COMMODORE 128

PROGRAMMER'S
REFERENCE GUIDE

Bantam Computer Books

Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE lie BOOK
by Bill O'Brien

THE ART OF DESKTOP
PUBLISHING

By Tony Bove, Cheryl Rhodes,
and Wes Thomas

ARTIFICIAL INTELLIGENCE
ENTERS THE MARKETPLACE
by Larry R. Harris and

Dwight B. Davis

THE BIG TIP BOOK FOR
THE APPLE Il SERIES
by Bert Kersey and

Bill Sanders

THE COMMODORE 64 SURVIVAL
MANUAL
by Winn L. Rosch

COMMODORE 128 PROGRAMMER'S
REFERENCE GUIDE
by Commodore Business Machines, Inc.

THE COMPUTER AND THE BRAI N
by Scott Ladd/
The Red Feather Press

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR APPLE Il
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR COMMODORE 64
by Tim Hartnell

EXPLORING ARTIFICIAL INTELLIGENCE
ON YOUR IBM PC
by Tim Hartnell

EXPLORING THE UNIX ENVIRONMENT
by The Waite Group/lrene Pasternack

FRAMEWORK FROMTHE GRCUND UP
by The Waite Group/Cynthia Spoor and
Robert Warren

HOW TO GET THE MOST OUT OF
COMPUSERVE, 2d ed.
by Charles Bowen and David Peyton

HOWTOCET THE MOST QUT CF THE
SAURCE
by Charles Bowen and David Peyton

THE MACINTOSH
by Bill O'Brien

MACINTOSH C PRIMER PLUS
by The Waite Group/Stephen W. Prata

THE NEWjr. A GUIDE TO IBM'S PCjr
by Winn L. Rosch

ORCHESTRATING SYMPHONY
by The Waite Group/Dan Shafer with
Mary Johnson

PC-DOSMS-DOS

User's Guide to the Most Popular Operating
Systemfor Personal Computers

by Alan M. Boyd

POWER PAINTING: COMPUTER GRAPHICS
ON THE MACINTOSH

by Verne Bauman and Ronald Kidd/

illustrated by Gasper Vaccaro

SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider

SWING WITH JAZZ: LOTUS JAZZ ON THE
MACINTOSH
by Datatech Publications Corp./S. Michadl McCarty

UNDERSTANDING EXPERT SYSTEMS
by The Waite Group/Mike Van Horn

USER'S GUIDE TO THE AT&T PC 6300
PERSONAL COMPUTER

by David B. Peatroy, Ricardo A. Anzaldua,
H. A. Wohlwend, and Datatech Publications
Corp.

COMMODORE 128

PROGRAMMER'S
REFERENCE GUIDE

COMMODORE BUSINESS MACHINES, INC.

-
® é ¥

BANTAM BOOKS

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE
A Bantam Book | February 1986

Commodore 64 and Commodore 128 are registered trademarks of Commodore
Electronics. Ltd.

CP/M and CP/M Plus Version 3.0 are registered trademarks of Digital Research

Perfect is a registered trademark of Perfect Software.

TouchTone is a registered trademark of AT&T.

WordStar is a registered trademark of MicroPro International Corporation.
Grateful acknowledgment is made for permission to reprint two bars of Invention

13 (Inventio 13) b\ Johann Sebastian Bach. Sheet music copyright © C. F. Peters,
Corp., New York.

Book design by Ann Gold.
Cover design by Jo Ellen Temple.

All rights reserved.

Copyright © 1986 by Commodore Capital, Inc.

This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.
For information address: Bantam Books, Inc.

ISBN 0-553-34292-4

Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting of
the words "Bantam Books' and the portrayal of a rooster, is Registered in U.S.
Patent and Trademark Office and in other countries. Marca Regisirada. Bantam
Books, Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

HL 0987 65 4 3

CONTENTS

Chapter 1
I ntroduction

Chapter 2
BASIC Building Blocks and BASIC 7.0 Encyclopedia

Chapter 3
One Step Beyond Simple BASIC

Chapter 4
Commodore 128 Graphics Programming

Chapter 5
Machine Language on the Commodore 128

Chapter 6
How to Enter Machine Language Programs Into the
Commodore 128

Chapter 7
Mixing Machine Language and BASIC

Chapter 8
The Power Behind Commodore 128 Graphics

Chapter 9
Sprites

Chapter 10
Programming the 80-Column (8563) Chip

Chapter 11
Sound and Music on the Commodore 128

Chapter 12

11

91

109

181

197

207

265

291

Chapter 13
The Commodore 128 Operating System

Chapter 14
CP/M 3.0 on the Commodore 128

Chapter 15
The Commodore 128 and Commodore 64 Memory Maps

Chapter 16

C128 Hardware Specifications
Appendixes
Glossary

Index

401

477

501

555

643

731

739

ACKNOWLEDGMENTS

Written by Larry Greenley

and

Fred Bowen

Bil Herd

Dave Haynie

Terry Ryan

Von Ertwine

Kim Eckert

Mario Eisenbacher

Norman McVey

The authors are deeply indebted to the many people who have contributed to the
preparation of this book. Specia thanks go to Jim Gracely of Commodore Publications,
who reviewed the entire manuscript for technical accuracy and provided important
corrections, clarifications, and user-oriented suggestions, and to Steve Beats and Dave
Middleton of Commodore Software Engineering for their programming assistance and
expertise.

We also want to recognize the contributions of Frank Palaia of Commodore Hardware
Design, who provided expertise in the operation of the Z80 hardware, and of Dave
DiOrio of Commodore Integrated Circuit Design, who provided insight into the design
of the Memory Management Unit and the C128 VIC chip enhancements.

For their extensive technical reviews of the manuscript, we wish to thank Bob Albright,
Pete Bowman, Steve Lam and Tony Porrazza of Commodore Engineering. We also
thank Dan Baker, Dave Street and Carolyn Scheppner of Commodore Software Techni-
cal Support for providing an always available source of technical assistance. In addition,
we want to acknowledge the valuable contributions of members of Commodore Soft-
ware Quality Assurance, especialy Mike Colligon, Karen Mackenzie, Pat McAllister,
Greg Rapp, Dave Resavy, and Stacy English.

We dso thank Carol Sullivan and Donald Bein for carefully proofreading various
sections of the text, Michelle Dreisbach for typing the manuscript, Marion Dooley for
preparing the art, Jo-Ellen Temple for the cover design, and Nancy Zwack for overal
coordination assistance.

Finally, we would like to acknowledge the unflagging support and guidance provided by
senior Commodore executives Paul Goheen, Harry McCabe and Bob Kenney.

INTRODUCTION

The Commodore 128 Persona Computer is a versatile, multimode computer. The
Commodore 128 is the successor to the commercially successful Commodore 64 com-
puter. The principa features of the Commodore 128 are:

128K bytes of RAM, optionally expandable to 256K or 640K
80-column horizontal screen display

Hardware and software compatibility with Commodore 64
CP/M 3.0 operation

Enhanced BASIC language

As this Guide shows, the Commodore 128 has many other new or expanded
capabilities and features. Those listed above, however, are the most significant when
assessing the Commodore 128's capabilities against those of the Commodore 64 and
other microcomputers.

The Commodore 128 is actualy three computers in one, with the following three
primary operating modes:

 C128 Mode
« (C64 Mode
« CP/M Mode

Two of these primary modes (C128 and CP/M) can operate using either a 40- or
80-column screen display. Following is a summary of the mgjor features of each of the
three primary operating modes.

Cl28 MODE

In C128 Mode, the Commodore 128 Personal Computer provides the capabilities and
memory needed to run sophisticated applications, such as word processing, spreadsheets,
and database programs.

C128 Mode features include:

8502 processor running a 1.02 or 2.04 MHz

New, enhanced C128 Kerna

Built-in machine language monitor

Commodore BASIC 7.0 language, with over 140 commands and functions
Specia new BASIC 7.0 commands that provide better, quicker and easier ways
to create complex graphics, animation, sound and music programs

40-column text and bit map screen output using VIC Il chip

80-column text screen output using 8563 chip

INTRODUCTION

NOTE: The 40- and 80-column screen displays can be used either singly
or smultaneoudly with two monitors.

Sound (three voices) using SID chip

A 92-key keyboard that includes a full numeric keypad and ESCAPE, TAB,
ALT, CAPS LOCK, HELP, LINE FEED, 40/80 DISPLAY, and NO SCROLL
keys

Access to the full capabilities of the new peripheral devices from Commodore
(1571 fast disk drive, 1902 dua 40/80-column RGBI monitor, etc.)

Access to dl standard Commodore seria peripheras

RAM expansion to 256 or 640K with optiona RAM expansion modules

C64 MODE

In C64 Mode, the Commodore 128 retains al the capabilities of the Commodore 64,
thus alowing you to use the wide range of available Commodore 64 software.
C64 Mode features include:

8502 processor running a 1.02 MHz

Standard C64 Kerna

BASIC 2.0 language

64K of RAM

40-column output using VIC Il chip

Sound (three voices) using SID chip

Standard Commodore 64 keyboard layout except for function keys

All standard Commodore 64 keyboard functions

Access to adl Commodore 64 graphics, color and sound capabilities, used
as on a Commodore 64

Compatibility with standard Commodore 64 peripherals, including user port and
serial devices, Datassette, joysticks, composite video monitors, and RF
(TV) output devices

NOTE: The 1571 disk drive will function in C64 Mode, but only
at standard 1541 speed. C64 compatibility requirements make it impossi-
ble for the 1571 to operate in C64 Mode &t fast speed.

CP/M MODE

In CP/M Mode, an onboard Z80 microprocessor gives you access to the capabilities of
Digitd Research's CP/M Verson 3.0, plus a number of new capabilities added by Commodore.
CP/M Mode festures include:

Integral Z80 processor running at 2.04 MHz

Disk-based CP/M 3.0 System

128K bytes of RAM (in 64K banks)

40-column screen output using VIC Il chip

80-column screen output using 8563 chip

Access to the full keyboard, including the numeric keypad and specia keys
Access to the new fag serid disk drive (1571) and the standard serid peripherals
Ability to redefine amost any key

Ability to emulate severa terminals (Lear-Siegler ADM31, ADM3A)
Support for various MFM disk formats (IBM, Kaypro, Epson, Osborne)
RAM expansion to 256 or 640K RAM with optional RAM expansion modules

The incorporation of CP/M 3.0 (also called CP/M Plus) into the Commodore 128

makes thousands of popular commercial and public domain software programs available
to the user.

HARDWARE COMPONENTS

The Commodore 128 Personal Computer incorporates the following mgor hardware
components:

PROCESSORS

8502: Main processor in C128, C64 Modes, 1/0 support for CP/M; 6502 software-
compatible; runs a 1.02 or 2.04 MHz
Z80: CP/IM Mode only; runs at 2.04 MHz

MEMORY

ROM: 64K standard (C64 Kernd plus BASIC; C128 Kernd plus BASIC, character
ROMs and CP/M BIOS); one 32K dot available for software
RAM: 128K in two 64K banks; 16K display RAM for 8563 video chip; 2K x 4 Color RAM

VIDEO

8564: 40-column video (separate versions for NTSC and PAL TV standards)
8563: 80-column video

INTRODUCTION

SOUND

6581: SID Chip

INPUT/OUTPUT

6526: Joystick ports/keyboard scan/cassette
6526: User and serid ports

MEMORY MANAGEMENT

892/: PLA (C64 plus C128 mapping modes)
8922: MMU (Custom gate array)

For details on these and other hardware components see Chapter 16, Commaodore
128 Hardware Specifications.

COMPATIBILITY WITH
COMMODORE 64

The Commodore 128 system is designed as an upgrade to the Commodore 64. Accord-
ingly, one of the mgjor features of the Commodore 128 design is hardware and software
compatibility with the Commaodore 64 when operating in C64 Mode. This means that in
C64 Mode the Commodore 128 is capable of running Commodore 64 application
software. Also, the Commodore 128 in C64 Mode supports Commaodore 64 peripherals
except the CP/IM 2.2 cartridge. (NOTE: The Commodore 128's built-in CP/M 3.0
capability supersedes that provided by the externa cartridge. This cartridge should not
be used with the Commodore 128 in any mode.)

The C128 Mode is designed as a compatible superset to the C64. Specifically, al
Kernad functions provided by the Commodore 64 are provided in the C128 Kernal.
These functions are aso provided at the same locations in the jump table of the C128
Kernad to provide compatibility with existing programs. Zero page and other system
variables are maintained at the same addresses they occupy in C64 Mode. This simpli-
fies interfacing for many programs.

Providing Commodore 64 compatibility means that the new features of the Com-
modore 128 cannot be accessed in C64 Mode. For example, compatibility and memory
constraints preclude modifying the C64 Mode Kerna to support the 1571 fast seria disk
drive. As noted previously, C64 Mode sees this drive as a standard serid disk drive. For
the same reason, C64 Mode does not have an 80-column screen editor, and C64 Mode
BASIC 2.0 cannot use the second 64K bank of memory.

SWITCHING FROM MODE TO MODE

As mentioned before, in the C128 and CP/M Modes the Commaodore 128 can provide
both 40-column and 80-column screen displays. This means that the Commodore 128
actualy has five operating modes, as follows:

e C128 Mode with 80-column display
e C128 Mode with 40-column display
e (C64 Mode (40-column display only)
e« CP/M Mode with 80-column display
e« CP/M Mode with 40-column display

Figure 1-1 summarizes the methods used to switch from mode to mode.

FROM
TO
OFF C128 C128 C64 CP/IM CP/IM
40 COL 80 COL 40 COL 80 COL
Cl28 1. Check that 1. PressESC 1 Check that 1 Check that 1. Check that
40 COL 40/80 key key; 40/80 key 40/80 key 40/80 key
is UP. release. is UP. is UP. is UP.

2. Make sure 2. Press X 2. Turn com- 2. Turn com- 2. Turn com-
that: key. puter OFF, puter OFF, puter OFF,
a)NoCP/M OR then ON. then ON. then ON.

system 1. Check that 3. Remove

disk is 40/80 key cartridge

in drive is UP. if present
b)No C64 2. Press

cartridge RESET

isin ex- button.

pansion

port

3. Turn com-
puter ON.

Cl28 1 Press 1. Press 1. Press 1 Press 1. Check that
80 COL 40/80 key ESC key; 40/80 key 40/80 key 40/80 key
DOWN. release. DOWN. DOWN. is DOWN.
2. Turn com- 2. Press X 2. Turn com- 2. Remove 2. Remove
puter ON. key. puter OFF, CPIM sys- CPM sys-
OR then ON. tem disk tem disk
1. Press 3. Remove from from
40/80 key cartridge drive, if drive, if
DOWN. if present. necessary. necessary.
2. Press 3. Turn com- 3. Turn com-
RESET puter OFF, puter OFF,
button. then ON. then ON.

Figure I-1. Commodore 128 Mode Switching Chart

INTRODUCTION

FROM
TO
OFF C128 C128 C64 CP/M CP/M
40 COL 80 COL 40 COL 80 COL
c64 1. Hold 1 Type GO 1 Type GO L Turn com- 1 Turn com-
" G " key 64; press 64; press puter OFF. puter OFF.
DOWN. RETURN. RETURN. Check that 2 Check that
2. Turn com- 2. Thecom- 2. The com- 40/80 key 40/80 key
puter ON. puter re- puter re- is UP. is UP.
OR sponds: sponds: 3. Hold 3. Hold
1. Insert C64 ARE YOU ARE YOU DOWN DOWN
cartridge. SURE? SURE? C' ke G key
2. Turn com- Type Y, Type Y, while while turn-
puter ON. press press turning ing com-
RETURN. RETURN. computer puter ON.
ON. OR
OR 1 Turn com-
1 Turn com- puter OFF.
puter OFF. 2 Insert C64
2. Insert C64 cartridge.
cartridge. 3. Turn
3. Turn power
power ON. ON.
CP/M 1 Turndisk |. Tundisk 1 Turndisk 1 Check tha 1. Insert
40 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2. Insert 2. Insert 2. Insert isUP. ities disk
CPIM sys CPIM sys CPM sys- 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2. At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Check that 3. Check that 3. Check that CPIM sys- A> type
40/80 key- 40/80 key 40/80 key tem disk DEVICE
is UP. is UP. is UP. in drive. CONOUT: =
4. Turn com- 4. Type: 4. Type: 4. Turn com- 40 COL
puter ON. BOOT BOOT puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.
CP/IM 1 Turndisk 1 Turndisk 1. Turndisk 1 Press 1 Insert
80 COL drive ON. drive ON. drive ON. 40/80 key CP/M util-
2 Insert 2. Insert 2. Insert DOWN. ities disk
CPIM sys CPIM sys CPM syss 2. Turn disk in drive.
tem disk tem disk tem disk drive ON. 2, At screen
in drive. in drive. in drive. 3. Insert prompt,
3. Press 3. Press 3. Check that CPIM sys- A> type
40/80 key 40/80 key 40/80 key tem disk DEVICE
DOWN. DOWN. is DOWN. in drive. CONOUT =
4. Turn com- 4. Type: 4. Type: 4. Turn com- 80 COL
puter ON. BOOT BOOT. puter OFF. 3. Press
5. Press 5. Press RETURN.
RETURN. RETURN.

Figure I-1. Commodore

128 Mode Switching Chart (continued)

NOTE: If you are usng a Commodore 1902 dua monitor, remember to
move the video switch on the monitor from COMPOSITE or SEPA-
RATED to RGBI when switching from 40-column to 80-column display;
reverse this step when switching from 80 to 40 columns. Also, when
switching between modes remove any cartridges from the expansion port.
You may also have to remove any disk (e.g., CP/M) from the disk drive.

CP/M 3.0 SYSTEM RELEASES

When you send in your C128 warranty card, your name will be added to a list
which makes you eligible for CP/M system release dates.

HOW TO USE THIS GUIDE

This guide is designed to be a reference tool that you can consult whenever you need
detailed technica information on the structure and operation of the Commodore 128
Personal Computer. Since many of the design features of the Commodore 128 can be
viewed from various aspects, it may be necessary to consult severa different chapters to
find the information you want. Note that certain groups of chapters form logical sequences
that cover in detail an extended topic like BASIC, graphics, or machine language.

The following chapter summaries should help you pinpoint what chapter or
chapters are most likely to provide the answer to a specific question or problem.

CHAPTER 2. BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA—
Defines and describes the structural and operational components of the BASIC
language, including constants, variables and arrays, and numeric and string ex-
pressions and operations.

CHAPTER 3. ONE STEP BEYOND SIMPLE BASIC—Provides routines (menu,
keyboard buffer, loading, programming function keys) and techniques (*crunch-
ing" or saving memory; debugging and merging programs,; relocating BASIC)
that can be incorporated in your own programs. Provides modem-related informa-
tion (how to generate TouchTone® frequencies, how to detect telephone ringing,
etc.) plus technical specifications for Commodore Modem/1200 and Modem/300.

CHAPTER 4. COMMODORE 128 GRAPHICS PROGRAMMING—Describes the
general BASIC 7.0 graphics commands (COLOR, GRAPHIC, DRAW, LO-
CATE, BOX, CIRCLE, PAINT) and gives annotated examples of use, including
programs. Describes the structure and general function of the color modes and
character and bit map graphics modes that are fundamental to Commodore 128

graphics.

INTRODUCTION

CHAPTER 5. MACHINE LANGUAGE ON THE COMMODORE 128—Defines,
with examples, machine language (ML) and associated topics, including the
Kernal; the 8502 registers, binary and hexadecimal numbers, and addressing
modes. Defines, with examples, types of ML instructions (op codes, etc.).
Includes 8502 instruction and addressing table.

CHAPTER 6. HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE
COMMODORE 128—Describes, with examples, how to enter ML programs by
using the built-in Machine Language Monitor or by POKEing decima op-code
vaues with aBASIC program. Defines, with examples, the ML Monitor commands.

CHAPTER 7. MIXING MACHINE LANGUAGE AND BASIC—Describes, with
examples, how to combine BASIC and ML instructions in the same program by
using BASIC READ, DATA, POKE and SYS commands. Shows where to place
ML programs in memory.

CHAPTER 8. THE POWER BEHIND COMMODORE 128 GRAPHICS—Describes
the C128 Mode memory banking concept and tells how to manage banked
memory. Defines the use of shadow registers. Describes how screen, color and
character memory are handled in BASIC and machine language, for both character
and bit map modes. Shows how to redefine the character set. Describes use of
split-screen modes. Includes a tabular graphics programming summary.

CHAPTER 9. SPRITES—Describes programming of sprites or MOBs (movable object
blocks). Defines and shows how to use the BASIC 7.0 sprite-related commands
(SPRITE, SPRDEF, MOV SPR, SSHAPE, GSHAPE, SPRSAV). Provides anno-
tated examples of use, including programs.

CHAPTER 10. PROGRAMMING THE 80-COLUMN (8563) CHIP—Defines the
8563 registers and describes, with machine language examples, how to program
the 80-column screen in character and bit map modes.

CHAPTER I1. SOUND AND MUSIC ON THE COMMODORE 128—Defines the
BASIC 7.0 sound and music commands (SOUND, ENVELOPE, VOL, TEMPO,
PLAY, FILTER). Describes how to code a song in C128 Mode. Defines in detail
the Sound Interface Device (SID) and how to program it in machine language.

CHAPTER 12. INPUT/OUTPUT GUIDE—Describes software control of peripheral
devices connected through I/O ports, including disk drives, printers, other User
Port and Serial Port devices, the Datassette, and Controller Port devices. Provides
pin-out diagrams and pin descriptions for all ports.

CHAPTER 13. THE COMMODORE 128 OPERATING SYSTEM—Describes, with
examples, the operating system (Kerna), which controls the functioning of the
Commodore 128; includes the Kernal Jump Table, which lists the ROM entry
points used to cal the Kerna routines; defines each Kerna routine; defines the
C128 Screen Editor. Describes the Memory Management Unit (MMU), defines
the MMU registers, tells how to select and switch banks in BASIC and ML, and
tells how to predefine memory configurations.

CHAPTER 14. CPM 3.0 ON THE COMMODORE 128—Summarizes the Commo-
dore version of CP/M 3.0. Defines the genera system layout and the operating
system components (CCP, BIOS and BDOS). Describes the Commodore enhance-
ments to CP/M 3.0. (Additional details on CP/M 3.0 are given in Appendix K.)

CHAPTER 1S. COMMODORE 128 AND COMMODORE 64 MEMORY MAPS—
Provides detailed memory maps for C128 and C64 modes. (The Z80 memory
map is shown in Appendix K.)

CHAPTER 16. HARDWARE SPECIFICATIONS—Includes technical specifications for
Commodore 128 hardware components (8563, 8564, etc.).

APPENDIXES A through L—Provide additional technical information and/or a more
convenient grouping of information supplied elsewhere in the Guide (e.g., pinout
diagrams).

GLOSSARY—Provides standard definitions of technical terms.

2

BASIC
BUILDING
BLOCKS AND
BASIC 7.0
ENCYCLOPEDIA

The BASIC language is composed of commands, operators, constants, variables, arrays
and strings. Commands are instructions that the computer follows to perform an
operation. The other elements of BASIC peform a variety of functions, such as
assigning values to a quantity, passing vaues to the computer, or directing the computer
to perform a mathematical operation. This section describes the structure and functions
of the elements of the BASIC language.

COMMANDS AND STATEMENTS

By definition, commands and statements have the following distinctions. A command is
a BASIC verb which is used in immediate mode. It is not preceded by a program line
number and it executes immediately after the RETURN key is pressed. A statement is
a BASIC verb which is contained within a program and is preceded by a line number.
Program statements are executed with the RUN command followed by the RETURN key.

