 128 Acc#1 low-order (rounding)
o081-oo8L; 129-132 Series, work pointers
0085-0087 133-135 BASIC text pointer
0088-0089 136-137 Input pointer
o08B-008E 139-1L;2 DOS parser work values
o08F 1L;3 Error type number
0090-0092 1L;L;-1L;6 Pointer to file name
0093-0095 1L;7-1L;9 POinter: tape buffer, scrolling
0096- 150-152 Load end address/end of
00988 program
o099-oo9B 153-155 I/O start address
O09C 156 Status word ST
o09D 157 File name length
o09E 158 Current logical file
o09F 159 Current device
ooAo 160 Current secondary address
00A1 161 Input device, normally 0
00A2 162 Output CMD device, normally 3
00A6-ooA8 166-168 INBUF
00A9 169 Keyswitch PIA: stop key, etc.
ooAA 170 IEEE deferred flag
ooAB 171 IEEE deferred character
ooAC-ooAD 172-173 Segment transfer routine vector
00AE-00B3 17L;-179 MOnitor register save
ooBL; 180 MOnitor stack pointer save
00B5 181 Monitor bank number save
00B7-ooB8 183-18L; Monitor IRQ save/pointer
00B9-ooBA 185-186 Monitor memory pointer
ooBB-ooBC 187-188 Monitor secondary pointer
ooBD 189 Monitor counter
ooBE 190 Monitor miscellaneous byte
ooBF 191 Monitor device number
00CO-00C1 192-193 Programmable key table

address
00C2-ooC3 19L;-195 Programmable key address
00CL;-00C7 196-199 Pointers to change

programmable key table

APPENDIX C 201

00C8-OOC9 200-201 Pointer to screen line
OoCA 202 Screen line number
OOCB 203 Position of cursor on line
OOCC 2oL; o= text mode, else graphics

mode
OOCD 205 Keypress variable
OOCE 206 Old cursor column
OOCF 207 Old cursor row
DODD 208 New character flag
00D1 209 Number of keys in keyboard

buffer
00D2 210 Quotes flag
00D3 211 Inert key counter
ooDL; 212 Cursor type flag
00D5 213 Screen line length
00D6 21L; Number of keys in "key" buffer
00D7 215 Key repeat delay
00D8 216 Key repeat speed
00D9-ooDA 217-218 Temporary vanables
OODB 219 Current output character
OODC 220 Top line of current screen
DODD 221 Bottom line of screen
OODE 222 Left edge of current screen
OODF 223 Right edge of screen
ODED 22L; Keys: 255 = none; 127 = key,

111 = shift
00E1 225 Key pressed: 2 5 5 = no key
00E2-00E5 226-229 Line Wrap Bits
0100 256 Hex to binary staging area
olo0-010A 256-266 Numeric to ASCII work area
0100-olFE 256-510 Stack area
01FF 511 Stack pointer save location
0200-o20F 512-527 File name area
0210-0226 528-550 Disk command work area
0255-0256 597 Miscellaneous work values for

WAIT, etc
0257 599 "Bank" value
0258 600 Output logical file (C MD)
0259 601 Sign of TAN
025A-025D 602-605 Pickup subroutine;

miscellaneous work values
025E-0276 606-630 PRINT USING working

variables

202 MACHINE LANGUAGE FOR COMMODORE MACHINES

0280-0281 6L;0-6L;1 Error routine link [8555]
0282-0283 6L;2-6L;3 Warm start link [85CD]
028L;-0285 6L;L;-6L;5 Crunch token link [88C2]
0286-0287 6L;6-6L;7 List link [89FL;]
0288-0289 6L;8-6L;9 Command dispatch link [87 5 L;]
028A-028B 650-651 Token evaluate link [96Bl]
028C-028D 652-653 Expression evallink [95CL;]
028E-028F 65L;-655 CHRGOT link [BA2C]
0290-0291 656-657 CHRGET vector [BA32]
0292~0293 658-659 Float-fixed vector [BAlE]
029L;-0295 660-661 Fixed-Float vector [9D 3 9]
0296-0297 662-663 Error trap vector
0298-0299 616L; -6 6 5 Error line number
029A-029B 666-667 Error exit pointer
029C 668 Stack pomter save
029D-029F 669-671 Temporary TRAP, DISPOSE

bytes
02AO-02A5 672-677 Temporary INS TR$ bytes
02A6-02A7 678-679 Bank offset
0300-0301 768-769 IRQ vector [FBE9]
0302-0303 770-771 BRK vector [EE21]
030L;-0305 772-773 NMI vector [FCAA]
0306-0307 77L;-775 OPEN vector [F6BF]
0308-0309 776-777 CLOSE vector [F5ED]
030A-030B 778-779 Connect-input vector [P5L; 9]
030C-030D 780-781 Connect-output vector [F5 A3]
030E-030F 782-783 Restore default I/O vector

[F6A6]
0310-0311 78L;-785 Input vector [FL; 9C]
0312-0313 786-787 Output vector [FL;EE]
031L;-0315 788-789 Stop key test vector [F96B]
0316-0317 790-791 GET vector [FL; 3D]
0318-0319 792-793 Abort all files vector [F6 7 F]
031A-031B 79L;-795 Load vector [P7 L; 6]
031C-031D 796-797 Save vector [F8 L; C]
031E-031F 798-799 MOnitor command vector

EE77]
0320-0321 800-801 Keyboard control vector [E01 F]
0322-0323 802-803 Print control vector [E0 1 F]
032L;-0325 80L;-805 IEEE send LSA vector

F27L;]
0326-0327 806-807 IEEE send TSA vector

F280]

APPENDIX C 203

0328-0329 80B-809 IEEE receive byte vector
F30A]

032A-032B B10-811 IEEE send character vector
F2q7]

032C-032D 812-B13 IEEE send untalk vector
F2AB]

032E-032F 81L;-815 IEEE send unlisten vector
F2AF]

0330-0331 816-817 IEEE send listen vector
F23L;]

0332-0333 81B-819 IEEE send talk vector [F23 0]
033L;-033D 820-B211 File logical addresses table
033E-03L;7 830-839 File device table
03L;B-0351 8L;0-8L;11 File secondary address table
0352-035L; B50-852 Bottom of system memory
0355-0357 853-855 Top of system memory
0358-035A 856-858 Bottom of user memory
035B-035D 859-861 Top of user memory
035E 862 IEEE timeout; 0 = enabled
035F 863 0= load; 12 B= verify
0360 86L; Number of open flies
0361 865 Message mode byte
0363':'0366 867-870 Miscellaneous register save

bytes
0369 873 Timer toggle
036A-036B 87L;-875 Cassette vector (dead end)
036F-0371 879-881 Relocation start address
0375 885 Cassette motor flag (unused)
0376-0377 886-887 RS·232 control, command
037A 890 RS-232 status
037B B91 RS-232 handshake input
037C 892 RS·232 input pointer
037D 8113 RS·232 arrival pointer
0380-0381 896-897 Top of memory pointer
0382 898 Bank byte
0383 899 RVS flag
038L; 900 Current line length
0385 901 Temporary output character

save
0386 902 0= normal, 255 = auto insert
0387 903 0= scrolling, 255 = no scroll
0388 90L; Miscellaneous work byte for

screen

204 MACHINE LANGUAGE FOR COMMODORE MACHINES

0389 905 Index to programmed key
038A 906 Scroll mode flag
038B 907 Bell mode flag
038C 90B Indirect bank save
038D-03AO 909-928 Lengths of 'key' words
03Al-03AA 929-938 Bit mapped tab stops
03AB-03BL; q39-9L;8 Keyboard input buffer
03B5-03B6 9L;9-g50 'Key' word link [Eq 1 B]
03F8-03F9 1016-1017 Restart vector
03FA-03FB 1018-1019 Restart test mask
0L;00-07FF 102L;-20L;7 Free RAM (reserved for DOS)
0800-0FFF 20L;8-L;095 Reserved for plug In RAM
1000-lFFF L;096-B191 Reserved for plug in DOS ROM
2000-7FFF 8192-23767 Reserved for cartridges
8000-BFFF 32768-L;9151 BASIC ROM
COOO-CFFF L;9152-532L;7 Unused
DOOO-D7CF 532L;8-552L;7 Screen RAM
D800-D801 55296-55297 Video controller 65 L; 5
DAOO-DA1C 55808-55836 Sound interface device 6581
DBOO-DBOF 5606L;-5607g Complex interface adaptor

6526
DCOO-DCOF 56320-56335 Complex interface adaptor

6526
DDOO-DD03 56576-56579 Asynchronous communications

IA 6551
DEOO-DE07 56832-56839 Tri Port Interface Adaptor

6525
DFOO-DF07 57088-57095 Tri Port Interface Adaptor

b525
EOOO-FFFF 573L;L;-65535 Kernal ROM

The above table shows contents for the link and vector addresses at $0280
to $0295; these are taken from a recent B-128.

APPENDIX C

6545 CRT Controller

0800 0801 Typical Value
55296 55297 (Decimal)

0 Horizontal Total 108 or 126 or 127

1 Horizontal Char Displayed 80

2 Horizontal Sync Position 83 or 98 or 96

3 v Sync Width H 15 or 10

4 Vertical Total 25 or 31 or 38

5 Vert Total Adjust 3 or 6 or 1

6 Vertical Displayed 25

7 Vert Sync Position 25 or 28 or 30

8 Mode 0

9 Scan Lines 13 or 7

10 Cursor Start 96 (blink) or
oor 6 (underline)

11 Cursor End 13 or 7

12
Display Address

H 0
-

13 L 0

14
Cursor Address

H Varies
-

15 L Varies

16
Light Pen In

H 0
-

17 L 0

Most Registers are Wnte Only 14/15 are ReadIWnte
16/17 are Read Only

Registers 10, 14 and 15 change as the cursor moves

Figure C.14

205

206 MACHINE LANGUAGE FOR COMMODORE MACHINES

6525 Tn Port

DEOO

DE01

DE02

DE03

DE04

DE05

DE06

DE07

NRFD NDAC I EOI DAV ATN I RFN

Cassette Network

SRO ISense Motor Out ARB Rx Tx IFC

Data Direction Register For DEOO

Data Direction Register For DE01

IRO ACIA IP I ALM IEEE I PWR
CB I CA

I>1Q

Graphics Stack On

Active Interrupt Register

56832

56833

56834

56835

56836

56837

56838

56839

6525 Tri Port 2

DFOO

DF01

DF02

DF03

DF04

DF05

DF06

Keyboard

Select

CRT

I Keyboard ReadMode

Data Direction Register for DFOO (out)

Data Direction Register for DF01 (out)

Data Direction Register for DF02 (In)

Unused

57088

57089

57090

57091

57092

57093

57094

Figure C.15

Commodore 64: ROM Detail
This type of ROM memory map is intended primarily for users who want
to "browse" through the inner logic of the computer. It allows a user to
disassemble an area of interest. to see why the computer behaves in a
certain way. With the use of this map, the user will be able to identify
subroutines that are called by the coding under study.

I recommend against using the ROM subroutines as part of your own
programs. They often don't do precisely what you want. They change
locations when you move to a different machine. With rare exceptions,
you can probably write better coding to do the job yourself. Stick with the
kernal jump table: especially $FFD2 to output; $FFEL; to get input;
$FFEl to check the RUN/STOP key; $FFC6 and $FFC9 to switch
input and output respectively; and $ FFCC to restore normal input/output.
They are the same on all Commodore computers.

ADDD:
ADDC:

ROM control vectors
Keyword action vectors

APPENDIX C

AD52:
ADBD:
AD9E:
A19E:
A32B:
A365:
A3BA:
A3BB:
A3FB:
AL;DB:
AL;35:
AL;37:
AL;69:
AL;7L;:
AL;BD:
AL;9C:
A533:
A56D:
A579:
A613:
A6L;2:
A65E:
A6BE:
A69C:
A7L;2:
A7ED:
AB1D:
AB2C:
AB2F:
AB31:
AB57:
AB71:
A8B3:
ABAD:
ABD2:
ABFB:
A9D6:
A92B:
A93B:
A9L;B:
A96B:
A9A5:
AABD:

Function vectors
Operator vectors
Keywords
Error messages
Error message vectors
Miscellaneous messages
Scan stack for FOR/GOSUB
Move memory
Check stack depth
Check memory space
Print "out of memory"
Error routine
BREAK entry
print" ready. "
Ready for BASIC
Handle new line
Re-chain lines
Receive input line
Crunch tokens
Find BASIC line
Perform [NE W]
Perform [CLR]
Back up text pointer
Perform [L 1ST]
Perform [FOR]
Execute statement
Perform [RESTORE]
Break
Perform [STOP]
Perform [END]
Perform [CaNT]
Perform [RUN]
Perform [GOSUB]
Perform [GOTO]
Perform [RETURN]
Perform [D AT A]
Scan for next statement
Perform [I F]
Perform [RE M]
Perform [ON]
Get fixed point number
Perform [LE T]
Perform [PR1NT#]

207

208

AA86:
AAAO:
ABlE:
AB3B:
ABL;D:
AB7B:
ABAS:
ABBF:
ABFI1:
AC06:
ACFC:
AD1E:
AD78:
ADI1E:
AEA8:
AEF1:
AEF7:
AEFF:
AF08:
AF1L;:
AF28:
AFA7:
AFE6:
AFEI1:
B016:
B081:
B08B:
Bl13:
BllD:
Bll1L;:
B1AS:
B1B2:
B1Dl:
B2L;S:
B2L;8:
B3L;C:
B37D:
B3111:
B3I1E:
B3A6:
B3B3:
B3El:
B3FL;:

MACHINE LANGUAGE FOR COMMODORE MACHINES

Perform [CMD]
Perform [PRINT]
Pnnt string from (Y.A)
Print format character
Bad input routine
Perform [GET]
Perform [INPUT#]
Perform [INPUT]
Prompt and input
Perform [RE AD]
Input error messages
Perform [NEXT]
Type match check
Evaluate expression
Constant-pi
Evaluate within brackets
Check for II) "

Check for comma
Syntax error
Check range
Search for variable
Set up F N reference
Evaluate [OR]
Evaluate [AND]
Compare
Perform [DIM]
Locate variable
Check alphabetic
Create variable
Array pointer subroutine
Value 32768
Float-fixed
Set up array
Print "bad subscript"
Print "illegal quantity"
Compute array size
Evaluate [FRE]
Fixed-float
Evaluate [PaS]
Check direct
Perform [DEF]
Check fn syntax
Evaluate [F N]

APPENDIX C

BL;65:
BL;75:
BL;87:
BL;FL;:
B526:
B5BD:
Bb06:
B63D:
Bb7A:
B6A3:
B6DB:
B6EC:
B700:
B72C:
B737:
B761:
B77C:
B782:
B78B:
B79B:
B7AD:
B7EB:
B7F7:
B80D:
B82L;:
B82D:
B8L;9:
B850:
B853:
B8bA:
B9L;7:
B97E:
B983:
B9EA:
BA2B:
BA59:
BA8C:
BAB7:
BADL;:
BAE2:
BAF9:
BAFE:
BB12:

Evaluate [STR$]
Calculate string vector
Set up string
Make room for string
Garbage collection
Check salvageability
Collect string
Concatenate
Build string to memory
Discard unwanted string
Clean descriptor stack
Evaluate [CHR$]
Evaluate [LEFT$]
Evaluate [RIGHT$]
Evaluate [MID$]
Pull string parameters
Evaluate [LEN]
Exit string-mode
Evaluate [ASC]
Input byte parameter
Evaluate [VAL]
Parameters for POKE/WAIT
Float-fixed
Evaluate [PEEK]
Perform [POKE]
Perform [W AI T]
Add 0.5
Subtract-from
Evaluate [subtract]
Evaluate [add]
Complement F AC (floating accumulator)#1
Print "overflow"
Multiply by zero byte
Evaluate [LOG]
Evaluate [mul tiply]
Multiply-a-bit
Memory to FAC#2
Adjust FAC#l and FAC#2
Underflow/overflow
Multiply by 10
+ lOin floating point
Divide by 10
Evaluate [divide]

209

210 MACHINE LANGUAGE FOR COMMODORE MACHINES

BBA2: Memory to FAC#l
BBC7: FAC#l to memory
BBFC: FAC#2 to FAC#l
BCOC: FAC#l to FAC#2
BC1B: Round FAC#l
BC2 B : Get sign
BC39: Evaluate [SGN]
BC58: Evaluate [ABS]
BC5B: Compare FAC#l to memory
BC9 B : Float-fixed
BCCC: Evaluate [INT]
BCF3: String to F AC
BD7E: Get ASCII digit
BDC2: Print "IN .• "
BDCD: Print line number
BDDD: Float to ASCII
BF 16 : Decimal constants
BF 3 A: T I constants
BF71: Evaluate [SQR]
BF7B: Evaluate [power]
BFBL;: Evaluate [negative]
BFED: Evaluate [EXP]
ED L; 3: Series evaluation 1
E 0 59: Series evaluation 2
E097: Evaluate [RND]
EDF 9: Kernal calls with error checking
E12A: Perform [SYS]
E156: Perform [SAVE]
E165: Perform [VERIFY]
E168: Perform [LOAD]
E1BE: Perform [OPEN]
E1C7: Perform [CLOSE]
E lDL;: Parameters for LOAD/SA VE
E2 0 6: Check default parameters
E20E: Check for comma
E219 : Parameters for open/close
E26L;: Evaluate [COS]
E2 6B: Evaluate [SIN]
E2bL;: Evaluate [TAN]
E3 DE: Evaluate [ATN]
E 3 7 B : Warm restart
E 3 9 L;: Initialize
E3 A2 : CHRGET for zero page

APPENDIX C

E3BF:
EL;L;7:
EL;S3:
EL;SF:
ESOO:
ESOS:
ESOA:
ES1B:
ESL;L;:
ES66:
ES6C:
ESAO:
ESBL;:
E632:
E6BL;:
E691:
E6B6:
E6ED:
E701:
E716:
EB7C:
EB91:
EBA1:
EBB3:
EBCB:
EBDA:
EBEA:
E96S:
E9CB:
E9EO:
E9FO:
E9FF:
EA13:
EA2L;:
EA31:
EAB7:
EB79:
EBB1:
EBC2:
EC03:
ECL;L;:
ECL;F:
EC7B:

Initialize BASIC
Vectors for $ 300
Initialize vectors
Power-up message
Get I/O address
Get screen size
Put/get row/column
Initialize I/O
Clear screen
Home cursor
Set screen pointers
Set I/O defaults
Input from keyboard
Input from screen
Quote test
Set up screen pnnt
Advance cursor
Retreat cursor
Back into previous line
Output to screen
Go to next line
Perform (return)
Check line decrement
Check line increment
Set color code
Color code table
Scroll screen
Open space on screen
Move a screen line
Synchronize color transfer
Set start-of-line
Clear screen line
Pnnt to screen
Synchronize color pointer
Interrupt-clock, etc.
Read keyboard
Keyboard select vectors
Keyboard 1-unshifted
Keyboard 2-shifted
Keyboard 3-"Commodore" shift
Graphics/text contrl
Set graphics/text mode
Keyboard 4

211

212 MACHINE LANGUAGE FOR COMMODORE MACHINES

ECB9: Video chip setup
ECE7: Shift/run equivalent
ECFO: Screen In address low
ED 0 9 : Send "talk" to serial bus
ED 0C: Send "listen" to serial bus
ED L; 0 : Send to serial bus
EDB2: Serial timeout
EDB9: Send listen SA
EDBE: Clear ATN
EDC7: Send talk SA
EDCC: Wait for clock
EDDD : Send serial deferred
EDEF : Send "untalk" to serial bus
EDFE: Send "unlisten" to serial bus
EE 13: Receive from serial bus
EEB5: Serial clock on
EE BE: Serial clock off
EE97: Senal output "1"
EE AD: Serial output "0"
EE A9 : Get serial in and clock signals
EEB3: Delay 1 millisecond
EEBB: RS-232 send
EF 0 6 : Send new RS-232 byte
EF2E: No-DSR error
EF31: No-CTS error
EF3B: Disable timer
EF L;A : Compute bit count
EFS9: RS-232 receive
EF 7E: Set up to receive
EFCS: Receive panty error
EF CA : Recieve overflow
EFCD: Receive break
EFDO: Framing error
EFE1: Submit to RS-232
F ODD: No-DSR error
F 0 17: Send to RS-232 buffer
FOL;D: Input from RS-232
FOB 6: Get from RS-232
FDA L;: Check serial bus Idle
FOBD: Messages
F12B: Print if direct
F13E: Get ...
F 1 L; E : ... from RS-232

APPENDIX C

F1S7:
F199:
F1CA:
F1DD:
F20E:
F2S0:
F291:
F30F:
F31F:
F32F:
F333:
F3L;A:
F3DS:
FL;09:
FL;9E:
FSAF:
FSC1:
FSD2:
FSDD:
F6BF:
F69B:
F6BC:
F6DD:
F6EL;:
F6ED:
F6FB:
F72D:
F76A:
F7DO:
F7D7:
F7EA:
FBOD:
FB17:
FB2E:
FB3B:
FBL;1:
FB6L;:
FB7S:
FBDO:
FBE2:
F92C:
FA60:
FBBE:

Input
Get: tape/seriaI/RS-232
Output ...
... to tape
Set Input device
Set output device
Close file
Find file
Set file values
Abort all files
Restore default I/O
Do file open
Send SA
Open RS-232
Load program
Print "searching"
Print filename
Print "Ioadinglvenfying"
Save program
Print "saving"
Bump clock
Log P I A key reading
Get time
Set time
Check stop key
Output error messages
Find any tape header
Write tape header
Get buffer address
Set buffer start/end pointers
Find specific header
Bump tape pointer
Print "press play
Check tape status
Print "press record ..."
Initiate tape read
Initiate tape write
Common tape code
Check tape stop
Set read timing
Read tape bits
Store tape characters
Reset pomter

213

214

FB97:
FBA6:
FBCB:
FBCD:
FCS7:
FC93:
FCBB:
FCCA:
FCD1:
FCDB:
FCE2:
FD02:
FD10:
FD1S:
FD1A:
FD30:
FDSO:
FD9B:
FDA3:
FDDD:
FDF9:
FEOO:
FE07:
FE1B:
FE1C:
FE21:
FE2S:
FE27:
FE2D:
FE3L;:
FEL;3:
FE66:
FEB6:
FEBC:
FEC2:
FED6:
FF07:
FFL;3:
FFL;B:
FFB1:
FFFA:

MACHINE LANGUAGE FOR COMMODORE MACHINES

New character setup
Send transition to tape
Wnte data to tape
IRQ entry point
Write tape leader
Restore normal IRQ
Set IRQ vector
Kill tape motor
Check R/W pointer
Bump R/W pointer
Power reset entry
Check B-ROM
B-ROM mask
Kernal reset
Kernal move
Vectors
Initialize system constants
IRQ vectors
Initialize I/O
Enable timer
Save filename data
Save file details
Get status
Flag status
Set status
Set timeout
Read/set top of memory
Read top of memory
Set top of memory
Read/set bottom of memory
NMI entry
Warm start
Reset IRQ and exit
Interrupt exit
RS-232 timing table
NMI RS-232 in
NMI RS-232 out
Fake IRQ
IRQ entry
Jumbo jump table
Hardware vectors

D
Character

Sets

215

216 MACHINE LANGUAGE FOR COMMODORE MACHINES

Superchart
The "superchart" shows the PET character sets. A byte may have any of
several meanings, depending on how It IS used. The chart is constructed
to reflect this. "ASCII" IS PET ASCII; these are the characters as they
would be Input or pnnted. "Screen" is the Commodore screen codes, as
they would be used In screen memory-POKEing to or PEEKing from
the screen would yield these codes. Notice that the numeric character set
is the same for both screen and PET ASCII.

Within a program, the code changes again "BASIC" shows these codes;
they are similar to ASCII In the range $ 2 0 to $ 5 F.