Most commands can be used within a program. In this case the command is
preceded by a line number and is said to be used in program mode. Many commands
also can be used outside a program in what is called direct mode. For example, LOAD
is an often-used direct mode command, but you can aso include LOAD in a program.
GET and INPUT are commands that only can be used in a program; otherwise, an
ILLEGAL DIRECT ERROR occurs. While PRINT is usualy included within a
program, you can aso use PRINT in direct mode to output a message or numeric value
to the screen, as in the following example:

PRINT "The Commodore 128" RETURN

Notice that the message is displayed on the screen as soon as you press the return
key. The following two lines display the same message on the screen. The firgt line is a
program mode statement; the second line is a direct mode command.

10 PRINT "The Commodore 128" RETURN
RUN RETURN

It is important to know about the concepts behind memory storage before examin-
ing the Commodore BASIC language in detail. Specificaly, you need to understand
constants, variables and arrays.

NUMERIC MEMORY STORAGE:
CONSTANTS, VARIABLES AND ARRAYS

There are three ways to store numeric information in Commodore BASIC. The first way
is to use a constant. A constant is a form of memory storage in which the contents
remain the same throughout the course of a program. The second type of memory
storage unit is a variable. As the name indicates, a variable is a memory storage cell in

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

which the contents vary or change throughout the course of a program. The last way to store
information is to use an array, a series of related memory locations consisting of variables.

Each of these three units of memory storage can have three different types of
information or data assigned. The three data types are INTEGER, FLOATING-POINT
or STRING. Integer data is numeric, whole number data—that is, numbers without
decimal points. Floating-point is numeric data including fractional parts indicated with a
decimal point. String data is a sequential series of aphanumeric letters, numbers and
symbols referred to as character strings. The following paragraphs describe these three
data types and the way each memory storage unit is assigned different data type values.

CONSTANTS: INTEGER,
FLOATING-POINT AND STRING

INTEGER CONSTANTS

The value assigned to a constant remains unchanged or constant throughout a program.
Integer constants can contain a positive or negative value ranging from -32768 through
+ 32767. If the plus sign is omitted, the C128 assumes that the integer is positive.
Integer constants do not contain commas or decima points between digits. Leading
zeros are ignored. Integers are stored in memory as two-byte binary numbers, which
means a constant requires 16 bits or two bytes of memory to store the integer as a base
two number. The following are examples of integer constants:

I

1000
-32

0
-32767

FLOATING-POINT CONSTANTS

Floating-point constants contain fractional parts that are indicated by a decimal
point. They do not contain commas to separate digits. Floating-point constants may be
positive or negative. If the plus sign is omitted, it is assumed that the number is
positive. Again, leading zeros are unnecessary and ignored. Floating-point constants are
represented in two ways depending on their value:

1. Simple Number Notation
2. Scientific Notation

In simple number notation, the floating-point number is calculated to ten digits of
precision and stored using five bytes, but only nine digits are displayed on the screen or
printer. If the floating-point number is greater than nine digits, it is rounded according to
the tenth digit. If the tenth digit is greater than five, the ninth digit is rounded to the next
higher digit. If the tenth digit is less than five, the ninth digit is rounded to the next
lower digit. The rounding of floating-point numbers may become a factor when calcul at-

13

ing values based upon floating-point numbers grester than nine digits. Your program
should test floating-point results and take them into consideration when basing these
values on future calculations.

As mentioned, floating-point numbers are displayed as nine digits. If the value of a
floating-point constant is less than .01 or greater than 999999999, the number is
displayed on the screen or printer in scientific notation. For example, the number
12345678901 is displayed as 1.23456789E+ 10. Otherwise, the smple number notation
is displayed. A floating-point constant in scientific notation appears in three parts:

1. The mantissa is the leftmost number separated by a decimal point.

2. The letter E indicates that the number is displayed in exponential (scientific)
notation.

3. The exponent specifies the power of ten to which the number is raised and the
number of places the decimal point is moved in order to represent the number
in smple number notation.

The mantissa and exponent can be positive or negative. The exponent can be
within the range -39 to +38. If the exponent is negative, the decimal point moves to
the left representing it as a simple number. If the exponent is positive, the decimal
point moves to the right representing it in smple number notation.

The Commodore 128 limits the size of floating-point numbers. The highest
number you can represent in scientific notation is 1.70141183E +38. If you try to
represent a number larger than that, an OVERFLOW ERROR occurs. The smallest
number you can represent in scientific notation is 2.93873588E-39. If you try to
represent a number smaller than that, no error occurs but a zero is returned as the value.
You should therefore test floating-point values in your programs if your calculations are
based on very smal numbers and the results depend on future calculations. Here are
examples of floating-point constants in simple number notation and others in scientific
notation:

SIMPLE NUMBER SCIENTIFIC
9.99 233E+20
0234 99999.234E-23
+10.01 -45.89E-11
-90.23 -3.14E+17

NOTE: The values in either column are not equivalent.

STRING CONSTANTS

A dring constant, as mentioned, is a sequentia series of alphanumeric characters
(numbers, letters and symbols). A string constant can be as long as a 160-character input

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

line, minus the line humber and any other information appearing on that program line.
By concatenating strings together, you may form a string as long as 255 characters. The
string may contain numbers, letters, and even decimal points and commas. However,
the string cannot contain the double quote (") character, since this character delimits or
marks the beginning or ending of the string. You can represent a double quote character
within a string using CHR$(34). You can omit the closing double quote character of a
string if it is the last statement in a line of a program.

A string can even be assigned a null value, meaning no characters are actually
assigned to it. Assign a string a null value by omitting characters between the double
quotes and follow the opening double quote directly with a closing double quote. Here
are some examples of string constants:

"Commodore 128"
"qwerl 2341 #$%()* .:,"
" " (null string)
"John and Joan"

VARIABLES: INTEGER,
FLOATING-POINT AND STRING

Variables are units of memory storage that represent varying data values within a
program. Unlike constants, variables may change in vaue throughout the course of a
program. The value assigned to a variable can be an integer, a floating-point number, or
astring. You can assign a value to a variable as the result of a mathematical calculation.
Variables are assigned values using an equals sign. The variable name appears to the left
of the equals sign and the constant or calculation appears to the right. When you refer to
a variable in a program before you assign it a value, the variable value becomes zero if
it is an integer or floating-point number. It becomes a null string if the variable is a
string.

Variable names can be any length, but for efficiency you should limit the size
of the variable to a few characters. Only the firgt two characters of a variable name
are dgnificant. Therefore, do not begin the names of two different variables with
the same two characters. If you do, the C128 will interpret them as the same variable
name.

The first character of a variable name must be a letter. The rest of the
variable name can be any letter or number from zero to nine. A variable name
must not contain any BASIC keyword. If you include a BASIC keyword in
a variable name, a SYNTAX ERROR occurs. BASIC keywords include al
BASIC statements, commands, function names, logica operator names and reserved
variables.

You can specify the data type of a variable by following the variable name with
a percent sign (%) if the variable is an integer value, or a dollar sign if the
variable is a string. If no character is specified, the C128 assumes that the variable
vaue is a floating-point number. Here are some examples of variables and how they are
assigned:

15

A = 3.679 (floating-point)
Z% = 714 (integer)
F$ = "CELEBRATE THE COMMODORE 128" (string)
T = A + Z% (floating-point)
Count % = Count % + 1 (integer)
G$ = "SEEK A HIGHER LEVEL OF CONSCIOUSNESS" (string)
H$ = F$ + G$ (string)

ARRAYS: INTEGER,
FLOATING-POINT AND STRING

Although arrays were defined earlier in this chapter as series of related variables or
constants, you refer to them with a single integer, floating point or string variable name.
All elements have the same data type as the array name. To access successive elements
within the array, BASIC uses subscripts (indexed variables) to refer to each unique storage
compartment in the array. For example, the alphabet has twenty-six letters. Assume an
array caled "ALPHA" is constructed and includes al the letters of the aphabet. To
access the first element of the array, which is also the first letter of the aphabet (A),
label Alpha with a subscript of zero:

ALPHA$(0) A
To access the letter B, label Alpha with a subscript of one:
ALPHAS$(1) B

Continue in the same manner to access dl of the elements of the array ALPHA, asin
the following:

ALPHA$(2) C
ALPHA$(3) D
ALPHA$(4) E
ALPHA$(5) z

Subscripts are a convenient way to access elements within an array. If subscripts
did not exist, you would have to assign separate variables for dl the data that would
normally be accessed with a subscript. The first subscript within an array is zero.

Although arrays are actualy stored sequentialy in memory, they can be multi-
dimensional. Tables and matrices are easily manipulated with two-dimensiona arrays.
For example, assume you have a matrix with ten rows and ten columns. You need 100
storage locations or array elements in order to store the whole matrix. Even though
your matrix is ten by ten, the elements in the aray are stored in memory one
after the other for 100 hundred locations.

You specify the number of dimensions in the arrays with the DIM statement. For
example:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

10 DIM A(99)

dimensions a one-dimensional floating-point array with 100 elements. The following are
examples of two-, three- and four-dimensional integer arrays:

20 DIM B(9, 9) (100 elements)
30 DIM C(20,20,20) (9261 eements)
40 DIM D(10,15,15,10) (30976 elements)

In theory the maximum number of dimensions in an array is 255, but you cannot
fit a DIMension statement that long on a 160-character line. The maximum number of
DIMension statements you can fit on a 160-character line is approximately fifty. The
maximum number of elements alowed in each dimension is 32767'. In practice, the size
of an array is limited to the amount of available memory. Most arrays are one-, two- or
three-dimensional. If an array contains fewer than ten elements, there is no need for a
DIM statement since the C128 automatically dimensions variable names to ten elements.
The firg time you refer to the name of the undimensioned array (variable) name, the
C128 assigns zero to the vaue if it is a numeric array, or a null string if it is a string
array.

You must separate the subscript for each dimension in your DIMension statement
with a comma. Subscripts can be integer constants, variables, or the integer result of an
arithmetic operation. Legal subscript values can be between zero and the highest
dimension assigned in the DIMension statement. If the subscript is referred to outside of
this range, a BAD SUBSCRIPT ERROR results.

The type of array determines how much memory is used to store the integer,
floating-point or string data.

Floating-point string arrays take up the most memory; integer arrays require the
least amount of memory. Here's how much memory each type of array requires:

5 bytes for the array name

+ 2 bytes for each dimension

+ 2 bytes for each integer array element
OR + 5 bytes for each floating-point element
OR + 3 bytes for each string element
AND + 1 byte per character in each string element

Keep in mind the amount of storage required for each type of array. If you only
need an integer array, specify that the array be the integer type, since floating-point
arrays require much more memory than does the integer type.

Here are some example arrays:

A$(0) = "GROSS SALES" (string array)
MTH$(K%) = "JAN" (string array)
G2%(X) =5 (integer array)

CNT%(G2%(X)) = CNT%(I)-2 (integer array)
FP(12*K%) = 24.8 (floating-point array)

17

SUM(CNT%(1)) = FP*K% (floating-point array)

A(B)=0 Sets the 5th element in the 1 dimensional array
caled "A" equa to O

B(5,6) = 26 Sets the element in row position 5 and column
position 6 in the 2 dimensiona array called "B "
equa to 26

C(1,2,3)=100 Sets the eement in row position 1, column

position 2, and depth position 3 in the 3 dimen-
sona array cdled "C" egua to 100

EXPRESSIONS AND OPERATORS

Expressions are formed using constants, variables and/or arrays. An expression can be a
single constant, simple variable, or an array variable of any type. It adso can be a
combination of constants and variables with arithmetic, relational or logical operators
designed to produce a single value. How operators work is explained below. Expres-
sions can be separated into two classes:

1. ARITHMETIC
2. STRING

Expressions have two or more data items caled operands. Each operand is
separated by a single operator to produce the desired result. This is usualy done by
assigning the value of the expression to a variable name.

An operator is a special symbol the BASIC Interpreter in your Commodore 128
recognizes as representing an operation to be performed on the variables or constant
data. One or more operators, combined with one or more variables and/or constants
form an expression. Arithmetic, relational and logical operators are recognized by
Commodore 128 BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions yield an integer or floating-point value. The arithmetic operators
(+,-,*,/,]) are used to peform addition, subtraction, multiplication, divison and
exponentiation operations, respectively.

ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is performed on the two
operands on either side of the operator. Arithmetic operations are performed using
floating-point numbers. Integers are converted to floating-point numbers before an
arithmetic operation is performed. The result is converted back to an integer if it is
assigned to an integer variable name.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

ADDITION (+)

The plus sign (+) specifies that the operand on the right is added to the operand on the
left.

EXAMPLES:

2+2

A+ B+C
X% +1
BR+10E-2

SUBTRACTION (-)

The minus sign (-) specifies that the operand on the right is subtracted from the operand
on the left.

EXAMPLES:

4-1
100764
A-B

55-142

The minus also can be used as a unary minus which is the minus sign in front of a
negative number. This is equd to subtracting the number from zero (0).

EXAMPLES:

-5

-9E4

"B

4-(-2) (same as 4+ 2)

MULTIPLICATION (*)
An asterisk (*) specifies that the operand on the left is multiplied by the operand on the
right.

EXAMPLES:

100*2
50*0
A*X1
R%* 14

DIVISION (/)
The dash (/) specifies that the operand on the Ieft is divided by the operand on the
right.

19

EXAMPLES:

102
6400/4
A/B
4E2/XR

EXPONENTIATION ()

The up arrow (f) specifies that the operand on the left is raised to the power specified
by the operand on the right (the exponent). If the operand on the right is a 2, the number
on the Ieft is squared; if the exponent is a 3, the number on the left is cubed, etc. The
exponent can be any number as long as the result of the operation gives a valid
floating-point number.

EXAMPLES:

2f2 Equivalent to 2*2

3f3 Equivaent to 3*3*3

4|4 Equivalent to 4*4*4*4
AB | CD

3 f -2 Equivalent to 'A*'A

RELATIONAL OPERATORS

The relational operators (<, =,>,<=,>=,<>) ae primarily used to compare the
values of two operands, but they also produce an arithmetic result. The relational
operators and the logical operators (AND, OR, and NOT), when used in comparisons,
produce an arithmetic true/false evaluation of an expression. If the relationship stated in
the expression is true, the result is assigned an integer value of - 1. If it's fase a value of
0 is assigned. Following are the relational operators:

< LESS THAN
EQUAL TO
> GREATER THAN
<= LESSTHANCOREQUAL TO
>= GREATERTHAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:

5-4=1 result true (-1)
14>66 result fdse (0)
15>=15 result true (-1)

Relational operators may be used to compare strings. For comparison purposes,
the letters of the aphabet have the order A<B<C<D, etc. Strings are compared by

BASIC BUILDING BLOCKS AND BASIC 70 ENCYCLOPEDIA

evaluating the relationship between corresponding characters from left to right (see
string operations).

EXAMPLES:

"A" < "B" result true (-1)
"X" = "YY" reuult fase (0)
BB$ <> CC$ result fdse (0) if they are the same

Numeric data items can only be compared (or assigned) with other numeric items.
The same is true when comparing strings; otherwise, the BASIC error message ?TY PE
MISMATCH occurs. Numeric operands are compared by first converting the values of
either or both operands from integer to floating-point form, as necessary. Then
the relationship between the floating-point values is evaluated to give a trueffase
result.

At the end of al comparisons, you get an integer regardiess of the data type
of the operand (even if both are strings). Because of this, a comparison of two
operands can be used as an operand in performing calculations. The result will
be -1 or 0 and can be used as anything but a divisor, since divison by zero is

illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT) can be used to modify the meaning of the
relational operators or to produce an arithmetic result. Logical operators can produce
results other than -1 and O, although any nonzero result is considered true when testing
for a trueffalse condition.

The logical operators (sometimes called Boolean operators) also can be used to
perform logical operations on individua binary digits (bits) in two operands. But when
you're using the NOT operator, the operation is performed only on the single operand to
the right. The operands must be in the integer range of values (-32768 to +32767)
(floating-point numbers are converted to integers) and logical operations give an integer
result.

Logica operations are performed bit-by-corresponding-bit on the two operands.
The logical AND produces a hit result of 1 only if both operand bits are 1. The logical
OR produces a bit result of 1 if either operand bit is 1. The logica NOT is the opposite
value of each bit as a single operand. In other words, "If it's NOT 1 then it is 0. If it's
NOT O then it is 1."

The exclusive OR IF (XOR) doesn't have a logical operator but it is performed as
part of the WAIT statement or as the XOR function. Exclusive-OR means that if the
bits of two operands are set and equal, then the result is O; otherwise the result is 1.

Logica operations are defined by groups of statements which, when taken to-
gether, congtitute a Boolean "truth table" as shown in Table 2-1.

21

The AND operation results in a 1 only if both bits are 1:
1AND1=1
OAND1=0
1ANDO=0
0OANDO0=0

The OR operation results in a 1 if either bit is 1:
10R1=1
OOR 1=1
1 0R 0=1
OORO0=0

The NOT operation logically complements each bit:
NOT 1=0
NOT 0=1

The exclusive OR (XOR) is a function (not a logical operator):
1IXOR 1=0
1 XORO0=1
O0XOR 1=1
0XORO0=0

Table 2-1 Boolean Truth Table

The logical operators AND, OR and NOT specify a Boolean arithmetic operation
to be performed on the two operand expressions on either side of the operator. In the
case of NOT, only the operand on the right is considered. Logical operations (or
Boolean arithmetic) aren't performed until all arithmetic and relational operations in an
expression have been evaluated.

EXAMPLES:
IF A=100 AND B =100 THEN 10 (if both A and B have a value of 100 then
the result is true)
A =96 AND 32 PRINT A (A=32)
IF A=100 OR B =100 THEN 20 (if A or B is 100 then the result is true)
A =64 OR 32 PRINT A (A =96)
X =NOT 96 (result is -97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types of operations according to a fixed hierarchy.
Certain operations have a higher priority and are performed before other operations. The
normal order of operations can be modified by enclosing two or more operands within

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

parentheses f), creating a "subexpression.” The parts of an expression enclosed in pa-
rentheses will be reduced to a single value before evaluating parts outside the parentheses.

When you use parentheses in expressions, pair them so that you aways have an
equal number of left and right parentheses. If you don't, the BASIC error message
?SYNTAX ERROR will occur.

Expressions that have operands inside parentheses may themselves be enclosed in
parentheses, forming complex expressions of multiple levels. This is called nesting.
Parentheses can be nested in expressions to a maximum depth of ten levels—ten
matching sets of parentheses. The innermost expression has its operations performed
first. Some examples of expressions are:

A+B

cf(D B2

(X-C* (D +E)/2)*10)+|
GG$>HH$

9% + "MORE"

K%=1 ANDMOX

K% =2 OR (A =B AND M<X)
NOT(D = E)

The BASIC Interpreter performs operations on expressions by performing arithme-
tic operations first, then relational operations, and logical operations last. Both arithme-
tic and logical operators have an order of precedence (or hierarchy of operations) within
themselves. Relational operators do not have an order of precedence and will be
performed as the expression is evaluated from |eft to right.

If dl remaining operators in an expression have the same level of precedence, then
operations are performed from Ieft to right. When performing operations on expressions
within parentheses, the normal order of precedence is maintained. The hierarchy of
arithmetic and logical operations is shown in Table 2-2 from first to last in order of
precedence. Note that scientific notation is resolved first.

OPERATOR DESCRIPTION EXAMPLE
t Exponentiation BASE t EXP
- Negation (Unary Minus) -A
/ Multiplication AB CD
Division EF/GH
+ Addition CNT + 2
Subtraction JK-PQ
> =< Relational Operations A<=B
NOT Logical NOT NOT K%
(Integer Two's Complement)
AND Logical AND JK AND 128
OR Logical OR PQ OR 15

Table 2-2 Hierarchy of Operations Performed on Expressions

23

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>,<=, >=, <,>)
that are used for comparing numbers. String comparisons are made by taking one
character at a time (left-to-right) from each string and evaluating each character
code position from the character set. If the character codes are the same, the char-
acters are equal. If the character codes differ, the character with the lower CBM ASCII
code number is lower in the character set. The comparison stops when the end of either
string is reached. All other factors being equal, the shorter string is considered less than
the longer string. Leading or trailing blanks are significant in string evaluations.

Regardless of the data types, adl comparisons yield an integer result. This is
true even if both operands are strings. Because of this, a comparison of two string
operands can be used as an operand in performing calculations. The result will
be -1 or O (true or fase) and can be used in any mathematical operation but division
since division by zero is illegal.

STRING EXPRESSIONS

Expressions are treated as if an implied "<>0" follows them. This means that if an
expression is true, the next BASIC statement on the same program line is executed. If
the expression is false, the rest of the line is ignored and the next line in the program is
executed.

Just as with numbers, you can perform operations on string variables. The only
arithmetic string operator recognized by BASIC 7.0 is the plus sign (+) which is used
to perform concatenation of strings. When strings are concatenated, the string on the
right of the plus sign is appended to the string on the left, forming a third string. The
result can be printed immediately, used in a comparison, or assigned to a variable name.
If a string data item is compared with (or set equal to) a numeric item, or vice-versa, the
BASIC error message ?TYPE MISMATCH occurs. Some examples of string expres-
sions and concatenation are:

10 A$="FILE": B$="NAME"
20 NAM$ = A$ + B$ (yields the string "FILENAME")
30 RES$ = "NEW" + A$ + B$ (yidds the string "NEWFILENAME")

ORGANIZATION OF THE
BASIC 7.0 ENCYCLOPEDIA

This section of Chapter 2 lists BASIC 7.0 language elements in an encyclopedia
format. It provides an abbreviated lig of the rules (syntax) of Commodore 128
BASIC 7.0, aong with a concise description of each. Consult the Commodore 128
System Guide BASIC 7.0 Encyclopedia (Chapter 5) included with your computer for a

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

more detailed description of each command. BASIC 7.0 includes dl the elements of
BASIC 2.0

The different types of BASIC operations are listed in individual sections, as
follows:

1. Commands and Statements: the commands used to edit, store and erase

programs, and the BASIC program statements used in the numbered lines of a

program.

Functions: the string, numeric and print functions.

3. Reserved Words and Symbols: the words and symbols reserved for
use by the BASIC 7.0 language, which cannot be used for any other
purpose.

N

COMMAND AND
STATEMENT FORMAT

The command and statement definitions in this encyclopedia are arranged in the follow-
ing format:

Command name— A U T O

Brief definition— Enable/disable automatic line numbering

Command forma— AUTO [line#]

Discussion of This command turns on the automatic line-numbering festure.
format and use— This eases the job of entering programs, by automatically typing

the line numbers for the user. As each program line is entered by
pressng RETURN, the next line number is printed on the screen,
and the cursor is positioned two spaces to the right of the line
number. The line number argument refers to the desired incre-
ment between line numbers. AUTO without an argument turns off
the auto line numbering, as does RUN. This statement can be
used only in direct mode (outside of a program).

EXAMPLES:

AUTO 10 Automatically numbers program lines in incre-
Example(s)— ments of 10.

AUTO 50 Automatically numbers lines in increments of 50.

AUTO Turns off automatic line numbering.

25

The boldface line that defines the format consists of the following elements:

DLOAD "program name" [,DO,U§]
t t
keyword argument additional arguments
(possibly optional)
The parts of the command or statement that must be typed exactly as shown are in
capital letters. Words the user supplies, such as the name of a program, are not
capitalized.
When quote marks (" ") appear (usually around a program name or filename), the
user should include them in the appropriate place, according to the format example.

Keywords are words that are part of the BASIC language. They are the central part of a
command or statement, and they tell the computer what kind of action to take.
These words cannot be used as variable names. A complete list of reserved words
and symbols is given at the end of this chapter.

Keywords, aso called reserved words, appear in upper-case letters. Key-
words may be typed using the full word or the approved abbreviation. (A full list
of abbreviations is given in Appendix |). The keyword or abbreviation must be
entered correctly or an error will result. The BASIC and DOS error messages are
defined in Appendices A and B, respectively.

Arguments, aso caled parameters, appear in lower-case letters. Arguments comple-
ment keywords by providing specific information to the command or statement.
For example, the keyword LOAD tells the computer to load a program while the
argument "program name" tells the computer which specific program to load. A
second argument specifies from which drive to load the program. Arguments
include filenames, variables, line numbers, etc.

Square Brackets [] show optiona arguments. The user selects any or none of the
arguments listed, depending on requirements.

Angle Brackets <> indicate the user MUST choose one of the arguments listed.

A Vertical Bar | separates items in a lig of arguments when the choices are limited to
those arguments listed. When the verticad bar appears in a list enclosed in
SQUARE BRACKETS, the choices are limited to the items in the list, but the
user gtill has the option not to use any arguments. If a vertical bar appears within
angle brackets, the user MUST choose one of the listed arguments.

Ellipsis ... (a sequence of three dots) means an option or argument can be repeated more
than once.

Quotation Marks enclose character strings, filenames and other expressions.
When arguments are enclosed in quotation marks, the quotation marks must be
included in the command or statement. In this encyclopedia, quotation marks are
not conventions used to describe formats; they are required parts of a command or
Statement.

Parentheses () When arguments are enclosed in parentheses, they must be included in
the command or statement. Parentheses are not conventions used to describe
formats, they are required parts of a command or statement.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

Variable refers to any vaid BASIC variable names, such as X, A$, T%, etc.
Expression refers to any vaid BASIC expressions, such as A +B +2,.5(X + 3),
etc.

NOTE: For dl DOS commands, variables and expressions used as
arguments must be endorsed in parentheses.

BASIC COMMANDS AND
STATEMENTS

APPEND

Append data to the end of a sequential file
APPEND #logical file number," filename" [,Ddrive number][<ON|,>Udevice]

EXAMPLES:

Append # 8, "MYFILE" OPEN logica file 8 called "MYFILE", and prepare
to append with subsequent PRINT # statements.

Append #7,(A$),DO,U9 OPEN logica file named by the variable in A$ on
drive O, device number 9, and prepare to APPEND.

AUTO

Enable/disable automatic line numbering
AUTO [line#]

EXAMPLES:

AUTO 10 Automatically numbers program lines in increments of 10.
AUTO 50 Automatically numbers lines in increments of 50.
AUTO Turns off automatic line numbering.

BACKUP

Copy the entire contents from one disk to another on a dual disk drive

BACKUP source Ddrive number TO destination Ddrive number [<ON|,>
Udevice]

NOTE: This command can be used only with a dual-disk drive.

27

EXAMPLES:

BACKUP DO TO DI Copies dl files from the disk in drive O to the disk
in drive 1, in dual disk drive unit 8.

BACKUP DO TO DI ON U9 Copies dl files from drive O to drive 1, in disk
drive unit 9.

BANK

Select one of the 16 BASIC banks (default memory configurations), numbered 0-15 to
be used during PEEK, POKE, SYS, and WAIT commands.

BANK bank number

Here is a table of available BANK configurations in the Commodore 128 memory:

BANK CONFIGURATION

RAM(O) only

RAM(I) only

RAM(2) only (same as 0)

RAM(3) only (same as 1)

Internal ROM , RAM(O), 1/0

Internal ROM , RAM(I), 1/O

Internal ROM , RAM(2), /O (same as 4)
Internal ROM , RAM(3), 1/0 (same as 5)
External ROM , RAM(O), I/O

External ROM , RAM(l), I1/O

External ROM , RAM(2), 1/O (same as 8)
External ROM , RAM(3), I/O (same as 9)

12 Kernal and Internal ROM (LOW), RAM(O), /0
13 Kernal and External ROM (LOW), RAM(O), 1/0
14 Kernal and BASIC ROM, RAM(0O), Character ROM
15 Kena and BASIC ROM, RAM(O), I/0

Boo~vwNounhswN RO

[N
[N

Banks are described in detail in Chapter 8, The Power Behind Commodore 128
Graphics and Chapter 13, The Commodore 128 Operating System.

BEGIN / BEND

A conditional statement like IF ... THEN: ELSE, structured so that you can include
several program lines between the start (BEGIN) and end (BEND) of the structure.
Here's the format:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

IF condition THEN BEGIN : statement
statement
statement BEND : ELSE BEGIN
statement
statement BEND

EXAMPLE

10 IF X = 1 THEN BEGIN: PRINT "X = 1 is True"

20 PRINT "So this part of the statement is performed"

30 PRINT "When X equas 1"

40 BEND: PRINT "End of BEGIN/BEND structure":GO to 60

50 PRINT "X does not equal 1":PRINT "The statements between BEGIN/
BEND are skipped"

60 PRINT "Rest of Program"

BLOAD

Load a binary file starting at the specified memory location

BLOAD "filename"[,Ddrive number][<ON!,U>device number] [,Bbank
number] [,Pstart address)|

where:
» filename is the name of your file
e bank number selects one of the 16 BASIC banks (default memory con-
figurations)
e dart address is the memory location where loading begins
EXAMPLES:

BLOAD "SPRITES", B0, P3584 LOADS the binary file "SPRITES"
starting in location 3584 (in BANK 0).

BLOAD "DATA1", DO, U8, BI, P4096 LOADS the binary file "DATA 1"
into location 4096 (BANK 1) from
Drive O, unit 8.

BOOT

Load and execute a program which was saved as a binary file
BOOT "filename" [,Ddrive number][<ON|,>Udevice][,Palt LOAD ADD]

EXAMPLE:

BOOT BOQOT a bootable disk (CP/M Plus for ex-
ample).

29

BOOT "GRAPHICS 1", DO, U9 LOADS the binary program "GRAPHICS 1"
from unit 9, drive 0, and executes it.

BOX

Draw box at specified position on screen
BOX [color source], X1, YI[,X2,Y2][,angl€e][,paint]
where:
color source 0= Background color
1 = Foreground color (DEFAULT)

2 =Multi-color 1
3 = Multi-color 2

X1LYI Corner coordinate (scaled)

X2,Y2 Corner diagonally opposite X1, Y, (scaled); default is the PC
location.

angle Rotation in clockwise degrees; default is O degrees

paint Paint shape with color
0= Do not paint
1= Pant
(default = 0)

EXAMPLES:

BOX 1, + 10, + 10 Draw abox 10 pixels to the right and 10 down from
the current pixel cursor location.

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle.
BOX , 10, 10, 60, 60, 45, 1 Draws a painted, rotated box (a diamond).
BOX , 30, 90, , 45, 1 Draws afilled, rotated polygon.

Any parameter can be omitted but you must include a comma in its place, as in the last
two examples.

NOTE: Wrapping occurs if the degree is grester than 360.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

BSAVE

Save a hinary file from the specified memory locations

BSAVE "filename"[,Ddrive number] [< ON I, U> device number] [,Bbank
number],Pstart address TO Pend address

where:

e dart address is the starting address where the program is SAVEd from

e end address is the last address + 1 in memory which is SAVEd
This is similar to the SAVE command in the Machine Language MONITOR,

EXAMPLES:

BSAVE "SPRITE DATA",BO, Saves the binary file named "SPRITE DATA",
P3584 TO P4096 starting at location 3584 through 4095 (BANK
0).
BSAVE "PROGRAM.SCR",D0, Saves the hinary file named "PROGRAM.
U9,B0,P3182 TO P7999 SCR" in the memory address range 3182
through 7999 (BANK 0) on drive O, unit 9.

CATALOG

Display the disk directory
CATALOG [Ddrive number][<ON|,>Udevice number][,wildcard string]

EXAMPLE:
CATALOG Displays the disk directory on drive 0.

CHAR

Display characters at the specified position on the screen

CHAR [color source],X,Y[,string][,RVY
This is primarily designed to display characters on a bit mapped screen, but it can also
be used on a text screen. Here's what the parameters mean:

color source 0= Background

1 =Foreground

X Character column (0-39) (VIC screen)
(0-79) (8563) screen

31

Y Character row (0-24)
string String to print
reverse Reverse fied flag (0= off, 1 =o0n)

EXAMPLE:

10 COLOR 2,3: REM MULTI-COLOR 1 RED
20 COLOR 3,7: REM MULTI-COLOR 2 BLUE
30 GRAPHIC 31

30 CHAR 0,10,10, "TEXT",0

CIRCLE

Draw circles, ellipses, arcs, etc., a specified positions on the screen
CIRCLE [color source],X,Y[,Xr][,Yr] [,sa][,ea][,angl€][,inc]

where:

color source background color
foreground color
multi-color 1

multi-color 2

0
1
2
3
XY Center coordinate of the CIRCLE

Xr X radius (scaled); (default = 0)

Yr Y radius (seded default is Xr)

sa Starting arc angle (default O degrees)

ea Ending arc angle (default 360 degrees)

angle Rotation is clockwise degrees (default is O degrees)

inc Degrees between segments (default is 2 degrees)

sa

Xy xr

yr

EXAMPLES:
CIRCLE 1. 160,100,65,10 Draws an €llipse.
CIRCLE1, 160,100,65,50 Draws a circle.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 33

CIRCLE1, 60,40,20,18,,,,45 Draws an octagon.
CIRCLEL1, 260,40,20,,,,,90 Draws a diamond.
CIRCLEL], 60,140,20,18,,,, 120 Draws atriangle.

CIRCLE 1,+2,+250,50 Draws a circle (two pixels down and two to the

right) relative to the origina coordinates of the
pixel cursor.

CIRCLE 1, 30;90 Draws a circle 30 pixels and 90 degrees to the
right of the current pixel cursor coordinate
position.

You may omit a parameter, but you mugt gill place a comma in the appropriate
position. Omitted parameters take on the default values.

CLOSE

Close logica file
CLOSE file number

EXAMPLE:
CLOSE 2 Logicdl file 2 is closed.

CLR

Clear program variables
CLR

CMD

Redirect screen output to a logicad disk or print file.
CMD logical file number [write list]

EXAMPLE:
OPEN 14 Opens device 4 (printer).
CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen—even the word
READY.

PRINT#1 Sends output back to the screen.
CLOSE 1 Closes the file.

COLLECT

Free inaccessible disk space
COLLECT [Ddrive number][<ON|,>Udevice]

EXAMPLE:
COLLECT DO Free dl available space which has been incorrectly alocated to

improperly closed files. Such files are indicated with an asterisk
on the disk directory.

COLLISION
Define handling for sprite collision interrupt

COLLISION type [statement]
type Type of interrupt, as follows:
1 = Sprite-to-sprite collision
2 = Sprite-to-display data collision
3 = Light pen (VIC screen only)
statement BASIC line number of a subroutine

EXAMPLE:
Collison 1, 5000 Enables a sprite-to-sprite collision and program control sent to
subroutine at line 5000.
Collison 1 Stops interrupt action which was initiated in above example.

Collison 2, 1000 Enables a sprite-to-data collision and program control directed
to subroutine in line 1000.

COLOR

Define colors for each screen area
COLOR source number, color number

This statement assigns a color to one of the seven color aress:

AREA SOURCE

40-column (VIC) background

40-column (VIC) foreground

multicolor 1

multicolor 2

40-column (VIC) border

character color (40- or 80-coiumn screen)
80-column background color

OO~ WNE O

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

Colors that are usable are in the range 1-16.

COLOR CODE COLOR

1

~No abhwN

Black
White
Red
Cyan
Purple
Green
Blue
Ydlow

9
10
1
12
13
14
15
16

COLOR CODE COLOR

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Numbers in 40-Column Output

O~NO O~ WNER

Black
White

Dark Red
Light Cyan
Light Purple
Dark Green
Dark Blue
Light Ydlow

9
10

1
12
13
14
15
16

Dark Purple
Dark Ydlow

Light Red
Dark Cyan
Medium Gray
Light Green
Light Blue
Light Gray

Color Numbers in 80-Column Output

EXAMPLES:
COLOR 0,1:
COLOR 5,8:

CONCAT

Changes background color of 40-column screen to black.

Changes character color to yellow.

Concatenate two data files
CONCAT "file 2" [,Ddrive number] TO "file 1"

EXAMPLE:

Concat "FileB" to "File A"

Concat (A%) to (B$), DI, U9

t,Ddrive number][<ON|,>Udevice]

FILE B is atached to FILE A, and the combined
file is designated FILE A.

The file named by B$ becomes a new file with
the same name with the file named by A$ at-
tached to the end of B$. This is performed on
Unit 9, drive 1 (adual disk drive).

Whenever a variable is used as a filename, as in the last example, the filename variable
must be within parentheses.

CONT

Continue program execution
CONT

COPY

Copy a file from one drive to another within a dua disk drive. Copy one file to
another with a different name within a single drive

COPY [Ddrive number ,]" source filename" TO[Ddrive number,]" destination
filename" [<ON|,>Udevice]

NOTE: Copying between two single or double disk drive units cannot be
done. This command does not support unit-to-unit copying.

EXAMPLES:

COPY DO, "TEST" TODI, "TEST PROG" Copies "test" from drive O to drive
1, renaming it "test prog" on drive 1.

COPY DO, "STUFF" TO DI, "STUFF" Copies "STUFF" from drive 0 to
drive 1.

COPY DO TO DI Copies dl files from drive O to drive
1

COPY "WORK.PROG" TO "BACKUP" Copies "WORK.PROG" as a file
called "BACKUP" on the same disk
(drive 0).

DATA

Define data to be used by a program
DATA list of constants

EXAMPLE:
DATA 100, 200, FRED, "HELLO, MOM",, 3, 14, ABC123

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

DCLEAR

Clear dl open channels on disk drive
DCLEAR [Ddrive number][<ON|,>Udevice]

EXAMPLES:
DCLEAR DO Clears dl open files on drive O, device number 8.

DCLEAR D1,U9 Clears dl open files (channels) on drive 1, device number 9.

DCLOSE
Close disk file
DCLOSE [#logical file number][<ON|,>Udevice]

EXAMPLES:
DCLOSE Closes dl channels currently open on unit 8.

DCLOSE #2 Closes the channd associated with the logica file number 2 on
unit 8.

DCLOSE ON U9 Closes dl channels currently open on unit 9.

DEF FN

Define a user function

DEF FN name (variable) = expression

EXAMPLE:

IODEFFNA(X) = 12*(34.75-X/.3) + X
20 PRINT FNA(7)

The number 7 is inserted each place X is located in the formula given in the DEF
statement. In the example above, the answer returned is 144.

NOTE: If you plan to define a function in a program that will use BASIC
7.0 graphics commands, invoke the GRAPHIC command before defining
your function. The portion of memory where functions are defined and
where the graphics screen is located is shared. Once you alocate your
graphics area, the function definitions are safdly placed somewhere else
in memory. If you don't take this precaution and you invoke the GRAPHIC
command after you define a function, the function definition (between
$IC00 and $4000) is destroyed.

37

DELETE

Delete lines of a BASIC program in the specified range
DELETE [firg ling] [-lagt ling]

EXAMPLES:
DELETE 75 Deéletes line 75.
DELETE 1050 Deéletes lines 10 through 50, inclusive.

DELETE-50 Deletes dl lines from the beginning of the program up to and
including line 50.

DELETE 75- Deéletes dl lines from 75 to the end of the program, inclusive.

DIM

Declare number of elements in an array

DIM variable (subscripts) [,variable(subscripts)] . . .

EXAMPLE:
10 DIM A$(40),B7(15),CC%(4,4,4)

Dimension three arrays where arrays A$, B7 and CC% have 41 elements, 16 elements
and 125 elements respectively.

DIRECTORY

Display the contents of the disk directory on the screen
DIRECTORY [Ddrive number][<ON|,>Udevice][,wildcard]

EXAMPLES:
DIRECTORY Lists dl files on the disk in unit 8.

DIRECTORY DI, U9, "WORK" Ligs the file named "WORK," on drive 1 of
unit 9.

DIRECTORY "AB*" Ligs dl files starting with the letters "AB"
like ABOVE, ABOARD, etc. on unit 8. The
asterisk specifies a wild card, where dl files
starting with "AB" are displayed.

DIRECTORY DO, "?.BAK" The ? is a wild card that matches any single
character in that position. For example: FILE
[.BAK, FILE 2.BAK, FILE 3.BAK &l match
the string.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

DIRECTORY D1,U9,(A$) LISTS the filename stored in the variable A$
on device number 9, drive 1. Remember, when-
ever a variable is used as a filename, put the
variable in parentheses.

NOTE: To print the DIRECTORY of the disk in drive O, unit 8, use the
following example:

LOAD"$0",8
OPEN4,4:CMD4:L1ST
PRINT#4:CLOSE4

DLOAD

Load a BASIC program from the disk drive, device 8.

DLOAD "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

DLOAD "BANKRECS" Searches the disk for the progran "BANKRECS"
and LOADS it.

DLOAD (AS) LOADS a program from disk in which the name is
stored in the variable A$. An error message is given if
A$ is null. Remember, when a variable is used as a
filename, it must be enclosed in parentheses.

DO / LOOP / WHILE / UNTIL / EXIT

Define and control a program loop

DO [UNTIL condition | WHILE condition]
statements [EXIT]
LOOP [UNTIL condition | WHILE condition]

This loop structure performs the statements between the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP statement,
execution of the statements in between continues indefinitely. If an EXIT statement is
encountered in the body of a DO loop, execution is transferred to the first statement
following the LOOP statement. DO loops may be nested, following the rules defined by
the FOR-NEXT structure. If the UNTIL parameter is specified, the program continues
looping until the condition is satisfied (becomes true). The WHILE parameter is the
opposite of the UNTIL parameter: the program continues looping as long as the
condition is TRUE. As soon as the condition is no longer true, program control resumes
with the statement immediately following the LOOP statement. An example of a
condition (boolean argument) is A = 1, or G>65.

39

EXAMPLES:

10X =25

20 DOUNTIL X =0
30 X = X-I

40 PRINT "X=";X

50 LOOP

60 PRINT "End of Loop"

This example performs the statements X = X-I
and PRINT "X ="; X until X =0.WhenX =0 the
program resumes with the PRINT "End of L oop"
statement immediately following LOOP.

10 DO WHILE A$<> CHR$ (13):GETKEY A$:PRINT A$:LOOP
20 PRINT "THE RETURN KEY HAS BEEN PRESSED"

10DOPEN#8, "SEQFILE"
20 bO

30 GET #8,A%

40 PRINT AS$;

50 LOOP UNTIL ST

60 DCLOSE #8

DOPEN

This DO loop waits for a key to be pressed,
receives input from the keyboard one character at
a time and prints the letter of the key which is
pressed. If the RETURN key is pressed, control is
transferred out of the loop and line 20 is executed.

This program opens file "SEQFILE" and gets
data until the ST system variable indicates al data
is input.

Open a disk file for a read and/or write operation

DOPEN # logical file number," filename[,<type>]"[,Lrecord length]
[,Ddrive number][<ON|,>Udevice number][,W]

where type is:
S = Sequentia File Type
P = Program File Type
U = User File Type
R = Relative File Type
L =
W =

EXAMPLES:

Record Length = the length of records in a relative file only
Write Operation (if not specified a read operation occurs)

DOPEN#1, "ADDRESS",W Creste the sequential file number 1 (ADDRESS)

for a write operation

DOPEN#2 "RECIPES",D1,U9 Open the sequentia file number 2 (RECIPES)

for a read operation on device number 9, drive 1

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

DRAW

Draw dots, lines and shapes at specified positions on the screen
DRAW [color source] [,X1, Y1]J[TO X2, Y2] . ..

where:

Color source 0= Bit map background
1 = Bit map foreground
2=Multi-color 1
3 = Multi-color 2

XI1,Yl Starting coordinate (0,0 through 319,199)
X2,Y2 Ending coordinate (0,0 through 319,199)

EXAMPLES:
DRAW 1, 100, 50
DRAW , 10,10 TO 100,60
DRAW , 10,10 TO 10,60 TO 100,60 TO 10,10
DRAW 1, 120,45

DRAW

Draw a dot.
Draw a line.
Draw a triangle.

Draw a dot 45° relative and 120 pixels
away from the current pixel cursor
position.

Draw a dot at the present pixel cursor
position. Use LOCATE to position the
pixel cursor.

You may omit a parameter but you ill must include the comma that would have
followed the unspecified parameter. Omitted parameters take on the default values.

DSAVE
Save a BASIC program file to disk

DSAVE "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

DSAVE "BANKRECS" Saves the program "BANKRECS" to disk.
DSAVE (A$) Saves the disk program named in the variable A$.

DSAVE "PROG 3",D1,U9 Saves the program "PROG3" to disk on unit num-
ber 9, drive 1.

41

DVERIFY

Verify the program in memory against the one on disk
DVERIFY "filename"[,Ddrive number][<ON|,>Udevice number]

To veify Binary data, see VERIFY "filename",8,1 format, under VERIFY command
description.

EXAMPLES:
DVERIFY "C128" Verifies program "C128" on drive O, unit 8.

DVERIFY "SPRITES",DO,U9 Verifies program "SPRITES" on drive 0, de-
vice 9.

END

Define the end of program execution

END

ENVELOPE

Define a musical instrument envelope
ENVEL OPE n[,atk] [,dec] [,sug] [,re][,wf] [,pw]
where:

n Envelope number (0-9)
atk Attack rate (0-15)
dec Decay rate (0-15)
sus Sudtain (0-15)
rel Release rate (0-15)
wf Waveform: 0 = triangle

1 = sawtooth

2 = variable pulse (square)
3 = noise

4 = ring modulation

pw Pulse width (0-4095)
See the " T" option in the PLAY command to select an envelope in a PLAY string.

EXAMPLE:

ENVELOPE 1, 10, 5, 10, 0, 2, 2048 This .command sets envelope 1 to Attack
= 10, Dccad 5, Sustain = 10, Release
= 0. \a\cfurni = variable pulse (2), and
the pulse width = 2048

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

FAST
Sets the 8502 microprocessor at a speed of 2MHz.
FAST

This command initiates 2MHz mode, causing the VIC 40-column screen to be turned off.
All operations are speeded up considerably, Graphics may be used, but will not be visible
until a SLOW command is issued. The Commodore 128 powers up in IMHz mode. The
DMA operations (FETCH, SWAP, STASH) must be performed a 1IMHz (dow) speed.

FETCH

Get data from expansion (RAM module) memory
FETCH #bytes, intsa, expsa, expb

where bytes = Number of bytes to get from expansion memory (0-65535) where 0 =
64K (65535 bytes)

intsa = Starting address of host RAM (0-65535)

expb = 64K expansion RAM bank number (0-7) where expb = 0-1 for 128K
and expb = 0-7 for up to 512K.

expsa = Starting address of expansion RAM (0-65535)

The host BANK for the ROM and /O configuration is selected with the BANK
command. The DMA(VIC) RAM bank is selected by bits 6 and 7 of the RAM
configuration register within the MMU($D506).