Machine language op codes are Included for the sake of convenience and
completeness

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
0 00 (y end-line BRI:< 0
1 01 A ORA(I,X) 1
2 02 B 2
3 03 C 3
4 04 D 4
5 05 white E ORA Z 5
6 06 F ASLZ 6
7 07 bell G 7
8 08 lock H PHP 8
9 09 unlock I ORA # 9

10 OA J ASL A 10
11 OB K 11
12 OC L 12
13 OD car ret M ORA 13
14 OE text N ASL 14
15 OF top 0 15
16 10 P BPL 16
17 11 cur down Q ORA(I),Y 17
18 12 reverse R 18
19 13 cur home S 19
20 14 delete T 20
21 15 del line U ORA Z,X 21
22 16 ers begin V ASL Z,X 22
23 17 W 23
24 18 X CLC 24
25 19 scr up Y ORA Y 25
26 1A Z 26
27 1B [27
28 1C red -, 28
29 10 cur right 1 ORAX 29

APPENDIX D

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
30 ' 1E green i ASL X 30
31 1F blue <- 31
32 20 space space space JSR 32
33 21 I I I AND(I,X) 33
34 22 34
35 23 # # # 35
36 24 $ $ $ BIT Z 36
37 25 % % % ANDZ 37
38 26 & & & ROL Z 38
39 27 39
40 28 PLB 40
41 29 AND # 41
42 2A ROL A 42
43 2B + + + 43
44 2C BIT 44
45 20 AND 45
46 2E ROL 46
47 2F / / / 47
48 30 0 0 0 BMI 48
49 31 1 1 1 AND(I).Y 49
50 32 2 2 2 50
51 33 3 3 3 51
52 34 4 4 4 52
53 35 5 5 5 AND Z,X 53
54 36 6 6 6 ROL Z,X 54
55 37 7 7 7 55
56 38 8 8 8 SEC 56
57 39 9 9 9 ANDY 57
58 3A CLI 58
59 3B 59
60 3C < < < 60
61 30 AND X 61
62 3E > > > ROL X 62
63 3F ? ? ? 63
64 40 @; 8 @ RTI 64
65 41 A rtI a A EOR(I,X) 65
66 42 B 1IJ, b B 66
67 43 C 8, c C 67
68 44 0 ~, d D 68
69 45 E r:l, e E EORZ 69
70 46 F 1;11 F LSR Z 70
71 47 G II] g G 71
72 48 H [J].h H PHA 72
73 49 I 1iJ, I I EOR# 73
74 4A J ~J J LSR A 74
75 4B K ~, k K 75
76 4C L I,;,J,I L JMP 76
77 40 M lSI,m M EOR 77
78 4E N ~, n N LSR 78

217

218 MACHINE LANGUAGE FOR COMMODORE MACHINES

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
79 4F 0 [j, 0 0 79
80 50 P I'] p P BVC 80
81 51 Q III, q Q EOR(I),Y 81
82 52 R bJ, r R 82
83 53 S 1', s S 83
84 54 T HI T 84
85 55 U [tl, U U EOR, Z,X 85
86 56 V lXI, v V LSR Z,X 86
87 57 W ~,w W 87
88 58 X ~, x X CLI 88
89 59 Y n Y Y EORY 89
90 5A Z IJJ, Z Z 90
91 58 [III [91
92 5C -, [] -, 92
93 5D] rn 1 EOR X 93
94 5E i ~,~ i LSRX 94
95 5F ~,~ 95
96 60 RTS 96
97 61 lJ ADC(I,X) 97
98 62 iii! 98
99 63 D 99

100 64 D 100
101 65 [] ADCZ 101
102 66 ~ RORZ 102
103 67 0 103
104 68 ~ PLA 104
105 69 ~,~ ADC# 105
106 6A n RORA 106
107 68 ~ 107
108 6C c.. JMP(I) 108
109 6D [1l ADC 109
110 6E ELI ROR 110
111 6F U 111
112 70 LJ3 RVS 112
113 71 ~ ADC(I),Y 113
114 72 m 114
115 73 III 115
116 74 D 116
117 75 IJ ADC Z,X 117
118 76 [) ROR Z,X 118
119 77 i"j 119
120 78 ~ SEI 120
121 79 ~ ADCY 121
122 7A IJ [iii] 122
123 78 ILl 123
124 7C [11 124
125 7D ~ ADCX 125
126 7E ~ ROR X 126
127 7F ~ 127

APPENDIX D

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL

128 80 r-(a END 128
129 81 orange r-A FOR STA(I,X) 129
130 82 roB NEXT 130
131 83 roC DATA 131
132 84 r-o INPUT# STY Z 132
133 85 roE INPUT STAZ 133
134 86 r-F DIM STX Z 134
135 87 r-G READ 135
136 88 r-H LET DEY 136
137 89 r-I GOTO 137
138 8A r-J RUN TXA 138
139 8B r-K IF 139
140 8C r-L RESTORE STY 140
141 8D car ret roM GOSUB STA 141
142 8E graphic roN RETURN STX 142
143 8F bottom roO I=lEM 143
144 90 black r·P STOP BCC 144
145 91 cur up r-O ON STA(I), Y 145
146 92 rvs off r-R WAIT 146
147 93 clear r-S LOAD 147
148 94 Insert roT SAVE STY Z,X 148
149 95 InS hnezbr r-U VERIFY STA Z,X 149
150 96 ers end/p r-V DEF STX Z,Y 150
151 97 Gray 1 roW POKE 151
152 98 Gray 2 r-X PRINT# TYA 152
153 99 scr, down roY PRINT STAY 153
154 9A L Blue r-Z CONT TXS 154
155 9B Gray 3 r-[LIST 155
156 9C magenta r-\ CLR 156
157 9D cur left r-] CMD STA X 157
158 9E yellow r- t SYS 158
159 9F cyan r-<- OPEN 159
160 AO • CLOSE LDY # 160
161 A1 n r-' GET LDA(I,X) 161
162 A2 ~ r- ' I NEW LDX # 162
163 A3 D r-# TAB(163
164 A4 0 r-$ TO LDYZ 164
165 A5 [] r-% FN LDA Z 165
166 A6 ~ r-& SPC(LDXZ 166
167 A7 0 r-' THEN 167
168 A8 ~ r-(NOT TAY 168
169 A9 ~~ r-l STEP LDA# 169
170 AA 0 r-* + TAX 170
171 AB [E r-+ 171
172 AC l.l r-, LDY 172
173 AD III r-- / LDA 173
174 AE @ r-. t LDX 174
175 AF U r-/ AND 175
176 BO [il r-o OR BCS 176

219

220 MACHINE LANGUAGE FOR COMMODORE MACHINES

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL
177 B1 ~ r-1 > LDA(I),Y 177
178 B2 ~ r-2 178
179 B3 ~ r-s < 179
180 B4 [] r-4 SGN LOY Z,X 180
181 B5 [] r-5 INT LDA Z,X 181
182 B6 [) r-s ABS LDX Z,Y 182
183 B7 i"j r-7 USR 183
184 B8 ~ r-8 FRE CLV 184
185 B9 ~ r-9 POS LOA Y 185
186 BA u [iii] r-. SQR rsx 186
187 BB .:J t'-, RND 187
188 BC rI r-< LOG LDY X 188
189 BD fl1 r-= EXP LDAX 189
190 BE III r-> COS LDX Y 190
191 BF ~ r-? SIN 191
192 CO 8 TAN CPY# 192
193 C1 [I a ATN CMP(I),X 193
194 C2 rn b PEEK 194
195 C3 8 c LEN 195
196 C4 E"I d STR$ CPY Z 196
197 C5 r"l, e VAL CMPZ 197
198 C6 ~f ASC DEC Z 198
199 C7 II] 9 CHR$ 199
200 C8 [J] h LEFT$ INY 200
201 C9 IiJI RIGHT$ CMP# 201
202 CA ~.J MID$ DEX 202
203 CB ~ k GO 203
204 CC I,;,JI CONCAT CPY 204
205 CD ~ m DOPEN CMP 205
206 CE Ill. n DCLOSE DEC 206
207 CF [j. 0 RECORD 207
208 DO I'] P HEADER BNE 208
209 D1 III. q COLLECT CMP(I),Y 209
210 D2 Q.r BACKUP 210
211 D3 ~ s COpy 211
212 D4 []t APPEND 212
213 D5 [1l u DSAVE CMP Z,X 213
214 D6 IXI v DLOAD DEC Z,X 214
215 D7 ~w CATALOG 215
216 D8 ~ x RENAME CLD 216
217 D9 [] Y SCRATCH CMPY 217
218 DA ~ z DIRECTORY 218
219 DB III 219
220 DC [] 220
221 DD n CMP X 221
222 DE I!!I j:iiJ DEC X 222
223 DF ~~ 1 223
224 EO • CPX # 224
225 E1 lJ SBC(I),X 225

APPENDIX D

DECIMAL HEX ASCII SCREEN SASIC 6502 DECIMAL
226 E2 ~ 226
227 E3 IiiiI 227
228 E4 • CPXZ 228
229 E5 II SSCZ 229
230 E6 il INCZ 230
231 E7 11 231
232 E8 II INX 232
233 E9 ~ I'J SSC # 233
234 EA IJ Nap 234
235 ES G 235
236 EC ~ CPX 236
237 ED g SSC 237
238 EE C'I INC 238
239 EF I!!I 239
240 Fa ~ SEQ 240
241 F1 ~ SSe(I), Y 241
242 F2 ~ 242
243 F3 n 243
244 F4 II 244
245 F5 [J SSC Z,X 245
246 F6 IJ INCZ,X 246
247 F7 iii 247
248 F8 iii! SED 248
249 F9 ~ SSC Y 249
250 FA ~~ 250
251 FS ~ 251
252 FC Il 252
253 FD CI SSC X 253
254 FE liI INCX 254
255 FF ~ 'IT 255

221

222 MACHINE LANGUAGE FOR COMMODORE MACHINES

Control Character Representations

NUL Null OLE Data Link Escape (CC)
SOH Start of Heading (CC) DC1 Device Control 1
STX Start of Text (CC) DC2 Device Control 2
ETX End of Text (CC) DC3 Device Control 3
EOT End of Transmission (CC) DC4 Device Control 4
ENQ Enquiry (CC) NAK Negative Acknowledge (CC)
ACK Acknowledge (CC) SYN Synchronous Idle (CC)
BEL Bell ETB End of Transmission Block
BS Backspace (FE) (CC)
HT Horizontal Tabulation CAN Cancel

(FE) EM End of Medium
LF Line Feed (FE) SUB SUbstitute
VT Vertical Tabulation (FE) ESC Escape
FF Form Feed (FE) FS File Separator (IS)

-CR Carnage Return (FE) GS Group Separator (IS)
SO Shift Out RS Record Separator (IS)
SI Srutt In US Unit Separator (IS)

DEL Delete
(CC) Comrnurucation Control
(FE) Format Effector
(IS) Information Separator

Figure 0.1

Special Graphic Characters

-SP Space -< Less Than_, Exclamation POint -= Equals- Quotation Marks -> Greater Than
-# Number Sign -? Question Mark
-$ Dollar Sign _Cd Commercral At_%

Percent -[Opening Bracket
-& Ampersand -, Reverse Slant- Apostrophe -) Closing Bracket
-(Opening Parenthesis Circumflex
-) Closing Parenthesis Underline-' Astensk Grave Accent
-+ Plus Opening Brace- Comma Vertical Lme (This graphiC-- Hyphen (Minus) IS sometimes stylized to-. Penod (Decimal POint) distingUIsh it from the un-
-/ Slant broken Logical OR which-' Colon is not an ASCII character)
-; Semicolon Closmg Brace

Tilde

Characters marked - correspond to the PET ASCII character set.
Figure 0.2

APPENDIX D

ASCII

223

ASCII is the American Standard Code for Information Interchange. It is
the standard for communications, and IS often used with non-Commodore
printers.

When a Commodore machine is In Its graphic mode, its character set
corresponds closely to ASCII. Numeric, upper case alphabetic, and punc­
tuation characters are the same A few control characters, such as
RET URN, also match. Commodore graphics have no counterpart in ASCII.

When the Commodore machine is switched to text mode, the character
set diverges noticeably from ASCII. Numeric characters and much of the
punctuation corresponds, but ASCII upper case alphabetic codes match
the Commodore computer's lower case codes, Commodore's upper case
alphabetics are now completely out of the ASCII range, since ASCII is a
seven-bit code

As a result, Commodore's PET ASCII codes require conversion before
transmission to a true ASCII device or communications line. This may be
done with either hardware interfacing or with a program. Briefly, the pro­
cedure is:

1. If the Commodore character ISbelow $ 3 F, It may be transmitted directly to
the ASCII tacrhty.

2. If the Commodore character ISbetween $ L; 0 and $ 5F, It should be logically
ORed WIth $20 (or add decimal 32) before transmission to ASCII

3. If the Commodore character is between $C0 and $DF, It should be logically
ANDed With $7F (or subtract decimal 12B)before transmission to ASCII.

Equivalent rules can be derived to allow a Commodore computer to receive
from ASCII. For either direction of transmission, some control characters
may require special treatment.

224

-"8>
i:5
«i
E
'0
(])

~
I
"t:l
c:
o
u
(])

C/)

MACHINE LANGUAGE FOR COMMODORE MACHINES

First Hexadecimal Digit

0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ P ,

P
1 SOH DCI ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 0 T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v
7 BEL ETB ,

7 G W g w

8 BS CAN (8 H X h x
9 HT EM) 9 1 Y i Y
A LF SUB * J Z j z
B VT ESC + , K [k {

C FF FS < L -, I I, I

0 CR GS - = M] m }

E SO RS > N A

n -

F SI uS / ? 0 - 0 DEL

ASCII code values.

E
Exercises for

Alternative
Commodore

Machines

225

226 MACHINE LANGUAGE FOR COMMODORE MACHINES

From Chapter 6:
VIC-20 (Unexpanded) Version

We write the BASIC program as follows:

100 V%=o
110 FORJ=1T05
120 INPUT "VALUE"; V%
130 SYS ++++
1L;0 PRINT "TIMES TEN ="; V%
150 NEXT J

Plan to start the machine language program at around L; 097 + 127, or
L; 2 2 L; (hexadecimal 1080). On that basis, we may change line 130 to
SYS L; 22 L;. Do not try to run the program yet.

.A108o

.A 1082

.A108L;
• A 1087
.A108A
• A 108C
.A 108E
• A 1091
• A 109L;
.A1097
• A 109A
• A 10ClD
• A 10Ao
.A1oA1
.A10AL;
.A10A7
• A 10AA
• A 10AD
.A1oBo
• A 10B3
• A 10B6
• A 1oB9
• A 10BB
• A 10BE
• A 1oCo
• A 10C2
• A 10C5
· A 10C7

LDY
LDA
STA
STA
LDY
LDA
STA
STA
ASL
ROL
ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
LDY
LDA
STA
LDY
LDA
STA
RTS

#$02
($2D),y
$033C
$033E
#$03
($2D),y
$033D
$033F
$033D
$033C
$033D
$033C

$033D
$033F
$033D
$033C
$033E
$033C
$033D
$033C
#$02
$033C
($2D),t
#$03
$033D
($2D),y

APPENDIX E 227

To change the start-of-variables pomter to a location above the machine
language program, display the SOV pointer with . MOO 2 D 002E and
change the pointer to

• : 002D C8 10 .•

PET/CBM Version
We write the BASIC program as follows:

100 V%=O
110 FORJ=lT05
120 INPUT "VALUE"; V%
130 SYS ++++
1L;0 PRINT "TIMES TEN ="; V%
150 NEXT J

Plan to start the rnachme language program at around 1025 + 127, or
1152 (hexadecimal L; 80). On that baSIS, we may change line 130 to
SYS 1152. Do not try to run the program yet.

.A 0L;80
• A 0L;82
.A 0L;8L;
.AOL;87
• A 0L;8A
.AOL;8C
.A 0L;8E
• A 0L;Cl1
.A 0L;9L;
.AOL;97
.A 0L;9A
.AOL;9D
.AOL;AO
• A 0L;A1
• A OL;AL;
.A 0L;A7
• A OL;AA
.AOL;AD
• A OL;BO
• A 0L;B3
• A OL;Bb
.AOL;B9
.A OL;BB
.A OL;BE

LDY
LDA
STA
STA
LDY
LDA
STA
STA
ASL
ROL
ASL
ROL
CLC
LDA
ADC
STA
LDA
ADC
STA
ASL
ROL
LDY
LDA
STA

#$02
($2A),y
$033C
$033E
#$03
($2A),Y
$033D
$033F
$033D
$033C
$033D
$033C

$033D
$033F­
$033D
$033C
$033E
$033C
$033D
$033C
#$02
$033C
($2A),y

228 MACHINE LANGUAGE FOR COMMODORE MACHINES

.AOL;CO
• A 0L;C2
• A 0L;C5
.A 0L;C7

LOY #$03
LOA $0330
STA ($2A),Y
RTS

To change the start-ot-varlables pointer to a location above the machine
language program, display the SOV pointer with • MOO 2 A 002Band
change the pointer to -

• :002A C8 OL; •••.

From Chapter 7:
An Interrupt Project
VIC-20 (Unexpanded) Version

The only difference with the VIC-20 is that the screen is located at $1 EO0:

• A 033C LOA $91
.A 033E STA $lEOO
• A 03L;1 JMP ($03AO)

To place the link address into $ 0 3 A0/1:

.A 03L;L; LOA $031L;
• A 03L;7 STA $03AO
· A 03L;A LOA $0315
• A 03L;0 STA $03A1

To tire up the program:

• A 0350 SEI
• A 0351 LOA #$3C
• A 0353 STA $031L;
• A 0356 LOA #$03
.A 0358 STA $0315
• A 035B CLI
• A 035C RTS

To restore the original Interrupt:

• A 0350 SEI
• A 035E LOA $03AO
.A 0361 STA $031L;
.A 036L; LOA $03A1
.A 0367 STA $0315

APPENDIX E 229

.A036ACLI
• A 036B RTS

SYS 836 will invoke the new Interrupt code, SYS 861 will turn it off. As
with the Commodore 64, there is a possibility of the character printing
white-on-white, so that it cannot be seen.

PET/CBM Version
This version is not for original ROM machines, which have the IRQ vector
located at address $ 0219/A:

· A 033C LDA $9B
· A 033E STA $8000
• A 03L;1 JMP ($03AO)

To place the link address Into $ 0 3 A0/1:

• A 03L;L; LDA $0090
• A 03L;7 STA $03AO
• A 03L;A LDA $0091
• A 03L;D STA $03A1

To fire up the program'

.A0350SEI

.A 0351 LDA #$3C

.A 0353 STA $0090
• A 0356 LDA #$03
.A 0358 STA $0091
· A 035B CLI
• A 035C RTS

To restore the original interrupt:

• A 035D SEI
.A 035E LDA $03AO
.A 0361 STA $0090
• A 036L; LDA $03A1
• A 0367 STA $0091
• A 036A CLI
.A036BRTS

SYS 836 will Invoke the new interrupt code; SYS 861 will turn it off.
Smce the PET/CBM does not have colors, the characters will always show.

230 MACHINE LANGUAGE FOR COMMODORE MACHINES

Project: Adding a Command
PET/CBM Version

It's not possible to write a comparable program to add a command to the
PET/CBM. This machine doesn't have a "link" neatly waiting for us at
address $ 0 308/9. Equivalent code would need to be somewhat longer
and less elegant.

The equivalent program for PET/CBM won't be given here. It would involve
writing over part of the CHRGET program (at $0070 to $0087), sup­
plying replacement code for the part we have destroyed, and then adding
the new features.

F
Floating

Point
Representation

231

232 MACHINE LANGUAGE FOR COMMODORE MACHINES

Packed: 5 bytes (as found In variable or array)

I I I I I I
Zero
Flag/

Exponent

Mantissa (value)
4 bytes

High bit represents sign of mantissa

Unpacked: 6 bytes (as found in floating accumulator)

I I 11 I I I
ZF/

Exponent
Manllssa-4 Bytes

Sign
(High Or­

der
BIt only)

• If exponent = 0, the whole number IS zero
• If exponent> $80. the decimal pornt IS to be set as many places to the

right as the exponent exceeds $80.
• Example: Exponent: $83 mantissa' 11000000 . binary set the point

three positions over: 110.000 ... to give a value of 6.
• If exponent < = $80, the number is a fraction less than 1.

Exercise: Represent +27 in Floating Point
27 decimal = 11011 binary; mantissa = 11011000 ... the pomt is to be
posrtroned 5 places in (11011 000) so we get:
Exponent: $85 mantissa: 11011000 binary or 08 000000 hexadecimal
To pack, we replace the first bit of the mantissa with a sign bit (0 for
positive) and arrive at:

B5 5B DO DO DO

G
Uncrashing

It's best to wnte a program that doesn't fail (or "crash"). Not all of us
succeed In domq this.

If a program gives trouble, it should be tested uSingbreakpoint techniques.
The BRK (break) instruction is Inserted at several strategic points within
the program. The program stops (or "breaks") at these points, and the
programmer has an opportunity to confirm correct behavior of the program
at selected POints. Using this technique. a fault can be pinned down quite
closely.

Occasionally, usually because of bad planning, a program crashes and
the cause of the crash cannot be identified. Worse still, a lengthy program
crashes and the user has forgotten to save a copy of it; the user is then
faced with the task of putting it in all over again.

In such cases. uncresrunq techniques are sometimes available to bring
the computer back from limbo. They are never entirely satisfactory, and
should be thought of as a last resort.

The technique differs from computer to computer.

233

234

PET/CBM

MACHINE LANGUAGE FOR COMMODORE MACHINES

Original ROM PETs cannot be uncrashed.

Subsequent models can be uncrashed, though hardware additions are
necessary. The reader should find someone with computer hardware
knowledge to assist in fitting the switches to the computer

A toggle switch is needed. to be connected to the "diagnostic sense" line
of the parallel user port; that's pin 5 of the PUP. The other Side of the
toggle swrtch should connect to ground (pin 12).

Additionally, a momentary pushbutton IS required. This must connect the
reset line of the computer to ground Techrucauy speaking, it's better to
tngger the input of the computer's power-on reset chip (a 555 one-shot),
usrng a resistor to guard against accidentally grounding a live circuit.

To uncrash, set the toggle swrtch to "on" and press the pushbutton; the
machine Will come back to life in the machine language monitor Set the
toggle switch off. There's more work to. do.

The computer is still In an unstable state. To correct this, either of two
actions may be taken. You may return to BASIC with • X and Immediately
give the command CLR; Alternatively, you may type. ; followed by the
RETURN key.

Whatever Investigation or other action is needed should be performed
quickly and the computer reset to its normal state.

VIC/Commodore 64
You might try holding down the RUN/STOP key and tapping the
RESTORE key to see if that Will bnng the machine to its senses. Oth­
erwise, you must do a more senous reset.

You must depend on the fact that the computer does a nondestructive
memory test dunng reset There are various commercially available In­
terfaces for the cartridge port-usually "mother boards" that are fitted with
reset switches

When the reset switch is pressed, the computer starts from the beginning;
but memory is not disturbed. If you have logged the entry location of the
machine language monitor, you can bring it back with the appropriate SY S
command.

APPENDIX G

Commodore PLUSI4

235

There's a reset button next to the power switch. Before you press it, hold
down the RUN/STOP and CTRL keys. Now press the reset button and
you'll find yourself in the machine language rnorutor.

H
Supermon

Instructions
Program Supermon IS not a monitor; It is a monitor generator that will
make a machine language monitor for you. There's a reason for this.
Supermon finds a likely spot in memory and then plunks the MLM there
so as to fit it into the most suitable place.

Load Supermon and say RUN. It will write an MLM for you, and call it up
Now, exit back to BASIC and command NEW. You do not want the MLM
builder any more (it's done the job) and you do not want the danger of
building two-or more-MLM's. Get rid of the generator program. Any
time you need to use the MLM. give SYSL; or SYS B. as appropriate

Supermon contains the following "essential" commands:

• R-to display (and change) registers
• M-to display (and change) memory
• S-to save memory to disk or tape
• L-to load from disk or tape
• G-to go to an ML program
• X-to exrt to BASIC

Supermon also contains the Iollowmq extra commands:

· A-to assemble
• D-to disassemble

237

23' MACHINE LANGUAGE FOR COMMODORE MACHINES

Most versions of Supermon (not the "do-it-yourself" below) contain the
following commands. Though not used by this book, they are useful:

• F-fills memory with fixed contents:
.F 1BOO 1BFF DO

· H-hunts for a memory pattern:
.H DBDO 1BOO 20 D2 FF

• T-transfers a block of memory to a new location:
. T OBOO OBFF BODO

A few versions of Supermon contain the command .1 which causes ma­
chine language single stepping.

A Do-It-Yourself Superman
If you do not have access to Supermon from friends, dealers, clubs, or
disk, you may find the following program useful for the Commodore 64
only.

Enter this program (it will take you hours) Be sure that lines 300 and
above are correct; the lower numbered DATA lines will be checked for
accuracy by the program.

When you say RUN, the program will run in two phases. Part 1 takes over
two minutes to run: it will check all DATA statements for missing lines
and errors and report any problems to you. Part 2 will run only if part 1
shows no errors: it will cause the program to "collapse" into itself. resulting
in Supermon. The moment the program has completed running, save
Supermon to disk or tape.

The Supermon generated by this program is a "junior" version (to save
your fingers) but It contains all commands needed for this book.