FILTER

Define sound (SID chip) filter parameters
FILTER [freq][.Ip] [,bp] [.hp] [res]
where:

freq Filter cut-off frequency (0-2047)
Ip Low-pass filter on (1), off (0)
bp Band-pass filter on (1), off (0)
hp High-pass filter on (1), off (0)
res Resonance (0-15)

Unspecified parameters result in no change to the current value.

EXAMPLES:

FILTER 1024.0.1.0,2 Set the cutoff frequency at 1024, sdlect the band pass
filter and a resonance level of 2.

FILTER 2000,1,0,1,10 Set the cutoff frequency at 2000, select both the low
pass and high pass filters (to form a notch reject) and set
the resonance level a 10.

43

FOR / TO / STEP / NEXT

Define a repetitive program loop structure.
FOR variable = start value TO end value [STEP increment] NEXT variable

The logic of the FOR/NEXT statement is as follows. First, the loop variable is st to the
start value. When the program reaches a program line containing the NEXT statement, it
adds the STEP increment (default = 1) to the value of the loop variable and checks to
see if it is higher than the end value of the loop. If the loop variable is less than or equal
to the end value, the loop is executed again, starting with the statement immediately
following the FOR statement. If the loop variable is greater than the end value, the loop
terminates and the program resumes immediately following the NEXT statement. The
opposite is true if the step size is negative. See also the NEXT statement.

EXAMPLE:

I0FORL = 1TO 10

20 PRINT L

30 NEXT L

40 PRINT "I'M DONE! L = "L

This program prints the numbers from one to 10 followed by the message I'M DONE!
L = 11

EXAMPLE:

I0FORL = 1TO 100
20FORA = 5TO 11 STEP 5
30 NEXT A

40 NEXT L

The FOR . . . NEXT loop in lines 20 and 30 are nested inside the one in line 10 and 40.
Using a STEP increment of .5 is used to illustrate the fact that floating point indices are
valid. The inner rested loop must lie completely within the outer rested loop (lines 10
and 40).

GET

Receive input data from the keyboard, one character a a time, without waiting for a key
to be pressed.

GET variable list

EXAMPLE:

10 DO:GETA$:.LOOP UNTIL A$="A" This line waits for the A key to be
pressed to continue.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 45

20 GET B, C, D GET numeric variables B,C and D from the keyboard without
waiting for a key to be pressed.

GETKEY

Receive input data from the keyboard, one character a a time and wait for a key to be
pressed.

GETKEY variable list

EXAMPLE:
10 GETKEY A$

This line waits for a key to be pressed. Typing any key continues the program.
10 GETKEY ASB$,C$

This line waits for three aphanumeric characters to be entered from the keyboard.

GET#

Receive input data from a tape, disk or RS232
GET# logical file number, variable list

EXAMPLE:

10 GET#1,A$ This example recelves one character, which is stored in the
variable AS, from logica file number 1. This example assumes
that file 1 was previously opened. See the OPEN statement.

GO64

Switch to C64 mode
GO64
To return to C128 mode, press the reset button, or turn off the computer power and

turn it on again.

GOSUB

Cdl a subroutine from the specified line number

GOSUB line number

EXAMPLE:

20 GOSUB 800 This example calls the subroutine beginning at line 800 and executes
it. All subroutines must terminate with a RETURN statement.

800 PRINT "THE C128 WAS WORTH THE WAIT!": RETURN

GOTO / GO TO

Transfer program execution to the specified line number
GOTO line number

EXAMPLES:
10 PRINT"COMMODORE" The GOTO in line 20 makes line 10 repeat continu-
20 GOTO 10 oudy until RUN/STORP is pressed.
GOTO 100 Starts (RUNSs) the program starting at line 100,
without clearing the variable storage area.
GRAPHIC

Select a graphic mode

1) GRAPHIC mode [,clear][,s]
2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic modes:

MODE DESCRIPTION

40-column text (default)

standard bit-map graphics

standard bit-map graphics (split screen)
multi-color bit-map graphics

multi-color bit-map graphics (split screen)
80-column text

gapbh wWwNE O

EXAMPLES:
GRAPHIC 11 Sdect standard bit map mode and clear the bit map.

GRAPHIC 4,0,10 Sdect split screen multi-color bit map mode, do not clear the
bit map and start the split screen at line 10.

GRAPHIC 0 Sdect 40-column text.
GRAPHIC 5 Sdect 80-column text.
GRAPHIC CLR Clear and deallocate the bit map screen.

GSHAPE

See SSHAPE.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

HEADER

Format a diskette

HEADER "diskname" [1i.d.] [,Ddrive number]
[<ON|,>Udevice number]

Before a new disk can be used for the firgt time, it must be formatted with the HEADER
command. The HEADER command can aso be used to erase a previously formatted
disk, which can then be reused.

When you enter a HEADER command in direct mode, the prompt ARE YOU
SURE? appears. In program mode, the prompt does not appear.

The HEADER command is analogous to the BASIC 2.0 command,;

OPEN 1,8,15," NO:diskname,i.d."

EXAMPLES:

HEADER "MYDISK",123, DO This headers "MYDISK" using i.d. 23
on drive 0, (default) device number 8.

HEADER "RECS", 145, DI ON U9 This headers "RECS" using i.d. 45, on
drive 1, device number 9.

HEADER "C128 PROGRAMS", DO This is a quick header on drive O, device
number 8, assuming the disk in the drive
was dready formatted. The old i.d. is
used.

HEADER (A$%),176,D0,U9 This example headers the diskette with
the name specified by the variable AS,
and the i.d. 76 on drive 0, device num-
ber 9.

HELP

Highlight the line where the error occurred
HELP

The HELP command is used after an error has been reported in a program. When HELP
is typed in 40-column format, the line where the error occurs is listed, with the portion
containing the error displayed in reverse field. In 80-column format, the portion of the
line where the error occurs is underlined.

IF / THEN / ELSE

Evaluate a conditional expression and execute portions of a program depending on the
outcome of the expression

47

IF expression THEN statements [:ELSE else-clause]

THE IF ... THEN statement evaluates a BASIC expression and takes one of two
possible courses of action depending upon the outcome of the expression. If the
expression is true, the statement(s) following THEN is executed. This can be any
BASIC statement or a line number. If the expression is false, the program resumes with
the program line immediately following the program line containing the IF statement,
unless an ELSE clause is present. The entire IF ... THEN statement must be contained
within 160 characters. Also see BEGIN/BEND.

The ELSE clause, if present, must be on the same line as the IF ... THEN
portion of the statement, and separated from the THEN clause by a colon. When an
ELSE clause is present, it is executed only when the expression is false. The expression
being evaluated may be a variable or formula, in which case it is considered true if
nonzero, and fase if zero. In most cases, there is an expression involving relational
operators (=, <,>, <= ,>=, <>),

EXAMPLE:
50 IF X > 0 THEN PRINT "OK": ELSE END

This line checks the value of X. If X is greater than O, the statement immediately
following the keyword THEN (PRINT "OK") is executed and the ELSE clause is
ignored. If X is less than or equa to 0, the ELSE clause is executed and the statement
immediately following THEN is ignored.

10 IF X = 10 THEN 100 This example evaluates the value of X.

20 PRINT "X DOES NOT EQUAL 10" IF X equas 10, the program control is

: transferred to line 100 and the message

99 STOP "X EQUALS 10" is printed. IF X

100 PRINT "X EQUALS 10" does not equa 10, the program resu-
mes with line 20, the C128 prints the
prompt "X DOES NOT EQUAL 10"
and the program stops.

INPUT

Receive a data string or a number from the keyboard and wait for the user to press
RETURN

INPUT ["prompt string";! variable list
EXAMPLE:
10 INPUT "PLEASE TYPE A NUMBER";A

20 INPUT "AND YOUR NAME";A$
30 PRINT A$ " YOU TYPED THE NUMBER";A

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

INPUT #

Input data from an 1/0O channel into a string or numeric variable
INPUT# file number, variable list

EXAMPLE:
10 OPEN 2,8,2
20 INPUT#2, AS, C, D$

This statement INPUTSs the data stored in variables A$, C and D$ from the disk file
number 2, which was OPENed in line 10.

KEY

Define or list function key assignments
KEY [key number, string]
The maximum length for al the definitions together is 241 characters, (p. 3-41)

EXAMPLE:
KEY 7, "GRAPHICO" + CHR$(13) + "LIST" + CHR$(13)

This tells the computer to sdlect the (VIC) text screen and list the program whenever the
F7 key is pressed (in direct mode). CHR$(13) is the ASCII character for RETURN and
performs the same action as pressing the RETURN key. Use CHR$(27) for ESCape.
Use CHR$(34) to incorporate the double quote character into a KEY string. The keys
may be redefined in a program. For example:

10 KEY 2,"PRINT DS$" + CHR$(13)

This tells the computer to check and display the disk drive error channel variables
(PRINT DS$) each time the F2 function key is pressed.

10 FOR 1=1 to 7 STEP 2
20 KEY |, CHR$(I + 132):NEXT
30 FOR 1=2to 8 STEP 2
40 KEY |, CHR$(I + 132):NEXT

This defines the function keys as they are defined on the Commodore 64.

LET
Assigns a value to a variable
[LET] variable = expression

EXAMPLE:
I0LETA =5 Assign the value 5 to numeric variable A.

49

20B =6 Assign the value 6 to numeric variable B.

30C = A*B + 3 Asdign the numeric variable C, the value resulting from 5
times 6 plus 3.

40D$ = "HELLQO" Assign the string "HELLO" to string variable D$.

LIST
List the BASIC program currently in memory
LIST [first ling] [- last ling]
In C128 mode, LIST can be used within a program without terminating program execution.

EXAMPLES:
LIST Shows entire program.
LIST 100- Shows from line 100 until the end of the program.
LIST 10 Shows only line 10.
LIST -100 Shows dl lines from the beginning through line 100.
LIST 10-200 Shows lines from 10 to 200, inclusive.

LOAD

Load a program from a peripheral device such as the disk drive or Datassette
LOAD "filename" [,device number] [,relocate flag]

This is the command used to recall a program stored on disk or cassette tape. Here, the
filename is a program name up to 16 characters long, in quotes. The name must be
followed by a comma (outside the quotes) and a number which acts as a device number
to determine where the program is stored (disk or tape). If no number is supplied, the
Commodore 128 assumes device number 1 (the Datassette tape recorder).

EXAMPLES:

LOAD Reads in the next program from tape.

LOAD "HELLO" Searches tape for a program called HELLO, and
LOADs it if found.

LOAD (A%$),8 LOADs the program from disk whose name is
stored in the variable AS.

LOAD"HELLO",8 Looks for the program called HELLO on disk drive
number 8, drive 0. (This is equivalent to DLOAD
"HELLO").

LOAD"MACHLANG",8,1 LOADs the machine language program called
"MACHLANG" into the location from which it
was SAVEd.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 51

LOCATE

Position the bit map pixel cursor on the screen
LOCATE X,Y

The LOCATE statement places the pixel cursor (PC) at any specified pixel coordinate on
the screen.

The pixel cursor (PC) is the coordinate on the bit map screen where drawing of
circles, boxes, lines and points and where PAINTIing begins.

EXAMPLE:

LOCATE 160,100 Positions the PC in the center of the bit map screen. Noth-
ing will be seen until something is drawn.

LOCATE +20,100 Move the pixel cursor 20 pixels to the right of the last PC
position and place it at Y coordinate 100.

LOCATE -30,+20 Move the PC 30 pixels to the right and 20 down from the
previous PC position.

The PC can be found by using the RDOT(0) function to get the X-coordinate and
RDOT(l) to get the Y-coordinate. The color source of the pixel at the PC can be found
by PRINTing RDOT(2).

MONITOR

Enter the Commodore 128 machine language monitor
MONITOR
See Chapter 6 for details on the Commodore 128 Machine Language Monitor.

MOVSPR
Position or move sprite on the screen
1) MOVSPR number XY Place the specified sprite at absolute
sprite coordinate X,Y.
2) MOVSPR number, +/-X, +/-Y Move sprite relative to the position
of the sprite's current position.
3) MOVSPR number X;Y Move sprite distance X a angle Y

relative to the sprite's current position.

4) MOVSPR number, angle # speed Move sprite a an angle relative to
its current coordinate, in the clock-
wise direction and at the specified
speed.

where:

number is sprite's number (1 through 8)
X,Y is coordinate of the sprite location.

angle is the angle (0-360) of motion in the clockwise direction relative to the
sprite's original coordinate.

speed is a speed (0-15) in which the sprite moves.

This statement moves a sprite to a specific location on the screen according to
the SPRITE coordinate plane (not the bit map plane) or initiates sprite motion at a
specified rate. See MOVSPR in Chapter 9 for a diagram of the sprite coordinate
system.

EXAMPLES:

MOVSPR 1,150,150 Position sprite 1 near the center of the screen, x\y
coordinate 150,150.

MOVSPR 1,-1-20-30 Move sprite 1 to the right 20 coordinates and up 30
coordinates.

MOVSPR 4, -50, + 100 Move sprite 4 to the left 50 coordinates and down 100
coordinates.

MOVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle in the clockwise
direction, relative to its original x and y coordinates.
The sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed as in the fourth example
of the MOVSPR statement, the sprite continues on its path (even if the
sprite display is disabled) after the program stops, until you set the speed
to 0 or press RUN/STOP and RESTORE. Also, keep in mind that the
SCALE command affects the MOV SPR coordinates. If you add SCALing
to your programs, you aso must adjust the sprites new coordinates so
they appear correctly on the screen.

NEW

Clear (erase) BASIC program and variable storage
NEW

BASIC BUILDING BLOCKS AND BASIC 7,0 ENCYCLOPEDIA

Conditionally branch to a specified program line number according to the results of the
specified expression

ON expression <GOTO/GOSUB> line #1 f, line #2, . .]

EXAMPLE:

10 INPUT X:IF X<0 THEN 10

20 ON X GOTO 30, 40, 50, 60 When X = 1, ON sends control to the firs line

25 STOP number in the ligt (30). When X = 2, ON sends
30 PRINT "X = 1" control to the second line (40), etc.

40 PRINT "X = 2"

50 PRINT "X = 3"

60 PRINT "X = 4"

OPEN

Open files for input or output

OPEN logical file number, device number [secondary address] [<," filename

[,filetype[, [mode"]]|<,cmd string>]

EXAMPLES:

10 OPEN 3,3

20 OPEN 10

30 OPEN 1,1,0,"DOT'

OPEN 4,4
OPEN 15,8,15

5 OPEN 8,8,12,"TESTFILE,S,W'

OPEN the screen as file number
3.

OPEN the keyboard as file num-
ber 1

OPEN the cassette for reading, as
file number 1, usng "DOT" as
the filename.

OPEN the printer as file number 4.

OPEN the command channel on
the disk as file 15, with secondary
address 15. Secondary address 15
is reserved for the disk drive error
channel.

OPEN a sequential disk file for
writing called TESTFILE as file
number 8, with secondary address
12.

See adso: CLOSE, CMD, GET#, INPUT#, and PRINT# statements and system
variables ST, DS, and DS$.

PAINT

Fill area with color

PAINT [color source],X,Y[,mode]

where:
color source 0 = hit map foreground
1 = bit map background (default)
2 = multi-color 1
3 = multi-color 2

XY starting coordinate, scaled (default at pixel cursor (PC))

mode 0 = paint an area defined by the color source selected
1 = paint an area defined by any nonbackground source

The PAINT command fills an area with color. It fills in the area around the specified
point until a boundary of the same specified color source is encountered. For example, if
you draw a circle in the foreground color source, start PAINTing the circle where the
coordinate assumes the background source. The Commodore 128 will only PAINT
where the specified source in the PAINT statement is different from the source of the x
and y pixel coordinate. It cannot PAINT points where the sources are the same in the
PAINT statement and the specified coordinate. The X and Y coordinate must lie
completely within the boundary of the shape you intend to PAINT, and the source of the
starting pixel coordinate and the specified color source must be different.

EXAMPLE:
10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.

20 PAINT 1, 160,100 Fills in the circle with color from source 1 (VIC
foreground), assuming point 160,100 is colored in
the background color (source 0).

10 BOX 1, 10, 10, 20, 20 Draws an outline of a box.

20 PAINT 1, 15, 15 Fills the box with color from source 1, assuming
point 15,15 is colored in the background source

0).

30 PAINT 1, + 10, + 10 PAINT the screen in the foreground color source
at the coordinate relative to the pixel cursor's
previous position plus 10 in both the vertica and
horizontal positions.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

100 PAINT 1, 100;90 Paint the screen area 90° relative to and 100
pixels away from the current pixel cursor co-
ordinate.

PLAY

Defines and plays musical notes and elements within a string or string variable.
PLAY "Vn,On,Tn,Un,Xn,elements, notes'

where the string or string variable is composed of the following

Vn = Voice (n = 13

On = Octave (n = 0-6)
Tn = Tune Envelope Defaults (n = 0-9)
0 = piano
1 = accordion
2 = cdliope
3 = drum
4 = flute
5 = guitar
6 = harpsichord
7 = organ
8 = trumpet
9 = xylophone

Un = Volume (n = 0-8)
Xn = Filteron (n = 1), off(n = 0)

notes: AB,CD,EFG

elements: #o Sharp
$.. Flat
W Whole note
H. Haf note
Q... .. Quarter note
L Eighth note
s Sixteenth note
............... Dotted
R....... Rest
Moo Wait for al voices currently playing to end

the current "measure”

The PLAY statement gives you the power to select voice, octave and tune envelope
(including ten predefined musical instrument envelopes), the volume, the filter, and the
notes you want to PLAY. All these controls are enclosed in quotes. You may include
spaces in a PLAY string for readability.

All elements except R and M precede the musical notes in a PLAY string.

55

EXAMPLES:

PLAY "V104TOU5X0CDEFGAB" Pay the notes C,D,E,F,G,A and B
in voice 1, octave 4, tune envelope
0 (piano), a volume 5, with the
filter off.

PLAY"V305T6U7X1#B$AW.CHDQEIF" Play the notes B-sharp, A-flat, a
whole dotted-C note, a hdf D-note,
a Quarter E-note and an eighth
F-note.

A$ = "V3O5T6U3ABCDE": PLAY A$ PLAY the notes and eements within
AS.

PLAY "V1CV2EV3G" Playsachord in the default setting.

POKE

Change the contents of a RAM memory location
POKE address, value

EXAMPLE:
10 POKE 53280,1 Changes VIC border color

PRINT

Output to the text screen
PRINT [print list]
The word PRINT can be followed by any of the following:

Charactersinside quotes ("text")
Variable names (A, B, A$, X9$)
Functions (SIN(23), ABS(33))
Expressions 2+2),A+3A=B)
Punctuation marks G,)

EXAMPLES: RESULTS
10 PRINT "HELLO" HELLO
20 A$ =" THERE":PRINT "HELLO";A$ HELLO THERE
30A=4B =27A + B 6
40 J = 4LPRINT J:PRINT J- 1 41 40

50 PRINT A;B;:D = A + B:PRINT D;A-B 4 2 6 2

See also POS, SPC, TAB and CHAR functions.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

PRINT#

Output data to files
PRINT# file number[, print list]
PRINT# is followed by a number which refers to the data file previousy OPENed.

EXAMPLE:
10 OPEN 4,4 Outputs the data "HELLO THERE"
20 PRINT#4,"HELLO THERE!",A$,B$ and the variables A$ and B$ to the
printer.
10 OPEN 2,8,2 Outputs the data variables A, B$, C
20 PRINT#2,A,B$,C,D and D to the disk file number 2.

NOTE: The PRINT# command is used by itsdf to close the channel to
the printer before closng the file, as follows:

10 OPEN 4,4
30 PRINT#4, "PRINT WORDS"
40 PRINT#4
50 CLOSE 4

PRINT USING

Output using format
PRINT [#file number,] USING"format list"; print list

This statement defines the format of string and numeric items for printing to the text
screen, printer or other device.

EXAMPLE:

5X =32 Y = 100.23: A$ = "CAT"
10 PRINT USING " $##.### ";13.25X,Y
20 PRINT USING "###>#";"CBM" ,A$

When this is RUN, line 10 prints:

$13.25 $32.00 $**** Five asterisks (*****) are printed instead of a Y
vaue because Y has five digits, and this condition
does not conform to format list (as explained below).

Line 20 prints this:

CBM CAT Leaves two spaces before printing "CBM" as de-
fined in format list.

57

The pound sgn (#) reserves room for a single character in the output field. If the data
item contains more characters than there are # signs in the format field, the entire field
is filled with asterisks (*): no characters are printed.

EXAMPLE:
10 PRINT USING "####" ;X

For these values of X, this format displays:

A = 1234 V)
A = 567.89 568
A = 123456 *r

For a STRING item, the string data is truncated at the bounds of the field. Only as many
characters are printed as there are pound signs (#) in the format item. Truncation occurs
on the right.

EXAMPLES:
FIELD EXPRESSION ~ RESULT ~ COMMENT
-1 -0.1 Leading zero added.
1 10 Trailing zero added.
HEHFHE -100.5 -101 Rounded to no decimal places.
HAHEEE -1000 i Overflow because four digits and a minus sign
cannot fit in field.
10 10. Decimal point added.
1 $1 Floating dollar sign.
PUDEF
Redefine symbols in PRINT USING statement
PUDEF "nnnn"

Where "nnnn" is any combination of characters, up to four in al. PUDEF allows you to
redefine any of the following four symbols in the PRINT USING statement: blanks, commas,
decimal points and dollar signs. These four symbols can be changed into some other char-
acter by placing the new character in the correct position in the PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new character here
for another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma

Position 3 is the decimal point. Default is a decimal point.

Position 4 is the dollar sign. Default is a dollar sign.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

EXAMPLES:
10 PUDEF"*" PRINT * in the place of blanks.
20 PUDEF"<" PRINT < in the place of commas.
READ

Read data from DATA statements and input it into a numeric or string variable)
READ variable list

This statement inputs information from DATA statements and stores it in variables,
where the data can be used by the RUNning program.

In a program, you can READ the data and then reread it by issuing the
RESTORE statement. The RESTORE sets the sequential data pointer back to the
beginning, where the data can be read again. See the RESTORE and DATA statements.

EXAMPLES:
10 READ A, B, C READ the firg three numeric variables from
20 DATA 3,4, 5 the closest data statement.
10 READ AS$, B$, C$ READ the firg three string variables from
20 DATA JOHN, PAUL, GEORGE the nearest data statement.
10 READ A, B$, C READ (and input into the C128 memory) a
20 DATA 1200, NANCY, 345 numeric variable, a string variable and an-

other numeric variable.
RECORD

Position relative file pointers
RECORD# logical file number, record number [,byte number]

This statement positions a relative file pointer to select any byte (character) of any
record in the relative file.

When the record number value is set higher than the last record number in the file,
the following occurs:

For a write (PRINT#) operation, additiona records are created to expand the file
to the desired record number.

For aread (INPUT#) operation, a null record is returned and a "RECORD NOT
PRESENT ERROR occurs". See your disk drive manua for details about relative
files.

EXAMPLES:

10 DOPEN#2,"FILE"
20RECORD#2,10,1
30 PRINT#2,A%

40 DCLOSE#2

59

This example opens an existing relative file called "FILE" as file number 2 in
line 10. Line 20 positions the relative file pointer at the firsg byte in record number 10.
Line 30 actually writes the data, A$, to file number 2.

REM

Comments or remarks about the operation of a program line

REM message

EXAMPLE:
10 NEXT X:REM THIS LINE INCREMENTS X.