1 DATA 26,B,100,0,153,3L;,1L;7,lB,29,29, -3D
2 DATA 29,29,B3,B5,BO,69,B2,32,5L;,52, -16
3 DATAL;5,77,79,7B,0,L;9,B,110,0,153,-39
L; DATA 3L;,17,32,32,32,32,32,32,32,32, -50
5 DATA 32,32,32,32,32,32,32,0,75,B,-3
6 DATA 120,0,153,3L;,17,32,L;6,L;6,7L;,73,-L;B
7 DATA 77,32,66,B5,BL;,BL;,69,B2,70,73,-56
B DATA 69,76,6B,0,102,B,130,0,15B,L;0,-L;
9 DATA 19L;,L;0,52,51,L;1,170,50,53,5L;,172, -53
10 DATA19L;,L;0,52,52,L;1,170,L;9,50,55,L;1,-25
11 DATA 0,0,0,170,170,170,170,170,170,170, -6L;
12 DATA 170,170,170,170,170,170,170,170,170,170, -29

APPENDIX H 239

13 DATA 170,170,170,170,170,170,170,165,L;5,133, -61
1L; DATA 3L;,165,L;6,133,35,165,55,133,36,165, -12
15 DATA 56,133,37,160,0,165,3L;,20B,2,198,-55
16 DATA 35,198,3L;,177,3L;,208,60,165,3L;,20B,-3L;
17 DATA 2,198,35,198,3L;,177,3L;,2L;0,33,133, -52
18 DATA 38,165,3L;,208,2,19B,35,198,3L;,177, -60
19 DATA 3L;, 2L;, 101,36,170,165,38,101,37,72, - 56
20 DATA 165,55,208,2,198,56,198,55,10L;,1L;5,-1
21 DATA 55,138,72,165,55,208,2,19B,56,19B,-1
22 DATA 55, 10L;, 1L;5, 55, 2L;, 1L;L;, 1B2, 201,79,208, -L;8
23 DATA 237,165,55,133,51,165,56,133,52, 10B, - 17
2L; DATA 55,0,79,79,79,79,173,230,255,0,-22
25 DATA 1L;1,22,3,173,231,255,0,1L;1,23,3, -6L;
26 DATA 169,128,32, 1L;L;, 255, 0, 0,216, 10L;, 1L;1, - 30
27 DATA 62,2, 10L;, 1L;1, 61,2, 10L;, 1L;1, 60,2, -L;1
28 DATA 10L;,1L;1,59,2,10L;,170,10L;,168,56,13B, -17
29 DATA 233,2,1L;1,58,2,152,233,0,0,1L;1, -12
30 DATA 57,2,186,1L;2,63,2,32,1L;7,253,0,-57
31 DATA 162,66,169,L;2,32,205,251,0,169,B2, -62
32 DATA208,L;2,230,193,20B,6,230,19L;,20B,2,-52
33 DATA 230,38,96,32,207,255,201,13, 20B, 2L;B, - 2L;
3L; DATA 10L;,10L;,169,0,0,133,38,162,13,169, -11
35 DATAL;6,32,205,251,0,32,220,2L;9,0,201,-32
36 DATAL;6,2L;0,2L;9,201,32,2L;0,2L;5,162,1L;,221,-23
37 DATA 195,255, 0,208,12, 13B, 10,170, 1B9, 207, - 36
3B DATA 255, 0,72,189,206,255, 0,72,96,202, - 2
39 DATA 16,236,76,BO,252,0,165,1Q3,1L:1,5B, -29
L;O DATA 2,165, 19L;, 1L;1, 57,2,96,169,8,133, -L;L;
L;1 DATA 29,160,0,0,32,1L;3,253,0,177,193,-31
L;2 DATA 32,190,251,0,32,209,2L;9,0,19B,29,-61
L;3 DATA 208,2L;1,96,32,25L;,251,0,1L;L;,11,162,-53
L;L; DATA 0,0,129,193,193,193,2L;0,3,76,BO,-5B
L;5 DATA 252,0,32,209,2L;9,0,198,29,96,169, -56
L;6 DATA59,133,193,169,2,133,19L;,169,5,96,-20
L;7 DATA 152,72,32,1L;7,253,0,10L;,162,L;6,76, -L;L;
L;B DATA 205,251,0,162,0,0,189,23L;,255,0, -31
L;9 DATA32,210,255,232,22L;,22,208,2L;5,160,59,-51
50 DATA32,86,250,0,173,57,2,32,190,251,-L;
51 DATA 0,173,5B,2,32,190,251,0,32,75, -31
52 DATA 250,0,32,33,250,0,2L;0,B7,32,220,-13
53 DATA 2L;9,0,32,239,251,0,1L;L;,L;6,32,223, -L;O
5L; DATA 251,0,32,220,2L;9,0,32,239,251,0, -51
55 DATA1L;L;,35,32,~23,251,0,32,225,255,2L;0,-33

240 MACHINE LANGUAGE FOR COMMODORE MACHINES

56 DATA 60,166,38,208,56,165,195,197,193,165, - 22
57 DATA 196,229, 19L;, 1L;L;, L;6, 160,58,32,86,250, - 21
58 DATAO,32,183,251,0,32,31,250,0,2L;0,-60
59 DATA 22L;, 76,80,252,0,32,239,251,0, lL;L;, -L;2
60 DATA3,32,20,250,0,32,75,250,0,208,-L;3
61 DATA7,32,239,251,0,1L;L;,235,169,8,133,-28
62 DATA29,32,220,2L;9,0,32,53,250,0,208,-18
63 DATA 2L;8,76,229,2L;9,0,32,207,255,201,13,-22
6L; DATA 2L;0,12,201,32,208,20Q,32,23Q,251,0, -57
65 DATA 1L;L;,3,32,20,250,0,17L;,63,2,15L;, -L;6
66 DATA 120,173,57,2,72,173,58,2,72,173, -35
67 DATA 59,2,72,173,60,2,17L;,61,2,172, -55
68 DATA 62,2,6L;,17L;,63,2,15L;,108,2,160,-56
69 DATA160,1,132,186,132,185,136,132,183,132,-27
70 DATA 1L;L;, 132, 1L;7, 169, 6L;, 133,187,169,2,133, - 19
71 DATA188,32,207,255,201,32,2L;0,2L;9,201,13,-L;2
72 DATA 2L;0,56,201,3L;,208,20,32,207,255,201,-35
73 DATA3L;,2~0,16,201,13,2~0,~1,1~5,187,230,-39

7L; DATA 183,200,192,16,208,236,76,80,252,0, -18
75 DATA32,207,255,201,13,2L;0,22,201,L;L;,208,-51
76 DATA220,32,25L;,251,0,L;1,15,2L;0,233,201,-L;6
77 DATA 3, 2L;0, 229,133,186,32,207,255,201,13, -L;5
78 DATA 96,108,L;8,3,108,50,3,32,22,251, -60
79 DATA 0,208,212,169,0,0,32,111,251,0, -37
80 DATA 165, 1L;L;, L;1, 16,208,201,76,229, 2L;9, 0, - 22
81 DATA 32,22,251,0,201,L;L;,208,191,32,239,-L;8
82 DATA 251,0,32,223,251,0,32,207,255,201, - 25
83 DATA L;L;, 208,178,32,239,251,0,165,193,133, -7
8L; DATA 1 7L;, 165, 19L;, 133,175,32,223,251,0,32, - 3L;
85 DATA 207,255,201,13,208,157,32, 11L;, 251,0, - 36
86 DATA 76,229, 2L;9, 0,165, 19L;, 32,190,251,0, -39
87 DATA165,193,72,7L;,7L;,7L;,7L;,32,21L;,251,-13
88 DATA 0,170, 10L;, L;1, 15,32, 21L;, 251,0,72, - 16
89 DATA 138,32,210,255,10L;,76,210,255,9,L;8,-9
90 DATA 201,58,1L;L;,2,105,6,96,162,2,181, -30
91 DATA 192,72,181,19L;,1L;9,192,10L;,1L;9,19L;,202, -25
92 DATA 208,2L;3,96,32,25L;,251,0,1L;L;,2,133, -30
93 DATA 19L;, 32, 25L;, 251,0, 1L;L;, 2,133,193,96, -L;3
9L; DATA 169,0,0,133,L;2,32,220,2L;9,0,201, -39
95 DATA 32,208,9,32,220,2L;9,0,201,32,208, -25
96 DATA1L;,2L;,96,32,37,252,0,10,10,10,-62
97 DATA 10,133,L;2,32,220,2L;9,0,32,37 ,252, -39
98 DATA 0,5,L;2,56,96,201,58,1L;L;,2,105, -26

APPENDIX H 241

99 DATA 8,L;1,15,96,96,32,220,2L;9,0,201, -62
100 DATA 32,2L;0,2L;9,96,169,0,0,1L;1,0,0, -22
101 DATA 1,32,L;7,252,0,32,5,252,0,32,-29
102 DATA 2L;2,251,0,1L;L;,9,96,32,220,2L;9,0, -28
103 DATA32,239,251,0,176,222,17L;,63,2,15L;,-35
10L; DATA 169,63,32,210,255,76,229,2L;9,0,32, -L;8
105 DATA1L;3,253,0,202,208,250,96,165,195,16L;,-12
106 DATA196,56,233,2,176,1,136,56,229,193,-61
107 DATA 133,30,152,229,19L;,168,5,30,96,32, -L;1
108 DATA55,252,0,133,32,165,19L;,133,33,162,-22
109 DATAO,0,13L;,L;0,169,1L;7,32,210,255,169,-32
110 DATA 22,133,29,32,165,252,0,32,5,253,-2
111 DATA 0,133,193,132,19L;,198,2Q,208,2L;2,16Q, -16
112 DATA1L;5,32,210,255,76,229,2L;9,0,160,L;L;,-L;1
113 DATA 32,86,250,0,32,1L;3,253,0,32,183, -23
llL; DATA 251,0,32,1L;3,253,0,162,0,0,161,-25
115 DATA 193,32,20,253,0,72,32,90,253,0, -25
116 DATA10L;,32,112,253,0,162,6,22L;,3,208,-L;3
117 DATA 18,16L;,31,2L;0,1L;,165,L;2,201,232,177,-10
118 DATA193,176,28,32,253,252,0,136,208,2L;2,-15
119 DATA 6,L;2,1L;L;,1L;,189,5L;,255,0,32,187,-3
120 DATA 253,0,189,60,255,0,2L;0,3,32,187, -2L;
121 DATA 253,0,202,208,213,96,32,8,253,0, -L;5
122 DATA170,232,208,1,200,152,32,253,252,0,-39
123 DATA 138,13L;,28,32,190,251,0,166,28,96, -L;7
12L; DATA 165,31,56,16L;,19L;,170,16,1,136,101,-53
125 DATA 193, lL;L;, 1,200,96,168, 7L;, lL;L;, 11, 7L;, - 21
126 DATA 176,23,201,3L;,2L;0,19,L;1,7,9,128, -':'63
127 DATA 7L;,170,189,229,25L;,0,176,L;,7L;,7L;, -52
128 DATA7L;,7L;,L;1,15,208,L;,160,128,169,0,-20
129 DATA 0,170,189,L;1,255,0,133,L;2,L;1,3, -62
130 DATA133,31,152,L;1,1L;3,170,152,160,3,22L;,-36
131 DATA 138, 2L;0, 11, 7L;, lL;L;, 8, 7L;, 7L;, 9,32, - 6
132 DATA136,208,250,200,136,208,2L;2,96,177,193,-29
133 DATA 32,253,252,0,162,1,32,92,252,0, -16
13L; DATA 196,31,200,1L;L;,2L;1,162,3,192,L;,1L;L;, -18
135 DATA 2L;2,96,168,185,67,255,0,133,L;0,185, -13
136 DATA 131,255,0,133,L;1,169,0,0,160,5,-3
137 DATA 6,L;1,38,L;0,L;2,136,208,2L;8,105,63,-27
138 DATA32,210,255,202,208,236,169,32,208,11,-16
139 DATA 169,13,36,19,16,5,32,210,255,169, -30
lL;O DATA 10,76,210,255,32,55,252,0,169,3, -21
lL;l DATA133,29,32,220,2L;9,0,32,53,250,0,-L;2

242 MACHINE LANGUAGE FOR COMMODORE MACHINES

lL;2 DATA 208,2L;8,165,32,133,193,165,33,133,19L;, -L;3
lL;3 DATA76,13L;,252,0,197,L;0,2L;0,3,32,210,-60
lL;L; DATA 255,96,32,55,252,0,32,223,251,0, -57
lL;5 DATA lL;2,17,2,162,3,32,L;7,252,0,72,-L;3
lL;6 DATA202,208,2L;9,162,3,10L;,56,233,63,160,-37
lL;7 DATA5,7L;,110,17,2,110,16,2,136,208,-16
lL;8 DATA2L;6,202,208,237,162,2,32,207,255,201,-31
lL;9 DATA 13,2L;0,30,201,32,2L;0,2L;5,32,220,25L;,-9
150 DATA 0,176,15,32,18,252,0,16L;,lq3,132,-q
151 DATA19L;,133,193,169,L;8,157,16,2,232,157,-L;7
152 DATA 16,2,232,208,219,13L;,L;0,162,0,0,-10
153 DATA 13L;,38,2L;0,L;,230,38,2L;0,117 ,162,0,-9
15L; DATA 0,13L;,29,165,38,32,20,253,0,166,-L;8
155 DATAL;2,13L;,L;1,170,188,67,255,0,189,131,-L;7
156 DATA 255,0,32,197,25L;,0,208,227,162,6, -5L;
157 DATA 22L;, 3,208,25, 16L;, 31, 2L;0, 21,165, L;2, - 63
158 DATA201,232,169,L;8,176,33,32,203,25L;,0,-39
159 DATA208,20L;,32,205,25L;,0,208,lQQ,136,208,-28
160 DATA 235,6,L;2,1L;L;,11,188,60,255,0,189,-15
161 DATA 5L;,255,0,32,197,25L;,0,208,181,202,-1
162 DATA 208,209,2L;0,10,32,196,25L;,0,208,171,-51
163 DATA 32,196,25L;,0,208,166,165,L;0,197,29,-15
16L; DATA 208,160,32,223,251,0,16L;,31,2L;0,L;0,-6
165 DATA165,L;1,201,157,208,26,32,99,252,0,-35
166 DATA1L;L;,10,152,208,L;,165,30,16,10,76,-L;0
167 DATA 80,252,0,200,208,250,165,30,16,2L;6,-9
168 DATA 16L;,31,208,3,185,19L;,0,0,1L;5,193,-62
169 DATA 136,208,2L;8,165,38,1L;5,193,32,5,253, -L;1
170 DATA 0,133,193,132,19L;,160,65,32,86,250, -3L;
171 DATA 0,32,1L;3,253,0,32,183,251,0,32, -56
172 DATA lL;3,253,0,76,198,253,0,lL5,32,2u3,-21
173 DATA 25L;,0,208,17,152,2L;0,1L;,13L;,28,166, -63
17L; DATA 29,221,16,2,8,232,13L;,29,166,28, -60
175 DATAL;0,96,201,L;8,1L;L;,3,201,71,96,56,-30
176 DATA 96,6L;,2,69,3,208,8,6L;,9,L;8, -1L;
177 DATA 3L;, 69,51,208,8, 6L;, 9, 6L;, 2,69, - 50
178 DATA 51,208,8,6L;,9,6L;,2,69,179,208,-L;7
179 DATA 8,6L;,9,0,0,3L;,68,51,208,1L;0,-18
180 DATA 68,0,0,17,3L;,68,51,208,1L;0,68,-5
181 DATA 1 SL; , 16 , 3 L; , 68, 51 , 2 08, 8 , 6 L; , 9, 16, - 2°
182 DATA 3L;,68,51,208,8,6L;,Q,98,lQ,120, -62
183 DATA 169,0,0,33,129,130,,0,0,0,0, -L;1
18L; DATA89,77,1L;5,1L;6,13L;"lL;,133,157,L;L;,L;1,-39

185 DATA L;L;,35,L;0,36,89,0,0,,88,36,36, -22
186 DATA 0,0,28,138,28,35,93,139,27,161, -10
187 DATA 157,138,29,35,157,139,29,161,0,0,-9
188 DATAL;1,25,17L;,105,168,25,35,36,83,27,-6L;
189 DATA 35,36,83,25,161,0,0,26,91,91, -2L;
190 DATA 165,105,36,36,17L;,17L;,168,173,L;1,0,-3
191 DATA 0,12L;,0,0,21,156,109,156,165,105,-20
192 DATAL;1,83,132,19,52,17,165,105,35,160,-26
193 DATA 216,98,90,72,38,98,1L;8,136,8L;,68,-20
19L; DATA 200,8L;,10L;,68,232,1L;8,0,0,180,8,-31
195 DATA132,l16,180,L;0,110,116,2L;L;,20L;,7L;,11L;,-32
196 DATA2L;2,16L;,138,0,0,170,162,162,116,116,-11
197 DATA 116,11L;,68,10L;,178,50,178,0,0,3L;, -30
198 DATA 0,0,26,26,38,38,11L;,11L;,136,200,-27
199 DATA1 Q6,202,38,72,68,68,162,200,58,59,-35

200 DATA 82,77,71,88,76,83,68,L;L;,65,20L;, -59
201 DATA 250,0,191,250,0,96,250,O,13L;,250, -25
202 DATA 0,22L;,250,0,1L;,251,0,116,251,0, -23
203 DATA 135,251,0,120,252,0,160,253,0,19L;, -19
20L; DATA 253,0,228, 2L;9, 0,157, 2L;9, 0,139, 2L;9, - 63
205 DATA 0,13,32,32,32,80,67,32,32,83,-3
206 DATA 82,32,65,67,32,88,82,32,89,82, -16
207 DATA32,83,80,-59
255 DATA 208
300 M=63
310 READ X:L=PEEK(M) :H=L=255:IF H THEN L=X
3 2 0 V= R()L : S = (T<> 6 3 AND R>0 AND V)
330 IF V THEN T=L:IF NOT S THEN R=R+1:S=R()L
3L;0 T= (T*3+X)AND63
350 IF S THEN PRINT "ERROR LINE";R:E=-l
360 R=L:IFNOTHGOT0310
370 IF E THEN STOP
380 PRINT"HERE WE GO":X=-1:RESTORE:B=20L;9:FOR A=l

TO 9999
390 IF X)=O THEN POKE B,X:B=B+1
L;OO READ X:L=PEEK(M) :IF L(255 THEN NEXT A
L;10 POKE L;5,16:POKE L;6,16:CLR

MACHINES

60, -37
6

201, -31
5L;, - 9
-q
57, - L; 7
10
, - q
L;8
1,-L;7
- 5L;
, -63
,-39
08,-28
15
-1
1, - 51
, -15
,-6
-35
L;O
, - q
62
3,-L;1
, - 3L;

-29
, - 63
o
o

APPENDIX H 243

I
IA Chip

Information
The following material has been adapted from manufacturer's specifica­
tions. The information is not essential to machine language programming,
but can be a great help for further study. Some of these specifications are
not widely published and contain "hard to get" information.

6520 PI A, penpheral Interface adaptor

6522 VI A, versanle interface adaptor

6525 T PA, tn port adaptor

6526 CI A. complex Interface adaptor

6545 CRTC, CRT controller

6560 VIC video Interface chip

6566 VIC-2 video Interface chip

6581 SIn sound interface chip

[Essentially manufacturer's specs, less hardware details]

245

246 MACHINE LANGUAGE FOR COMMODORE MACHINES

6520 Peripheral Interface Adaptor (PIA)
The 6520 is an I/O device which acts as an interface between the micro­
processor and peripherals such as printers, displays, keyboards, etc. The
prime function of the 6520 is to respond to stimulus from each of the two
worlds it is serving. On the one side, the 6520 is interfacing with peripherals
via two eight-bit bi-directional peripheral data ports. On the other side, the
device interfaces with the microprocessor through an eight-bit data bus.
In addition to the lines described above, the 6520 provides four interrupt
input/peripheral control lines and the logic necessary for simple, effective
control of peripheral interrupts.

MICRO
PROCESSORS
650 x

6520

PERIPHERAL
DEVICES­
PRINTERS,
DISPLAYS,
ETC.

Figure 1.1

The functional configuration of the 6520 is programmed by the micro­
processor during systems initialization. Each of the peripheral data lines
is programmed to act as an input or output and each of the four control/
interrupt lines may be programmed for one of four possible control modes.
This allows a high degree of tlexibility in the overall operation of the in­
terface.

Data Input Register
When the microprocessor wntes data into the 6520, the data which ap­
pears on the data bus is latched into the Data Input Register. It is then
transferred into one of six internal registers of the 6520. This assures.that
the data on the peripheral output lines will not "glitch," i.e., the output lines
will make smooth transitions from high to low or from low to high and the
voltage will remain stable except when it is going to the opposite polarity.

APPENDIX I

Control Registers (CRA and CRB)

247

Figure 1.2 illustrates the bit designation and functions in the Control Reg­
isters. The Control Registers allow the microprocessor to control the op­
eration of the interrupt lines (CA1, CA2, CB1, CB2), and peripheral
control lines (CA2, CB2). A single bit in each register controls the ad­
dressing of the Data Direction Registers (DDRA, DDRB) and the Output
Registers, (ORA, ORB) discussed below. In addition. two bits (bit 6 and
7) are provided in each control register to indicate the status of the interrupt
input lines (CA1, CA2, CB1, CB2). These interrupt status bits (IRQA,
IRQB) are normally interrogated by the microprocessor during the inter­
rupt service program to determine the source of an active interrupt. These
are the interrupt lines which drive the interrupt input (IRQ, NMI) of the
microprocessor. The other bits in CRA and CRB are described in the
discussion of the interface to the peripheral device.

The various bits in the control registers will be accessed many times during
a program to allow the processor to enable or disable interrupts, change
operating modes, etc. as required by the peripheral device being con­
trolled.

Data Direction Registers (DDRA, DDRB)
The Data Direction Registers allow the processor to program each line in
the a-bit Peripheral I/O port to act as either an input or an output. Each
bit in DDRA controls the corresponding lines in the Peripheral A port and
each bit in DDRB controls the corresponding line In the Peripheral B port.
Placing a "0" in the Data Direction Register causes the corresponding
Peripheral I/O line to act as an input. A "1" causes it to act as an output.

The Data Direction Registers are normally programmed only dunng the
system initialization routine which IS performed in response to a Reset
signal. However, the contents of these registers can be altered during
system operation. This allows very convenient control of some peripheral
devices such as keyboards.

Peripheral Output Registers (ORA, ORB)
The Peripheral Output Registers store the output data which appears on
the Peripheral I/O port. Writing an "0" into a bit In ORA causes the
corresponding line on the Peripheral A port to go low « o. L; V) if that
line is programmed to act as an output. A "1" causes the corresponding
output to go high. The lines of the Peripheral B port are controlled by ORB
in the same manner.

248 MACHINE LANGUAGE FOR COMMODORE MACHINES

Interrupt Status Control
The four interrupt/peripheral control lines (CAl, CA2, CB1, CB2) are
controlled by the Interrupt Status Control (A, B) This logic Interprets the
contents of the corresponding Control Register, detects active transitions
on the interrupt inputs and performs those operations necessary to assure
proper operation of these four peripheral interface lines.

Reset (RES)
The active low Reset line resets the contents of all 6520 registers to a
logic zero. This line can be used as a power-on reset or as a master reset
during system operation.

Interrupt Request Une (IRQA, IRQB)
The active low Interrupt Request lines (IRQA and IRQB) act to Interrupt
the microprocessor either directly or through external interrupt priority cir­
cuitry.

Each Interrupt Request line has two interrupt flag bits which can cause
the Interrupt Request line to go low These flags are bits 6 and 7 in the
two Control Registers. These flags act as the link between the peripheral
interrupt signals and the microprocessor interrupt inputs. Each flag has a
corresponding Interrupt disable bit which allows the processor to enable
or disable the Interrupt from each of the four Interrupt mputs (CAl, CA2,
CB1, CB2).

The four interrupt flags are set by active transitions of the signal on the
interrupt input (CAl, CA2, CB1, CB2). Controlling this active transrtlon
is discussed in the next section.

Control of IRQ A
Control Register A bit 7 is always set by an active transition of the CAl
interrupt input signal. Interrupting from this flag can be disabled by setting
bit 0 in the Control Register A (eRA) to a logic D. Likewise, Control
Register A bit 6 can be set by an active transrtlon of the CA2 interrupt
input signal. Interrupting from this flag can be disabled by setting bit 3 in
the Control Register to a logic D.

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Output
Register A" operation. This IS defined as an operation in which the pro­
cessor reads the Peripheral A I/O port.

APPENDIX I

Control of IRQ B

249

Control of IRQB is performed in exactly the same manner as that de­
scribed above for IRQA. Bit 7 in eRB is set by an active transition on
e B1; interrupting from this flag is controlled by e RB bit O. likewise, bit
6 in e RBis set by an active transition on e B2; interrupting from this flag
is controlled by e RB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B Output
Register" operation.

Summary ,
IRQA goes low when CRA - 7 = 1 and CRA - 0 = 1 or when CRA - 6
= 1 and eRA - 3 = 1.

IRQB goes low when e RB - 7 = 1 and e RB - 0 = 1 or when e RB - 6
= 1 and eRB-3 = 1.

It should be stressed at this point that the flags act as the link between
the peripheral interrupt signal and the processor interrupt inputs The in­
terrupt disable bits allow the processor to control the interrupt function.

Peripheral I/O Ports
Each of the Peripheral I/O lines can be programmed to act as an input or
an output. This is accomplished by setting a II 1" in the corresponding
bit In the Data Direction Register for those lines which are to act as outputs.
A "0" in a bit of the Data Direction Register causes the corresponding
Peripheral I/O lines to act as an input.

Interrupt Input/Peripheral Control Unes (CAl,
CA2,CB1,CB2

The four interrupt input/peripheral control lines provide a number of special
peripheral control functions. These lines greatly enhance the power of the
two general purpose interface ports (PAD-PA7, PBD-PB7).

Peripheral A Interrupt Input/Peripheral Control
Unes (CAl, CA2)

e A1 is an interrupt input only. An active transition of the signal on this
input will set bit 7 of the Control Register A to a logic 1. The active transition
can be programmed by the microprocessor by setting a II 0" in bit 1 of

250 MACHINE LANGUAGE FOR COMMODORE MACHINES

the CRA if the interrupt flag (bit 7 of CRA) is to be set on a negative
transition of the CAl signal or a " 1 " if it is to be set on a positive transition.

Setting the interrupt flag Will interrupt the processor through I RQA if bit
o of CRA IS a 1 as descnbed previously.

CA2 can act as a totally independent Interrupt input or as a peripheral
control output. As an input (CRA, bit 5 = 0) it acts to set the interrupt
flag, bit 6 of CRA, to a logic 1 on the active transition selected by bit L;
of CRA.

These control register bits and interrupt inputs serve the same basic func­
tion as that described above for CAl. The input signal sets the interrupt
flag which serves as the link between the peripheral device and the pro­
cessor Interrupt structure. The interrupt disable bit allows the processor
to exercise control over the system interrupts.

In the Output mode (CRA, bit 5 = 1), CA2 can operate independently
to generate a simple pulse each time the microprocessor reads the data
on the Peripheral A I/O port. Thrs mode is selected by setting CRA, bit L;
to a "0 ff and CRA, bit 3 to a "1". This pulse output can be used to
control the counters, shift registers, etc. which make sequential data avail­
able on the Peripheral input lines.

A second output mode allows CA2 to be used in conjunction with CAl
to "handshake" between the processor and the peripheral device. On the
A side, this technique allows positive control of data transfers from the
peripheral device into the microprocessor. The CAl Input signals the
processor that data is available by interrupting the processor. The pro­
cessor reads the data and sets CA2 low. This signals the peripheral device
that it can make new data available.

The final output mode can be selected by setting bit L; of CRA to a 1. In
this mode, CA2 is a simple peripheral control output which can be set
high or low by setting bit 3 of CRA to a 1 or a 0 respectively.

Peripheral B Interrupt Input/Peripheral Control
Unes (CB1, CB2)

CBl operates as an interrupt input only in the same manner as CAl. Bit
7 of CRB is set by the active transition selected by bit 0 of CRB. Likewise,
the CB2 input mode operates exactly the same as the CA2 input modes.
The CB2 output modes, CRB, bitS = 1, differ somewhat from those
of CA2. The pulse output occurs when the processor writes data into the
Peripheral B Output Register. Also, the "handshaking" operates on data
transfers from the processor into the peripheral device.

APPENDIX I 251

CRA

CRB

7 6 5 4 3 2 1 (/)

IROA1 IROA2 CA2 CONTROL DORA CA1 CONTROL
A ACCESS A

(, (,

7 6 5 4 3 2 1 0
IROB1 IROB2 CB2 CONTROL DDRB CB2 CONTROL

A ACCESS A
(, (,

Figure 1.2

6545-1 CRT Controller (CRTC)
Concept

The 6545-1 is a CRT Controller intended to provide capability for inter­
facing the 6500 microprocessor family to CRT or TV-type raster scan
displays.

Horizontal Total (RO)
This a-bit register contains the total of displayed and non-displayed char­
acters, rmnus one, per honzontal line. The frequency of HSYNC is thus
determined by this register.

Horizontal Displayed (R1)
This a-bit register contains the number of displayed characters per hori­
zontal nne.

Horizontal Sync Position (R2)
This a-bit register contains the position of the HSYNC on the horizontal
line, in terms of the character location number on the line. The position
of the HSYNC determines the left-to-right location of the displayed text on
the video screen. In this way, the side margins are adjusted.

MACHINE LANGUAGE FOR COMMODORE MACHINES252-------------------------

Horizontal and Vertical SYNC Widths (R3)
This 8-bIt register contains the widths of both HSYNC and VSYNC, as
follows:

8 4 2 8 4 2

VSYNC IWIDTH*

(NUMBER OF SCAN LINES)

HSYNC

1

WIDTH

(NUMBER OF CHARACTER
CLOCK TIMES)

*IF BITS 4-7 ARE ALL "0", THEN VSYNC WILL BE 16 SCAN LINES WIDE

Control of these parameters allows the 6545-1 to be interfaced to a variety
of CRT monitors, since the HSYNC and VSYNC timing signals may be
accommodated without the use of external one-shot timing.

Vertical Total (R4)
The Vertical Total Register is a 7-bit register containing the total number
of character rows in a frame, minus one. This register, along with R5,
determines the overall frame rate, which should be close to the line fre­
quency to ensure flicker-free appearance. If the frame time is adjusted to
be longer than the period of the line frequency, then RES may be used
to provide absolute synchronism.

Vertical Total Adjust (R5)
The Vertical Total Adjust Register is a 5-bit write only register containing
the number of additional scan lines needed to complete an entire frame
scan and is intended as a fine adjustment for the video frame time.

Vertical Displayed (R6)
This 7-bit register contains the number of displayed character rows in each
frame. In this way, the vertical size of the displayed text is determined.

Reg. Register bit
No. Register Name Stored Info RD WR 7 6 5 4 3 2 1 0

RO Honz. total # Charac. j • • • • • • • •
R1 Horiz. Displayed # Charac. j • • • • • • • •
R2 Honz, Sync Position # Charac. j • • • • • • • •
R3 VSYNC, HSYNC Widths # Scan Lines & j Va V2 V1 Vo H3 H2 H1 Ho

Char. Times

R4 Vert. Total # Charac. Row j X • • • • • • •
RS Vert. Total Adjust. # Scan Lines j X X X • • • • •
R6 Vert. Displayed # Charac. Rows j X • • • • • • •
R7 Vert. Sync Position # Charac. Rows j X • • • • • • •
R8 Mode Control j • • • • • • • •
R9 Scan Line # Scan Lines j X X X • • • • •R10 Cursor Start Scan Line No. j X 8 1 80 • • • • •
R11 Cursor End Scan Line No. j X X X • • • • •
R12 Display Start Addr (H) j X X • • • • • •
R13 Display Start Addr (L) j • • • • • • • •
R14 Cursor Position (H) j j X X • • • • • •
R1S Cursor Position (L) j j • • • • • • • •
R16 Light Pen Reg.(H) j X X • • • • • •
R17 Light Pen Reg. (L) j • • • • • • • •

»
"'U
"'U
m
z
o
X

Notes:
• Designates binary bit
X Designates unused bit. Reading this bit is always "0", except for R31, which does not drive the data bus at

all, and for CS "1" which operates likewise. II\)

U'I
(j\)

254 MACHINE LANGUAGE FOR COMMODORE MACHINES

Vertical Sync Position (R7)
This 7-bit register is used to select the character row time at which the
VSYNC pulse is desired to occur and, thus, is used to position the dis­
played text In the vertical direction.

Mode Control (RB)
This register is used to select the operating modes of the 6545-1 and is
outlined as follows:

L---INTERFACE MODE CONTROL

BIT
OPERATION

1 0
x 0 NON INTERLACE

x 1 INVALID (DO NOT USE)

'------ViDEO DISPLAY RAM ADDRESSING
"0" FOR STRAIGHT BINARY
"1" FOR ROW/COLUMN

'-------MUST PROGRAM TO "0"

'----------DISPLAY ENABLE SKEW
"0" FOR NO DELAY
" 1" TO DELAY DISPLAY ENABLE

ONE CHARACTER TIME

'------------CURSOR SKEW
"0" FOR NEW DELAY
"1" TO DELAY CURSOR ONE

CHARACTER TIME

I--- }-NOT USED

Figure 1.3

Scan Une (R9)
This 5-bit register contains the number of scan lines per character row,
including spacing.

APPENDIX I

Cursor Start (R10) and Cursor End (R11)

255

These 5-bit registers select the starting and ending scan lines for the
cursor. In addition. bits 5 and 6 of R1 0 are used to select the cursor mode.
as follows:

BIT
CURSOR MODE

6 5

0 0 No Blinking
0 1 No Cursor
1 0 Blink at 1/16 field rate
1 1 Blink at 1/32 field rate

Note that the ability to program both the start and end scan line for the
cursor enables either block cursor or underline to be accommodated.
Registers R14 and R15 are used to control the character position of the
cursor over the entire 16K address field.

Display Start Address High (R12) and Low
(R13)

These registers together comprise a 14-bit register whose contents is the
memory address of the first character of the displayed scan (the character
on the top left of the video display. as in Figure 1). Subsequent memory
addresses are generated by the 6545-1 as a result of CCLK input pulses.
Scrolling of the display is accomplished by changing R12 and R13 to the
memory address associated with the first character of the desired line of
text to be displayed first. Entire pages of text may be scrolled or changed
as well via R12 and R13.

Cursor Position High (R14) and Low (R15)
These registers together compnse a 14-bit register whose contents is the
memory address of the current cursor position. When the video display
scan counter (MA lines) matches the contents of this register, and when
the scan line counter (RA lines) falls within the bounds set by R10 and
R11. then the CURSOR output becomes active. Bit 5 of the Mode Control
Register (R8) may be used to delay the CURSOR output by a full CCLK
time to accommodate slow access memories.

LPEN High (R16) and Low (R17)
These registers together compnse a 14-blt register whose contents IS the
light pen strobe position, in terms of the video display address at which

256 MACHINE LANGUAGE FOR COMMODORE MACHINES

the strobe occurred. When the LPEN input changes from low to high. then.
on the next negative-going edge of CCLK, the contents of the Internal
scan counter is stored in registers R16 and R17.

6560 (VIC) Video Interface Chip
The 6560 Video Interface Chip (VIC) is designed for color video graphics
applications such as low cost CRT terminals, biomedical monitors, control
system displays and arcade or home video games. It provides all of the
circuitry necessary for generating color programmable character graphics
with high screen resolution. VIC also incorporates sound effects and AID
converters for use in a video game environment.

Features
• Fully expandable system with a 16K byte address space

• System uses Industry standard 8 bit wide ROMS and 4 bit wide RAMS

• Mask programmaole sync generation, NTSC-6560, PAL-6561

• On-chip color qeneration (16 colors)

• Up to 600 independently programmable and movable background locations
on a standard TV

• Screen centering capability

• Screen gnd size up to 192 Horizontal by 200 Vertical dots

• Two selectable graphic character sizes

• On-chip sound system including:
a) Three independent. programmable tone generators
b) White noise generator
c) Amplitude modulator

• Two on-chip 8 bit AJD converters

• ON-chip DMA and address generation
• No CPU walt states or screen hash during screen refresh

• Interlaced/Non-Interlaced switch

• 16 addressablecontrol registers

• Light gun/pen for target games

• 2 modes of color operation

A: Interlace mode: A normal video frame is sent to the TV 60 times each
second. Interlace mode cuts the number of repetitions in half. When used
with multiplexing equipment, this allows the VIC picture to be blended with
a picture from another source.

APPENDIX I 257

To turn off: POKE 36864, PEEK(36864) AND 127
To turn on: POKE 36864, PEEK(36864) OR 128

B: Screen origin-horizontal: This determmes the positioning of the
Image on the TV screen. The normal value IS 5. Lowering the value moves
the screen to the left, and increasing it moves the image to the right.

To change value: POKE 36864, PEEK(36864) AND 128 OR X

LOC
Hex

9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
900A
900B
900C
900D
900E
900F

START VALUE-5K VIC Bit
Binary Decimal Function

00000101 5 ABBBBBBB
00011001 25 CCCCCCCC
10010110 150 HDDDDDDD
v0101110 46 or 176 GEEEEEEF
wvvvvw v GGGGGGGG
11110000 240 HHHHIIII
00000000 0 JJJJJJJJ
00000000 0 KKKKKKKK
11111111 255 LLLLLLLL
11111111 255 MMMMMMMM
00000000 0 NRRRRRRR
00000000 0 OSSSSSSS
00000000 0 PTTTTTTT
00000000 0 QUUUUUUU
00000000 0 WWWWVVVV
00011011 27 XXXXYZZZ

A: Interlace mode: 0 = off,
1 =on

B: Screen origin-horizontal
C: Screen onqln-e-vemcal
D: Number of video columns
E: Number of video rows
F: Character size:

0=8 x 8, 1= 8 x 16
G: Raster value
H: Screen memory location
I: Character memory location
J: Light pen-horizontal
K: Light pen-vertical
L: Paddle 1
M: Paddle 2

N: Bass sound switch
0: Alto sound switch
P: Soprano sound switch
Q: NOise switch
R: Bass Frequency
S' Alto Frequency
T: Soprano Frequency
U: Noise Frequency
V: Loudness of sounds
W: Auxiliary color
X: Screen color
Y: Reverse mode 0 = on,

1= off
Z: Border color

258 MACHINE LANGUAGE FOR COMMODORE MACHINES

C: Screen origin-vertical: This determines the up-down placement of
the screen image. The normal value is 25. Lowering this causes the screen
to move up by 2 rows of dots for each number lowered, and raising it
moves the screen down.

To change value: POKE 36865, X

0: Number of video columns: Normally, this IS set to 22. Changing this
will change the display accordingly. Numbers over 27 will give a 27 column
screen. The cursor controls are based on a fixed number of 22 columns,
and changing this number makes the cursor controls misbehave.

To change: POKE 36866, PEEK(36866) AND 128 OR X.

E: Number of video rows: The number of rows may range from 0 to 23
A larger number of rows causes garbage to appear on the bottom of the
screen.

To change: POKE 36867, PEEK(36867) AND 129 OR (X*2)

F: Character size: This bit determined the size of the matrix used for
each character. A 0 here sets normal mode, in which characters are 8 by
8 dots. A 1 sets 8 by 16 mode, where each character is now twice as tall.
8 by 16 mode IS normally used for high resolution graphics, where it is
likely to have many unique characters on the screen.

To set 8 by 8 mode. POKE 36867, PEEK(36867) AND 254

To set 8 by 16 mode: POKE 36867, PEEK(36867) OR 1

G: Raster value: This number IS used to synchronize the light pen with
the TV picture.

H: Screen memory location: This determines where in memory the VIC
keeps the image of the screen. The highest bit in location 36869 must be
a 1. Bits 4-6 of location 36869 are bits 10-12 of the screen's address,
and bit 7 of location 36866 is bit 9 of the address of the screen. To
determine the location of the screen, use the formula:

S = 4* (PEEK(36866) AND 128) + 64* (PEEK(36869) AND 112)

Note that bit 7 of location 36866 also determines the location of color
memory. If this bit IS a 0, color memory starts at location 37888. If this bit
IS a 1, color memory begins at 38400. Here is a formula for this:

C = 37888 + 4* (PEEK(36866) AND 128)

I: Character memory location: This determines where information on
the shapes of characters are stored. Normally this pointer IS to the char­
acter generator ROM, which contains both the upper case/graphics or the

APPENDIX I 259

upper/lower case set. However, a simple POKE command can change
this pomter to a RAM location, allowing custom character sets and high
resolution graphics.

To change' POKE 36869, PEEK(36869) AND 240 OR X
(See chart on next page.)

J: Light pen horizontal: This contains the latched number of the dot
under the light pen, from the left of the screen.

K: Light pen vertical: The latched number of the dot under the pen,
counted from the top of the screen.

X Location
Contents

Value HEX Decimal

0 8000 32768 Upper case normal characters
1 8400 33792 Upper case reversed characters
2 8800 34816 Lower case normal characters
3 8COO 35840 Lower case reversed characters
4 9000 36864 unavailable
5 9400 37888 unavailable
6 9800 38912 VIC cmp-unavarlaole
7 9COO 39936 ROM-unavailable
8 0000 0 unavailable
9 -- -- unavailable

10 -- -- unavailable
11 -- -- unavailable
12 1000 4096 RAM
13 1400 5120 RAM
14 1800 6144 RAM
15 1COO 7168 RAM

L: Paddle X: This contains the digitized value of a variable resistance
(game paddle). The number reads from 0 to 255.

M: Paddle V: Same as Paddle X, for a second analog input.

N: Bass switch: If this bit IS a 0, no sound is played from Voice 1. A 1
in this bit results in a tone determined by Frequency 1.

To turn on: POKE 36874, PEEK(36874) OR 128

To turn off: POKE 36874, PEEK(36874) AND 127

0: Alto switch: See Bass switch.

260 MACHINE LANGUAGE FOR COMMODORE MACHINES

P: Soprano switch: See Bass switch.

Q: Noise switch: See Bass switch.

R: Bass Frequency: This is a value corresponding to the frequency of
the tone being played. The larger the number, the higher the pitch of the
tone.

The actual frequency of the sound in cycles per second (hertz) is deter­
mined by the following formula:

Clock
Frequency = (127 - X)

X is the number from 0 to 127 that is put into the frequency register. If X
is 127, then use -1 for X in the formula. The value of Clock comes from
the following table:

Register NTSC (US TV's) PAL (European)

36874 3995 4329
36875 7990 8659
36876 15980 17320
36877 31960 34640

To set: POKE 36874, PEEK(36874) AND 128 OR X

S: Alto Frequency: This is a value corresponding to the frequency of the
tone being played. The larger the number, the higher the pitch of the tone.

T: Soprano Frequency: This is a value corresponding to the frequency
of the tone being played. The larger the number, the higher the pitch of
the tone.

To set: POKE 36876, PEEK(36876) AND 128 OR X

U: Noise Frequency: This IS a value corresponding to the frequency of
the noise being played. The larger the number, the higher the pitch of the
noise.

To set: POKE 36877, PEEK(36877) AND 128 OR X

V: Loudness of sounds: This is the volume control for all the sounds
playing. 0 is off and 15 is the loudest sound.

To set: POKE 36878, PEEK(36878) AND 240 OR X

W: Auxiliary color: This register holds the color number of the auxiliary
color. The value can be from 0 to 15.

APPENDIX I 261

To set: POKE 36878, PEEK(36878) AND 15 OR (16*X)

X: Screen color: A number from 0 to 15 sets the color of the screen.

To set: POKE 36879. PEEK(36879) AND 240 OR X

Y: Reverse mode: A 1 in this bit indicates normal characters, and a 0
here causes all characters to be displayed as if reversed.

To turn on reverse mode: POKE 36879, PEEK(36879) AND 247

To turn off reverse mode. POKE 36879, PEEK(36879) OR 8

Z: Border color: A number from 0 to 7 sets the color of the screen.

To set: POKE 36879, PEEK(36879) AND 248 OR X

6522 Versatile Interface Adapter (VIA)
The 6522 Versatue lntertace Adapter (VIA) provides two peripheral ports
with input latching, two powerful Interval timers, and a serial-to-parallel/
parallel-to-serial shift register.

6522 Versatile Interface Adapter Description

ADDRESS DESCRIPTION REGISTER

9110 Port B AAAAAAAA
9111 Port A (with handshaking) BBBBBBBB
9112 Data Direction B CCCCCCCC
9113 Data Direction A DDDDDDDD
9114 Timer #1, low byte EEEEEEEE
9115 Timer #1, high byte FFFFFFFF
9116 Timer #1, low byte to load GGGGGGGG
9117 Timer #1, high byte to load HHHHHHHH
9118 Timer #2, low byte 11111111
9119 Timer #2, high byte JJJJJJJJ
911A Shift Register KKKKKKKK
911B Auxiliary Control LLMNNNOP
911C Peripheral Control QQQRSSST
911D Interrupt Flags UVWXYZab
911E Interrupt Enable cedfghij
911F Port A (no handshaking) kkkkkkkk

262
•

MACHINE LANGUAGE FOR COMMODORE MACHINES

PORT A I/O REGISTER

These- eight bits are connected to the eight pins which make up port B.
Each pin can be set for either input or output.

Input latching is available on this port. When latch mode is enabled the
data in the register freezes when the CB1 interrupt flag is set. The register
stays latched until the interrupt flag is cleared.

Handshaking IS available for output from this port. CB2 will act as a DATA
READY SIGNAL. This must be controlled by the user program. CB1 acts
as the DATA ACCEPTED signal, and must be controlled by the device
connected to the port. When DATA ACCEPTED is sent to the 6522, the
DATA READY line is cleared, and the interrupt flag is set.

PORT B I/O REGISTER

These eight bits are connected to the eight pins which make up port A.
Each pin can be set for either input or output. Hancsnakmq IS available
for both read and write operations. Write handshaking is similar to that on
PORT B. Read handshaking is automatic. The CA1 input pin acts as a
DATA READY signal. The CA2 pin (used for output) is used for a DATA
ACCEPTED signal. When a DATA READY signal is received a flag is set.
The chip can be set to generate an interrupt or the flag can be polled
under program control. The DATA ACCEPTED signal can either be a
pulse or a DC level. It is set low by the CPU and cleared by the DATA
READY signal.

DATA DIRECTION FOR PORT B

This register is used to control whether a particular bit in PORT B is used
for input or output. Each bit of the data direction register (DDR) is asso­
ciated with a bit of port B. If a bit in the DDR IS set to 1, the corresponding
bit of the port will be an OUTPUT. If a bit in the DDR is 0, the corresponding
bit of the port will be an INPUT.

For example, if the DDR is set to 7, port B will be set up as follows:

BITS NUMBER DDR PORT B FUNCTION
o 1 OUTPUT
1 1 OUTPUT
2 1 OUTPUT
3 0 INPUT
4 0 INPUT
5 0 INPUT
6 0 INPUT
7 0 INPUT

APPENDIX I 263

DATA DIRECTION REGISTER FOR PORT A

This is similar to the DDR for port B, except that it works on PORT A.

E,F,G,H: TIMER CONTROLS

There are two timers on the 6522 chip. The timers can be set to count
down automatically or count pulses received by the VIA. The mode of
operation is selected by the Auxiliary Control register.

TIMER T1 on the 6522 consists of two a-bit latches and a 16-bit counter.
The various modes of the TIMER are selected by setting the AUXILIARY
CONTROL REGISTER (ACR). The latches are used to store a 16-bit data
word to load into the counter. Loading a number into the latches does not
affect the count in progress

After it is set, the counter will begin decrementing at 1 MHz. When the
counter reaches zero, an interrupt flag will be set, and the IRQ will go low.
Depending on how the TIMER is set, either further interrupts will be dis­
abled, or it will automatically load the two latches Into the counter and
continue counting. The TIMER can also be set to invert the output signal
on a peripheral pin each time it reaches zero and resets.

The TIMER locations work differently on reading and writing.

WRITING TO THE TIMER:

E: Write into the low order latch. This latch can be loaded into the low
byte of the 16-bit counter.

F: Write Into the high order latch, write into the high order counter, trans­
fer low order latch into the low order counter, and reset the TIMER T1
interrupt flag. In other words, when this location is set the counter is loaded.

G: Same as E.

H: Write into the high order latch and reset the TIMER T1 interrupt flag.

READ TIMER T1

E: Read the TIMER T1 low order counter and reset the TIMER T1 in­
terrupt flag.

F: Read the TIMER T1 high order counter.

G: Read the TIMER T1 low order latch.

H: Read the TIMER T1 high order latch.

264 MACHINE LANGUAGE FOR COMMODORE MACHINES

TIMER T2

This TIMER operates as an interval timer (In one-shot mode), or as a
counter for counting negative pulses on PORT B pin 6. A bit In the ACR
selects which mode TIMER T2 IS In.

WRITING TO TIMER T2

I: Write TIMER T2 low order byte of latch.
J: Write TIMER T2 high order counter byte, transfer low order latch to
low order counter, clear TIMER T2 Interrupt flag.

READING TIMER T2

I: Read TIMER T210w order counter byte, and clear TIMER T2 interrupt
flag.

K: SHIFT REGISTER

A shift register IS a register which will rotate itself through the CB2 pin.
The shift register can be loaded with any a-tnt pattern which can be shifted
out through the CBl pin, or Input to the CBl Pin can be shifted into the
shift register and then read This makes it highly useful for serial to parallel
and parallel to serial conversions.

The shift register is controlled by bits 2-4 of the Auxiliary Control register.

L,M,N,O,P: AUXILIARY CONTROL REGISTER

One-shot mode (output to PB7 disabled)
Free running mode (output to PB7 disabled)
One-snot mode (output to PB7 enabled)
Free running mode (output to PB7 enabled)

L: TIMER 1 CONTROL

BIT # 7 6
o 0
o 1
1 0
1 1

M: TIMER 2 CONTROL

TIMER 2 has 2 modes. If this bit IS 0, TIMER 2 acts as an interval timer
in one-shot mode. If this bit is 1, TIMER 2 will count a predetermined
number of pulses on pin PB6.

APPENDIX I 265

SHIFT REGISTER DISABLED
SHIFT IN (FROM CB1) UNDER CONTROL OF
TIMER 2

o SHIFT IN UNDER CONTROL OF SYSTEM CLOCK
PULSES
SHIFT IN UNDER CONTROL OF EXTERNAL
CLOCK PULSES

FREE RUN MODE AT RATE SET BY TIMER 2
SHIFT OUT UNDER CONTROL OF TIMER 2
SHIFT OUT UNDER CONTROL OF SYSTEM
CLOCK PULSES
SHIFT OUT UNDER CONTROL OF EXTERNAL
CLOCK PULSES

o 0
o 1
1 0

o

o

N: SHIFT REGISTER CONTROL

BIT # 4 3 2
000
o 0 1

0: PORT B LATCH ENABLE

As long as this brt is O. the PORT B register will directly reflect the data
on the pins.

If this bit IS set to one, the data present on the input pins of PORT A will
be latched within the chip when the CB1 INTERRUPT FLAG is set. As
long as the CB1 INTERRUPT FLAG IS set, the data on the pins can change
without affecting the contents of the PORT B reqister. Note that the CPU
always reads the register (the latches) rather than the pins

Input latching can be used with any of the input or output modes available
for CB2.

P: PORT A LATCH ENABLE

As long as this bit IS 0, the PORT A regIster will directly reflect the data
on the pins.

If this bit is set to one, the data present on the input pins of PORT A will
be latched within the chip when the CA1 INTERRUPT FLAG is set. As
long as the CA1 INTERRUPT FLAG is set, the data on the pins can change
without affecting the contents of the PORT A register. Note that the CPU
always reads the register (the latches) rather than the pins.

Input latching can be used with any of the input or output modes available
for CA2.

266 MACHINE LANGUAGE FOR COMMODORE MACHINES

DESCRIPTION
Interrupt Input Mode
Independent Interrupt Input Mode
Input Mode
Independent Input Mode
Handshake Output Mode
Pulse Output Mode
Manual Output Mode (CB2 is held LOW)
Manual Output Mode (CB2 is held HIGH)

BIT #

Q,R,S,T THE PERIPHERAL CONTROL REGISTER

Q: CB2 CONTROL

Q Q Q
765
000
o 0 1
o 1 0
o 1 1
1 0 0
1 0 1
1 1 0
1 1 1

INTERRUPT INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a negative (high-to-Iow)
transition on the CB2 Input line. The CB2 interrupt bit will be cleared on
a read or write to PORT B.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CB2 interrupt flag will be set on a negative transition on
the CB2 input line. However, reading or writing to PORT B does not clear
the flag.

INPUT MODE:

The CB2 interrupt flag (IFR bit 3) will be set on a positive (Iow-to-high)
transition of the CB2 line. The CB2 flag will be cleared on a read or write
of PORT B.

INDEPENDENT INPUT MODE:

As above, the CB2 interrupt flag will be set on a positive transition on the
CB2 line. However, reading or writing PORT B does not affect the flag.

HANDSHAKE OUTPUT MODE:

The CB2 line will be set low on a write to PORT B. It will be reset high
again when there is an active transition on the CB1 line.

PULSE OUTPUT MODE:

The CB2 line is set low for one cycle after a write to PORT B.

APPENDIX I

MANUAL OUTPUT MODE:

The CB2 line is held low.

MANUAL OUTPUT MODE:

The CB2 line is held high.

267

R: CB1 CONTROL

This bit selects the active transition of the input signal applied to the CB1
pin. If this bit is 0, the CB1 interrupt flag will be set on a negative transition
(high-to-Iow). If this bit is a 1, the CB 1 interrupt flag will be set on a positive
(Iow-to-high) transition.

S:CA2 CONTROL

S S S
BIT # 3 2 1

000
o 0 1
o 1 0
o 1 1
100
1 0 1
1 1 0
1 1 1

DESCRIPTION
Interrupt Input Mode
Independent Interrupt Input Mode
Input Mode
Independent Input Mode
Handshake Output Mode
Pulse Output Mode
Manual Output Mode (CA2 is held LOW)
Manual Output Mode (CA2 IS held HIGH)

INTERRUPT INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a negative (high-to-Iow)
transition on the CA2 input line. The CA2 Interrupt bit will be cleared on
a read or write to PORT A.

INDEPENDENT INTERRUPT INPUT MODE:

As above, the CA2 interrupt flag will be set on a negative transition on
the CA2 input line. However, reading or writing to PORT A does not clear
the flag.

INPUT MODE:

The CA2 interrupt flag (IFR bit 0) will be set on a positive (Iow-to-high)
transition of the CA2 line. The CA2 flag will be cleared on a read or write
of PORT A.

268 MACHINE LANGUAGE FOR COMMODORE MACHINES

INDEPENDENT INPUT MODE:

As above, the CA2 Interrupt flag will be set on a positive transition on the
CA2 line. However, reading or writing PORT A does not affect the flag.

HANDSHAKE OUTPUT MODE:

The CA2 line will be set low on a read or write to PORT A. It will be reset
high again when there IS an active transition on the CA 1 line.

PULSE OUTPUT MODE:

The CA2 line IS set low for one cycle after a read or write to PORT A.

MANUAL OUTPUT MODE:

The CA2 line is held low.

MANUAL OUTPUT MODE:

The CA2 line is held high.

T: CA1 CONTROL

This bit of the PCR selects the active transition of the input signal applied
to the CA 1 input pin. If this bit is 0, the CA 1 interrupt flag (Bit) will be set
by a negative transition (high-to-Iow) on the CA 1 pin. If this bit is 1, the
CA 1 interrupt flag will be set by a positive transition (low-to-hrqh).

There are two registers associated with interrupts: The INTERRUPT FLAG
REGISTER (IFR) and the INTERRUPT ENABLE REGISTER (IER). The
IFR has eight bits, each one connected to a register in the 6522. Each bit
in the IFR has an associated bit In the lEA. The flag IS set when a register
wants to interrupt. However, no interrupt will take place unless the cor­
responding bit in the IER is set.