RENAME

Change the name of a file on disk

RENAME "old filename" TO "new filename" [,Ddrive number][<ON!,>
Udevice number]

EXAMPLES:

RENAME "TEST" TO "FINALTEST",DO Change the name of the file
"TEST" to "FINAL TEST".

RENAME (A%$) TO (B%),D0,U9 Change the filename specified in
AS$ to the filename specified in B$
on drive O, device number 9. Re-
member, whenever a variable name
is used as a filename, it must be
enclosed in parentheses.

RENUMBER

Renumber lines of a BASIC program
RENUMBER [new starting line number][,increment]!,old starting line
number]

EXAMPLES:

RENUMBER Renumbers the program starting at 10, and increments
each additiond line by 10.

RENUMBER 20, 20, 1 Starting at line 1, renumbers the program. Line 1 be-
comes line 20, and other lines are numbered in incre-
ments of 20.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

RENUMBER,, 65 Starting at line 65, renumbers in increments of 10. Line
65 becomes line 10. If you omit a parameter, you must
gtill enter a comma in its place.

RESTORE

Reset READ pointer so the DATA can be reREAD
RESTORE [line#]

If a line number follows the RESTORE statement, the READ pointer is st to the first
data item in the specified program line. Otherwise the pointer is reset to the beginning of
the firede DATA statement in the BASIC program.

EXAMPLES:
I0FORI =1TO3 This example READSs the data in line 70 and stores it in
20 READ X numeric variable X. It adds the total of al the numeric
30 ALL = X + ALL data items. Once al the data has been READ, three
40 NEXT cycles through the loop, the READ pointer is RE-
50 RESTORE STOREd to the beginning of the program and it returns
60 GOTO 10 to line 10 and performs repetitively.
70 DATA 10,20,30
10 READ A,B,C Line 50 of this example RESTORES the DATA pointer
20 DATA 100,500,750 to the beginning data item in line 40. When line 60 is
30 READ X,Y,Z executed, it will READ the DATA 36,24,38 from line
40 DATA 36,24,38 40, and dore it in numeric variables S, P, and Q,
50 RESTORE 40 respectively.
60 READ S,P,Q

RESUME

Define where the program will continue (RESUME) after an error has been trapped
RESUME [line number | NEXT]

This statement is used to restart program execution after TRAPping an error. With no
parameters, RESUME attempts to re-execute the statement in which the error occurred.
RESUME NEXT resumes execution at the statement immediately following the one indi-
cating the error. RESUME followed by a line number will GOTO the specific line and
resume execution from that line number. RESUME can only be used in program mode.

EXAMPLE:

10 TRAP 100

15 INPUT " ENTER A NUMBER™;A
20 B = 100/A

40 PRINT'THE RESULT =";B

61

50 INPUT "DO YOU WANT TO RUN IT AGAIN (Y/N)";Z$IF z$ = "Y"
THEN 10
60 STOP

100 INPUT"ENTER ANOTHER NUMBER (NOT ZERO)";A
110 RESUME 20

This example traps a "DIVISION BY ZERO ERROR" in line 20 if O is entered in line
15. If zero is entered, the program goes to line 100, where you are asked to input another
number besides 0. Line 110 returns to line 20 to complete the calculation. Line 50 asks
if you want to repeat the program again. If you do, press the Y key.

RETURN

Return from subroutine
RETURN

EXAMPLE:

10 PRINT "ENTER MAIN PROGRAM"
20 GOSUB 100
30 PRINT "END OF PROGRAM"

90 STOP
100 PRINT "SUBROUTINE 1"
110 RETURN

This example calls the subroutine at line 100 which prints the message "SUBROU-
TINE 1" and RETURNS to line 30, the rest of the program.

RUN

Execute BASIC program
1) RUN [line number]
2) RUN "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLES:

RUN Starts execution from the beginning of the program.
RUN 100 Starts program execution at line 100.

RUN"PRG1" DLOADs "PRG1" from disk drive 8, and runs it from the
starting line number.

RUN(A%$) DLOADs the program named in the variable A$.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

SAVE

Store the program in memory to disk or tape
SAVE ["filename"][,device number][,EOT flag]

EXAMPLES:
SAVE Stores program on tape, without a name.
SAVE "HELLO" Stores a program on tape, under the name HELLO.
SAVE A$,8 Stores on disk, with the name stored in variable A$.

SAVE "HELLO",8 Stores on disk, with name HELLO (equivaent to
DSAVE "HELLQ").

SAVE "HELLO", 1, 2 Stores on tape, with name HELLO, and places an END
OF TAPE marker after the program.

SCALE

Alter scaling in graphics mode
SCALE n [,Xmax,Ymax]
where;
n = 1 (on) or 0 (off)
Coordinates may be scaled from 0 to 32767 (default = 1023) in both X and Y (in either

standard or multicolor bit map mode), rather than the norma scale values, which are:

multi-color mode X =0to159 Y = 0to 19
bit map mode X =0t0319 Y = 0tol99

EXAMPLES:
10 GRAPHIC 11 Enter standard bit map, turn scaling
20 SCALE LCIRCLE 1,180,100,100,100 on to default size (1023, 1023) and
draw a circle.
10 GRAPHIC 13 Enter multi-color mode, turn scaling
20 SCALE 1,1000,5000 on to size (1000, 5000) and draw a
30 CIRCLE 1,180,100,100,100 circle.

The SCALE command affects the sprite coordinates in the MOVSPR command. If
you add scaling to a program that contains sprites, adjus the MOVSPR coordinates
accordingly.

63

SCNCLR

Clear screen
SCNCLR mode number

The modes are as follows:

MODE NUMBER MODE

0 40 column (VIC) text

1 bit map

2 split screen bit map

3 multi-color bit map

4 split screen multi-color bit map
5 80 column (8563) text

This statement with no argument clears the graphic screen, if it is present, otherwise the
current text screen is cleared.

EXAMPLES:

SCNCLR 5 Clears 80 column text screen.
SCNCLR 1 Clears the (VIC) bit map screen.
SCNCLR 4 Clears the (VIC) multicolor bit map and 40-column text split screen.

SCRATCH

Déelete file from the disk directory
SCRATCH "filename" [,Ddrive number][<ON|,>Udevice number]

EXAMPLE:
SCRATCH "MY BACK", DO

This erases the file MY BACK from the disk in drive O.

SLEEP

Delay program for a specific period of time
SLEEP N
where N is seconds 0< N < = 65535.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

SLOW

Return the Commodore 128 to 1MHz operation
SLOW

SOUND

Output sound effects and musical notes
SOUND v, f,d[,dir][,m][,s][.w][,p]

where: v = voice (1..3)
f = frequency value (0..65535)
d = duration (0..32767)
dir = step direction (O(up), I(down) or 2(oscillate)) default = O
m = minimum frequency (if sweep is used) (0..65535) default = O
s = gtep value for sweep (0..32767) default = 0
w = waveform (0 = triangle, 1 = sawtooth, 2 = variable, 3 = noise)

default = 2
p = pulse width (0..4095) default = 2048
EXAMPLES:

SOUND 1,40960,60 Play a SOUND at frequency 40960 in voice 1
for 1 second.

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping through frequen-
cies starting at 2000 and incrementing upward
in units of 100 up to 20,000. Each frequency is
played for 50 jiffies.

SOUND3,5000,90,2,3000,500,1 This example outputs a range of sounds start-
ing a a minimum frequency of 3000, through
5000, in increments of 500. The direction of
the sweep is back and forth (oscillating). The
selected waveform is sawtooth and the voice
selected is 3.

SPRCOLOR

Set multi-color 1 and/or multi-color 2 colors for al sprites
SPRCOLOR [smcr-I][,smcr-2]

where:

smcr-1 Sets multi-color 1 for al sprites.
smcr-2 Sets multi-color 2 for al sprites.

65

Either of these parameters may be any color from 1 through 16.

EXAMPLES:
SPRCOLOR 3,7 Sets sprite multi-color 1 to red and multi-color 2 to blue.
SPRCOLOR 12 Sets gprite multi-color 1 to black and multi-color 2 to white.

SPRDEF

Enter the SPRite DEFinition mode to create and edit sprite images.
SPRDEF

The SPRDEF command defines sprites interactively

Entering the SPRDEF command displays a sprite work area on the screen which
is 24 characters wide by 21 characters tall. Each character position in the grid corre-
sponds to a sprite pixel in the sprite displayed to the right of the work area. Here
is a summary of the SPRite DEFinition mode operations and the keys that perform
them:

USER INPUT DESCRIPTION

18 Sdlects a sprite number at the SPRITE NUMBER? prompt only.

A Turns on and off automatic cursor movement.

CRSR keys Moves cursor in work/area.

RETURN KEY Moves cursor to start of next line.

RETURN key Exits sprite designer mode at the SPRITE NUMBER? prompt
only.

HOME key Moves cursor to top left corner of sprite work area.

CLR key Erases entire grid.

14 Selects color source (enablegdisables pixels).

CTRL key, 18 Selects sprite foreground color (1-8).

Commodore key, 1- Selects sprite foreground color (9-16).

STOP key Cancels changes and returns to prompt.

SHIFT RETURN Saves sprite and returns to SPRITE NUMBER? prompt.

X Expands sprite in X (horizontal) direction.

Y Expands sprite in Y (vertical) direction.

M Multi-color sprite mode.

C Copies sprite data from one sprite to another.
SPRITE

Turn on and off, color, expand and set screen priorities for a sprite

SPRITE <number> [,on/off|[,fgnd][,priority][,x-exp] [,y-exp][,mode]
The SPRITE statement controls most of the characteristics of a sprite.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

PARAMETER DESCRIPTION

number Sprite number (1-8)

on/off Turn sprite on (1) or off (0)

foreground Sprite foreground color (1-16) (default = sprite number)

priority Priority is O if sprites appear in front of objects on the screen. Priority
is 1 if sprites appear in back of objects on the screen,

X-exp Horizontal EXPansion on (1) or off (0)

y-exp Vertical EXPansion on (1) or off (0)

mode Select standard sprite (0) or multi-color sprite (1)

Unspecified parameters in subsequent sprite statements take on the characteristics of the
previous SPRITE statement. You may check the characteristics of a SPRITE with the
RSPRITE function.

EXAMPLES:
SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue, make it pass
behind objects on the screen and expand it in the vertical
and horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black. The first O
tells the computer to display the sprites in front of objects
on the screen. The second 0 and the 1 following tell the
C128 to expand the sprite vertically only. The last 1
specifies multi-color mode. Use the SPRCOLOR com-
mand to select the sprite's multi-colors.

SPRSAV

Copy sprite data from a text string variable into a sprite or vice versa, or copy data from
one sprite to another.

FRSAV <origin>,<destination>

Either the origin or the destination can be a sprite number or a string variable but they
both cannot be string variables. They can both be sprite numbers. If you are storing a
string into a sprite, only the first 63 bytes of data are used. The rest are ignored since a
sprite can only hold 63 data bytes.

EXAMPLES:
SPRSAV 1A$ Transfers the image (data) from sprite 1 to the string named AS.
SPRSAV B$,2 Transfers the data from string variable B$ into sprite 2.
SPRSAV 2,3 Transfers the data from sprite 2 to sprite 3.

67

SSHAPE/GSHAPE

Savelretrieve shapes toffrom string variables

SSHAPE and GSHAPE are used to save and load rectangular areas of bit map
screens to/from BASIC string variables. The command to save an area of the bit map
screen into a string varigble is:

SSHAPE string variable, X1, YI [[X2,Y2]
where:

string variable String name to save data in
X1,Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)

The command to retrieve (load) the data from a string variable and display it on
specified screen coordinates is:

GSHAPE string variable [X,Y][,mod€]

where:

string Contains shape to be drawn
XY Top left coordinate (0.0 through 319,199) telling where to draw the shape

(scaled—the default is the pixel cursor)

mode Replacement mode:
0 = place shape as is (default)

invert shape

OR shape with area

AND shape with area

XOR shape with area

A WN R
In 1oy

The replacement mode allows you to change the data in the string variable so you can
invert it, perform a logica OR, exclusve OR (turn off bytes that are on) or AND
operation on the image.

EXAMPLES:

SSHAPE A$,10,10 Saves a rectangular area from the coordinates 10,10
to the location of the pixel cursor, into string vari-
able AS$.

SSHAPE B$,20,30,43,50 Saves a rectangular area from top l&ft coordinate
(20,30) through bottom right coordinate (43,50) into
string variable BS.

SSHAPE D$, + 10, + 10 Saves a rectangular area 10 pixels to the right and
10 pixels down from the current position of the pixel
Cursor.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

GSHAPE AS, 120,20 Retrieves shape contained in string variable A$ and
displays it at top left coordinate (120,20).

GSHAPE B$,30,30,1 Retrieves shape contained in string variable B$ and
displays it at top left coordinate 30,30. The shape is
inverted due to the replacement mode being selected
by the 1.

GSHAPE C$, + 20, + 30 Retrieves shape from string variable C$ and displays
it 20 pixels to the right and 30 pixels down from the
current position of the pixel cursor.

NOTE: Beware using modes 14 with multi-color shapes. You may
obtain unpredictable results.

STASH

Move contents of host memory to expansion RAM
STASH #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

STOP

Halt program execution
STOP

SWAP

Swap contents of host RAM with contents of expansion RAM
SWAP #bytes, intsa, expsa, expb

Refer to FETCH command for description of parameters.

SYS

Cadl and execute a machine language subroutine at the specified address
SYS address [,al[,X][,yl[,s]

This statement calls a subroutine at a given address in a memory configuration previoudy
st up according to the BANK command. Optionaly, arguments a,x,y and s are loaded into
the accumulator, x, y and status registers, respectively, before the subroutine is called.

The address range is 0 to 65535. The 8502 microprocessor begins executing the
machine-language program starting at the specified memory location. Also see the
BANK command.

69

EXAMPLES:

SYS 32768 Cals and executes the machine-language routine at location 32768
($8000).

SYS 6144,0 Calls and executes the machine-language routine at location 6144
($1800) and loads zero into the accumulator.

TEMPO
Define the speed of the song being played

TEMPO n
where n is a relative duration between (1 and 255)

The default value is 8, and note duration increases with n.
EXAMPLES:

TEMPO 16 Defines the Tempo at 16.
TEMPO 1 Defines the TEMPO at the owest speed.
TEMPO 250 Defines the TEMPO at 250.

TRAP
Detect and correct program errors while a BASIC program is RUNning

TRAP [line number]

The RESUME statement can be used to resume program execution. TRAP with no line
number turns off error trapping. An error in a TRAP routine cannot be trapped. Also see
system variables ST, EL, DS and DS$.

EXAMPLES:
. 100 TRAP 1000 If an error occurs, GOTO line 1000.

. 1000?ERR$(ER);EL Print the error message, and the error number.
1010 RESUME Resume with program execution.

TROFF

Turn off error tracing mode

TROFF

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

TRON

Turn on error tracing
TRON

TRON is used in program debugging. This statement begins trace mode. When you
RUN the program, the line numbers of the program appear in brackets before any action
for that line occurs.

VERIFY

Veify program in memory against one saved to disk or tape
VERIFY "filename" [,device number][,relocate flag]

Issue the VERIFY command immediately after you SAVE a program.

EXAMPLES:
VERIFY Checks the next program on the tape.
VERIFY "HELLO" Searchesfor HELLO on tape, checks it against memory.

VERIFY "HELLO",8,1 Searches for HELLO on disk, then checks it against
memory.

VOL

Define output level of sound for SOUND and PLAY statements
VOL volume level

EXAMPLES:
VOL 0 Sets volume to its lowest level.
VOL 15 Sets volume for SOUND and PLAY statements to its highest output.

WAIT

Pause program execution until a data condition is satisfied
WAIT <location>, <mask-I> [,mask-2>]
where:

location 0-65535
masks 0-255

The WAIT statement causes program execution to be suspended until a given memory
address recognizes a specified bit pattern or value.

The firsd example below WAITs until a key is pressed on the tape unit to
continue with the program. The second example will WAIT until a sprite collides with
the screen background.

71

EXAMPLES:

WAIT i, 32, 32
WAIT 53273, 2
WAIT 36868, 144, 16

WIDTH

Set the width of drawn lines
WIDTH n

EXAMPLES:

WIDTH 1 Set single width for graphic commands
WIDTH 2 Set double width for drawn lines

WINDOW

Define a screen window
WINDOW top left col,top left row,bot right col,bot right row[,clear]

This command defines a logical window within the 40 or 80 column text screen. The
coordinates must be in the range 0-39/79 for 40- and 80-column values respectively and
0-24 for row values. The clear flag, if provided (1), causes a screen-clear to be
performed (but only within the limits of the newly described window).

EXAMPLES:

WINDOW 5,5,35,20 Defines a window with top left corner coordinate as
5,5 and bottom right corner coordinate as 35,20.

WINDOW 10,2,33,24,1 Defines a window with upper left corner coordinate
10,2 and lower right corner coordinate 33,24. Also
clears the portion of the screen within the window as

specified by the 1.

BASIC FUNCTIONS

The format of the function description is:
FUNCTION (argument)

where the argument can be a numeric value, variable or string.

Each function description is followed by an EXAMPLE. The firg line appearing
below the word "EXAMPLE" is the function you type. The second line without bold is
the computer's response.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 73

ABS

Return absolute value of argument X
ABS (X)

EXAMPLE:
PRINT ABS (7*(-5))
35

ASC
Return CBM ASCII code for the first character in X$
ASC(X$)
This function returns the CBM ASCII code of the first character of X$.

EXAMPLE:
X$ = "C128":PRINT ASC (X$)
67

ATN

Return the arctangent of X in radians
ATN (X)

The value returned is in the range - TT/2 through TT/2.

EXAMPLE:
PRINT ATN (3)
1.24904577

BUMP

Return sprite collision information
BUMP (N)

To determine which sprites have collided since the last check, use the BUMP function.
BUMP(I) records which sprites have collided with each other, and BUMP(2) records
which sprites have collided with other objects on the screen. COLLISION need not be
active to use BUMP. The hit positions (0-7) in the BUMP value correspond to sprites 1
through 8 respectively. BUMP(n) is reset to zero after each call.

Here's how the sprite numbers and BUMP values that are returned correspond:
BUMP Value: 128 |64 |32]16(8|4]2]1
Sprite Number: 8‘7‘6‘5‘4‘3‘9‘1

EXAMPLES:
PRINT BUMP (1) 12 indicates that sprites 3 and 4 have collided.
PRINT BUMP (2) 32 indicates the sprite 6 has collided with an object on the screen.

CHRS$
Return character for specified CBM ASCII code X

CHR$(X)
The argument (X) must be in the range 0-255. This is the opposite of ASC and returns the
string character whose CBM ASCII code is X. Refer to Appendix E for atable of CHR$ codes.
EXAMPLES:

PRINT CHRS (65) Prints the A character.
A
PRINT CHR$ (147) Clears the text screen.

COS

Return cosine for angle of X in radians
COS(X)
EXAMPLE:

PRINT COS (11/3)
5

FNXxX

Return value from user defined function xx
FNxx(X)

This function returns the value from the user defined function xx created in a DEF
FNxx statement

EXAMPLE:

10 DEF FNAA(X) = (X-32)*5/9
20 INPUT X

30 PRINT FNAA(X)

RUN

240 (? is input prompt)
4.44444445

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

NOTE: If GRAPHIC is used in a program that defines a function, issue
the GRAPHIC command before defining the function or the function
definition is destroyed.

FRE

Return number of available bytes in memory
FRE (X)
where X is the RAM bank number. X = 0 for BASIC program storage and X = 1 to
check for available BASIC variable storage.
EXAMPLES:

PRINT FRE (0) Returns the number of free bytes for BASIC programs.
58109

PRINT FRE (1) Returns the number of free bytes for BASIC variable storage.
64256

HEX$
Return hexadecimal string equivalent to decimal number X
HEX$(X)

EXAMPLE:

PRINT HEX$(53280)
D020

INSTR

Return starting position of string 2 within string 1
INSTR (string 1, string 2 [,starting position])

EXAMPLE:
PRINT INSTR ("COMMODORE 128","128")
u

INT

Return integer form (truncated) of a floating point value
INT(X)

This function returns the integer value of the expression. If the expression is positive,
the fractiona part is Ieft out. If the expression is negative, any fraction causes the next
lower integer to be returned.

75

EXAMPLES:

PRINT INT(3.14)
3

PRINT INT(-3.14)
-4

JOY

Return position of joystick and the status of the fire button
JOY(N)
when N equals:

1 JOY returns position of joystick 1.
2 JOY returns podtion of joystick 2.

Any value of 128 or more means that the fire button is also pressed. To find the joystick
position if the fire button is pressed subtract 128 from the JOY value. The direction is
indicated as follows.

1
8 2
7 0 3
6 4
5
EXAMPLES:
PRINT JOY (2 Joystick 2 fires to the left.
135
IF (JOY (1) > 127) THEN PRINT "FIRE" Determines whether the fire button

is pressed.
DIR = JOY(l) AND 15 Reurns direction (only) of joystick 1

LEFTS$

Return the leftmost characters of string
LEFTS (string,integer)

EXAMPLE:

PRINT LEFT$("COMMODORE",5)
COMMO

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

LEN

Return the length of a string
LEN (string)
The returned integer value is in the range 0-255.

EXAMPLE:

PRINT LEN ("COMMODORE 128")
12

LOG

Return natura log of X

LOG(X)
The argument X must be greater than 0.
EXAMPLE:

PRINT LOG (37/5)
2.00148

MID$

Return a substring from a larger string
MID$ (string,starting position™length])
This function extracts the number of characters specified by length (0-255), from string,
starting with the character specified by starting position (1-255).
EXAMPLE:

PRINT MID$("COMMODORE 128",3,5)
MMODO

PEEK

Return contents of a specified memory location
PEEK (X)

The data will be returned from the bank selected by the most recent BANK command.
See the BANK command.

EXAMPLE:
10 BANK 15VIC = DEC("D000")
20FOR | = 1 TO 47
30 PRINT PEEK(VIC +)
40 NEXT

This example displays the contents of the registers of the VIC chip (some of which
are ever-changing).

7

PEN
Return X and Y coordinates of the light pen

PEN(n)

where n = 0 PEN returns the X coordinate of light pen position on any VIC screen.
n = 1 PEN returnsthe Y coordinate of light pen position on any VIC screen.
n = 2 PEN returns the character column position of the 80 column display.
n = 3 PEN returns the character row position of the 80 column display.
n = 4 PEN returns the (80-column) light pen trigger value.

The VIC PEN vaues are not seded and are taken from the same coordinate plane as

sprites use. Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates are

character row and column positions and not pixel coordinates like the VIC screen. Both

the 40 and 80 column screen coordinate values are approximate and vary, due to the

nature of light pens. The 80-column read values are not valid until PEN(4) is true.
Light pens are always plugged in to control port 1.

EXAMPLES:
10 PRINT PEN(0);PEN(I) Displays the X and Y coordinates of the light
pen (for the 40 column screen).

10 DO UNTIL PEN(4):LOOP Ensures that the read values are valid (for the
80 column screen).

20 X = PEN(2)
30 Y = PEN(3)
40 REM:REST OF PROGRAM

IT
Return the value of pi (3.14159265)

EXAMPLE:
PRINT This returns the result 3.14159265.

POINTER

Return the address of a variable
POINTER (variable name)
This function returns a zero if the variable is not defined.

EXAMPLE:

A = POINTER (Z) This example returns the address of variable Z.
NOTE: Address returned is in RAM BANK 1.

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

POS

Return the current cursor column position within the current screen window

POS(X)

The POS function indicates where the cursor is within the defined screen window. X is a
dummy argument, which must be specified, but the value is ignored. The vaues
returned range from 0-39 on the VIC screen and 0-79 on the 80-column screen.