UVWXYZab: INTERRUPT FLAG REGISTER

When the flag is set, the pin associated with that flag is attempting to
interrupt the 6502. Bit U is not a normal flag. It goes high if both the flag
and the corresponding bit in the INTERRUPT ENABLE REGISTER are
set. It can be cleared only by clearing all the flags In the IFR or disabling
all active mterru pts In the lEA.

APPENDIX I

SET BY
U IRQ STATUS
V_ TIMER 1 time-out

W TIMER 2 time-out

X CB1 pin active transition
y CB2 pin active transition
Z Completion of 8 shifts

a CA1 pin active transition

b CA2 pin active transition

269

CLEARED BY

Reading TIMER 1 low order
counter and writing TIMER 1
high order latch
Reading TIMER 2 low order
counter and writing TIMER 2
high order counter
Reading or writing PORT B
Reading or writing PORT B
Reading or writing the shift
register
Reading or writing PORT A
(BBBBBBBB in above chart)
Reading or writing PORT A
(BBSBSBBS In above chart)

cdefghij: INTERRUPT ENABLE REGISTER

c: ENABLE CONTROL

If this bit is a 0 during a write to this register, each 1 In bits 0-6 clears the
corresponding bit in the lEA. If this bit is a 1 during this register, each 1
in bits 0-6 will set the corresponding IER bit.
d TIMER 1 time-out enable
e TIMER 2 time-out enable
f CB1 interrupt enable
9 CB2 interrupt enable
h Shift interrupt enable
i CA1 interrupt enable
j CA2 interrupt enable

PORTA

This is similar to BBBBBBBB, except that the handshaking lines (CA1 and
CA2) are unaffected by operations on trus port.

270 MACHINE LANGUAGE FOR COMMODORE MACHINES

6526 (CIA) Complex Interface Adaptor
REGISTER MAP

RS3 R· . RS1 RSO REG NAME.'.
0 0 0 0 0 PRA PERIPtiF.F.AL DATA HE'; A.. -
0 0 0 1 1 PRB PERIPHERAL DATA REG B

0 0 1 0 2 DORA DATA DIRECTION REG A

0 0 1 1 3 DDRB DATA DIRECTION REG B

0 1 0 0 4 TA LO Tlr.1E=-l A LOW R[,jl~TER

0 1 0 1 5 TA HI TIMER A HIGH REGISTER

0 1 1 0 6 TB LO TII.'EFI BLOW RE',;,I"5TER

0 1 1 1 7 TB HI TIMER B HIGH REGISTER

1 0 0 0 8 TOO 10ths 10ths OF SE":;ONDS R!:(;ISTER-- ----
1 0 0 1 9 TOO SEC SECONDS REGISTER

1 0 1 0 A TOO MIN MINUTE-=- RE(:ISTER

1 0 1 1 B TODHR HOURS-AM/PM REGISTER

1 1 0 0 C SDR SERIAL DATA RF,ISTER

1 1 0 1 0 ICR INTERRUPT CONTROL REGIS·
TER

1 1 1 0 E CRA CONTROL REG A

1 1 1 1 F CRB CONTROL REG B

I/O Ports (PRA, PRB, DORA, DDRB)

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and
an s-ou Data Direction Register (DDR), If a bit in the DDR is set to a one,
the corresponding bit in the PR is an output; if a DDR bit is set to a zero,
the corresponding PR bit is defined as an input. On a READ, the PR
reflects the information present on the actual port pins (PAO-PA7, PBO­
PB7) for both input and output bits. Port A and Port B have passive putt­
up devices as well as active pull-ups, providing both CMOS and TTL
compatibility. Both ports have two TTL load drive capability. In addition to
normal I/O operation, PB6 and PB7 also provide timer output functions.

Handshaking

Handshaking on data transfe~can be accomplished uSing the PC output
pin and the FLAG input pin. PC will go low for one cycle following a read
or write of PORT B. This signal can be used to Indicate "data ready" at
PORT B or "data accepted" from PORT B. Handshaking on 16-bit data
transfers (using both PORT A and PORT B) is possible by always reading

APPENDIX I 271

or writing PORT A first. FLA~ls a negative edge sensitive input which
can be used for receiving the PC output from another 6526, or as a general
purpose interrupt input. Any negative transition of FLAG will set the FLAG
interrupt bit.

REG NAME 07 Oe Os 04 03 O2 01 00

0 PRA PA7 PAe PAs P~ PA3 PA2 PA, PAc

1 PRB PB7 PBe PBs PB4 PB3 PB2 PB1 PBo
2 OORA OPA7 OPAe OPAs OP~ OP~ OPA2 OPA, nPAc

3 OORB OPB7 OPBe OPBs OPB4 OPB3 OPB2 OPB, OPBo

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16­
bit write-only Timer Latch. Data written to the timer are latched in the Timer
Latch, while data read from the timer are the present contents of the Time
Counter. The timers can be used independently or linked for extended
operations. The various timer modes allow generation of long time delays,
variable width pulses, pulse trams and variable frequency waveforms.
Utilizing the CNT input, the timers can count external pulses or measure
frequency, pulse width and delay times of external signals. Each timer has
an associated control register, providmg independent control of the fol­
lowing functions:

Start/Stop

A control bit allows the time to be started or stopped by the microprocessor
at any time. .

PB On/Off:

A control bit allows the timer output to appear on a PORT B output line
(PB6 for TIMER A and PB7 for TIMER B) Ttus function overrides the
DDRB control bit and forces the appropriate PB hne to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B On every timer un­
derflow the output can either toggle or generate a single positive pulse of
one cycle duration. The Toqq'e output is set high whenever the timer is
started and is set low by RES.

272 MACHINE LANGUAGE FOR COMMODORE MACHINES

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will
count down from the latched value to zero, generate an interrupt, reload
the latched value, then stop. In continuous mode, the timer will count from
the latched value to zero, generate an Interrupt, reload the latched value
and repeat the procedure connnuousty.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at
any time, whether the timer IS running or not.

Input Mode:

Control bits allow selection of the clock used to decrement the timer.
TIMER A can count <1>2 clock pulses or external pulses applied to the CNT
pin. TIMER B can count <1>2 pulses, external CNT pulses, TIMER A un­
derflow pulses or TIMER A underflow pulses while the CNT pin is held
high.

The timer latch is loaded into the timer on any timer underflow, on a force
load or followmq a write to the high byte of the prescaler while the timer
is stopped. If the timer IS running, a write to the high byte will load the
timer latch, but not reload the counter.

READ (TIMER)
REG NAME

4 TA LO TAL7 TALe TALs TAL4 TAL3 TAL2 TAL, TALo

5 TA HI TAH7 TAHe TAHs TAH4 TAH3 TAH2 TAH, TAHo

6 TB LO TBL7 TBLe TBLs TBL4 TBL3 TBL2 TBL, TBLo

7 TB HI TBH7 TBHe TBHs TBH4 TBH3 TBH2 TBH, TBHo

WRITE (PRESCALER)
REG NAME

4 TA LO PAL7 PALe PALs PAL4 PAL3 PAL2 PAL, PALo

5 TA HI PAH7 PAHe PAHs PAH4 PAH3 PAH2 PAH1 PAHo

6 TB LO PB7 PBe PBs PB4 PB3 PB2 PB, PBo

7 TB HI PBH7 PBHe PBHs PBH4 PBH3 PBH2 PBH, PBHo

APPENDIX I 273

Time of Day Clock (TOO)

The TOO clock is a special purpose timer for real-time applications TOO
consists of a 24-hour (AM/PM) clock with 1/1Oth second resolution. It is
organized into 4 registers: 1Othsof seconds, Seconds, Minutes and Hours.
The AM/PM flag IS In the MSB of the Hours register for easy bit testing.
Each register reads out in BCD format to simplify conversion for driving
displays. etc. The clock requires an external 60 Hz or 50 Hz (programm­
able) TTL level Input on the TOO pin for accurate timekeeping In addition
to time-keeping, a programmable ALARM IS provided for generating an
interrupt at a desired time. The ALARM registers are located at the same
addresses as the corresponding TOO registers. Access to the ALARM is
governed by a Control Register bit. The ALARM is write-only; any read of
a TOO address will read time regardless of the state of the ALARM access
bit.

A specific sequence of events must be followed for proper setting and
reading of TOO. TOO is automatically stopped whenever a wnte to the
Hours register occurs The clock will not start again until after a wnte to
the 10ths of seconds register. This assures TOO Will always start at the
desired time. Since a carry from one stage to the next can occur at any
time with respect to a read operation, a latching function is included to
keep all Time Of Day information constant dunng a read sequence. All
four TOO registers latch on a read of Hours and remain latched until after
a read of 10ths of seconds. The TOO clock continues to count when the
output registers are latched. If only one register IS to be read, there IS no
carry problem and the register can be read "on the fly," provided that any
read of Hours IS followed by a read of 10ths of seconds to disable the
latching.

READ
REG NAME

8 TOO 0 0 0 0 Ta T4 T2 T1

10THS

9 TOO 0 SH4 SH2 SH1 SLa S4 SL2 SL1

SEC

A TOO 0 MH4 MI12 MH1 MLa M4 ML2 ML1

MIN

B TOO HR PM 0 0 HH HLa HL4 HL2 HL,

274 MACHINE LANGUAGE FOR COMMODORE MACHINES

WRITE

CRB? = 0 TOD
CRB? = 1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The senal port IS a buffered, 8-bit synchronous shift register system. A
control bit selects input or output mode. In input mode, data on the SP
pin is shifted Into the shift register on the rising edge of the signal applied
to the CNT pin After 8 CNT pulses, the data In the shift register IS dumped
into the Serial Data Register and an interrupt is generated. In the output
mode, TIMER A IS used for the baud rate generator. Data IS shifted out
on the SP pin at 1/2 the underflow rate of TIMER A The maximum baud
rate possible is <1>2 divided by 4, but the maximum useable baud rate will
be determmed by line loadmg and the speed at which the receiver responds
to input data. Transrrnssron Will start following a write to the Serial Data
Register (provided TIMER A is running and in continuous mode). The
clock signal denved from TIMER A appears as an output on the CNT pm,
The data in the Serial Data Register will be loaded into the shift register
then shift out to the SP pin when a CNT pulse occurs. Data shifted out
becomes valid on the falling edge of CNT and remains valid until the next
falling edge. After 8 CNT pulses, an interrupt is generated to Indicate more
data can be sent. If the Serial Data Register was loaded with new infor­
mation pnor to this interrupt, the new data will automatically be loaded
rnto the shift register and transmission Will continue. If the microprocessor
stays one byte ahead of the shift register, transmission will be continuous.
If no further data is to be transmitted, after the 8th CNT pulse, CNT will
return high and SP Will remain at the level of the last data bit transmitted.
SDR data IS shifted out MSB first and serial input data should also appear
in this format.

The bidirectional capability of the Serial Port and CNT clock allows many
6526 devices to be connected to a common serial communication bus on
which one 6526 acts as a master, sourcing data and shift clock, while all
other 6526 chips act as slaves. Both CNT and SP outputs are open drain
to allow such a common bus. Protocol for master/slave selection can be
transmitted over the serial bus, or via dedicated nanosnakinq lines.

REG NAME

~ SOR LiJ 86 I 85 I 84 I 83 I 82 I 81 I~

APPENDIX I 275

Interrupt Control (ICR)

There are five sources of Interrupts on the 6526: underflow from TIMER
A, underflow from TIMER B, TOO ALARM, Senal Port full/empty and
FLAG. A single register provides masking and interrupt information. The
interrupt Control Register consists of a write-only MASK register and a
read-only DATA register. Any interrupt will set the corresponding bit in the
DATA register Any Interrupt which is enabled by the MASK register will
set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a
multi-chip system, the IR bit can be polled to detect which chip has gen­
erated an Interrupt request The Interrupt DATA register IS cleared and
the IRQ line returns high following a read of the DATA register. Since each
interrupt sets an interrupt bit regardless of the MASK, and each Interrupt
bit can be selectively masked to prevent the generation of a processor
interrupt, It IS possible to intermix polled interrupts with true Interrupts.
However, polling the IR bit will cause the DATA register to clear, therefore,
it IS up to the user to preserve the information contained in the DATA
register if any polled Interrupts were present.

The MASK register provides convenient control of Individual mask bits.
When writing to the MASK register, If bit 7 (SET/CLEAR) of the data written
is a ZERO, any mask bit wntten With a one will be cleared, while those
mask bits written with a zero will be unaffected If bit 7 of the data written
is a ONE, any mask bit written with a one will be set, while those mask
bits written with a zero will be unaffected. In order for an interrupt flag to
set IR and generate an Interrupt Request, the corresponding MASK bit
must be set.

READ (INT DATA)

REG NAME

~ ICR IIR o o I FLG I SP ! ALRM I TB G
WRITE (INT MASK)

REG NAME

~ ICR IS/C! X

Control Registers

x I FLG ! SP IALRM I TB G

There are two control registers in the 6526, CRA and CRB. CRA is as­
sociated with TIMER A and CRB is associated with TIMER B. The register
format is as follows:

276 MACHINE LANGUAGE FOR COMMODORE MACHINES

5,6 INMODE

CRA:

Bit Name
0 START

PBON

2 OUTMODE
3 RUNMODE
4 LOAD

5 INMODE

6 SPMODE

7 TODIN

o

TIMER B counts <1>2
pulses.
TIMER B counts positive
CNT transitions.
TIMER B counts TIMER
A underflow pulses.
TIMER B counts TIMER
A underflow pulses while
CNT is high.

1 = writing to TOD registers sets ALARM,
0= writing to TOD registers sets TOD clock.

o

Function
1= START TIMER A. 0 = STOP TIMER A. This
bit is automatically reset when underflow oc­
curs during one-shot mode.
1= TIMER A output appears on PB6, 0 = PB6
normal operation.
1 = TOGGLE, 0 = PULSE
1= ONE-SHOT, 0 = CONTINUOUS
1= FORCE LOAD (this is STROBE input, there
is no data storage, bit 4 will always read back
a zero and writing a zero has no effect).
1= TIMER A counts positive CNT transitions,
0= TIMER A counts <1>2 pulses.
1= SERIAL PORT output (CNT sources shift
clock), 0 = SERIAL PORT input (external shift
clock required).
1= 50 Hz clock required on TOD pin for ac­
curate time, 0 = 60 Hz clock required on TOD
pin for accurate time.
(Bits CRBO-CRB4 are identical to CRAO-CRA4
for TIMER B With the exception that bit 1 con­
trols the output of TIMER B on PB7).
Bits CRB5 and CRB6 select one of four Input
modes for TIMER Bas:
CRB6 CRBS
o 0

ALARM7

APPENDIX I

TOO SP
REG NAME IN MODE

IN
MODE

RUN
LOAD MODE

OUT
MODE

277

PB ON START

E CRA o o 60Hz 00 INPUT O~d>2 1~FORCE O~CONT O~PULSE O~ PB60FF O~STOP

LOAD
1 ~ 50Hz 1 OUT· 1~CNT (STROBE) 1~OS 1- TOGGLE 1~PB60N 1 ~·START

PUT

'-- TA

REG NAME ALARM IN MODE
RUN OUT

LOAD MODE MODE PB ON START

F CRB ooTOD 0 0 d>2 1 -FORCE 0- CONT 0- PULSE O~ PB7 OFF O· STOP
1 1" CNT LOAD
1 ooTA

1 = 1 1 ~ CNT·TA (STROBE) 1·0S 1 - TOGGLE 1- PB7 ON 1 ~ START
ALARM

'-- TB --'

All unused register bits are unaffected by a write and are forced to zero
on a read.

COMMODORE SEMICONDUCTOR GROUP reserves the right to
make changes to any products herein to improve reliability, function
or design. COMMODORE SEMICONDUCTOR GROUP does not
assume any liability arising out of the application or use of any product
or circuit descnbed herem: neither does it convey any license under
ItS patent rights nor the rights of others

6566/6567 (VIC-II) Chip Specifications
The 6566/6567 are multi-purpose color video controller devices for use in
both computer video terminals and video game applications. Both devices
contain 47 control registers which are accessed via a standard 8-bit mi­
croprocessor bus (65XX) and will access up to 16K of memory for display
information. The various operating modes and options within each mode
are described.

Character Display Mode
In the character display mode, the 6566/6567 fetches CHARACTER
POINTERs from the VIDEO MATRIX area of memory and translates the
pointers to character dot location addresses rnthe 2048 byte CHARACTER
BASE area of memory. The video matrrx is comprrsed of 1000 consecutive
locations in memory which each contarn an eight-bit character pointer.
The location of the video matrix within memory IS defined by VM13-VM1 a
in register 24($18) WhiCh are used as the 4 MSB of the video matrrx

278 MACHINE LANGUAGE FOR COMMODORE MACHINES

address. The lower order 10 bits are provided by an internal counter (VC3­
VCO) which steps through the 1000 character locations. Note that the
6566/6567 provides 14 address outputs; therefore, additional system hard­
ware may be required for complete system memory decodes.

CHARACTER POINTER ADDRESS

A13 A12 A11 A10 A09 Aoa AO? A06 A05 A04 A03 A02 A01 AOO

VM1'3 VM1<2 VM11 VM10 VC9 vca VC? VC6 VC5 VC4 VC3 VC2 VC1 VCO

The eight-bit character pointer permits up to 256 different character def­
initions to be available simultaneously. Each character is an 8 x 8 dot
matrix stored in the character base as eight consecutive bytes. The location
of the character base is defined by CB13-CB11 also in register 24 ($18)
which are used for the 3 most significant bits (MSB) of the character base
address. The 11 lower order addresses are formed by the 8-bit character
pointer from the video matrix (D7-DO) which selects a particular character,
and a 3-bit raster counter (RC2-RCO) which selects one of the eight char­
acter bytes. The resultinq characters are formatted as 25 rows of 40
characters each. In addition to the 8-bit character pointer, a 4-bit COLOR
NYBBLE is associated with each video matrix location (the video matrix
memory must be 12 bits wide) which defines one of sixteen colors for
each character.

CHARACTER DATA ADDRESS

A13 A12 A11 A10 A09 Aoa AO? A06 A05 A04 A03 A02 AOl AOO

CB13 CB12 CB11 O? 06 05 04 03 02 01 00 RC2 RC1 RCO

Standard Character Mode (MCM
ECM == 0)

BMM

In the standard character mode, the 8 sequential bytes from the character
base are displayed directly on the 8 lines in each character region. A "0"
bit causes the background #0 color (from register 33 ($21)) to be displayed
while the color selected by the color nybble (foreground) is displayed for
a "1" bit (see Color Code Table).

APPENDIX I

FUNCTION

Background

ForegrOUnd

CHARACTER
BIT

o

279

COLOR DISPLAYED

Background #0 color
(register 33 ($21))
Color selected by 4-bit color nybble

Therefore, each character has a unique color determined by the 4-bit color
nybble (1 of 16) and all characters share the common background color.

Multi-Color Character Mode (MCM 1,
BMM = ECM = 0)

Multi-color mode provides additional color flexibility allowing up to four
colors within each character but with reduced resolution. The multi-color
mode is selected by setting the MCM bit in register 22 ($16) to "1," which
causes the dot data stored in the character base to be interpreted in a
different manner. If the MSB of the color nybble is a "0," the character
will be displayed as described in standard character mode, allowing the
two modes to be inter-mixed (however, only the lower order 8 colors are
available) When the MSB of the color nybble is a "1" (if MCM:MSB(CM)
= 1) the character bits are interpreted in the multi-color mode:

FUNCTION

Background

Background

Foreground

Foreground

CHARACTER
BIT PAIR

00

01

10

11

COLOR OISPLAYEO

Background #0 Color
(register 33 ($21))
Background #1 Color
(register 34 ($22))
Background #2 Color
(register 35 ($23))
Color specified by 3 LSB of color
nybble

Since two bits are required to specify one dot color, the character is now
displayed as a 4 x 8 matrix with each dot twice the horizontal size as in
standard mode. Note, however, that each character region can now con­
tain 4 different colors, two as foreground and two as background (see
MOB priority).

280 MACHINE LANGUAGE FOR COMMODORE MACHINES

Extended Color Mode (ECM == 1, BMM
MCM == 0)

The extended color mode allows the selection of individual background
colors for each character region with the normal a x a character resolution.
This mode is selected by setting the ECM bit of register 17 ($11) to "1."
The character dot data is displayed as in the standard mode (foreground
color determined by the color nybble IS displayed for a "1" data bit), but
the 2 MSB of the character pointer are used to select the background
color for each character region as follows:

CHAR. POINTER
MS BIT PAIR

00
01
10
11

Since the two MSB of the character pointers are used for color Information,
only 64 different character definitions are available. The 6566/6567 will
force CB10 and CB9 to "0" regardless of the original pointer values, so
that only the first 64 character definitions will be accessed. With extended
color mode each character has one of sixteen individually defined fore­
ground colors and one of the four available background colors.

NOTE: Extended color mode and multi-color mode should not be enabled Simulta­
neously.

Bit Map Mode
In bit map mode, the 6566/6567 fetches data from memory in a different
fashion, so that a one-to-one correspondence exists between each dis­
played dot and a memory bit. The bit map mode provides a screen res­
olution of 320H x 200V individually controlled display dots. Bit map mode
is selected by setting the BMM bit in register 17 ($11) to a "1." The VIDEO
MATRIX is still accessed as in character mode, but the video matrix data
is no longer interpreted as character pointers, but rather as color data.
The VIDEO MATRIX COUNTER is then also used as an address to fetch
the dot data for display from the aOOO-byte DISPLAY BASE. The display
base aooress is formed as follows:

APPENDIX I 281

A13

CB13

AOO
RCa

VCx denotes the video matrix counter outputs, RCx denotes the 3-bit raster
line counter and CB13 is from register 24 ($18). The video rnatnx counter
steps through the same 40 locations for eight raster lines, continuing to
the next 40 locations every eighth line, while the raster counter increments
once for each horizontal video line (raster line). This addressing results
in each eight sequential memory locations being formatted as an 8 x 8
dot block on the video display.

Standard Bit Map Mode (BMM 1,
MCM = 0)

When standard bit map mode is in use, the color information is denved
only from the data stored in the video matrix (the color nybble is disre­
garded). The 8 bits are divided into two 4-blt nybbles which allow two
colors to be independently selected In each 8 x 8 dot block. When a bit
in the display memory is a "0" the color of the output dot is set by the
least significant (lower) nybble (LSN) Similarly, a display memory bit of
"1" selects the output color determined by the MSN (upper nybble).

BIT DISPLAY COLOR

o Lower nybble of video matrix pointer
1 Upper nybble of video matrix pointer

Multi-Color Bit Map Mode (BMM
1)

MCM

Multi-colored bit map mode IS selected by setting the MCM bit in register
22 ($16) to a "1" In conjunction with the BMM bit. Multi-color mode uses
the same memory access sequences as standard bit map mode, but
interprets the dot data as follows:

BIT PAIR

00
01
10
11

DISPLAY COLOR

Background #0 color (register 33 ($21))
Upper nybble of video matrix pointer
Lower nybble of video matrix pointer
Video matrix color nybble

282 MACHINE LANGUAGE FOR COMMODORE MACHINES

Note that the color nybble (OB11-0B8) IS used for the multi-color bit map
mode, again, as two bits are used to select one dot color, the horizontal
dot size is doubled, resulting in a screen resolution of 160H x 200V.
Utilizing multi-color bit map mode, three independently selected colors can
be displayed In each 8 x 8 block in addition to the background color.

Movable Object Blocks
The movable object block (MOB) is a special type of character which can
be displayed at anyone position on the screen without the block constraints
inherent in character and bit map mode. Up to 8 unique MOBs can be
displayed simultaneously, each defined by 63 bytes in memory which are
displayed as a 24 x 21 dot array (shown below). A number of special
features make MOBs especially suited for video graphics and game ap­
plications.

MOB DISPLAY BLOCK

BYTE BYTE BYTE

00 01 02
03 04 05

57 58 59
60 61 62

Enable
Each MOB can be selectively enabled for display by setting its corre­
sponding enable bit (MnE) to "1" in register 21 ($15). If the MnE bit is
"0," no MOB operations will occur involving the disabled MOB.

Position
Each MOB is positioned via its X and Y position register (see register
map) with a resolution of 512 horizontal and 256 vertical positions. The
position of a MOB IS determined by the upper-left corner of the array. X
locations 23 to 347 ($17-$157) and Y locations 50 to 249 ($32-$F9) are
visible. Since not all available MOB positions are entirely visible on the
screen, MOBs may be moved smoothly on and off the display screen.

APPENDIX I

Color

283

Each MOB has a separate 4-bit register to determine the MOB color. The
two MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard mode, a "0" bit of MOB data allows any background data
to show through (transparent) and a "1" bit is displayed as the MOB color
determined by the corresponding MOB Color register.

MULTI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as a multi-color MOB via MnMC
bits In the MOB Multi-color register 28 ($1C). When the MnMC bit is "1,"
the corresponding MOB is displayed in the multi-color mode. In the multi­
color mode, the MOB data is interpreted in pairs (similar to the other multi­
color modes) as follows:

BIT PAIR

00
01
10
11

COLOR OISPLAYEO

Transparent
MOB Multi-color #0 (register 37 ($25))
MOB Color (registers 39-46 ($27-$2E))
MOB Multi-color #1 (register 38 ($26))

Since two bits of data are required for each color, the resolution of the
MOB is reduced to 12 x 21, with each honzontal dot expanded to twice
standard size so that the overall MOB size does not change. Note that up
to 3 colors can be displayed in each MOB (in addition to transparent) but
that two of the colors are shared among all the MOBs in the multi-color
mode.

Magnification
Each MOB can be selectively expanded (2 x) in both the horizontal and
vertical directions. Two registers contain the control bits (MnXE,MnYE)
for the magnification control:

REGISTER

23 ($17)

29 ($10)

FUNCTION

Horizontal expand MnXE-"1" =expand;
"0"= normal
Vertical expand MnYE-"1" =expand; "0" =normal

284 MACHINE LANGUAGE FOR COMMODORE MACHINES

When MOBs are expanded, no Increase in resolution IS realized. The same
24 x 21 array (12 x 21 if multi-colored) IS displayed, but the overall MOB
dimension is doubled In the desired direction (the smallest MOB dot may
be up to 4 x standard dot dimension if a MOB is both multi-colored and
expanded).

Priority
The priority of each MOB may be Individually controlled with respect to
the other displayed Information from character or bit map modes. The
pnonty of each MOB is set by the corresponding bit (MnDP) of register
27 ($1B) as follows.