EXAMPLE:
FOR | = 1 to 10 : ?SPC(l); POS(O): NEXT

This displays the current cursor position within the defined text window.

POT

Returns the value of the game-paddle potentiometer
POT (n)

when:
n = 1, POT returns the position of paddle #1 (control port 1)
n = 2, POT returns the position of paddle #2 (control port 1)
n = 3, POT returns the position of paddle #3 (control port 2)
n = 4, POT returns the position of paddle #4 (control port 2)

The values for POT range from 0 to 255. Any value of 256 or more means that the fire
button is also depressed.
EXAMPLE:

10 PRINT POT(l)
20 IF POT(l) > 256 THEN PRINT "FIRE"

This example displays the value of game paddle 1.

RCLR
Return color of color source
RCLR(N)

This function returns the color (1 through 16) assigned to the color source N (0< = N = <
6), where the following N values apply:

79

SOURCE DESCRIPTION

40-column background

bit map foreground

multi-color 1

multi-color 2

40-column border

40- or 80-column character color
80-column background color

OO WNERLO

The counterpart to the RCLR function is the COLOR command.

EXAMPLE:

IOFORI =0TOG6
20 PRINT "SOURCE";l;"1S COLOR CODE";RCLR(!)
30 NEXT

This example prints the color codes for al six color sources.

RDOT

Return current position or color source of pixel cursor
RDOT (N)

where:

0 returns the X coordinate of the pixel cursor
1 returns the Y coordinate of the pixel cursor
2 returns the color source (0-3) of the pixel cursor

N
N
N

This function returns the location of the current position of the pixel cursor or the
current color source of the pixel cursor.
EXAMPLES:

PRINT RDOT(0) Returns X position of pixel cursor
PRINT RDOT(1) ReturnsY position of pixel cursor
PRINT RDOT(2) Returns color source of pixel cursor

RGR

Return current graphic mode
RGR(X)
This function returns the current graphic mode. X is a dummy argument, which must be

specified. The counterpart of the RGR function is the GRAPHIC command. The value
returned by RGR(X) pertains to the following modes:

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

VALUE GRAPHIC MODE

0 40 column (VIC) text
1 Standard bit map
2 Split screen bit map
3 Multi-color bit map
4 Solit screen Mullti-color bit map
5 80 column (8563) text
EXAMPLE:
PRINT RGR(O) Displays the current graphic mode; in this case, standard bit
1 map mode.
PRINT RGR(O) Both multi-color bit map and 80-column text modes are enabled.
8
RIGHTS$

Return sub-string from rightmost end of string
RIGHT$(string, numeric)

EXAMPLE:

PRINT RIGHT$("BASEBALL",5)
EBALL

RND

Return a random number
RND (X)
If X = 0 RND returns a random number based on the hardware clock.
If X >0 RND generates a reproducible random number based on the seed

value below.
If X <0 produces a random number which is used as a base called a seed.

EXAMPLES:

PRINT RND(O) Displays a random number between 0 and 1.
507824123

PRINT INT(RND(I)*100 + 1) Displays a random number between 1 and 100.
89

81

RSPCOLOR

Return sprite multicolor values
RSPCOLOR (X)
When:

X =1 RSPCOLOR returns the sprite multi-color 1.
X = 2 RSPCOLOR returns the sprite multi-color 2.

The returned color value is a value between 1 and 16. The counterpart of the RSPCOLOR
function is the SPRCOLOR statement. Also see the SPRCOLOR statement.

EXAMPLE:

10 SPRITE 1,1,2,0,1,1,1

20 SPRCOLOR 5,7

30 PRINT "SPRITE MULTI-COLOR 1 1S";RSPCOLOR(1)
40 PRINT "SPRITE MULTI-COLOR 2 IS";RSPCOLOR(2)
RUN

SPRITE MULTI-COLOR 1 IS5
SPRITE MULTI-COLOR 2 IS 7

In this example line 10 turns on sprite 1, colors it white, expands it in both the X and Y
directions and displays it in multi-color mode. Line 20 selects sprite multi-colors 1 and 2
(5 and 7 respectively). Lines 30 and 40 print the RSPCOLOR values for multi-color 1 and 2.

RSPPOS

Return the speed and position values of a sprite
RSPPOS (sprite number ,position|speed)

where sprite number identifies which sprite is being checked, and position and speed
specifies X and Y coordinates or the sprite's speed.
When position equals;

0 RSPPOS returns the current X position of the specified sprite.

1 RSPPOS returns the current Y position of the specified sprite.

When speed equals:

2 RSPPOS returns the speed (0-15) of the specified sprite.
EXAMPLE:

10 SPRITE 1,1,2
20MOVSPR 1.45#13
30 PRINT RSPPOS (1.0);RSPPOS (1,1);RSPPOS (1,2)

This example returns the current X and Y sprite coordinates and the speed (13).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA 83

RSPRITE

Return sprite characteristics
RSPRITE (sprite number characteristie)

RSPRITE returns gprite characteristics that were specified in the SPRITE command.
Sprite number specifies the sprite (1-8) you are checking and the characteristic specifies
the sprite's display qualities as follows:

RSPRITE RETURNS
CHARACTERISTIC THESE VALUES:

0 Enabled! 1) / dissbled(O)
1 Sprite color (1-16)
2 Sprites are displayed in front of (O) or behind

(1) objects on the screen

3 Expand in X direction yss=1no=0
4 Expand in Y direction yes=1no=0
5 Multi-color yes=1no=0
EXAMPLE:
I0FOR1=0TO5 This example prints dl 6 characteristics of sprite 1.
20 PRINT RSPRITE (1,1)
30 NEXT
RWINDOW

Returns the size of the current window or the number of columns of the current
screen

RWINDOW (n)
When n equals:

0 RWINDOW returns the number of lines in the current window.

1 RWINDOW returns the number of rows in the current window.

2 RWINDOW returns either of the values 40 or 80, depending on the current
screen output format you are using.

The counterpart of the RWINDOW function is the WINDOW command.

EXAMPLE:

10 WINDOW 1,1,10,10
20 PRINT RWINDOW(0);RWINDOW/(1);RWINDOW(2)
RUN

9940

This example returns the lines (10) and columns (10) in the current window. This
example assumes you are displaying the window in 40 column format.

SGN

Return sign of argument X
SGN(X)

EXAMPLE:
PRINT SGN(4,5);SGN(0);SGN(-2.3)
1 0-1

SIN

Return sine of argument
SIN(X)
EXAMPLE:

PRINT SIN (T1/3)
.866025404

SPG

Skip spaces on printed output
SPC (X)
EXAMPLE:

PRINT "COMMODORE";SPC(3);" 128
COMMODORE 128

SOR
Return square root of argument
SQR (X)

EXAMPLE:

PRINT SQR(25)
5

STH$

Return string representation of number
STR$ (X)

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

EXAMPLE:

PRINT STR$(123.45)
123.45

PRINT STR$(-89.03)
-89.03

PRINT STR$(1E20)
IE + 20

TAB

Moves cursor to tab position in present statement
TAB (X)

EXAMPLE:

10 PRINT"COMMODORE"TAB(25)"128"
COMMODORE 128

TAN

Return tangent of argument in radians
TAN(X)

This function returns the tangent of X, where X is an angle in radians

EXAMPLE:

PRINT TAN(.785398163)
1

USR

Call user-defined subprogram
USR(X)

When this function is used, the BASIC program jumps to a machine language program
whose starting point is contained in memory locations 4633(11219) and 4634($121A), (or
785($0311) and 786($0312) in C64 mode). The parameter X is passed to the machine-
language program in the floating-point accumulator ($63-$68 in C128 mode). A value is
returned to the BASIC program through the calling variable. You must direct the value
into a variable in your program in order to receive the value back from the floating-point
accumulator. An ILLEGAL QUANTITY ERROR results if you don't specify this
variable. This allows the user to exchange a variable between machine code and
BASIC.

85

EXAMPLE:

10 POKE 4633,0
20 POKE 4634,48
30 A = USR(X)
40 PRINT A

Place starting location ($3000 = 12288:$00 = 0:$30) = 48 of machine language
routine in location 4633 and 4634. Line 30 stores the returning value from the floating-
point accumulator. The USER vector is assumed to be in BANK 15. Your machine
language routine MUST be in RAM bank 0 below address $4000.

VAL

Return the numeric vaue of a number string
VAL(X$)

EXAMPLE:

10 A$ = "120"

20 B$ = "365"

30 PRINT VAL (A$ + B$)
RUN

485

XOR

Return exclusive OR vdue
XOR (nl,n2)

This function returns the exclusive OR of the numeric argument values nl and n2.
X = XOR (nl,n2)

where nl, n2, are 2 unsigned values (0-65535)

EXAMPLE:

PRINT XOR(128,64)
192

RESERVED SYSTEM WORDS
(KEYWORDS)

This section lists the words used to make up the BASIC 7.0 language. These words
cannot be used within a program as other than a component of the BASIC language. The
only exception is that they may be used within quotes (in a PRINT statement, for example).

BASIC BUILDING BLOCKS AND BASIC 7.0 ENCYCLOPEDIA

87

4BS
AND
APPEND
ASC
ATN
AUTO
BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BOX
BSAVE
BUMP
CATALOG
CHAR
CHR$
CIRCLE
CLOSE
CLR
CMD
COLLECT
COLLISION
COLOR
CONCAT
CONT
COPY
COS
DATA
DCLEAR
DCLOSE
DEC
DEFFN

DELETE
DIM
DIRECTORY
DLOAD
DO
DOPEN
DRAW
DS

DS$
DSAVE
DVERIFY
EL

ELSE
END
ENVELOPE
ER
ERR$
EXIT
EXP
FAST
FETCH
FILTER
FN

FOR
FRE
GET
GET#
G064
GOSuB
GOTO
GOTO
GRAPHIC
GSHAPE
HEADER

HELP
HEX$
IF
INPUT
INPUT#
INSTR
INT
Joy
KEY
LEFTS
LEN
LET
LIST
LOAD
LOCATE
LOG
LOOP
MID$
MONITOR
MOVSPR
NEW
NEXT
NOT
(OFF)
ON
OPEN
OR
PAINT
PEEK
PEN
PLAY
POINTER
POKE
POS

POT
PRINT
PRINT#
PUDEF
(QUIT)
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHTS
RND
RREG
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SGN

SN
SLEEP
SLOW
SOUND
SPC

SPRCOLOR
SPRDEF
SPRITE
SPRSAV
WVR
SSHAPE
ST
STASH
STEP
STOP
STR$
SWAP
sys
TAB
TAN
TEMPO
THEN
T

TI$

TO
TRAP
TROFF
TRON
UNTIL
USING
UR
VAL
VERIFY
VOL
WAIT
WHILE
WIDTH
WINDOW
XOR

BASIC 7.0

NOTE: Keywords shown in parentheses are not implemented in C128

Reserved variable names are names reserved for the variables DS, DS$, ER, EL,
ST, Tl and TI$, and the function ERRS. Keywords such as TO and IF or any other
names that contain keywords, such as RUN, NEW or LOAD cannot be used.

ST is a status variable for input and output (except normal screen/keyboard
operations). The value of ST depends on the results of the last 1/0 operation. In general,
if the value of ST is O, then the operation was successful.

Tl and TI$ are variables that relate to the real time clock built into the Commodore
128. The system clock is updated every 1/60th of a second. It starts a O when the
Commodore 128 is turned on, and is reset only by changing the value of TI$. The
variable TI gives the current value of the clock in 1/60th of a second. TI$ is a string that
reads the value of the real time clock as a 24-hour clock. The firg two characters of TI$
contain the hour, the third and fourth characters are minutes and the fifth and sixth
characters are seconds. This variable can be set to any value (so long as dl characters
are numbers) and will be updated automatically as a 24-hour clock.

EXAMPLE:
TI$ = "101530" Sets the clock to 10:15 and 30 seconds (AM).

The vaue of the clock is lost when the Commodore 128 is turned off. It starts at
zero when the Commodore 128 is turned on, and is reset to zero when the value of the
clock exceeds 235959 (23 hours, 59 minutes and 59 seconds).

The variable DS reads the disk drive command channel and returns the current
status of the drive. To get this information in words, PRINT DS$. These status variables
are used after a disk operation, like DLOAD or DSAVE, to find out why the error light
on the disk drive is blinking.

ER, EL and the ERR$ function are variables used in error trapping routines. They
are usually only useful within a program. ER returns the last error number encountered
since the program was RUN. EL is the line where the error occurred. ERR$ is a
function that allows the program to print one of the BASIC error messages. PRINT
ERR$(ER) prints out the proper error message.

RESERVED SYSTEM SYMBOLS

The following characters are reserved system symbols.

SYMBOL USE(S)

Plus sign Arithmetic addition; string concatenation; relative pixel
cursor/sprite movement; declare decimal number in ma-
chine language monitor

Minus sign Arithmetic subtraction; negative number; unary minus,
relative pixel cursor/ sprite movement
Asterisk Arithmetic multiplication
/ Slash Arithmetic division
t Up arrow Arithmetic exponentiation
Blank space Separate keywords and variable names
— Equal sign Value assignment; relationship testing
< Lessthan Relationship testing
> Greater than Relationship testing
Comma Format output in variable lists; command/statement func-

tion parameters

%

H

SYMBOL

Period

Semicolon

Caolon

Quotation mark
Question mark
Left parenthesis
Right parenthesis
Percent

Number
Dollar sgn
And sgn
Pi

BASIC BUILDING BLOCKS AND BASIC 70 ENCYCLOPEDIA

USE(S)

Decimd point in floating-point constants

Format output in variable lists; delimiter

Separate multiple BASIC statements on a program line
Endlose string constants

Abbreviation for the keyword PRINT

Expresson evauation and functions

Expresson evaluation and functions

Declare a variable name as integer; declare binary num-
ber in machine language monitor

Precede the logicd file number in input/output statements
Declare a variable name as a string and declare hexadeci-
ma number in machine language monitor

Declare octa number in machine language monitor
Declare the numeric constant 3.141592654

89

3

ONE STEP
BEYOND
SIMPLE BASIC

This chapter takes you one step beyond smple BASIC and presents a collection of useful
routines. You can incorporate these routines into your own programs as needed. In most
cases the routines will require only line number changes to be fitted into your programs.

CREATING A MENU

A menu is a list of choices you sdect to perform a specific operation within an
application program. A menu directs the computer to a particular part of a program.
Here is a general example of a menu program:

5 REM MENU SKELETON

10 SCNCLR O

20 PRINT"1. FIRST I TEM

30 PRINT"2. SECOND | TEM

40 PRINT"3. TH RD | TEM

50 PRINT"4. FOURTH | TEM

100 PRI NT: PRI NT" SELECT AN | TEM FROM ABOVE"
110 GETKEY AS

120 A=VAL (ASS: |F A>4 THEN 10

130 ON A GOsuB 1000, 2000, 3000, 4000

140 GOTO 10: REM RETURN TO MENU

999 STCOP

1000 REM START FIRST ROUTINE FCR | TEM ONE HERE
1999 RETURN

2000 REM START SECOND ROUTI NE HERE

299 9 RETURN

3000 REM START THI RD ROUTI NE HERE

3999 RETURN

4000 REM START FOURTH ROUTI NE HERE

4999 RETURN

Program 3-1. Menu Skeleton

The SCNCLR 0 command in line 10 clears the 40-column screen. (Use SCNCLR
5 if you are using the 80-column screen. The easiest selection is by a number. You may
use as many selections as can fit on the screen. Line 100 displays a message to the user.
The GETKEY command in line 110 forces the computer to wait for a key to be pressed.
Since a key represents a character symbol, A$ is a string variable. So that it can be
interpreted as a numeric vaue in an ON GOTO statement, the string variable is
converted to a number with the VAL function in line 120. The IF ... THEN statement
in line 120 screens user errors by preventing the user from selecting a number that is not
in the range of numbers used for choices (4). Line 130 directs control to the appropriate
section (i.e., line number) in your program. Since four selections are offered in this
example, you must include &t least four line numbers. Line 1999 returns to the menu at
the end of each subroutine that you add at lines 1000, 2000, 3000 and 4000 in the menu
skeleton.

ONE STEP BEYOND SIMPLE BASIC

BUFFER ROUTINE

The C128 keyboard buffer can hold and dispense up to ten characters from the
keyboard. This is useful in a word processing program where it is possible a certain
moments to type faster than the software can actually process. The characters that
haven't been displayed yet are temporarily stored in the keyboard buffer. The computer
can hold the next instruction in the buffer for use when the program is ready. This buffer
allows a maximum of ten characters in queue. To see the buffer in action, enter the
command SLEEP 5 and immediately press ten different letter keys. After five seconds,
al ten characters are displayed on the screen.

Here is a buffer routine that alows you to put items in the keyboard buffer
from within a program so they are dispensed automatically as the computer is able to act
upon them.

In line 10, memory location 208 (198 in C64 mode) is filled with a number
between 0 and 10—the number of keyboard characters in the keyboard buffer. In line
20, memory locations 842 through 851 (631-640 in C64 mode) are filled with any ten
characters you want placed there. In this example, seven characters are in the buffer,
each a cariage RETURN character. CHR$(13) is the character string code for the
carriage return character.

Line 40 places the text "?CHR$(156)" on the screen, but does not execute the
instruction. Line 50 displays the word "LIST" on the screen. Neither command is
executed until the program ends. In the C128, the keyboard buffer automatically empties
when a program ends. In this case, the characters in the buffer (carriage return) are
emptied and act as though you are pressing the RETURN key manually. When this occurs
on a line where the commands from lines 40 and 50 are displayed, they are executed
as though you typed them in direct mode and pressed the RETURN key yourself. When
this program ends, the character color is changed to putple and the program is LISTED
to the screen. This technique is handy in restarting programs (with RUN or GOTO).

The next section gives a practica example of using the buffer routine.

10 PCKE 208, 7: REM SPEQ FY # OF CHARS | N BUFFER

20 FCR 1=842 TO 849: PCKE |, 13: NEXT: REM PLACE CHARS | N BUFFER

3 0 SLEEP 2 : REM DELAY

4 0 SCNCLR: PRI NT: PRI NT: PRI NT: PRI NT: PRI NT: PRI NT: PRI NT"? CHR?(156) "

50 PRI NT: PRI NT: PRI NT: PRINT" LI ST": REM PLACE LI ST ON SCREEN

60 PRI NT CHR$(19): PRI NT: PRI NT: REM GO HOVME AND CURSCR DOMN TW CE

70 REM WHEN PROGRAM ENDS, BUFFER EMPTI ES AND EXECUTES 7 RETURNS.

80 REM TH' S CHANGES CHAR COLCR TO PURPLE AND LI STS THE PROGRAM AUTOVATI CALLY
90 REMAS |IF YQU PRESSED THE RETURN KEY NMANUALLY

Program 3-2. Buffer Return

LOADING ROUTINE

The buffer can be used in automatic loader routines. Many programs often involve the
loading of several machine code routines as well as a BASIC program. The results of
the following loader are similar to many found on commercial software packages.

93

2 COLCR 4,1:0OLCR 0, 1: GOLCR 5,1

5 A$="P| CTURE"

10 SONCLR PRI NT: PRI NT: PRI NT: PRI NT" LOAD' CHR$(34) ASCHR$(34) ",
15 PRI NT: PRI NT: PRI NT" NEW

25 B$="FI LE3. BI N'

30 PRINT: PRI NT: PRI NT" LOAD' OHRS(34) BSCHR$(34) "

45 PRI NT: PRI NT: PRI NT: PRI NT: PRI NT: PRI NT" SY812*256

90 PRINT CHRS(5): PRI NT" GREETI NGS FROM COVMODCRE"

100 PRI NT" PLEASE STAND BY - LQADING': PRINT CHRS(144)
200 PRI NT CHR$(19)
300 POKE2 0 8, 7: FOR'=8 4 2T08 51: POKE! , 13: NEXT

Program 3-3. Loading Routine

Line 2 colors the border, screen and characters black. Line 5 assigns A$ the
filename "PICTURE", which in this example assumes that it is an 8K binary file of a
bit-mapped screen. Line 10 places the LOAD instruction for the picture file on the
screen, but does not execute it. A carriage return from the keyboard buffer executes the
load instruction once the program ends and the keyboard buffer empties. Line 15 prints
the word "NEW" on the screen. Again, this operation is not carried out until a carriage
return is executed on the same line once the keyboard buffer empties. After loading a
machine language program, a NEW is performed to set pointers to their origina
positions and clear the variable storage area. Line 30 displays the second load instruc-
tion for the machine language program "FILE3.BIN". This hypothetica program
enables the bit mapped PICTURE, and anything else you want to supply in the program.
Line 45 initiates (SYS12*256), the "FILE3.BIN" program starting at 3072 ($0C00Q)
once the keyboard buffer empties. This is only a template sample for you to follow.
"PICTURE" and "FILE3.BIN" are programs you supply and are only used to illustrate
one technique of automatic loading. Since the previous character color was black, dl the
loading instructions are displayed in black on a black background, so they can't be seen.
The CHR$(5) in line 90 changes the character color to white, so the only visible
messages are the ones in white in lines 90 and 100, while the disk drive is loading
"PICTURE" and "FILE3.BIN". Line 300 is the buffer routine.

If you were to do each step manualy it would require seven "RETURNS". This
program places seven carriage return characters in the keyboard buffer, and they are
dispensed automatically when the program ends. As each RETURN is accepted, the
corresponding screen ingtruction is enacted automatically as if you had pressed the
RETURN key manually.

PROGRAMMING THE
Cl128 FUNCTION KEYS

As each of the function keys (FI through F8) is pressed, the computer displays a BASIC
command on the screen and in some cases acts immediately. These are known as the
default values of the function keys. Enter a KEY command to get a list of function key
values a any time.

ONE STEP BEYOND SIMPLE BASIC

CHANGING FUNCTION KEYS

You can change the value assigned to any function key by entering the KEY command
followed by the number (1 through 8) of the key you want changed, a comma, and the
new key instruction in a string format. For example:

KEY1, "DLOAD"+CHR$(34)+ "PROGRAM NAME"
+ CHR$(34) + CHR$(13) +''LIST" + CHR$(13)

This tells the computer to automatically load the BASIC program called "program
name" and list it immediately (whenever Fl is pressed). The character string code value
for the quote character is 34. It is necessary for LOAD and SAVE operations. The
character string code value for RETURN is 13 and provides immediate execution.
Otherwise, the instruction is only displayed on the screen and requires you to supply the
additional response and press the RETURN key.

The following example uses the ASCII value for the ESCape key to assign the F3
key to cause a downward scroll:

KEY 3,CHR$(27) + "W"

NOTE: All eight KEY definitions in total must not exceed 246 characters.

USING C64 FUNCTION KEY VALUES

IN C128 MODE

Programs previously written for the C64 which incorporate the function keys may dtill
be used in C128 mode by firgt assigning the C64 ASCIl values to them with this
instruction:

10J= 132:FORA= 1TO2:FORK = ATO8STEP2:J = J+ 1.:KEYK,CHR$(J):NEXT:
NEXT

HOW TO CRUNCH BASIC PROGRAMS

Severa techniques known collectively as memory crunching alow you to get the most
out of your computer's memory. These techniques include eliminating spaces, using
multiple instructions, having syntax relief, removing remark statements, using variables,
and in general using BASIC intelligently.

ELIMINATING SPACES

In most BASIC commands, spacing is unnecessary, except inside quotes when you want
the spaces to appear on the screen. Although spaces improve readability, the extra space
consumes additional memory. Here is an instructional line presented both ways:

10INPUT"FIRST NAME";N$:FOR T=A TO M.PRINT "OK":
10INPUT"FIRSTNAME";N$:FORT = ATOM:PRINT"OK":

95

USING MULTIPLE INSTRUCTIONS

Colons dlow you to place several instructions within a single program line. Each
program line consumes additional memory. Be careful, however, crunching IF state-
ments. Any instruction after the IF statement with the same line number can be bypassed
aong with the IF ... THEN condition. The following line is the equivalent of five
lines:

(A)
10 PRINTX:INPUTY:PRINTY:SCNCLRO:2J

(B)
10 PRINTX
20 INPUTY
30 PRINTY
40 SCNCLRO
50 PRINTJ

Example A requires less space in memory and on disk. Example B requires 16
additional bytes; 2 bytes for each additiona line number and 2 bytes for the link to the
next line number.

SYNTAX RELIEF

Some BASIC syntax is very flexible and this flexibility can be used to your advantage.
The LET statement, for example, can be written without LET. LET Y= 2 is the same as
Y =2. Although it is good practice to initidlize dl variables to zero, it is not necessary
since the computer automatically sets al variables to zero, including subscripted vari-
ables. DIMension al arrays (subscripted variables) to have twelve or more elements. The
C128 automatically dimensions each variable to have eleven subscripted elements if no
dimension is specified following DIM and the variable names. Often semicolons are not
required in PRINT statements. Both of these perform the same results:

10 PRINT"A";Z$;"WORD";CHR$(65);"NOW $'
20 PRINT"A"Z$"WORD"CHR$(65)"NOW $"

REMOVING REM STATEMENTS

Although REM statements are useful to the programmer, removing them makes a
considerable amount of memory available again. It might be a good idea to create a
separate listing with REM statements.

USING VARIABLES

Replace repeated numbers with a variable. This is especialy important with large
numbers such as memory addresses. POKEing several numbers in sequence conserves
memory if a variable is used, such as POKE 54273 +V, etc. Of course, single-letter
variable names require the least memory. Reuse old variables such as those used in FOR
. . . NEXT loops. Whenever possible, make use of integer variables since they consume
far less memory than floating-point variables.

ONE STEP BEYOND SIMPLE BASIC

USING BASIC INTELLIGENTLY

If information is used repeatedly, store the data in integer arrays, if possible. Use DATA
statements where feasible. Where a similar line is used repeatedly, create a single line
with variables and access it with GOSUBs. Use TAB and SPC functions in place of
extensive cursor controls.

MASKING BITS

Any of the bits within a byte can be controlled individually, using the Boolean operators
AND and OR. Calculations with AND and OR are based on a truth table (Table 3-1)
showing the results given dl possible true and fdse combinations of the arguments X and Y.

Table 3-1. AND and OR Truth Table

With " 0" representing False and " 1" Truth, Table 3-1 shows how the operators
AND and OR work. The result of an AND operation between two bits is only true if
both bits are true (1). Otherwise the combination is false. Any bit combination with a
zero yields a zero in an AND operation. The result of an AND operation is only true
(equal to 1) if both bits are true (equal to 1).

The result of an OR operation is only fase if each hit is false. Otherwise the result
is true. Any bit combination with a one yields a one in an OR operation. ONLY two
zeros result in a zero.

Observe the following example with the numbers 5 and 6 in binary form. When
you type the command PRINT 5 AND 6, the result is 4. Here's why:

5= 0000 0101
6= 0000 0110

ANDed 4= (0000 0100

Instead of adding, ANDing performs a bit-by-bit comparison in accordance with
the rules of the AND truth table. Compare column-for-column from the right: 1 AND
0=0, 0 AND 1=0, 1 AND 1=1, 0 AND 0=0. The result "0100" converted to
decimal is the number 4.

What is the effect of ORing 5 and 6? Again comparing bit-by-bit, using the rules
from the OR truth table:

97

5= 0000 0101
6= 0000 0Ou1O0

ORing 7= 0000 O111

The result 0111 is decima 7. Notice from the right that 1 OR0=1,00R 1=1, 1 OR
1=1ard0OORO0=0.

Understanding how these OR and AND combinations work gives you the power to
control individua bits within your computer's memory. Many of the 8-hit bytes utilize
each hit for separate control parameters.

USING OR AND AND TO MODIFY

THE BIT VALUES IN A BYTE

A byte is a group of eight binary digits labeled, from right to left, O to 7. Each binary
digit position represents a decima value equal to two raised to the power of the position
number. For example, the decimal value of position 6 is 2**6 or 64. From left to right
the positions are:

7 6 54 3 2 10
and the corresponding vaues in decimal are:
128 64 32 16 8 4 2 1

To turn on ahit, place a" 1" in its position. To turn it off, enter a" 0" . Hence the
binary 10010000 has bits 4 and 7 on. Their values are 128 and 16. So if a particular byte
is POKED with 144 (128+16), these two hits are turned on. To turn bits on, store
(POKE) a new value to that byte—a vaue equa to the sum of al the decimal
equivalents of al the bits that are enabled (on). Of course, you do not always know
which bits are dready on. You may only want to turn on specific bits without
affecting the others. That's the purpose of the logical operations AND and OR.

First, obtain the decima vaue of the byte by PEEKing. Then add the decimal
value of the bit you wish to turn on. The following command turns on hit 2 of memory
address "V":

POKEV, PEEK(V) + 4

This assumes hit 2 (third bit from the right) had a value of 0. Had it aready been
"on," it would have no effect. To prevent such confusion, the C128 uses the power of
Boolean Logic.

Idedlly you want to read (PEEK) each hit. The proper approach is to OR the byte
with an operand byte which will yield the desired binary value. Suppose we want to
turn on hit 5; the operand byte becomes 00100000. By ORing this with any byte it will
affect only hit 5, because any combination involving 1 in an OR operation results in 1.
Thus no bit already ON can be inadvertently turned off.

POKEV,PEEK(V) OR 32

Just as OR turns a switch on, AND can turn a switch off—with a dight difference.
AND resultsina™ 1" only if both bits compared are " 1. " The trick is to compare the

ONE STEP BEYOND SIMPLE BASIC

byte in question with an operand byte of dl ON bits except the bit you want turned off.
Bits to remain on will not be affected. To turn off bit 5, AND the byte in question with
the mirror image of 00100000 or the operand byte 11011111. In decima this value is
always 255 minus the value of the bit(s) you want to turn off. Thus:

POKEV,PEEK (V) AND (255-32)

turns off bit 5.
Use OR to turn bits ON
Use AND to turn bits OFF

EXAMPLES:
POKEW,PEEK(W) OR 129 Turns ON hits 0 and 7 of memory address W.
POKES,PEEK(S) AND 126 Turns OFF hits O and 7 of memory register S
(Remember 255-129 = 126)
POKEC,PEEK(C)AND254 Turns OFF bit 0
POKEC,PEEK(V)OR63 Turns ON al bits except 6 and 7

DEBUGGING PROGRAMS

No program when first written is free of "bugs" or errors. The process of finding errors
and removing them, debugging, combines editing with problem solving.

SYNTAX ERRORS

Syntax errors result from misspelling or misusing the guidelines and formats of BASIC
commands. An error message is displayed on the screen defining the line where the
error occurs. Typing HELP <RETURN> or pressing the HELP key aso highlights the
line with the error. Common syntax errors include misspelled BASIC terms, misplaced
punctuation, unpaired parentheses, reserved variable names such as TIS, use of line
numbers that do not exist, etc.

LOGIC ERRORS
Sometimes errors exist in the program logic, with the result that the program doesn't do
exactly what you think it is supposed to do. Some logic errors are caused by the order of
instructions. One common fault occurs when you forget that anything on a line after an
IF statement is affected by the IF condition.

Some errors in logic require a trial-and-error investigation. This is best initiated by
asking the computer for help in BASIC.

USING A DELAY

Where the computer responds rapidly, it often helps to see a response by inserting a
SLEEP command for a temporary time delay. This gives you a chance to see exactly
what is happening in the program.

99

USING PRINT AND STOP

Insert STOP statements within your program prior to the suspect instruction line. Good
locations are at the end of specific tasks. Run the program. After the STOP statement
puts you into direct mode, use the PRINT command to identify clues to the problem by
determining the values of the various variables, especialy those within loops. Check
these with what you expect. Continue the program with CONT to the next STOP
statement until you modify your program.

TRAPPING AN ERROR
Debugging is the at of detecting the source of problem. The following program is
perfectly valid; however, it produces an error when B equals zero.

10 INPUT A,B
20 PRINT A/B
30 GOTO 10

Although in this case the computer defines the error as a DIVISION BY ZERO
error, it is not always obvious how the variable B became a zero. It could have been
derived from a complex formula embedded in your program, or directly inputting the
vaue zero into a variable.

The BASIC TRAP command has a technique of trapping such an error in a
program without crashing. Since you can't always foresee dl the possible values of the
variable B, you can screen the probable error of division of zero by including a TRAP at
the beginning of the program.

5 TRAP 50
10 INPUT A,B
20 PRINTA/B
30 GOTO10
50 PRINT"DIVISION BY ZERO IS NOT POSSIBLE"
60 PRINT"ENTER ANOTHER NUMBER FOR B BESIDES ZERO"
70 RESUME

RESUME is required after the TRAP response in order to reactivate the TRAP. If
you include the option to enter a replacement for B, RESUME without a line humber
returns to the cause of the error—line 20—and executes it as follows:

65 INPUT B

The use of RESUME NEXT proceeds with the next line after the TRAP command,
i.e., line 10.

TRAP tells the computer to go to a specific line number whenever an error occurs.
Do NOT use TRAP until you have removed al syntax errors first. TRAP can only catch
the error condition it is looking for. An error in the syntax or the logic of your TRAP
routine may cause an error, or may not catch the error that you are looking for. In other
words, TRAP routines are sensitive to errors, too.

ONE STEP BEYOND SIMPLE BASIC

ERROR FUNCTIONS

Severd reserved variables inherent in the system store information about program
errors. ER stores the error number. EL stores the relevant program line number.
ERR$(N) returns the string representing ER or EL. In the example of division by zero,
ERR$(ER) returns "DIVISION BY ZERO" and ERR$EL) returns "BREAK". Add
this to the program in the previous section. See Appendix A for a complete listing of
errors.

DOS ERRORS
Information on disk errors is determined from the variables DS and DS$ where DS is the
error number (See Appendix B) and DS$ provides the error number, error message, and
track and sector of the error. DS$ reads the disk error channel and is used during a disk
operation to determine why the disk drive error light is blinking.

Trying to read a directory without a disk in place results in the following error
when the PRINT DS$ command is issued:

74, DRIVE NOT READY, 00, 00

Appendix B highlights specific causes of errors. To convert a function key to read
the disk-drive error channel automaticaly, use:

KEY 1, "PRINT DS$+ CHRS$(13)
TRACING AN ERROR

Some programs have many complex loops that are tedious to follow. A methodica
step-by-step trace is useful. The BASIC TRON and TROFF commands can be used
within a program as a debugging tool to trace specific routines.

Some errors can only be found by acting like the computer and methodically
following each instruction step-by-step, and then doing dl the calculations until you
discover something wrong. Fortunately the Commodore 128 can trace errors for you.
Enter the direct command TRON prior to running a program. The program displays each
line number as they occur in brackets, followed by each result. (To dow down the
display, hold the Commodore (C=) key down.)

Try it with this double loop:

10 FORA=1TO05

20 FOR B =2T06

30 C=B*A:K =K +C:PRINTK
40 NEXTB:NEXTA

50 PRINTK

The results will start off like this:

[10] [20] [30] [30] [30]2
[40] [30] [30] [3A15
meaning the first printed result is the number 2 after operations in lines 10, 20, 30 are

performed. Then lines 40 and 30 result in 5, etc. Notice three activities were performed
in line 30. The Trace function is turned off with the direct command TROFF.

101

WINDOWING

The standard screen display size is 40- or 80-columns by 25 lines. It is often convenient
to have a portion of the screen available for other work. The process of producing and
isolating small segments of your screen is caled "windowing."

DEFINING A WINDOW
There are two ways to create a window—either directly or within a program using the
WINDOW command. Using the ESCape key followed by a T or B is dl that is
necessary to describe and set a window.

Here's how to define a window in direct mode:

1. Move the cursor to the upper-left corner position of the proposed window.
Press the (ESC) escape key, then press the letter T key.

2. Move the cursor to the bottom right corner and press the escape key (ESC)
then press the letter B key.

Now that your window is in effect, al commands and listings remain in the
window until you exit by pressing the HOME key twice. This is useful if you have a
listing on the main screen and wish to keep it while you display something else in a
window. See Chapter 13, the Commodore 128 Operating System, under the screen
editor for specia ESCape controls within a window.

Although it is possible to define severa windows simultaneoudly on the screen, only
one window can be used at atime. The other windows remain on the display, but they are
inactive. To re-enter a window you have exited, define the top and bottom corners of the
window with the ESC T and ESC B commands, respectively, as you did originaly.

The second way to define a window is with the BASIC window command. The
command:

WINDOW 20,12,39,24,1

establishes a window with the top-left corner at column 20, row 12, and the bottom-
right corner at column 39, row 24. The 1 signifies the area to be cleared. Once this
command is specified, all activities are restricted to this window.

Use the window command within a program whenever you want to perform an
activity in an isolated area on the screen.

ONE STEP BEYOND SIMPLE BASIC

ADVANCED BASIC
PROGRAMMING TECHNIQUES
FOR COMMODORE MODEMS

The following information tells you how to:

Generate Touch Tone™ frequencies

Detect telephone ringing

Program the telephone to be on or off the hook
Detect carrier

PODN R

The programming procedures operate in C128 or C64 modes with the Modem/300.
In C128 mode, select a bank configuration which contains BASIC, 1/0, and the Kernal.

GENERATING TOUCH TONE
(DTMF) FREQUENCIES

Each button on the face of a Touch Tone telephone generates a different pair of tones
(frequencies). You can simulate these tones with your Commodore 128 computer. Each
button has a row and column value in which you must store the appropriate memory
location in order to output the correct frequency. Here are the row and column
frequency values that apply to each button on the face of your Touch Tone telephone:

TOUCH TONE FREQUENCY TABLE
COLUMN 1 (1029HZ) COLUMN 2 (1336 HZ) ~ COLUMN 3 (1477 HZ)

Row 1 (697 Hz) 1 2 3
Row 2 (770 H2) 4 5 6
Row 3 (852 H2) 7 8 9
Row 4 (941 H2) * 0 #

To generate these tones in BASIC with your Commodore 128, follow this procedure:

1. Initidize the sound (SID) chip with the following BASIC statements:

SID = 54272

POKE SID + 24,15:POKE SID + 4,16

POKE SID + 11,16:POKESID + 5,0:POKE SID + 12,0

POKE SID + 6,15*16:POKE SID + 13,15*16:POKE SID + 23,0

2. Next, sdect one row and one column value for each digit in the telephone
number. The POKE statement for each row and column are as follows:

103

Column 1. POKE SID, 117:POKE SID + 1,77
Column 2: POKE SID,152:POKE SID + 1,85

Column 3: POKE SID, 161, POKE SID + 1%
Row 1: POKE SID + 7,168:POKE SID + 844
Row 2: POKE SID + 7,85,,POKE SID + 8,49
Row 3: POKE SID + 7,150:POKE SID + 854
Row 4: POKE SID + 7,74 :POKE SID + 8,60

For example, to generate a tone for the number 1, POKE the values for row
1, column 1 as follows

POKE SID + 7,168:POKE SID + 844:REM ROW 1
POKE SID,117:POKE SID + 1,77.REM COLUMN 1

3. Turn on the tones and add a time delay with these statements:

POKE SID + 4,17:POKESID + 11,17.REM ENABLE TONES
FOR I =1 TO 50:NEXT:REM TIME DELAY

4. Turn off the tones and add a time delay with the following statements:

POKE SID + 4,16:POKE SID + 11,16:REM DISABLE TONES
FOR 1= 1 TO 50:NEXT:REM TIME DELAY

5. Now repeat steps 2 through 4 for each digit in the telephone number you are
dialing.
6. Finally, disable the sound chip with this statement:

POKE SID + 24,0
DETECTING TELEPHONE RINGING

To detect whether your telephone is ringing using a Commodore 128, use the following
Statement:

IF (PEEK(56577) AND 8) = 0 THEN PRINT "RINGING"
If bit 3 of location 56577 contains a vaue other than O, the phone is not ringing.

PROGRAMMING THE TELEPHONE
TO BE ON OR OFF THE HOOK

To program the phone to be off the hook using a Commodore 128, enter the following
statements in a program:

OH = 56577:HI = 32L0O = 255 - 32
POKE (OH + 2),(PEEK(OH + 2) OR HI)
POKE OH,(PEEK(OH) AND LO)

To hang up the phone with a Commodore 128, enter this statement in a program:

POKE OH.(PEEK(OH) OR HI)

ONE STEP BEYOND SIMPLE BASIC

Here is the procedure to dia and originate a communication link:

Set the modem's answer/originate switch to the " O™ for originate.

Program the telephone to be OFF the hook.

Wait 2 seconds (FOR | = 1 to 500:NEXT:REM 2-SECOND DELAY)

Dia each digit and follow it with adelay (FOR | = 1 TO 50:NEXT)

When a carrier (high pitched tone) is detected, the Modem/300 automatically
goes on-line with the computer you are connecting with.

6. Program the phone to hang up when you are finished.

GRWN R

Here is the procedure to answer a cal:

=

Set the modem's answer/originate switch to " A" for answer.

To manually answer, program the telephone to be OFF the hook.

3. To automatically answer, detect if the phone is ringing then program the
phone to be OFF the hook.

4. The Modem/300 automatically answers the call.

5. Program the phone to hang up when you are finished.

N

DETECTING CARRIER

Your Commodore Modem/1200 and Modem/300 are shipped from the factory with the
ability to detect a carrier on the Commodore 128.

That ability is useful in an unattended auto-answer mode. By monitoring the
carrier detect line, the computer can be programmed to hang up after loss of carrier.
Since a caler may forget to hang up, your program should monitor the transmit and
receive data lines. If there is no activity for five minutes or so, the modem itself should
hang up.

To detect carrier on the Commodore 128, the following statement can be used in a
BASIC program:

OH = 56577:
IF ((PEEK (OH) AND 16) = 0) THEN PRINT "CARRIER DETECTED"

If bit 4 of location 56577 contains a value other than 0, then no carrier is detected.

ROTARY (PULSE) DIALING

In order to did a number with a modem, the software in the computer must generate
pulses a a prescribed rate. In the United States and Canada, the rate is between 8 and 10
pulses per second with a 58% to 64% bresk duty cycle. Most people, however, use 10
pulses per second with a 60% break duty cycle.

So to make a cal, your software must firg take the phone "off-hook" (the
equivalent of you picking up the receiver). Then to did the firg digit, a 3 for instance,

105

the software must put the phone on-hook for 60 milliseconds and off-hook for 40
milliseconds. Repesat this process three times to did a 3.

The same method is used to dia other digits, except 0, which is pulsed ten times.
Pause at least 600 milliseconds between each digit.

USING ESCAPECODES

To perform any of the escape capabilities within a program, use a line such as:
10150 PRINT CHR$(27) + "U"

to create an underline cursor (in 80-column only). For example, to clear from the cursor
to the end of a window:

10160 PRINT CHR$(27) +" @"

(See the Screen Editor section of Chapter 13 for al the escape and control codes
available on the Commodore 128.)

RELOCATING BASIC

To relocate the beginning or ending of BASIC (in C128 mode) for additional memory or
to protect machine-language programs from being overwritten by BASIC text, it is
necessary to redefine the starting and ending pointers in required memory addresses.

The Start of BASIC pointer is located at address 45($2D) and 46($2E). The Top
of BASIC pointer is at addresses 4626($1212) and 4627($1213). The following instruc-
tion displays the default locations of the beginning and end of BASIC text, respectively
(when a VIC hit-mapped screen is not allocated):

PRINT PEEK (45),PEEK (46),PEEK (4626),PEEK (4627)
1 28 0 255

Since the second number in each case is the high byte value, the default start of
basic is 28*256 plus 1 or 7169 while the top is 255*256 or 65280.

The following command reduces the size of BASIC text (program) area by 4K by
lowering the top of BASIC to address 61184 (239*256):

POK E4626,239:POK E4627,0:NEW

To move the beginning of BASIC up in memory by IK, from 7168 to 8192, use
this command line:

POKE 46,32:POKE45,1:NEW

This is the case only when a bit-mapped graphics screen is not allocated. Remem-
ber, the beginning of BASIC starts at 16384($4000) when a bit-mapped screen is
allocated, and other parts of memory are shifted around.

ONE STEP BEYOND SIMPLE BASIC

MERGING PROGRAM AND FILES

Files can be merged (combined) by opening an existing file and locating the pointer to
the end of the file so subsequent data can be written to the disk file. C128 BASIC has
included the APPEND command to accomplish this:

APPEND#5, "FILENAME"

opens channel 5 to a previously stored file named "FILE NAME." Subsequent write
(PRINT#5) statements will add further information to the file. APPEND is primarily
used for data files.

The command CONCAT allows the concatenation (combine in sequence) of two
files or programs while maintaining the name of the first.

CONCAT"PART2B" TO "PART2"

creates a new file caled Part 2, consisting of the old Part 2, plus the new Part 2b in
sequence. Concatenated BASIC program files must be renumbered before they can
work. Other corrections may aso be necessary.

The BASIC routines described in this chapter can greatly enhance the capabilities
of your programs. So far, BASIC has been discussed in detail. The machine language
programming introduced in Chapter 5 can extend program capabilities even further.
And, as shown in Chapter 7, for still greater flexibility and power, you can combine
BASIC and machine language in your programs.

107

A

COMMODORE 128
GRAPHICS
PROGRAMMING

HOW TO USE
THE GRAPHICS SYSTEM

COMMODORE 128 VIDEO FEATURES

In C128 Mode, Commodore BASIC 7.0 offers fourteen high-level graphics commands
that make difficult programming jobs easy. You can now draw circles, boxes, lines,
points and other geometric shapes, with ten high level commands such as DRAW, BOX
and CIRCLE, and with four sprite commands. (The sprite commands are described in
Chapter 9.) You no longer have to be a machine language programmer, or purchase
additional graphics software packages to display intricate and visually pleasing graphics
displays—the Commodore 128 BASIC graphics capabilities take care of this for you. Of
course, if you are a machine language programmer or a software developer, the
exceptional C128 video hardware features offer high price/performance vaue for any
microcomputer application.

The C128 graphics features include:
» Specialized graphics and sprite commands
» 16 colors
» 6 display modes, including:
Standard character mode
Multi-color character mode
Extended background color mode
Standard bit map mode
Multi-color bit map mode
Combined bit map and character modes (split-screen)
» 8 programmable, movable graphic objects called SPRITES which make anima-
tion possible
» Custom programmable characters
* Vetical and horizontal scrolling

The Commodore 128 is capable of producing two types of video signals: 40-
column composite video, and 80-column RGBI video. The composite video signal,
channeled through a VIC Il (Video Interface Controller) chip (8564)—similar to that
used in the Commodore 64—mixes al of the colors of the spectrum in a single signal to
the video monitor. The 8563 separates the colors red, green and blue to drive separate
cathode ray guns within the video monitor for a cleaner, crisper and sharper image than
composite video.