REG BIT

o
PRIORITY TO CHARACTER OR BIT MAP DATA

Non-transparent MOB data will be displayed (MOB in
front)
Non-transparent MOB data wil be displayed only in­
stead of Bkgd #0 or multi-color bit pair 01 (MOB be­
hind)

MOB-DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0

MOBn Foreground
Foreground MOBn
Background Background

MOB data bits of "0" ("00" In multi-color mode) are transparent, always
permitting any other Information to be displayed.

The MOBs have a fixed priority with respect to each other, with MOB 0
having the highest priority and MOB 7 the lowest. When MOB data (except
transparent data) of two MOBs are coincident, the data from the lower
number MOB will be displayed. MOB vs. MOB data is prioritized before
prionty resolution with character or bit map data.

Collision Detection
Two types of MOB collision (coincidence) are detected, MOB to MOB
collision and MOB to display data collision:

1} A conrsion between two MOBs occurs when non-transparent output data of
two MOBs are coincident. Coincidence of MOB transparent areas will not
generate a collision. Wnen a comsion occurs, the MOB bits (MnM) in the

APPENDIX I 285

MOB-MOB COLLISION register 30 ($1 E) will be set to "1" for both colliding
MOBs. As a collision between two (or more) MOBs occurs, the MOB-MOB
collision bit for each collided MOB will be set. The collisron bits remain set
until a read of the collision register, when all bits are automatically cleared
MOBs collisions are detected even If positioned off-screen.

2) The second type of collision IS a MOB-DATA colllsron between a MOB and
foreground display data from the character or bit map modes. The MOB­
DATA COLLISION register 31 ($1F) has a bit (MnD) for each MOB which
IS set to "1" when both the MOB and non-background display data are
comcident, Again, the comcidenceof only transparentdata does notgenerate
a collision For special applications, the display data from the 0-1 rnulticolor
bit pair also does not cause a collision. This feature permits their use as
backgrounddisplaydata without interferingwith true MOBcolhsrons, A MOB­
DATAcollisioncanoccuroff-screenin thehonzontaldirectionIf actualdisplay
data has been scrolled to an off-screen POSition (see scrolling). The MOB­
DATA COLLISION register also automatically clears when read.

The collision interrupt latches are set whenever the first bit of either register
ISset to "1." Once any collision bit within a register is set high, subsequent
collisions will not set the Interrupt latch until that collision register has been
cleared to all "Os" by a read.

MOB Memory Access
The data for each MOB ISstored in 63 consecutive bytes of memory. Each
block of MOB data IS defined by a MOB pointer, located at the end of the
VIDEO MATRIX. Only 1000 bytes of the video matrix are used in the
normal display modes, allowing the video matrix locations 1016-1023 (VM
base+$3F8 to VM base+$3FF) to be used for MOB pointers 0-7, re­
spectively. The eight-bit MOB pointer from the video matnx together with
the six bits from the MOB byte counter (to address 63 bytes) define the
entire 14-M address field:

A13

MP7

AOO

Meo

Where MPx are the MOB pomter bits from the video matrix and MCx are
the internally generated MOB counter bits. The MOB pomters are read
from the video matrix at the end of every raster line. When the Y position
register of a MOB matches the current raster line count, the actual fetches
of MOB data begin. Internal counters automatically step through the 63
bytes of MOB data, displaying three bytes on each raster line.

286 MACHINE LANGUAGE FOR COMMODORE MACHINES

Other Features
Screen Blanking

The display screen may be blanked by setting the DEN bit in register 17
($11) to a "0." When the screen is blanked, the entire screen will be filled
with the exterior color as in register 32 ($20). When blanking is active,
only transparent (Phase 1) memory accesses are required, permitting full
processor utilization of the system bus. MOB data, however, will be ac­
cessed if the MOBs are not also disabled. The DEN bit must be set to "1"
for normal video display.

Row/Column Select
The normal display consists of 25 rows of 40 characters (or character
regions) per row. For special display purposes, the display window may
be reduced to 24 rows and 38 characters. There is no change in the format
of the displayed information, except that characters (bits) adjacent to the
exterior border area will now be covered by the border. The select bits
operate as follows:

RSEL

o
1

NUMBER OF
ROWS

24 rows
25 rows

CSEL

o
1

NUMBER OF
COLUMNS

38 columns
40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is In register 22
($16). For standard display the larger display window is normally used,
while the smaller display window IS normally used in conjunction with
scrolling.

Scrolling
The display data may be scrolled up to one entire character space in both
the horizontal and vertical direction. When used in conjunction with the
smaller display window (above), scrolling can be used to create a smooth
panning motion of display data while updating the system memory only
when a new character row (or column) is required. Scrolling is also used
to center a fixed display within the display window.

BITS

X2,X1,XO
Y2,Y1,YO

REGISTER

22 ($16)
17($11)

FUNCTION

Horizontal Position
Vertical Position

APPENDIX I

Ught Pen

287

The light pen input latches the current screen position Into a pair of reg­
isters (LPX, LPY) on a low-going edge. The X position register 19 ($13)
will contam the a MSB of the X position at the time of transition. Since the
X position IS defined by a 512-state counter (9 bus) resotunon to 2 non­
zontal dots is provided. Similarly, the Y position IS latched to ItS register
20 ($14) but here a bits provide single raster resolution Within the visible
display. The light pen latch may be triggered only once per frame, and
subsequent triggers Within the same frame will have no effect Therefore,
you must take several samples before turning the light pen to the screen
(3 or more samples, average), depending upon the charactenstics of your
light pen.

Raster Register
The raster register is a dual-function register. A read of the raster register
1a ($12) returns the lower a bits of the current raster position (the MSB­
RCa is located in register 17 ($11)) The raster register can be Interrogated
to implement display changes outside the visible area to prevent display
flicker. The visible display window is from raster 51 through raster 251
($033-$OFB). A write to the raster bits (Including RCa) IS latched for use
in an internal raster compare. When the current raster matches the written
value, the raster interrupt latch IS set.

Interrupt Register
The interrupt register shows the status of the four sources of interrupt. An
interrupt latch in register 25 ($19) is set to "1" when an interrupt source
has generated an interrupt request. The four sources of interrupt are:

LATCH
BIT

IRST

IMOC

IMMC

ILP

IRQ

ENABLE
BIT

ERST

EMOC

EMMC

ELP

WHEN SET

Set when (raster count) = (stored raster
count)
Set by MOB-DATA collision register (first
colllsron only)
Set by MOB-MOB collision register (first
colllsron only)
Set by negative transition of LP Input (once
per frame)
Set high by latch set and enabled (Invert of
IRQ/ output)

288 MACHINE LANGUAGE FOR COMMODORE MACHINES

To enable an Interrupt request to set the IRQI output to "0," the corre­
sponding interrupt enable bit In register 26 ($1A) must be set to "1 "Once
an interrupt latch has been set, the latch may be cleared only by writing
a "1" to the desired latch In the interrupt register. This feature allows
selective handling of video Interrupts without software required to "re­
member" active Interrupts

Dynamic Ram Refresh
A dynamic ram refresh controller is built into the 6566/6567 devices. Five
8-bit row addresses are refreshed every raster line. This rate guarantees
a maximum delay of 2.02 ms between the refresh of any single row address
in a 128 refresh scheme. (The maximum delay is 3.66 ms in a 256 address
refresh scheme.) This refresh IS totally transparent to the system, since
the refresh occurs dunnq Phase 1 of the system clock. The 6567 generates
both RASI and CASI which are normally connected directly to the dynamic
rams. RASI and CASI are generated for every Phase 2 and every video
data access (including refresh) so that external clock generation IS not
required.

Reset
The reset bit (RES) In register 22 ($16) IS not used for normal operation.
Therefore It should be set to "0" when initializing the video chip. When
set to a "1," the entire operation of the Video chip is suspended, including
video outputs and sync, memory refresh, and system bus access

Theory of Operation
System Interface

The 6566/6567 Video controller devices Interact with the system data bus
in a special way. A 65XX system requires the system buses only during
the Phase 2 (clock high) portion of the cycle. The 6566/6567 devices take
advantage of this feature by normally accessing system memory dunnq
the Phase 1 (clock low) portion of the clock cycle Therefore, operations
such as character data fetches and memory refresh are totally transparent
to the processor and do not reduce the processor throughput. The video
chips provide the Interface control signals required to maintain this bus
sharing.

The video devices provide the signal AEC (address enable control) which
is used to disable the processor address bus drivers allowing the video
device to access the address bus. AEC is active low which permits direct

APPENDIX I 289

connection to the AEC input of the 65XX family. The AEC signal is normally
activated during Phase 1 so that processor operation IS not affected. Be­
cause of this bus "shanng," all memory accesses must be completed In

% cycle. Since the video chips provide a l-MHz clock (which must be
used as system Phase 2), a memory cycle is 500 ns including address
setup, data access and, data setup to the reading device.

Certain operations of the 6566/6567 require data at a faster rate than
available by reading only dunng the Phase 1 time; specifically, the access
of character pomters from the video rnatnx and the fetch of MOB data.
Therefore, the processor must be disabled and the data accessed during
the Phase 2 clock. This is accomplished via the BA (bus available) signal.
The BA line is normally high but IS brought low during Phase 1 to indicate
that the video chip will require a Phase 2 data access. Three Phase-2
times are allowed after BA law for the processor to complete any current
memory accesses. On the fourth Phase 2 after BA low, the AEC signal
will remain low dunng Phase 2 as the video chip fetches data. The BA
line IS normally connected to the RDY Input of a 65XX processor. The
character pointer fetches occur every eighth raster line during the display
window and require 40 consecutive Phase 2 accesses to fetch the video
matnx pointers. The MOB data fetches require 4 memory accesses as
follows:

PHASE

1
2
1

2

DATA

MOB Pointer
MOB Byte 1
MOB Byte 2
MOB Byte 3

CONDITION

Every raster
Each raster while MOB is displayed
Each raster while MOB IS displayed
Each raster while MOB is displayed

The MOB pornters are fetched every other Phase 1 at the end of each
raster line. As required, the additional cycles are used for MOB data
fetches. Again, all necessary bus control is provided by the 6566/6567
devices.

Memory Interface
The two versions of the video interface chip, 6566 and 6567, differ in
address output configurations. The 6566 has thirteen fully decoded ad­
dresses for direct connection to the system address bus. The 6567 has
multiplexed addresses for direct connection to 64K dynamic RAMs. The
least significant address bits, A06-AOO, are present on A06-AOO while RAS/
is brought low, while the most significant bits, Al3-A08, are present on
AD5-ADD while CAS/ IS brought low. The pins All-AD7 on the 6567 are

REGISTER MAP

ADDRESS DB7 DB6 DBS DB4 DB3 DB2 DB1 DBO DESCRIPTION

00 ($00) MOX7 MOX6 MOX5 MOX4 MOX3 MOX2 MOX1 MOXO MOB 0 X-position
01 ($01) MOY7 MOY6 MOY5 MOY4 MOY3 MOY2 MOY1 MOYO MOB 0 Y-position
02 ($02) M1X7 M1X6 M1X5 M1X4 M1X3 M1X2 M1X1 M1XO MOB 1 X-position
03 ($03) M1Y7 M1Y6 M1Y5 M1Y4 M1Y3 M1Y2 M1Y1 M1YO MOB 1 Y-position
04 ($04) M2X7 M2X6 M2X5 M2X4 M2X3 M2X2 M2X1 M2XO MOB 2 X-position
05 ($05) M2Y7 M2Y6 M2Y5 M2Y4 M2Y3 M2Y2 M2Y1 M2YO MOB 2 Y-posltlon
06 ($06) M3X7 M3X6 M3X5 M3X4 M3X3 M3X2 M3X1 M3XO MOB 3 X-position
07 ($07) M3Y7 M3Y6 M3Y5 M3Y4 M3Y3 M3Y2 M3Y1 M3YO MOB 3 Y-position
08 ($08) M4X7 M4X6 M4X5 M4X4 M4X3 M4X2 M4X1 M4XO MOB 4 X-position
09 ($09) M4Y7 M4Y6 M4Y5 M4Y4 M4Y3 M4Y2 M4Y1 M4YO MOB 4 Y-position
10 ($OA) M5X7 M5X6 M5X5 M5X4 M5X3 M5X2 M5X1 M5XO MOB 5 X-position
11 ($OB) M5Y7 M5Y6 M5Y5 M5Y4 M5Y3 M5Y2 M5Y1 M5YO MOB 5 Y-position
12 ($OC) M6X7 M6X6 M6X5 M6X4 M6X3 M6X2 M6X1 M6XO MOB 6 x-posmon
13 ($00) M6Y7 M6Y6 M6Y5 M6Y4 M6Y3 M6Y2 M6Y1 M6YO MOB 6 Y-positlon
14 ($OE) M7X7 M7X6 M7X5 M7X4 M7X3 M7X2 M7X1 M7XO MOB 7 X-position
15 ($OF) M7Y7 M7Y6 M7Y5 M7Y4 M7Y3 M7Y2 M7Y1 M7YO MOB 7 V-position
16 ($10) M7X8 M6X8 M5X8 M4X8 M3X8 M2X8 M1X8 MOX8 MSB of X-position
17 (S11) RC8 ECM BMM DEN RSEL Y2 Y1 YO See text
18 ($12) RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO Raster register
19 ($13) LPX8 LPX7 LPX6 LPX5 LPX4 LPX3 LPX2 LPX1 Light Pen X
20 ($14) LPY7 LPY6 LPY5 LPY4 LPY3 LPY2 LPY1 LPYO Light Pen Y
21 ($15) M7E M6E M5E M4E M3E M2E M1E MOE MOB Enable
22 ($16) - - RES MCM CSEL X2 X1 XO See text
23 ($17) M7YE M6YE M5YE M4YE M3YE M2YE M1YE MOYE MOB Y-expand
24 ($18) VM13 VM12 VM11 VM10 CB13 CB12 CB11 - Memory Pointers
25 ($19) IRQ - - - ILP IMMC IMBC IRST Interrupt Regisler
26 ($1A) - - - - ELP EMMC EMBC ERST Enable Interrupt

~
Q

s:
»o
I
Z
m
r»z
o
c»o
m
"'T1o
:0
oo
s:
s:
o
oo
:0
m
s:»o
I
Z
men

27 ($1B) M7DP M6DP M5DP M4DP M3DP M2DP M1DP MODP MOB-DATA Priority
28 ($1C) M7MC M6MC M5MC M4MC M3MC M2MC M1MC MOMC MOB Multicolor Sel
29 ($1D) M7XE M6XE M5XE M4XE M3XE M2XE M1XE MOXE MOB X-expand
30 ($1E) M7M M6M M5M M4M M3M M2M M1M MOM MOB-MOB Collision
31 ($1F) M7D M6D M5D M4D M3D M2D M1D MOD MOB-DATA Collision
32 ($20) - - - - EC3 EC2 EC1 ECO Exterior Color
33 ($21) - - - - BOC3 BOC2 BOC1 BOCO Bkgd #0 Color
34 ($22) - - - - B1C3 B1C2 B1C1 B1CO Bkgd #1 Color
35 ($23) - - - - B2C3 B2C2 B2C1 B2CO Bkgd #2 Color
36 ($24) - - - - B3C3 B3C2 B3C1 83CO Bkgd #3 Color
37 ($25) - - - - MM03 MM02 MM01 MMOO MOB Multicolor #0
38 ($26) - - - - MM13 MM12 MM11 MM10 MOB Multicolor #1
39 ($27) - - - - MOC3 MOC2 MOC1 MOCO MOB 0 Color
40 ($28) - - - - M1C3 M1C2 M1C1 M1CO MOB 1 Color
41 ($29) - - - - M2C3 M2C2 M2C1 M2CO MOB 2 Color
42 ($2A) - - - - M3C3 M3C2 M3C1 M3CO MOB 3 Color
43 ($2B) - - - - M4C3 M4C2 M4C1 M4CO MOB 4 Color
44 ($2C) - - - - M5C3 M5C2 M5C1 M5CO MOB 5 Color
45 ($2D) - - - - M6C3 M6C2 M6C1 M6CO MOB 6 Color
46 ($2E) - - - - M7C3 M7C2 M7C1 M7CO MOB 7 Color

NOTE: A dash Indicates a no connect All no connects are read as a "1 "

~
'1J
'1J
m
z
o
X

I\)
CO-...

292 MACHINE LANGUAGE FOR COMMODORE MACHINES

COLOR CODES

D4 D3 D1 DO HEX DEC COLOR

0 0 0 0 0 0 BLACK
0 0 0 1 1 1 WHITE
0 0 1 0 2 2 RED
0 0 1 1 3 3 CYAN
0 1 0 0 4 4 PURPLE
0 1 0 1 5 5 GREEN
0 1 1 0 6 6 BLUE
0 1 1 1 7 7 YELLOW
1 0 0 0 8 8 ORANGE
1 0 0 1 9 9 BROWN
1 0 1 0 A 10 LT RED
1 0 1 1 B 11 DARK GRAY
1 1 0 0 C 12 MED GRAY
1 1 0 1 0 13 LT GREEN
1 1 1 0 E 14 LT BLUE
1 1 1 1 F 15 LT GRAY

static address outputs to allow direct connection of these bits to a con­
ventional 16K (2K x 8) ROM. (The lower order addresses require external
latching.)

6581 Sound Interface Device (SID) Chip
Specifications
Concept

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electroruc
music synthesizer/sound effects generator compatible with the 65XX and
similar microprocessor families. SID provides wide-range, high-resolution
control of pitch (frequency), tone color (harmonic content), and dynamics
(volume). Specialized control circuitry minimizes software overhead, fa­
cilitating use in arcade/home video games and low-cost musical instru­
ments.

Features
• 3 TONE OSCILLATORS

Range: 0-4 kHz

APPENDIX I

• 4 WAVEFORMS PER OSCILLATOR
Tnanqle, Sawtooth,
Vanable Pulse, NOise

• 3 AMPLITUDE MODULATORS
Range: 48 dB

• 3 ENVELOPE GENERATORS
Exponential response
Attack Rate 2 ms-8 s
Decay Rate' 6 ms-24 s
Sustain Level. O-peak volume

Release Rate 6 ms-24 s

• OSCILLATOR SYNCHRONIZATION

• RING MODULATION

Description

293

The 6581 consists of three synthesizer "voices" which can be used in­
dependently or In conjunction with each other (or external audio sources)
to create complex sounds. Each voice consists of a Tone Oscillator/Wave­
form Generator, an Envelope Generator and an Amplitude Modulator. The
Tone Oscillator controls the pitch of the voice over a wide range. The
Oscillator produces four waveforms at the selected frequency, with the
unique harmonic content of each waveform providing simple control of
tone color. The volume dynamics of the oscillator are controlled by the
Amplitude Modulator under the direction of the Envelope Generator. When
triggered, the Envelope Generator creates an amplitude envelope with
programmable rates of increasing and decreasing volume. In addition to
the three VOices, a programmable Filter IS provided for generating complex,
dynamic tone colors via subtractive synthesis.

SIS allows the microprocessor to read the changing output of the third
Oscillator and third Envelope Generator. These outputs can be used as
a source of modulation Information for creating vibrator, frequency/filter
sweeps and Similar effects. The third oscillator can also act as a random
number generator for games. Two A/D converters are provided for inter­
facing SID with potentiometers. These can be used for "paddles" in a
game envrronrnent or as front panel controls in a music synthesizer. SID
can process external audio signals, allowing multiple SID chips to be daisy­
chained or mixed in complex oolyohoruc systems.

294 MACHINE LANGUAGE FOR COMMODORE MACHINES

SID Control Registers
There are 29 eight-bit registers in SID which control the generation of
sound. These registers are either WRITE-only or READ-only and are listed
below in Table 1.

SID Register Description
Voice 1

FREQ LO/FREQ HI (Registers 00,01)

Together these registers form a 16-bit number which linearly controls the
frequency of Oscillator 1. The frequency IS determined by the following
equation:

Foul = (F, x Felk/16777216) Hz

Where Fn IS the 16-M number in the Frequency registers and Felk IS the
system clock applied to the <1>2 Input (Pin 6). For a standard 1.0-MHz clock,
the frequency is given by:

Fout = (Fn x 0.059604645) Hz

A complete table of values for generating 8 octaves of the equally tempered
musical scale with concert A (440 Hz) tumng is provided in Appendix E.
It should be noted that the frequency resolution of SID is sufficient for any
tumng scale and allows sweeping from note to note (portamento) with no
discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a 12-bit number (bits 4-7 of PW HI are not
used) which linearly controls the Pulse Width (duty cycle) of the Pulse
waveform on Oscillator 1. The pulse width is determined by the following
equation:

PWOUI = (PWn/40.95)%

Where PWn is the 12-bit number In the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no
drscernable stepping. Note that the Pulse waveform on Oscillator 1 must
be selected In order for the Pulse Width registers to have any audible

ADDRESS REG #
A.4 A:I A2 Al Ao (HEX)

7 a a 1 , 1 07

8 a 1 a a a 08

9 a 1 a a 1 09

10 a 1 a I a OA

11 a 1 a 1 1 OB

12 a 1 1 a a OC

13 a 1 1 a 1 aD

14 a 1 1 1 a OE

15 a 1 1 1 1 OF

16 1 a a a a 10

17 1 a a a 1 11

18 1 a a 1 a 12

19 1 a a 1 1 13

20 1 a 1 a a 14

F7 Fa Fs F4 F3 F2 Fl Fo

F1S F14 F13 F12 Fll FlO Fg Fa

PW7 PWa PWs PW4 PW3 PW2 PWl PWo

- - - - PWll PWlO PWg PWa

NOISE rtrt, /VI M TEST RING SYNC GATE
MOD

ATI<:l ATK2 ATKl ATKo DCY3 DCY2 DCYl DCYo

STN3 STN2 STNl STNo RLS3 RLS2 RLSl RLSo

F7 Fa Fs F4 F3 F2 Fl Fo

F1S F14 F13 F12 Fl1 FlO Fg Fa

PW7 PWa PWs PW4 PW3 PW2 PWl PWo

- - - - PWll PWlO PWg PWa

NOISE
rLJ1... /VI M TEST RING SYNC GATE

MOD

ATI<:l ATK2 ATKl ATKa DCY3 DCY2 DCYl DCYo

STN3 STN2 STNl STNo RLS3 RLS2 RLSl RLSo

»
"'U
"'U

REG NAME REG m
Voice 1 TYPE Z
FREQ LO WRITE-ONLY

0

FREQ HI WRITE-ONLY
X

PW-LO WRITE-ONLY

PWHI WRITE-ONLY

CONTROL REG WRITE-ONLY

ATTACK/DE CAY WRITE-ONLY

SUSTAIN/RELEASE WRITE-ONLY

VOIce 2

FREQ LO WRITE-ONLY

FREQ HI WRITE-ONLY

PW LO WRITE-ONLY

PWHI WRITE·ONLY

CONTROL REG WRITE-ONLY

ATTACK/DECAY WRITE-ONLY

SUSTAIN/RELEASE WRITE-ONLY

VOIce 3

FREQ LO WRITE-ONLY

FREQ HI WRITE-ONLY

PW LO WRITE·ONLY

PWHI WRITE·ONLY

CONTROL REG WRITE-ONLY

ATTACK/DECAY WRITE-ONLY

SUSTAIN/RELEASE WRITE-ONLY
I
I\)
CO
U1

DoDlD2D3D4DsOsD7

F7 Fa Fs F4 F3 F2 Fl Fo

F1S F14 F13 F12 Fl1 FlO Fg Fa

PW7 PWa PWs PW4 PW3 PW2 PWl PWo

- - - - PW11 PW10 PWg PWa

NOISE
rLJ1... /VI M TEST RING SYNC GATE

MOD

ATI<:l ATK2 ATKl ATKa DCY3 DCY2 DCYl DCYo

STN3 S TN2 STNl STNo RLS3 RLS2 RLSl RLSo

a a a a 00

a a a 1 01

a a 1 a 02

a a 1 1 03

a 1 a a 04

a 1 a 1 05

a 1 I a 06

5 a
6 a

a a
a

2 a
3 a
4 a

21 1 a 1 a 1 15

22 1 a 1 1 a 16

23 1 a 1 1 1 17

24 1 1 a a a 18

25 1 1 a a 1 19

26 1 1 a 1 a 1A

27 1 1 a 1 1 18

28 1 1 1 a a 1C

Figure 1.4

- - - - - FC2 FCl FCo

FC10 FCg FCB FC7 Fe6 FCs FC4 FC3

RES3 RES2 RESl RESo FILTEX FILT 3 FILT 2 FILT I

3 OFF HP 8P LP VOLJ VOL2 VOLl VOLo

PX7 pXs pXs P)4 PX3 PX2 PX, PXo

PY7 PYs PYs PV4 PY3 PY2 PYl PYo

07 06 Os 04 03 02 0, 00

E7 Es Es E4 E3 E2 E, Eo

FIlter

FC LO

FC HI

RES/FILT

MODENOL

Mise

POT X

POTY

aOSC3/RANDOM

ENV3

WRITE-ONLY

WRITE-ONLY

WRITE-ONLY

WRITE-ONLY

READ-ONLY

READ-ONLY

READ-ONLY

READ-ONLY

I\)
CO
0')

~
~o
I
Z
m
r»z
G>
c»
G>
m
"'Tlo
::D
oo
~
~o
oo
::D
m
~»o
I
Z
rn
U>

APPENDIX I 297

effect. A value of 0 or 4095 ($FFF) in the Pulse Width registers will produce
a constant DC output, while a value of 2048 ($800) will produce a square
wave.

CONTROL REGISTER (Register 04)

This register contains eight control bits which select various options on
Oscillator 1.

Gate (Bit 0): The GATE bit controls the Envelope Generator for Voice 1.
When this bit is set to a one, the Envelope Generator is Gated (triggered)
and the ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit IS reset
to a zero, the RELEASE cycle begins. The Envelope Generator controls
the amplitude of Oscillator 1 appearing at the audio output, therefore, the
GATE bit must be set (along with suitable envelope parameters) for the
selected output of Oscillator 1 to be audible. A detailed discussion of the
Envelope Generator can be found at the end of this Appendix.

SYNC (Bit 1): The SYNC bit, when set to a one, synchronizes the tun­
damental frequency of Oscillator 1 with the fundamental frequency of
Oscillator 3, producing "Hard Sync" effects.

Varying the frequency of Oscillator 1 with respect to Oscillator 3 produces
a wide range of complex harmonic structures from Voice 1 at the frequency
of Oscillator 3. In order for sync to occur, Oscillator 3 must be set to some
frequency other than zero but preferably lower than the frequency of
Oscillator 1. No other parameters of Voice 3 have any effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to a one, replaces the
Triangle waveform output of Oscillator 1 with a "Ring Modulated" com­
bination of OSCillators 1 and 3. Varying the frequency of Oscillator 1 with
respect to Oscillator 3 produces a wide range of non-harmonic overtone
structures for creating bell or gong sounds and for special effects. In order
for ring modulation to be audible, the Triangle waveform of Oscillator 1
must be selected and Oscillator 3 must be set to some frequency other
than zero. No other parameters of VOice 3 have any effect on ring mod­
ulation.

TEST (Bit 3): The TEST bit, when set to a one, resets and locks OSCillator 1
at zero until the TEST bit is cleared. The NOise waveform output of Oscillator 1
is also reset and the Pulse waveform output IS held at a DC level. Normally
this bit ISused for testing purposes, however, it can be used to synchronize
Oscillator 1 to external events, auowmq the generation of highly complex
waveforms under real-time software control.

298 MACHINE LANGUAGE FOR COMMODORE MACHINES

(Bit 4): When set to a one, the Triangle waveform output of Oscillator 1
is selected. The Triangle waveform is low in harmonics and has a mellow,
flute-like quality.

(Bit 5): When set to a one, the Pulse waveform output of Oscillator 1 is
selected. The Sawtooth waveform is rich in even and odd harmonics and
has a bright, brassy quality.

(Bit 6): When set to a one, the Pulse waveform of Oscillator 1 IS selected.
The harmonic content of this waveform can be adjusted by the Pulse
Width registers, producing tone qualities ranging from a bright, hollow
square wave to a nasal, reedy pulse. Sweeping the pulse width in real­
time produces a dynamic "pnasrnq" effect which adds a sense of motion
to the sound. Rapidly Jumping between different pulse widths can produce
interesting harrnoruc sequences

NOISE (Bit 7): When set to a one, the NOise output waveform of Oscillator 1
is selected. This output IS a random signal which changes at the frequency
of Oscillator 1. The sound quality can be varied from a low rumbling to
hissing white noise via the Oscillator 1 Frequency registers. NOise is useful
in creating explosions, gunshots, jet engines, wind, surf and other un­
pitched sounds, as well as snare drums and cymbals. Sweeping the os­
cillator frequency with Noise selected produces a dramatic rushing effect.

One of the output waveforms must be selected for Oscillator 1 to be au­
dible, however, it is NOT necessary to de-select waveforms to silence the
output of Voice 1. The amplitude of VOice 1 at the final output is a function
of the Envelope Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more
than one output waveform IS selected slrnultaneously, the result will
be a logical ANDing of the waveforms. Although this technique can
be used to generate additional waveforms beyond the four listed
above, it must be used with care. If any other waveform is selected
while Noise is on, the NOise output can "lock up." If this occurs, the
Noise output will remain silent until reset by the TEST bit or by
bringing RES (Pin 5) low.

ATTACK/DECAY (Register 05)

Bits 4-7 of this register (ATKO-ATK3) select 1 of 16 ATTACK rates for
the Voice 1 Envelope Generator. The ATTACK rate determines how rapidly
the output of Voice 1 rises from zero to peak amplitude when the Envelope
Generator IS Gated. The 16 ATTACK rates are listed in Table 2.

APPENDIX I 299

Bits 0-3 (DCYO-DCY3) select 1 of 16 DECAY rates for the Envelope
Generator. The DECAY cycle follows the ATTACK cycle and the DECAY
rate determines how rapidly the output falls from the peak amplitude to
the selected SUSTAIN level The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4-7 of this register (STNO-STN3) select 1 of 16 SUSTAIN levels
for the Envelope Generator. The SUSTAIN cycle follows the DECAY cycle
and the output of VOice 1 will remain at the selected SUSTAIN amplitude
as long as the Gate bit remains set. The SUSTAIN levels range from zero

Table 2. Envelope Rates

VALUE ATTACK RATE DECAY/RELEASE
RATE

DEC (HEX) (Time/Cycle) (Time/Cycle)

0 (0) 2 ms 6 ms
1 (1) 8 ms 24 ms
2 (2) 16 ms 48 ms
3 (3) 24 ms 72 ms
4 (4) 38 ms 114 ms
5 (5) 56 ms 168 ms
6 (6) 68 ms 204 ms
7 (7) 80 ms 240 rns
8 (8) 100 ms 300 ms
9 (9) 250 ms 750 ms

10 (A) 500 ms 1.5 s
11 (B) 800 ms 2.4 s
12 (C) 1 s 3s
13 (D) 3s 9s
14 (E) 5s 15 s
15 (F) 8s 24 s

NOTE: Envelope rates are based on a 1.0-MHz <1>2 clock. For other
<1>2 frequencies, multiply the given rate by 1 MHz/<j>2. The rates refer
to the amount of time per cycle. For example, given an ATTACK
value of 2, the ATTACK cycle would take 16 ms to rise from zero to
peak amplitude. The DECAY/RELEASE rates refer to the amount of
time these cycles would take to fall from peak amplitude to zero.

300 MACHINE LANGUAGE FOR COMMODORE MACHINES

to peak amplitude in 16 linear steps, with a SUSTAIN value of 0 selecting
zero amplitude and a SUSTAIN value of 15 ($F) selecting the peak am­
plitude. A SUSTAIN value of 8 would cause Voice 1 to SUSTAIN at an
amplitude one-half the peak amplitude reached by the ATTACK cycle.

Bits 0-3 (RLSO-RLS3) select 1 of 16 RELEASE rates for the Envelope
Generator. The RELEASE cycle follows the SUSTAIN cycle when the
Gate bit IS reset to zero. At this time, the output of Voice 1 will fall from
the SUSTAIN amplitude to zero amplitude at the selected RELEASE rate.
The 16 RELEASE rates are Identical to the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any
point via the Gate bit. The Envelope Generator can be Gated and
Released without restriction. For example, If the Gate bit is reset
before the envelope has fimshed the ATTACK cycle, the RELEASE
cycle will immediately begin, starting from whatever amplitude had
been reached. If the envelope IS then gated again (before the RE­
LEASE cycle has reached zero amplitude), another ATTACK cycle
will begin, starting from whatever amplitude had been reached. This
technique can be used to generate complex amplitude envelopes
via real-time software controI

Voice 2
Registers 07-$00 control Voice 2 and are functionally identical to registers
00-06 with these exceptions:

1) When selected. SYNC synchronizes Oscillator 2 with Oscillator 1.

2) When selected, RING MOD replaces the Tnangle output of Oscillator 2 with
the nng moouiateo cornbmanon of Oscillators 2 and 1

Voice 3
Registers $OE-$14 control Voice 3 and are functionally identical to reg­
isters 00-06 with these exceptions:

1) When selected. SYNC synchronizes Oscillator 3 with Oscillator 2.

2) When selected. RING MOD replaces the Triangle output of Oscillator 3 with
the ring modulated combination of Oscillators 3 and 2

Typical operation of a voice consists of selecting the desired parameters:
frequency, waveform, effects (SYNC, RING MOD) and envelope rates.
then gating the voice whenever the sound is desired. The sound can be
sustained for any length of time and terminated by clearing the Gate bit.

APPENDIX I 301

Each voice can be used separately, with Independent parameters and
gating, or in unison to create a single, powerful voice. When used in Unison,
a slight detuning of each oscillator or tuning to musical intervals creates
a rich, animated sound.

Filter
FC LO/FC HI (Registers $15,$16)

Together these registers form an 11-bit number (bits 3-7 of FC LO are
not used) which linearly controls the Cutoff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30
Hz to 12 KHz.

RES/FILT (Register $17)

Bits 4-7 of this register (RESO-RES3) control the resonance of the filter.
Resonance is a peaking effect which emphasizes frequency components
at the Cutoff Frequency of the Filter, causing a sharper sound. There are
16 resonance settings ranging linearly from no resonance (0) to maximum
resonance (15 or $F). BIts 0-3 determine which signals will be routed
through the Filter:

FILT 1 (Bit 0): When set to a zero, Voice 1 appears directly at the audio
output and the Filter has no effect on it. When set to a one, Voice 1 will
be processed through the Filter and the harmonic content of Voice 1 will
be altered according to the selected Filter parameters.

FILT 2 (Bit 1): Same as bit 0 for Voice 2.

FILT 3 (Bit 2): Same as bit 0 for Voice 3.

FILTEX (Bit 3): Same as bit 0 for External audio input (pin 26).

MODE VOL (Register $18)

Bits 4-7 of this register select vanous Filter mode and output options:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is selected
and sent to the audio output. For a given Filter input signal, all frequency
components below the Filter Cutoff Frequency are passed unaltered, while
all frequency components above the Cutoff are attenuated at a rate of 12
dB/Octave. The Low-Pass mode produces full-bodied sounds.

BP (Bit 5): Same as bit 4 for the Bandpass output. All frequency com­
ponents above and below the Cutoff are attenuated at a rate of 6 dB/
Octave The Bandpass mode produces thin, open sounds.

302 MACHINE LANGUAGE FOR COMMODORE MACHINES

HP (Bit 6): Same as bit 4 for the High-Pass output. All frequency com­
ponents above the Cutoff are passed unaltered, while all frequency com­
ponents below the Cutoff are attenuated at a rate of 12 dB/Octave. The
High-Pass mode produces tinny, buzzy sounds.

3 OFF (Bit 7): When set to a one, the output of voice 3 IS disconnected
from the direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 =
0) and setting 3 OFF to a one prevents Voice 3 from reaching the audio
output. This allows Voice 3 to be used for modulation purposes without
any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter
modes may be selected simultaneously. For example, both LP and
HP modes can be selected to produce a Notch (or Band Reject)
Filter response. In order for the Filter to have any audible effect, at
least one Filter output must be selected and at least one Voice must
be routed through the Filter. The Filter is, perhaps, the most important
element in SID as It allows the generation of complex tone colors
via subtractive synthesis (the Filter is used to eurnmate specific fre­
quency components from a harmonically rich input signal). The best
results are achieved by varying the Cutoff Frequency in real-time.

Bits 0-3 (VOLO-VOL3) select 1 of 16 overall Volume levels for the final
composite audio output The output volume levels range from no output
(0) to maximum volume (15 or $F) in 16 linear steps. This control can be
used as a static volume control for balancing levels in multi-chip systems
or for creatmg dynamic volume effects, such as Tremolo. Some Volume
level other than zero must be selected in order for SID to produce any
sound.

Miscellaneous
POTX (Register $19)

This register allows the microprocessor to read the position of the poten­
tiometer tied to POTX (pm 24), with values ranging from 0 at minimum
resistance, to 255 ($FF) at maximum resistance. The value is always valid
and is updated every 512 <1>2 clock cycles. See the Pin Description section
for information on pot and capacitor values.

POTY (Register $1A)

Same as POTX for the pot tied to POTY (pm 23).

APPENDIX I 303

OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of
Oscillator 3. The character of the numbers generated IS directly related to
the waveform selected. If the Sawtooth waveform of Oscillator 3 IS se­
lected, this register will present a series of numbers Incrementing from 0
to 255 ($FF) at a rate determined by the frequency of Oscillator 3. If the
Triangle waveform is selected, the output will increment from 0 up to 255,
then decrement down to O. If the Pulse waveform is selected, the output
will Jump between 0 and 255. Selecting the Noise waveform will produce
a series of random numbers, therefore, this register can be used as a
random number generator for games. There are numerous timing and
sequencing applications for the OSC 3 register, however, the chief function
is probably that of a modulation generator. The numbers generated by
this register can be added, via software, to the Oscillator or Filter Fre­
quency registers or the Pulse Width registers In real-time. Many dynamic
effects can be generated in this manner. Siren-like sounds can be created
by adding the OSC 3 Sawtooth output to the frequency control of another
oscillator. Synthesizer "Sample and Hold" effects can be produced by
adding the OSC 3 Noise output to the Filter Frequency control registers.
Vibrato can be produced by setting Oscillator 3 to a frequency around
7 Hz and adding the OSC 3 Triangle output (With proper scaling) to the
Frequency control of another oscillator. An unlimited range of effects are
available by altenng the frequency of Oscillator 3 and scaling the OSC 3
output. Normally, when Oscillator 3 is used for modulation, the audio output
of Voice 3 should be eliminated (3 OFF = 1).

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the
output of the Voice 3 Envelope Generator. This output can be added to
the Filter Frequency to produce harmonic envelopes, WAH-WAH, and
similar effects. "Phaser' sounds can be created by adding this output to
the frequency control registers of an oscillator. The Voice 3 Envelope
Generator must be Gated in order to produce any output from this register.
The OSC 3 register, however, always reflects the changing output of the
OSCillator and IS not affected 111 any way by the Envelope Generator.

304 MACHINE LANGUAGE FOR COMMODORE MACHINES

6525 Tri-Port Interface
Concept

The 6525 TRI-PORT Interface (TPI) is designed to strnplrty the imple­
mentation of complex I/O operations in microcomputer systems. It com­
bines two dedicated 8-bIt I/O ports with a third 8-bit port programmable
for either normal I/O operations or priority interrupt/handshaking control.
Depending on the mode selected, the 6525 can provide 24 individually
programmable I/O lines or 16 I/O lines, 2 handshake lines and 5 priority
interrupt inputs.

6525 Addressing

6525 REGISTERS/(D/reet Addressing)

'000 RO PRA-Port Register A
001 R1 PRB-Port Register B
010 R2 PRC-Port Register C
011 R3 DDRA-Data Direction Register A
100 R4 DDRB-Data Direction Register B
101 R5 DDRC-Data Direction Register C/lnterrupt Mask Register
110 R6 CR-Control Register
111 R7 AIR-Active Interrupt Register

·NOTE. RS2, RS1, RSO respectively

6525 Control Registers

CR

AIR

DDRC
When Me = 1

PRC
When MC = 1

CA, CB Functional Description
The CA, CB lines are outputs used In the same fashion as the CA2 and
CB2 output of the 6520.

APPENDIX I 305

CA Output Modes

CA, CAo MODE DESCRIPTION

0 0 "Handshake" CA IS set high on an active transition of the 13
on Read Interrupt Input signal and set low by a rmcropro-

cessor "Read A Data" operation This allows
positive control of data transfers from the pe-
npheral device to the microprocessor.

0 Pulse Output CA goes low for IMS after a "Read A Data" op-
eration Thrs pulse can be used to signal the
penpheral device that data was taken.

0 Manual CA set low
Output

Manual CA set high.
Output

CB Output Modes

CB1 CBo MODE DESCRIPTION

0 0 "Handshake" CB is set low on microprocessor "Write B Data"
on Wnte operation and IS set nigh by an active transition

of the 14 interrupt Input signal.This allows positive
control of data transfers from the microprocessor
to the peripheral device.

0 Pulse Output CB goes lowfor IMSaftera microprocessor "Write
B Data" operation. Thrs can be used to signal
the penpheral device that data IS available.

0 Manual CB set low.
Output

Manual CB set high.
Output

INTERRUPT MASK REGISTER DESCRIPTION

When the Interrupt Mode IS selected (MC = 1), the Data Direction Register
for Port C (DDRC) is used to enable or disable a corresponding interrupt
input. For example: If Mo = 0 then 10 is disabled and any 10 interrupt latched
in the interrupt latch register will not be transferred to the AIR and will not
cause IRQ to go low. The interrupt latch can be cleared by writing a zero
to the appropriate I bit in PRC.

306 MACHINE LANGUAGE FOR COMMODORE MACHINES

PORT REGISTER C DESCRIPTION

Port Register C (PRC) can operate in two modes. The mode is controlled
by bit MC in register CR. When MC = 0, PRC is a standard I/O port,
operating Identically to PRA & PRB. If MC = 1, then port register C is
used for handshaking and pnorlty interrupt input and output.

PRC When MC = 0:

PRC When MC = 1:

INTERRUPT EDGE CONTROL

Bits IE4 and IEs In the control register (CR) are used to determine the
active edge which will be recognized by the Interrupt latch.

If IE4 (lEs) = 0 then 14 (Is) latch will be set on a negative transition of 14

(Is) input.

If IE4 (IE3) = 1 then 14 (13) latch will be set on a positive transition of the
14 (Is) input.

All other interrupt latches (1 2 , 11, 10) are set on a negative transition of the
corresponding interrupt input.

Interrupt Latch Register
Clears on Read of AIR Using Following
Equation

ILR ~ ILR ffi AIR

Active Interrupt Register
Clears on Wnte to AIR

Interrupt Priority Select
IP = 0 No Priority

IP = 1 Interrupts prioritized

APPENDIX I

FUNCTIONAL DESCRIPTION

307

1. IP = 0 No Priority

All interrupt mforrnatron latched Into Interrupt latch register--.1!h.R) is im­
mediately transferred Into active Interrupt register (AIR) and IRQ is pulled
low. Upon read of interrupt the IRQ is reset high and the appropriate bit(s)
of the interrupt latch register is cleared by exclusive OR-ing. The ILR with
AIR (ILR8:)AIR). After the appropriate interrupt request has been serviced
a Write to the AIR will clear it and initiate a new interrupt sequence if any
interrupts were received dunnq previous interrupt servicing In this non­
prioritized mode it is possible for two or more interrupts to occur simul­
taneously and be transferred to the AIR. If this occurs it is a software effort
to recognize this and act accordingly.

2. IP = 1 Interrupts Prioritized

In this mode the Interrupt Inputs are priontlzed in the following order 14 >
13 > 12 > 11 > 10

In this mode only one bit of the AIR can be set at anyone time. Jf an
interrupt occurs it is latched into the interrupt latch register, the IRQ line
is pulled low and the appropriate bit of the AIR is set. To understand fully
the operation of the Priority Interrupts It IS easiest to consider the following
examples.

A. The first case IS the simplest. A single interrupt occurs and the pro­
cessor can service it completely before another interrupt request is
received.
1. Interrupt 11 is received.
2. Bit 11 is set high in Interrupt Latch Register.
3. IRQ is pulled low.
4. A1 is set high.
5. Processor recognizes IRQ and reads AIR to determine which in­

terrupt occurred.
6. BIt 11 IS reset and IRQ IS reset to high.
7. Processor Services Interrupt and signals completion of Service

routine by writing to AIR.
8. A1 is reset low and interrupt sequence is complete.

B. The second case occurs when an Interrupt has been received and a
higher priority interrupt occurs. (See Note)

1. Interrupt 11 is received.
2. Bit 11 is set high on the Interrupt Latch Register.
3. IRa is pulled low and A1 is set high.

308 MACHINE LANGUAGE FOR COMMODORE MACHINES

4. Processor recognizes IRQ and reads AIR to determine which
interrupt occurred._

5. Bit 11 is reset and IRQ is reset high.
6. Processor begins servicing 11 Interrupt and the 12 interrupt is re­

ceived.
7. A2 is set, A1 is reset low and IRQ is pulled low.
8. Processor has not yet completed servicing 11 interrupt so this

routine will be automatically stacked in 6500 stack queue when
new IRQ for 12 of interrupt IS received.

9. Processor reads AIR to determine 12 Interrupt occurrence and bIt
12 of interrupt latch is reset.

10. Processor services 12 interrupt, clears A2 by writing AIR and re­
turns from interrupt. Returning from interrupt causes 650X pro­
cessor to resume servicmq 11 interrupt.

11. Upon clearing A2 bit In AIR, the A1 bit will not be restored to a
one. Internal circuitry will prevent a lower priority interrupt from
interrupting the resumed 11,

C. The third case occurs when an interrupt has been received and a
lower priority interrupt occurs.
1. [ntorrupt 11 is received and latched.
2. IRQ is pulled low and A1 is set high.
3. Processor recognizes IRQ and reads AIR to determine that 11 in­

terrupt occurred.
4. Processor logic servicing 11 Interrupt during which 10 interrupt oc­

curs and is latched.
5. Upon completion of 11 interrupt routine the processor writes AIR

to clear A1 to signal 6525 that Interrupt service ~ complete.
6. Latch 10 interrupt is transferred to AIR and IRQ is pulled low to

begin new interrupt sequence.

NOTE: It was indicated that the 6525 will maintain Priority Interrupt
information from previously serviced interrupts.

This is achieved by the use of an Interrupt Stack. This stack is pushed
whenever a read of AIR occurs and is pulled whenever a write to
AIR occurs. It is therefore Important not to perform any extraneous
reads or writes to AIR since this will cause extra and unwanted stack
operations to occur.

The only time a read of AIR should occur is to respond to all interrupt
request.

The only time a write of AIR should occur is to signal the 6525 that
the interrupt service is complete.

J
Disk User's

Guide
The optional disk holds programs supplementary to the book.

The programs are as follows:

SUPERMON1 (for original ROM PET computers)
SUPERMON2(for upgrade ROM PET/CBM computers)
SUPERMONL; (for 4.0 PET/CBM computers)
SUPERMON • V (for VIC-20 computers)
SUPERMON6L; (for Commodore 64 computers)
SUPERMON INST (instructions, BASIC)
UNICOPY6L; (for Commodore 64)
UNICOPY INST (Instructions, BASIC)
jUNICOPY LI ST (BASIC, all machines)
UNICOPY ASSY (data file for UNICOPY LIST)
COPY -ALL (for PET/CBM)
COPY-ALL. 6L; (for Commodore 64)
CROS S REF (for PET/CBM)
CROSS REF 6L; (for Commodore 64)
FACTORS (for PET/CBM)
FACTORS V6L; (for VIC-20, Commodore 64, and PLUS/4)
PENTOMINOS INST (Instructions)
PENTOMINOS (BASIC, all machines)
PENTOMINOS PET (for PET/CBM)
PENTOMINOS V6L; (for VIC-20, Commodore 64, and PLUS/4)

309

310 MACHINE LANGUAGE FOR COMMODORE MACHINES

PENTOMINOS B128 (boot for B128 system)
+PENT0128 (program for B128)
+ XFE R (transfer sequence for B128)
STRING' THING (BASIC, for PET/CBM)
STRING THING Vb£; (BASIC, for VIC-20, Commodore 64)
jSAMPLE FILE (for use with STRING THING)

These programs are public domain, and may be obtained from user groups.
They are available here for user convenience.

The following notes may be useful in using or studying the programs.

SUPERMON1 (for original ROM PET computers)
SUPERMON2 (for upgrade ROM PET/CBM computers)
SUPERMaN£; (for 4.0 PET/CBM computers)
SUPERMaN. V (for VIC-20 computers)
SUPERMONb£; (for Commodore 64 computers)
SUPERMaN INST (instructions, BASIC)

Supermon 2 and 4 are "extensions" to the built-in MLM of the respective
machines. The other Supermon versions are complete monitors.

Remember that the programs on disk are "monitor generators," that is,
they build the monitor for you. After the monitor has been built, you should
remove the builder program so that you don't end up with two copies. In
other words, after RUN type. X to return to BASIC, NEW to scrap the
builder, and then SYS£; or SYS8 to return to the monitor whenever de­
sired.

The monitor is always built near the top of memory. Its entry address can
be determined by checking the TOM (top-of-memory) pointer. Monitors
are complex, but feel free to ask the monitor to disassemble itself for your
information.

After Supermon is placed, you may load BASIC programs and use the
computer normally. Supermon will remain until you shut off the power.

UNICOPYb£;

A utility for copying files from one disk to another, on a single drive; or
copying from one disk to cassette tape. The program is written entirely in
machine language, apart from the SYS that starts it up.

Information is copied from the selected files into RAM memory. When the
output phase begins, the data is then written to disk or tape.

UNICOPY INST

A BASIC program explaining how to use UNICOPYb£;.

APPENDIX J 311

UNICOPY LIST
]UNICOPY ASSY

An assembly listing of program UNICOPY. Because UNICOPY IS written
entirely in machine language, a number of tasks are performed in the
program that are often more convenlently done in BASiC. For example,
files are opened and closed by machine language. This makes the program
listing particularly interesting for students of these techniques.

Assembly listings have a somewhat different appearance from the machine
language programs this book has dealt with. The most visible difference
IS m the use of symbolic addresses. If there is any confusion, concentrate
on the machine language half of the listing; that will clarify what's goil1g
on. Program UNICOPY LIST allows output to the screen or to a Com­
modore printer.

For cassette tape output, direct calls to the ROM routines are made; that's
usually not good practice, but there's little choice here.

The program is written in machine language so that the BASiC ROM can
be flipped out, allowing for more memory space in which to copy programs.

COPY-ALL «orPETICBM)
COpy-ALL. 6L; (for Commodore 64)

A utility for copying files from one disk drive to another. You will find two
SYS commands in the BASIC part of the program: one to get the directory,
and the other to do the actual copying.

Information is copied from the selected file into a BASIC string that has
been set aside for the purpose. A similar technique may be found in the
simpler STRING THING.

CROSS REF (for PET/CBM)
CROSS REF 6L; (for Commodore 64)

This program prepares a cross-reference listing for any selected BASIC
program on disk. It cross-references both line numbers and variables. It's
a good way to document a BASIC program.

The program uses two table lookup techniques that may be confusmg to
the beginning machine language program reader. First, it classifies all
characters received from BASIC in terms of "type"; this IS done with a
table of 256 elements, one for each possible character. Second, it uses
a "state transition table" to record the nature of the job in progress; for
example, after meeting a GO SUB "token," It will expect to receive a line
number.

312 MACHINE LANGUAGE FOR COMMODORE MACHINES

The second SYS in the BASIC program is used to pnnt the line numbers
of the cross-reference. It employs an efficient bmary-to-decirnal conversion
technique, which uses decimal mode.

FACTORS ~orPETICBM)

FACTORS V 6L; (for VIC-20, Commodore 64, and PLUS/4)

This program finds factors of numbers up to nineteen digits long. This
shows a powerful feature of machine language as opposed to BASIC' the
size of numbers IS not limited by the language.

The program contains a number of useful techniques worth studyinq. First.
it allows decimal Input of any number up to 19 digits (a 64-bit or a-byte
binary number). Second, to find factors It performs division with remainder.
Finally, to print results, it must convert bmary-to-declrnal, using the same
decimal mode technique as In CROSS REF

The program does not try all divisors. After trying a few initial values (2,
3. and 5). it switches to a "30-counter" technique, trymg only multiples
of 3D plus 1, 7, 11, 17, 19, 23, and 29.

The machine language program is relocated by BASIC so that It starts at
hexadecimal 1300 regardless of where it was originally loaded. This was
originally done to allow for the VIC-20's variable start-of-BASIC, which
rambles according to the amount of extra memory fitted. It turns out to be
useful for studying to have the program In a fixed location; so the
PET/CBM version was also set up in this way.

Students wishing to disassemble FACTORS will find the followmg infor­
mation useful:

VARIABLES:

$ 0 3 L;9-number of times a factor divides evenly
$ 0 3 L;A-"equals" or "asterisk" character for formatting
$ 0 3 L;B-zero suppression flag
$ 0 3 L;C-30-counter
$0350 to $0357-value under analysis
$03515 to $035F-value work area
$ 0 3 6 0 to $ 0 36 7-"base" value for 30-counter
$036C to $0379-divlslon work area, including:
$036C to $036F-remainder
$0370 to $0377-quotlent

PROGRAM.

$1300: Main routine, rncludmq:
$1300: Start, clear work area
$131D: Get number digits from user

APPENDIX J

$,1331: Handle bad input
$133 A: Begin factoring; check non-zero
$1350: Try divisors 2, 3, and 5
$1365: Try higher divisors
$13 A2: Print remaining value.
$13 BA: Prompt subroutine
$13CL;: Input and analyze digit
$1 L; 0B: Multiply-by-two subroutine
$1 L; 15: Division subroutine
$1 L; 7 A: Try a divisor (short)
$1 L; 7 D: Try a divisor (long)
$1 L; B5: Check If remainder zero
$1 L;9 2: Log factor if found
$1 L; A2: Check if more to do
$1 L; B9: Print value subroutine
$1 L; DO: Print factor subroutine
$150 L; : Clear output area
$lSDF: Convert to decimal and print
$1535: Print a digit with zero suppression
$1565: 30-count values: 1, 7,.11, etc.

313

Even at machine language speeds, this program can take a long time to
analyze large factors and prime numbers. The RUN/STOP key is active
to allow the user to stop the run.

PENTOMINOS INST (instructions)
PENTOMINOS (BASIC, all machines)
PENTOMINOS PET (for PET/CBM)
PENTOMINOS V6L; (for VIC-20, Commodore 64, and PLUS/4)
PENTOMINOS B12B (boot for B128 system)

, + PENT012B (program for B128)
+ XFER (transfer sequence for 8128)

A puzzle solving problem. Pieces are fitted into a selected rectangular
shape ''Visibly''-in other words, they may be seen on the screen as they
are tried.

The machine language programs follow the logic of the BASIC program
precisely. The "shape tables" have been rearranged for greater machine
language convenience (each piece is reached by indexing; the index range
of 0 to 2 5 5 dictates the piece being selected and its rotation).

The machine language program uses no indirect addressing and no sub­
routines. That is not necessarily good practice; it is largely a result of
writing the program logic to exactly match the BASIC program.

314 MACHINE LANGUAGE FOR COMMODORE MACHINES

This program makes use of tables, and is worth studying for that reason.
It is also useful to examine the close relationship between the BASIC
program and its machine language equivalent, especially starting at line
2000 in BASIC.

As with FACTORS, the machine language program is relocated by BASIC
so that It starts at hexadecimal 156D (with tables starting at $12FA)
regardless of where it was originally loaded. Again, this is necessary for
the VIC-20 and proves to be convenient for study purposes on all ma­
cnmes-> except the B-128 version, where this relocation does not happen.

Students wishing to disassemble PENTOMINOS will find the following
information useful:

VARIABLES:

$ 0 33 C-piece number, BASIC variable P
$033D to $033E-variables W1 and W2, board size
$ 0 3 3F-P1, number of pieces placed
$0 3 L;0 to $ 03 L;B-U(..) log of pieces placed
$03L;C to $0357-T(..) rotation of piece
$0358 to $035C-X(..) location of piece
$035D to $0361-Y(..) location of piece
$ 0 3 6 2 to $ 037 O-tables to place a piece
$037F to $039C-board "edge" table
$039D to $03D8-B(...) the board.

PROGRAM:

$156D: Start, BASIC line 1070
$15 AL;: Clear screen, BASIC line 1120
$15 A9: Clear variables, set up
$15CC: Find space, BAStC line 2010
$1600: Get new piece, BASIC line 2030
$1 609: Try piece, BASIC line 2060
$1686: Put piece in, BASIC line 2120
$16E 0: Print "Solution", BASIC line 2170
$1701: Undraw piece, BASIC line 2190
$17 AB: Rotate piece, BASIC line 2260
$17BC: Give up on piece, BASIC line 2280
$17 C1: Look for new piece, BASIC line 2300

The B128 version does not align to the above addresses. It is written to
Illustrate the "boot" loading system needed for that computer. Programs
whose names begin with a + symbol are loaded by the bootstrap program;
do not try to load them directly.

APPENDIX J 315

STRING THING (BASIC, for PET/CBMj
STRING THING Vb£; (BASIC, for VIC-20, Commodore 64, PLUS/4)
SAMPLE FILE

A simple machine language program, POKEable directly from BASIC, to
substitute for an I NPUT# statement.

INPUT# has several limitations that sometimes make it awkward for use
with files:

• No more than 80 characters may be read.

• The comma or colon character will break up Input

• Leading spaces will disappear

STRING THING reads everything up to the next RETURN or end of
file. It is pure BASIC, but POKEs machine language into the cassette
buffer area. It finds the first variable and uses it as an input buffer.

Glossary
The numbers in parentheses indicate the chapter in which the word or
phrase is first used.

Absolute address: (5) An address that can indicate any location In
memory.

Accumulator: (3) The A register; the register used for arithmetic.
Address bus: (1) A bus that signals which part of memory is wanted

for the next memory operation
Address mode: (5) The manner In which an instruction reaches In-

formation within memory.
Address: (1) The identity of a specific location within memory
Algorithm: (1) A method or procedure to perform a computing task
Arithmetic shift or rotate: (4) A shift or rotate that usually preserves

the sign of a number.
Assembler: (2) A program that assembles or changes source code

into object code.
Assembly: (1) The process of changing source code into object code.
Assembly code: (1) Also called source code A program written In a

somewhat human-readable form. Must be translated ("assembled") before
use.

317

318 MACHINE LANGUAGE FOR COMMODORE MACHINES

Assembly language: (1) The set of instructions, or language, in which
a source program must be written before assembly.

Binary: (1) Something that has two possible states; a number based
on digits, each of which has two possible states.

Bit: (1) A binary digit; the smallest element of Information within a
computer.

Bootstrap: (6) A program that starts up another program.
Breakpoint: (8) A location where the program will stop so as to allow

checking for errors.
Bug: (8) An error within a program.
Bus: (1) A collection of wires connecting many devices together.
Byte: (1) Eight bits of information grouped together; the normal mea-

sure of computer storage.
Calling point: (2) The program location from which a subroutine is

called into play; the subroutine Will return to the calling POint when finished.
Channel: (8) A path connecting the computer to one of its external

devices.
Comment: (8) A program element which does not cause the computer

to do anything, used as advice to the human program reader.
Commutative: (3) A mathematical operation that works both ways,

e.g., 3 +4 gives the same result as 4 + 3.
Control bus: (1) A bus that signals timing and direction of data flow

to the various connected devices.
Data bus: (1) A bus used to transfer data between memory and the

microprocessor.
Debuggmg: (8) Testing a prograrn to uncover possible errors.
Decimal: (1) A number system based on a system of ten digits; the

"normal" numbering system used by humans.
Decrement: (2) To make smaller by a value of one.
Descriptor: (6) A three-byte set of data giving a string's length and

its location.
Disassembler: (2) A program that changes object code into assembly

code to allow inspection of a program.
Disassemble: (2) To change object code into assembly code. Similar

to a LIST in BASIC.
Dynamic string: (6) A string that must be placed into memory after

being received or calculated.
Effective address: (2) The address used by the processor to handle

data when executing an instruction. It may differ from the instruction ad­
dress (or "operand") because of indexing or indirect addressing.

Event flag: (7) A flag that signals that some event has happened.
Execute: (1) To perform an instruction.

GLOSSARY 319

File: (8) A collection of data stored on some external device.
Flag: (3) An on/off indicator that signals some condition.
Floating accumulator: (7) A group of memory locations used by BAStC

to perform calculations on a number.
Garbage collection: (6) A BASIC process in which active strings are

gathered together and inactive strings are discarded. On some computers
this can be quite time consuming.

Increment: (2) To make larger by a value of one.
Index: (2) To change an address by adding the contents of an index

register.
Index register: (2) The X or Y registers, which may be used for chang­

ing effective addresses.
Indirect address: (5) An addressing scheme whereby the instruction

contains the location of the actual address to be used; an address of an
address.

Instruction: (1) An element of a program that tells the processor what
to do.

Interrupt: (1) An event that causes the processor to leave its normal
program so that some other program takes control, usually temporarily.

Interrupt enable register: (7) A location within an IA chip that deter­
mines whether or not a selected event will cause an interrupt.

Interrupt flag: (7) A signal within the IA indicating that a certain event
has requested that an interrupt take place.

Interrupt flag register: (7) A location within the IA where interrupt
events can be detected and turned off if desired.

Interrupt source: (7) The particular event that caused an interrupt.
Since many things can do this, it's usually necessary to identify the specific
source of the interrupt.

Kemal: (2) Commodore's operating system.
Label, symbolic address: (8) A name identifying a memory location.
Latch: (7) A flag that "locks in."
Load: (1) To bring information from memory into the processor, A

load operation is a copying activity; the information still remains in memory.
Logical file number: (8) The identity of a file as used by the program­

mer.
Logical operator: (3) An operation that affects individual bits within a

byte: AND, ORA, and EOR.
Logical shift or rotate: (4) A shift that does not preserve the sign of

assigned number.
Machine code: (1) Instructions written in machine language.
Machine language: (1) The set of commands that allow you to give

instructions to the processor.

320 MACHINE LANGUAGE FOR COMMODORE MACHINES

Machine language monitor: (1) A program that allows communication
with the computer In a manner convenient for machine language pro­
gramming.

Memory: (1) The storage used by a computer; every location is iden­
tified by an address.

Memory mapped: (1) Circuits that can be reached by the use of a
memory address, even though they are not used for storage or memory
purposes.

Memory page: (5) A set of 256 locations in memory, all of whose
addresses have the same "high byte."

Microcomputer: (1) A computer system containing a microprocessor,
memory, and input/output circuits. A computer butlt uSing microchips.

Microprocessor: (1) The central logic of a microcomputer, containing
logic and arithmetic. A processor built on a microchip.

Momtor: (1) A program that allows the user to communicate with the
computer. Alternatively, a video screen device.

Non-maskable mterrupt, NMI: (7) A type of interrupt that cannot be
disabled.

Non-symbolic assembler: (2) An assembler In which actual addresses
must be used.

Object code: (1) The machine language program that will run in the
computer.

Octothorpe: (2) Sometimes called a numbers sign, a pounds sign, a
hash mark. The "#" symbol.

Operand: (1) The part of an instruction following the op code that
usually signals where in memory the operation is to take place.

Operating system: (1) A set of programs with a computer that takes
care of general work such as input/output, timing, and so on

Operation code, op code: (1) The part of an Instruction that says
what to do.

Overflow: (3) Condition caused by an anthmetic operation generating
a result that is too big to fit in the space provided.

Pointer: (6) An address held In memory. usually in two bytes.
Processor status word, status reiuster: (3) A processor register that

holds status flags.
Pull: (7) To take something from the stack.
Push: (7) To put something on the stack.
Random access memory, RAM: (1) The part of a computer's memory

where information can be stored and recalled.
Read: (1) To obtain information from a device.
Read only memory, ROM: (1) The part of a computer's memory where

fixed information has been stored. New information cannot be stored in a
ROM; it is preprogrammed.

GLOSSARY 321

Register: (1) Location within a processor where information can be
held temporarily.

Screen editing: (1) The ability to change the screen of a computer
and cause a corresponding change in memory

Screen memory: (2) The part of a computer holding the Information
displayed on the screen. Changing screen memory will change the screen;
reading screen memory will reveal what is on the screen.

Selected: (1) A chip or device that has been signaled to participate
in a data transfer. If the chip or device has not been selected, it will ignore
data operations.

Self-modifying: (7) A type of program that changes itself as it runs.
Rare, and not always considered good programming practice

Signed number: (3) A number that holds a value that may be either
positive or negative.

Source code: (1) Instructions written In assembly language; usually,
the first code written by the programmer before performing an assembly.

Stack: (7) A temporary, or "scratch pad," set of memory locations.
Status register, processor status word: (3) Within the processor, a

register that holds status flags.
Store: (1) To transfer information from the processor to memory. The

store operation is a COpying activity. the Information still remains in the
processor.

Subroutine: (2) A set of instructions that can be called up by another
program

Symbolic address, label: (7) A name IdentifYing a memory location.
Symbolic assembler: (2) An assembler in which symbolic addresses

may be used. This is more powerful than a non-symbolic assembler.
Testable flag: (3) A flag that can be tested by means of a conditional

branch Instruction.
Two's complement: (3) A method of representing negative numbers.

With single byte numbers, -1 would be represented by $FF.
Unsigned number: (3) A number that cannot have a negative value.
Write: (1) To send information to a device.
Zero page: (5) The lowest 256 locations In memory. Locations whose

addresses begin with hexadecimal $00...

322 Index

-A-
A, X, and Y data registers, 9, 11, 46, 47,

142
Absolute addressing, 148
Absolute indexed mode, 77-78
Absolute Indirect, 149
Absolute mode, 75-76
Accumulator addressing, 148
Accumulator mode, 74
ADC, Add memory to accumulator with

carry, 149
Addition, 58-60
Address bus, 3-5
Address defined, 3
Addressing modes, 72-89, 148·149
Algorithms,

decimal to hexadecimal, 7
hexadecimal to decimal, 7

AND, "AND" memory with accumulator,
121, 149

ASCII, 25, 50, 223-224
Assemblers,

nonsymbolic, 27
symbolic, 143-144

ASL, Shift left one bit (memory or
accumlator), 61-62, 149

-B­
BASIC,

breaking into, 124-125
Infiltrating, 122-124
linking with, 30·31
machine language exchanging data,

104-108
memory layout, 92-102
variables, 102·105

BCC, Branch on carry clear, 87, 149
BCS, Branch on carry set, 149
BEQ, Branch on result zero, 149
Binary defined, 2
Bit defined, 2
Bit map mode on the 6566/6567, 280·282
BIT, Test bits In memory with

accumulator, 149
BMI, Branch on result minus, 149
BNE, Branch on result not zero, 149
BOS, Bottom of string, 94
BPL, Branch on result plus, 149
Branch Instructions, 141
Branches and branching, 79·80
BRK, Force break, 72, 115, 116, 142

143,149,233
Bus,

address, 4·5

control,5
defined,3
see also data bus

BVC, Branch on overflow clear, 150
BVS, Branch on overflow set, 150
Bytes, multiple, 58

-c-
C flag, 42, 45, 46
Character display mode of the

6566/6567,277-279
Character sets, 216-224
Chip information, 245·308

6520 (PIA) Peripheral interface
adaptor, 246-250

6522 (VIA) Versatile interface adaptor,
261-270

6525 Tri-port interface, 304-308
6526 (CIA) Complex interface adap­

tor, 270-277
6545-1 (CRTC) CRT controller, 251·256
6560 (VIC) video interface chip,

256·261
6566/6567 (VIC II) chip specifications,

277-292
6581 (SID) Sound Interface device,

chip specification, 292-303
CHKIN subroutine, 136, 137
CHKOUT subroutine, 133, 134
CLRCHN subroutine, 136
CHRGET subroutine, 122, 124
CHRGOT subroutine, 123, 124
CHROUT subroutine, 25,133
CIA chip, 121
CLC, Clear carry flag, 150
CLD, Clear decimal mode, 150
CLI, clear interrupt disable bit, 118
Clock speed, 132
CLOSE,134
CLRCHN subroutine, 133, 135, 137
CLV, Clear overflow flag, 150
CMP, Compare memory and

accumulator, 150
Color codes of the 6566/6567, 292
Commodore computers, characteristics

of, 156·159
Compare, 141
Comparing numbers, 61-62
Complex interface adaptor 6526,121,

270-277
Control bus, 5
CPX, Compare memory and index X, 150
CPY, Compare memory and index Y, 150

-0-
Data bus, 4-5

see also Bus
Data exchange, BASIC machine

language, 104-108
Debugging, 142·143
DEC, Decrement memory by one, 150
Decimal notation to hexadecimal, 7-8
DEX, Decrement index X by one, 150
D~Y, Decrement Ind~x Y by one, 150
Disassembler, checking the, 29-30
Disk user's guide, 310-315
Division by two, 63-64
Do nothing instruction, 72-74
DRA, logical operator, 121
Dynamic string, 94

-E-
Effective address, 32
End of BASIC, 92
Envelope rates of the 6581, 299
EOA, end of arrays, 93
EOR, exclusive or, 47, 48, 49,121,150
EOR instruction, 87
Exercises, 11-13, 52-54, 84-88, 226-232

adding a command, 124,230
interrupt, 119, 228-229
print, 26·27

Extended color mode of the 6566/6567,
280

-F-
File transfer program, 138-141
Flags, 40-46
Floating point variables, 103
Free memory, 94-95

-G-
GETIN, Gets an ASCII character, 25, 133
Glossary, 318-322

-H-
Handshaking, 270-271
Hexadecimal notation, 5-6
Hexadecimal notation to decimal, 6-7

-1-
lA, Interface adaptor chips, 9, 50,

120·122, 142
IER, Interrupt enable register, 122
IFR, Interrupt flag register, 121
Immediate addressing, 148
Immediate mode, 74-75
Implied accressmq, 148

Index 323
Implied mode, 72-74
INC, Increment memory by one, 74, 150
Increment and decrement instructions

141 '
Index registers, 32
Indexed absolute addressing, 148
Indexed indirect addressig, 149
Indexed indirect mode, 83-84
Indexed zero page addressing, 148
lndexmq modes,

absolute, 77-78
Indirect, 81-82
zero page, 78

Indirect indexed addressing, 149
Indirect indexed mode, 81-82
Infiltrating BASIC, 122-124
Input, 50-52, 133
GETIN, 50-51

swrtchmq, 136
INS, increment, 72
Instruction execution, 10-11
Instruction set, 141-142, 147

alphabetic sequence, 149·151
Integer variables, 104
Interface adaptor chips, 9, 50, 120·122,

142
Interrupt enable register, 122
Interrupt flag register, 121
Interrupt processing, 40
Interrupt request, 115
INX, Increment Index X by one, 150
INY, Increment index Y by one, 150
IRQ, Interrupt request, 115, 117-118

-J-
JMP, Jump to new location, 80-81,

141,150
JSR, Jump to new locating saving

return address, 114-115, 150
Jump SUbroutine, 142
Jumps in indirect mode, 80-81

-K­
Kerl1al,24
Kernal subroutines, 324

CHKIN,137
CH ROUT, 133, 134
CHROUT, 25
CLRCHN,136
GETIN,51
STOP, 52

-L-
LDA, Load accumulator with memory,

150

324 Index

LOX, Load Index X with memory, 150
LOY, Load index Y with memory, 150
Light pen, 287
LOAD, 100-101, 141
Logical and arithmetic routines, 141
Logical operators, 47-50
Loops, 31-34
LSR, Shift one bit right (memory or

accumulator), 63-64, 150

-M-
Machine language and BASIC

exchanging data, 104-108
Machine language linking with BASIC,

30-31
Machine laguage rnorutor SAVE, 99-100
Memory contents

changing, 17
displaying, 16-17

Memory elements, 8-9
Memory, free, 94-95
Memory interface of the 6566/6567,

289-292
Memory layout, BASIC, 92-102
Memory maps,

B series, 197-206
CBM 8032, 173-174
Commodore PLUS/4 "TED" chip,

195-197
Commodore 64, 185-194
FAT-40 6545 CRT, controller, 173-174
"Original ROM" PET, 162-166
Upgrade and BASIC 4.0 systems,

166-173
VIC 20, 175-181
VIC 6522 usage, 183-184
VIC 6560 chip, 182

Microprocessor chips, 650X, 3-4
MLM commands, 15-16,99-100

.G command, 16

.M command, 16

.R command, 16
Save command. 99-100
.X command, 15

MLM, Machine language monitors, 14
238

Modes,
absolute indexed, 77-78
addressing, 72-89
all of zero page, 78
indexed, indirect, 83-84
indirect, indexed, 81-82
jumps in indirect, 80-81
no address, 72-74
no address accumulator, 74
not quite an address, 74-75

relative address, 79-80
single address, 75-76
zero page, 76-78

Monitors,
basic, 13-14
display, 14-15
extensions, 27-29
machine language (MLM), 14
machine language SAVE, 99-100

Multi-color character mode of the
6566/6567, 279

Multiplication, 62-63
by two, 61-62

-N-
N flag, 42-43, 45, 46
Non-rnaskable interrupt (NMI), 115, 118
NOP, No operation, 72-74,85,150
NOP BRK, No operation, break, false

interrupt, 142
Numbers,

comparing, 61-62
signed. 43-44. 58
unsigned, 58

Numeric variables, 104

-0-
Op code ends, 323
Op codes, single-byte, 323
OPEN, 133-134
ORA, "OR" memory with accumulator,

47,48,49,150
Output, 133

controlling, 24-36
examples of, 135-136
switching, 133-135

Overflow, 44

-p-
PC, Program control register, 9
PEEK, 5, 104
PHA, Push accumulator on stack, 113,

150
PHP, Push processor status on stack,

114,150
PIA, Peripheral Interface adaptor 6520,

120,246-250
PLA, Pull accumulator from stack, 113,

114,150
PLP, Pull processor status from stack,

114,150
POinters, frxmq, 102
POKE, 5, 26, 104
Program,

entering a, 18-19

running a, 30
Programming model, 151
Programming projects, 11-13,52-54,

84-88, 226-232
adding a command, 124,230
interrupt, 119, 228-229
print, 26-27

Programs, file transfer, 138-141
Pull information, 142
Push information, 142
Push processor status, 114

-R-
RAM, Random access memory, 8
Register map of the 6566/6567, 290-291
Registers, 9-10,17

A, X, and Y, 9, 11,46,47
index, 32
status, 45-46

Relative addressing, 148-149
mode, 79-80

ROL, Rotate one bit left (memory or
accumulator), 62, 150

ROM, Read only memory, 8-9
linK 80-81

ROR, Rotate one bit right (memory or
accumulator), 63-64, 150

Rotate, comments, 64-65
RT!. Return from Interrupt, 115, 150
RTS, Return from subroutine, 65,

114-115,151
RUN STOP key, 51-52

-5-
6502 Instruction set, 147
6509 Instruction set, 147
6510 Instruction set, 147
6520 (PIA) Peripheral interface adaptor,

246-250
6522 (VIA) Versatile interface adapter,

261-270
6525 Tn-port Interface, 304-308
6526 (CIA) Complex Interface adaptor,

270-277
6545-1 (CRTC) CRT controller, 251-256
6560 (VIC) Video Interface chrp, 256-261
6566/6567 (VIC II) Chip specifications,

277-292
6581 (SID) Sound Interface device,

chip specifications, 292-303
7501 Instruction set, 147
SAVE, 34, 141

stopgap. 34-35
SBC, Subtract memory from accumula­

tor with borrow, 151
Screen codes, 216-224

Index 325

Screen manipulations, 84-88
Screen rpernory address, 20
SEC, Set carry flag, 151
SED, Set decimal mode, 151
SEI, Set interrupt disabler status, 118,

151
Shift and rotate instructions, 61-63, 74

141
Shift, comments on, 64-65
Signed numbers, 43-44, 58
Single address mode, 75-76
SOA, Start of arrays, 93
SOB, Start of basic, 92
Sound interface device (SID) chip

specification 6581, 292-303
SOV, Start of vanables, 93, 97-102
SP, Stack pointer register, 9
SR, Status register, 9
STA, Store accumulator In memory, 151
Stack, 112-115
Status register, 45-46
Stop, 25, 51-52
Stopgap save command, 34-35
Storage, temporary, 112-115
String vanables, 103
STX. Store Index X In memory. 151
STY, Store index Y in memory, 151
Subroutines,

CHROUT,25
GETIN, 25, 50-51
KERNAL, 24, 324
prewntten, 24-25
STOP, 25, 51-52

Subtraction, 60-61
Supermom program 27, 238-244
Symbolic assemblers, 143-144
SYS, Go to the address supplied, 116

-T-
TAX, Transfer accumulator to index X,

113,151
TAY, Transfer accumulator to Index Y,

72, 113, 151
Testable flags, 40-45
Time of day clock, 273
Timing, machine language program,

132-133
TOM, Top of memory, 93
Tn-port Interface 6525, 304-308
TSX, Transfer stack pointer to index X,

151
TXA, Transfer index X to accumulator,

151
TXS, Transfer index X to stack register,

151
TYA, Transfer Index Y to accumulator,

151

326 Index

-u-
Uncrashing techniques, 234·235.
Unsigned numbers, 58,
USR, Go to a fixed addres and execute

machine code there as a
subroutine, 116-117

-v-
V Flag, 44, 45, 46
Variables, 102-105
VIA, Versatile interface adaptor, 120-121
VIC II chip specifications 6566/6567,

277·292
(VIC) Video interface chip 6560, 256-261

-w-
Wedge, 122·124

program, 124-125

-z-
Z Flag, 40-41, 45, 46
Zero page addressing, 148
Zero page mode, 76-78

indexed,78

The six major Kernal subroutines'

Addrs

$FFC6
$FFC9
$FFCC
$FF02
$FFE1
$FFE4

Name

CHKIN
CHKOUT
CLRCHN
CHROUT
STOP
GETIN

ActIOn

SWitch Input to logical file X
SWitch output to logical file X
Restore input/output defaults
Output ASCII character In A
Check RUN/STOP key
Get ASCII character Into A

Registers
Changed

A,X
A,X
A,X
none
A
A,X,Y

Some Important Memory addresses (hexadecimal):
Original ROM PET not included.

POinters. PET/CBM VIC C64

Start of BaSIC 0028 002B 002B
Start of Vanables 002A 0020 0020
End of Arrays 002E 0031 0031
Bottom of Stnngs 0030 0033 0033
Top of Memory 0034 0037 0037

Status word ST 0096 0090 0090
USR Jump 0000 0000 0310
CHRGET subroutine 0070 0073 0073
Floating accumulator 005E 0061 0061
Keytouch register 0097 OOCB OOCB