The VIC Il chip supports al of the Commodore BASIC 7.0 graphics commands,
SPRITES, sixteen colors, and the graphic display modes mentioned before. The 80-
column chip, primarily designed for business applications, also supports sixteen colors
(a few of which are different from those of the VIC chip), standard text mode, and bit
map mode. Sprites are not available in 80-column output. Bit map mode is not
supported by the Commaodore BASIC 7.0 language in 80-column output. The 80-column
screen can be bit mapped through programming the 8563 video chip with machine
language programs. See Chapter 10, Programming the 80-Column (8563) Chip, for
information on bit mapping the 80-column screen.

COMMODORE 128 GRAPHICS PROGRAMMING

This chapter discusses how to use the Commodore 128 graphics features through
BASIC using the VIC (40-column) screen. Except for the sprite commands, each
graphic command is listed in aphabetical order. The sprite commands are covered in
Chapter 9. Following the format of each command are example programs that illustrate
the features of that command. Wherever possible, machine language routines are
included to show how the machine language equivalent of a BASIC graphics command
operates.

Chapter 8, The Power Behind Commodore 128 Graphics, is a description of the
inner workings of the Commodore 128 graphics capabilities. It explains how screen,
color and character memory are used and how these memory components store and
address data in each display mode. Chapter 9 then explains how to use sprites with the
new BASIC commands. Chapter 9 also discusses the inner workings of sprites, their
storage and addressing requirements, color assignments, and describes how to control
sprites through machine language.

TYPES OF SCREEN DISPLAY

Your C128 displays information severa different ways on the screen; the parameter
"source" in the command pertains to three different modes of screen display.

TEXT DISPLAY

Text display shows only text or characters, such as letters, numbers, speciad symbols
and the graphics characters on the front faces of most C128 keys. The C128 can display
text in both 40-column and 80-column screen formats. Text display includes standard
character mode, multi-color character mode and extended background color mode.

The Commodore 128 normally operates in standard character mode. When you
first turn on the Commodore 128, you are automatically in standard character mode. In
addition, when you write programs, the C128 is in standard character mode. Standard
character mode displays characters in one of sixteen colors on a background of one of
sixteen colors.

Multi-color character mode gives you more control over color than the standard
graphics modes. Each screen dot, a pixel, within an 8-by-8 character grid can have one
of four colors, compared with the standard mode which has only one of two colors.
Multi-color mode uses two additional background color registers. The three background
color registers and the character color register together give you a choice of four colors
for each dot within an 8-by-8 dot character grid.

Each pixel in multi-color mode is twice as wide as a pixel in standard character
mode and standard bit map mode. As a result, multi-color mode has only haf the
horizontal resolution (160 x 200) of the standard graphics modes. However, the
increased control of color more than compensates for the reduced horizontal resolution.

Extended background color mode allows you to control the background color and
foreground color of each character. Extended background color mode uses al four
background color registers. In extended color mode, however, you can only use the first
sixty-four characters of the screen code character set. The second set of sixty-four
characters is the same as the first, but they are displayed in the color assigned to

11

background color register two. The same holds true for the third sat of sixty-four
characters and background color register three, and the fourth set of sixty-four characters
and background color register four. The character color is controlled by color memory.
For example, in extended color mode, you can display a purple character with a yellow
background on a black screen.

Each of the character display modes receives character information from one of
two places in the Commodore 128 memory. Normally, character information is taken
from character memory stored in a separate chip cdled ROM (Read Only Memory).
However, the Commodore 128 gives you the option of designing your own characters
and replacing the origina characters with your own. Your own programmable characters
are stored in RAM.

BIT MAP DISPLAY

Bit map mode alows you to display highly detailed graphics, pictures and intricate
drawings. This type of display mode includes standard bit map mode and multi-color bit
map mode. Bit map modes adlow you to control each individual screen dot or pixel
(picture element) which provides for considerable detail in drawing pictures and other
computer art. These graphic displays are only supported in BASIC by the VIC chip.

The 80-column chip is designed primarily for character display, but you can bit
map it through your own programs. See Chapter 10, Programming the 80-Column (8563)
Chip, for detailed information.

The difference between text and bit map modes lies in the way in which each
screen addresses and stores information. The text screen can only manipulate entire
characters, each of which covers an area of 8 by 8 pixels on the screen. The more
powerful bit map mode exercises control over each pixel on your screen.

Standard bit map mode alows you to assign each screen dot one of two colors. Bit
mapping is a technique that stores a bit in memory for each dot on the screen. In
standard bit map mode, if the bit in memory is turned off, the corresponding dot on the
screen becomes the color of the background. If the bit in memory is turned on, the
corresponding dot on the screen becomes the color of the foreground image. The series
of 64,000 dots on the screen and 64,000 corresponding bits in memory control the
image you see on the screen. Mogt of the finely detailed computer graphics you see in
demonstrations and video games are bit mapped high-resolution graphics.

Multi-color bit map mode is a combination of standard bit map mode and
multi-color character mode. You can display each screen dot in one of four colors within
an 8 x 8 character grid. Again, as in multi-color character mode, there is a tradeoff
between the horizontal resolution and color control.

SPLIT SCREEN DISPLAY

The third type of screen display, split screen, is a combination of the first two types.
The split-screen display outputs pail of the screen as text and part in bit map mode
(either standard or multi-color). The C128 is capable of this since it depends on two
parts of its memory to store the two screens. one part for text, and the other for

graphics.

COMMODORE 128 GRAPHICS PROGRAMMING

COMMAND SUMMARY

Following isabrief explanation of each graphicscommand availableinBASIC 7.0:

BOX: Draws rectangles on the bit-map screen

CHAR: Displays characters on the bit-map screen

CIRCLE: Draws circles, ellipses and other geometric shapes

COLOR: Selects colors for screen border, foreground, background and characters

DRAW: Displays lines and points on the bit-map screen

GRAPHIC: Selects a screen display (text, bit map or split-screen bit map)

GSHAPE: Gets data from a string variable and places it a a specified position on the
bit-map screen

LOCATE: Positions the bit-map pixel cursor on the screen

PAINT: Fills area on the bit-map screen with color

SCALE: Sets the relative size of the images on the bit-map screen

SSHAPE: Stores the image of a portion of the bit-map screen into a text-string variable

WIDTH: Sets the width of lines drawn

The following paragraphs give the format and examples for each of the non-sprite
BASIC 7.0 graphic commands. For a full explanation of each of these commands, see
the BASIC 7.0 Encyclopedia in Chapter 2.

BOX

Draw a box at a specified position on the screen.
BOX [color source], XI, YI[,X2,Y2][,angl€][,paint]

where:
color source 0= Background color
1 =Foreground color
2= Multi-color 1
3 =Multi-color 2
X1, Yl Top left corner coordinate (scaled)
X2,Y2 Bottom right corner opposite X1, YI, is the pixel cursor
location (scaed)
angle Rotation in clockwise degrees; default is O degrees
paint Paint shape with color
0=Do not paint

1="Pant

113

EXAMPLES:

10 COLOR 0,1:COLOR 1,6:COLOR 4,1

20 GRAPHIC 1, 1:REM SELECT BWM

30 BOX 1,10,10,70,70,90,1: REM DRAW FI LLED GREEN BOX

40 FOR 1=20 TO 140 STEP 3

50 BOX 1,1,1,1+60,1+60,1+80: REM DRAW AND ROTATE BOXES

60 NEXT

70 BOX 1,140, 140, 200,200,220, 1: REM DRAW 2ND FILLED GREEN BOX
80 COLOR 1,3:REM SWTCH TO RED

90 BOX 1. ,150, 20, 210, 80,90, 1: REM DRAW FI LLED RED BOX

100 FOR 1=20 TO 140 STEP 3

110 BOX 1,1+130,1,1+190, 1+60,1+70: REM DRAW AND ROTATE RED BOXES
120 NEXT

130 BOX 1,270, 140, 330, 200, 210, 1: REM DRAW 2ND FILLED RED BOX
140 SLEEP 5 :REM DELAY

150 GRAPHIC 0,1:REM SW TCH TO TEXT MODE

10 COLOR 0,1:COLOR 4,1:COLOR 1,6
20 GRAPHIC 1,1

30 BOX 1,0,0,319,199

40 FOR X=10 TO 160 STEP 10

50 C=X/10

60 COLOR 1,C

70 BOX 1, X, X, 320-X, 320-X

80 NEXT

90 SLEEP 5

100 GRAPHIC 0,1

10 COLOR 0,1:COLOR 4,1:COLOR 1,6
20 GRAPHIC 1,1

30 BOX 1,50,50,150,120

40 BOX 1,70,70,170, 140

50 DRAW 1,50,50 TO 70,70

60 DRAW 1,150,120 TO 170, 140
70 DRAW 1,50,120 TO 70, 140

80 DRAW 1, 150,50 TO 170,70

90 CHAR 1, 20, 20, "CUBE EXAMPLE"
100 SLEEP 5

110 GRAPHIC 0,1

10 COLOR 1,6:COLOR 4,1:COLOR 0,1
20 GRAPHIC 1,1:REM SELECT BIT MAP MODE
30 DO :REM CALCULATE RANDOM POI NTS

40 X1=I NT(RND(1)*319+1!

50 X2=| NT(RND{1)*319+1)
60 X3=I NT(RND(1)*319+1)
70 X4=I NT(RND(1)*319+1)
80 Y1=I NT{RND(1)*199+1)
90 Y2=I NT(RND(1)*199+1)
100 Y3=I NT(RND(11*199+1)

110 Y4=I NT(RND(1)*199+1)

120 BOX 1, X1, Y1, X2, Y2: REM DRAW THE RANDOM BOXES
130 BOX 1,X3,Y3, X4, Y4

140 DRAW 1,X1, YLl TO X3,Y3: REM CONNECT THE POINTS
150 DRAW 1,X2,Y2 TO X4, Y4

160 DRAW 1, X1, Y2 TO X3, Y4

170 DRAW 1,X2,YL TO X4, Y3

180 SLEEP2: REM DELAY

190 SCNCLR

200 LOOP: REM LOOP CONTI NUOUSLY

COMMODORE 128 GRAPHICS PROGRAMMING

CHAR
Display characters at the specified position on the screen,

CHAR [color source],X,Y[,string][,RVS]

This is primarily designed to display characters on a bit mapped screen, but it can aso
be used on a text screen. Here's what the parameters mean:

color source 0 = Background
1 =Foreground

X Character column (0-79) (wraps around to the next line
in 40-column mode)

Y Character row (0-24)

string String to print

RVS Reverse fidd flag (0= off, 1 =on)

EXAMPLE:

10 COLOR 2,3: REM multi-color 1 =Red
20 COLOR 3,7: REM multi-color 2 = Blue
30 GRAPHIC 3,1

40 CHAR 0,10,10, "TEXT",0

CIRCLE

Draw circles, ellipses, arcs, etc. at specified positions on the screen.

CIRCLE [color source],X,Y[,Xr][,Yr]
[.sa][.eal[,angl€][.inc]

where:
color source 0 = background color
1 =foreground color
2=multi-color 1
3 = multi-color 2
XY Center coordinate of the CIRCLE
Xr X radius (scaled)
Yr Y radius (default is xr)
sa Starting arc angle (default O degrees)
ea Ending arc angle (default 360 degrees)
angle Rotation in clockwise degrees (default is O degrees)
inc Degrees between segments (default is 2 degrees)
EXAMPLES:
CIRCLE 1, 160,100,65,10 Draws an ellipse.
CIRCLEL1, 160.100,65,50 Draws a circle.

CIRCLE1, 60,40,20,18,,,,45 Draws an octagon.

1S

CIRCLE1, 260,40,20,,,,,90 Draws a diamond.

CIRCLE1, 60,140,20,18,,,,120 Draws atriangle.

CIRCLE1,+ 2,+ 2,50,50 Draws a circle (two pixels down and two to
the right) relative to the original coordinates of
the pixel cursor.

SAMPLE PROGRAMS:

10 REM SUBMARI NE TRACKI NG SYSTEM

20 OR 0,1: COCR 4, 1: AR 1, 2: REM SELECT BKGRND, BRDR, SCREEN COLCRS
30 GRAPH C 1,1: REM ENTER BI T VAP MODE

40 BAX 1,0, 0, 319, 199

50 CHAR 1,7,24,"SUBVAR NE TRACKI NG SYSTEM' :ReM DI SPLAY CHARS ON BI T MAP
60 COLCR 1, 3: REM SELECT RED

70 XR=0: YR=O: REM INT X AND Y RADI US

8 0DO

90 C RCLE 1, 160, 100, XR, YR, 0, 360, 0, 2: REM DRAW Cl RCLES

100 XR=XR+10: YR=YR+10: REM UPDATE RAD US

110 LGP UNTIL XR=90

120 DO

130 XR= 0: YR= 0O

140 DO

150 G RCLE 0, 160, 100, XR, YR 0, 360, 0,2 :REM ERASE C RCLE

160 LR 1,2 :ReM SWTCH TO WH TE

170 DRAW 1, 160, 100+XR DRAW 0, 160, 100+XR REM DRAW SUBMARI NE BLI P
180 OOLCR 1, 3: REM SWTCH BACK TO RED

190 SOUND 1, 16000, 15: REM BEEP

200 A RCLE 1, 160, 100, XR, YR, 0, 360, 0, 2 :R&M DRAW C RCLE

210 XR=XR+10: YR=YR+10 :REM UPDATE RADI US

220 LOCP UNTIL XR=90 :ReM LOCP

230 LOCP

10 COLCR 0, 1: COLR 4,1: R 1,7

20 GRAPH C 1, 1: REM SELECT BW

30 X=150: Y= 150: XR=150: YR=150

4 0 DO

50 A RCLE 1, X Y, XR YR

60 X=X+7 :Y=Y-5:REM | NCREMENT X AND Y COCRDI NATES
70 XR=XR-5 :YR=YR 5: REM DECREMENT X AND Y RADI |
80 LOOP UNTIL XR=0

90 GRAPH C 0, 1: REM SELECT TEXT MCDE

COLOR
Define colors for each screen area.
COLOR source number, color number
This statement assigns a color to one of the seven color areas:

AREA SOURCE

40-column (VIC) background

40-column (VIC) foreground

multi-color 1

multi-color 2

40-column (VIC) border

character color (40- or 80-column screen)
80-column background color

O WNRERO

Colors codes are in the range 1-16.

COMMODORE 128 GRAPHICS PROGRAMMING

COLOR CODE

0 ~NOO O WN

COLOR

Black
White
Red
Cyan
Purple
Green
Blue
Yellow

COLOR CODE

COLOR

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Color Codes in

EXAMPLE:

COLOR O, 1:
COLOR 5,8:

40-Column (VIC) Output

Changes background color of 40-column screen to black.
Changes character color to yellow.

SAMPLE PROGRAM:

10 REM CHANGE FOREGROUND BI T MAP COLCR

20 GRAPHIC 1,1
301=1

4 0 DO

50 COLOR 1,1

60 BOX 1,100, 100, 219, 159

70 1=1+1: SLEEP 1
80 LOOP UNTIL 1=17
90 GRAPHIC 0,1

100 REM CHANGE BCORDER COLOR

110 1=1

120 DO

130 COLOR 4,1

140 1=1+1:SLEEP 1
150 LOOP UNTIL 1=17

160 REM CHANGE CHARACTER COLOR

170 1=1
180 DO
190 COLCR 5,1

200 PRI NT*COLOR CODE"; |

210 1=1+1: SLEEP 1
220 LOOP UNTIL 1=17

230 REM CHANGE BACKGROUND COLOR

240 1=1

250 DO

260 COLOR 0,1

270 1=1+1: SLEEP 1
280 LOOP UNTIL 1=17

290 COLCR 0,1: COLCR 4,1: AR 5,2

DRAW

Draw dots, lines and shapes at specified positions on screen.

DRAW [color source], [XI, Y1][TO X2, Y2] . ..

Here are the parameter values:

17

where:

color source 0 Bit map background
1 Bit map foreground

2 Multi-color 1
3 Multi-color 2
X1,Y1 Starting coordinate (0,0 through 319,199) (scaled)
X2,Y2 Ending coordinate (0,0 through 319,199) (scaled)
EXAMPLES:
DRAW 1, 100, 50 Draw a dot.
DRAW , 10, 10 TO 100,60 Draw a line.

DRAW , 10, 10 TO 10,60 TO 100,60 TO 10,10 Draw atriangle.

SAMPLE PROGRAMS:

10 REM DRAW EXAMPLES

20 COLOR 0,1: COLCR 4,1: AR 1,6

30 GRAPHIC 1,1

40 CHAR 1,10,1,"THE DRAW COMVAND'

50 X=10

60 DO

70 DRAW |, X, 50: REM DRAW PO NTS

80 X=X+10

90 LOOP UNTIL X=320

100 CHAR 1,12,7 ,"DRAWS PO NTS'

110 Y=70

12 0 DO

130 Y=Y+5

140 DRAW 1,1, Y TO Y, Y :REM DRAW LI NES

150 LOOP UNTIL Y=130

160 CHAR 1,18, 11, "LI NES"

170 DRAW 1, 10,140 TO 10,199 TO 90,165 TO 40,160 TO 10, 140: REM DRAW SHAPE 1
180 DRAW 1, 120,145 TO 140,195 TO 195,195 TO 225,145 TO 120, 145: REM DRAW SHAPE
190 DRAW 1, 250,199 TO 319, 199 TO 319,60 TO 250, 199: REM DRAW SHAPE 3
200 CHAR 1, 22, 15, "AND SHAPES"

210 SLEEP 5:GRAPHIC 0,1

10 COLOR 0,1: COLCR 4,1: COLCR 1,7

20 GRAPHIC 1, 1: REM SELECT BWM

30Y=I

4 0DO

50 DRAW 1,1,Y TO 320, Y: REM DRAW HORI ZONTAL LI NES
60 Y=Y+10

70 LOOP WHI LE Y<200

75 X

80 DO

90 DRAW 1,X 1 TO X, 200: REM DRAW VERTI CAL LI NES

95 X=X+10

97 LOOP WHI LE X<320

100 COLOR 1,3:REM SWTCH TO RED

110 DRAW 1, 160,0 TO 160, 200: REM DRAW X AXIS IN RED
120 DRAW 1,0, 100 TO 320, 100: REM DRAWY AXIS IN RED
130 COLOR 1,6:REM SWTCH TO GREEN

140 DRAW 1,0, 199 TO 50,100 TO 90,50 TO 110,30 TO 150,20 TO 180, 30
150 DRAW 1, 180,30 TO 220,10 TO 260,80 TO 320, 0: REM DRAW GROMH CURVE
160 CHAR 1,7,2 3,"PRQJECTED SALES THROUGH 1990"

170 CHAR 1,1, 21,"1970 1975 1980 1985 1990"

180 SLEEP 10: GRAPHI C 0,|: REM DELAY AND SW TCH TO TEXT MODE

COMMODORE 128 GRAPHICS PROGRAMMING

GRAPHIC
Select a graphic mode.

1) GRAPHIC mode [,clear][,s]
2) GRAPHIC CLR

This statement puts the Commodore 128 in one of the six graphic modes:

MODE DESCRIPTION

40-column text

standard bit map graphics

standard bit map graphics (split screen)
multi-color bit map graphics

multi-color bit map graphics (split screen)
80-column text

abh wWNpR O

EXAMPLES:

GRAPHIC 11 Select standard bit map mode and clear the bit map.

GRAPHIC 4,0,10 Select split screen multi-color bit map mode, do not clear
the bit map and start the split screen at line 10.

GRAPHIC O Select 40-column text.

GRAPHIC 5 Select 80-column text.

GRAPHIC CLR Clear and deallocate the bit map screen.

SAMPLE PROGRAM:

10 REM GRAPH C MCDES EXAMPLE

20 COLCR 0,1: COCR 4,1: AR 1,7

30 GRAPH C 1,1: REM ENTER STND BI T NAP
40 G RCLE 1, 160, 100, 60, 60

50 G RCLE 1, 160, 100, 30, 30

60 CHAR 1,9, 24, "STANDARD BI T MAP MCDE"
70 SLEEP 4

80 GRAPH C 0,1 :REM ENTER STND CHAR MODE
90 COLCR 1,6:REM SWTCH TO GREEN

100 FCR1=1 TO2 5

110 PRI NT" STANDARD CHARACTER MODE"

120 NEXT

130 SLEEP 4

140 GRAPH C 2,1: REM SELECT SPLIT SCREEN
150 Cd RCLE 1, 160, 70, 50, 50

160 CHAR 1,14,1,"SPLIT SCREEN'

170 CHAR 1, 8, 16, "STANDARD BI T VAP MCDE ON TCOP"
180 FOR1=1 TO25

190 PRI NT" STANDARD CHARACTER MCDE ON THE BOTTOM
200 NEXT

210 SLEEP 3: REM DELAY

220 SCNCLR REM CLEAR SCREEN

230 GRAPH C CLR REM DE- ALLCCATE BI T NAP

GSHAPE

Retrieve (load) the data from a string variable and display it on a specified coordinate.

GSHAPE string variable [X,Y][,mode]

119

where;

string Contains shape to be drawn
XY Top left coordinate (0,0 through 319,199) telling where to
draw the shape (scaled—the default is the pixel cursor)
mode Replacement mode:
0= place shape as is (default)
1 =invert shape

2 = OR shape with area
3 =AND shape with area
4=XOR shape with area

SAMPLE PROGRAM:

10 REM DRAW SAVE AND GET THE COMMCDORE SYMBCOL

20 AR 0, 1: AR 4,1: AR 1,7

30 GRAPH C 1, 1: ReM SELECT BW

40 G RCLE 1, 160, 100, 20, 15: REM QUTER Cl RCLE

50 G RCLE 1,160, 100, 10, 9: REM | NNER Cl RCLE

60 BOX 1, 165, 85, 185, 115: REM | SOLATE AREA TO BE ERASED

70 SSHAPE A?, 166, 85, 185, 115: REM SAVE THE AREA | NTO A$

80 GSHAPE AS$, 166, 85, 4: REM EXCLUSI VE CR THE AREA-TH S (ERASES) TURNS CFF PI XELS
90 DRAWO, 165,94 TO 165, 106: REM TURN OFF (DRAW IN BKGRND COLOR) PI XELS IN "C="
100 DRAW 1, 166,94 TO 166,99 TO 180,99 TO 185,94 TO 166, 94: REM UPPER FLAG

110 DRAW 1, 166, 106 TO 166, 101 TO 180,101 TO 185, 106 TO 166, 106: REM LONER FLAG
120 PAINT 1,160, 110: REM PAINT "C'

130 PAINT 1, 168,98 :REM UPPER FLAG

140 SLEEP 5: REM DELAY

150 SSHAPE BS$, 137, 84, 187, 116: REM SAVE SHAPE | NTO B$

160 DO

170 SONCLR

180 Y=10

190 DO

200 X=10

210 DO

220 GSHAPE B$, X, Y: REM GET AND DI SPLAY SHAPE

230 X=X+50: REM UPDATE X

240 LOCOP WH LE X<280

250 Y=Y+40: REM UPDATE Y

260 LOCP WHI LE Y<160

270 SLEEP 3

280 LOCP

LOCATE

Position the bit map pixel cursor (PC) on the screen.
LOCATE X, Y

EXAMPLE:

Position the PC in the center of the bit map screen.
Nothing will be seen until something is drawn.

Move the PC 20 pixels to the right of the last PC position
and place it & Y coordinate 100.

Move the PC 30 pixels to the right and 20 down from
the previous PC position.

LOCATE 160,100

LOCATE +20,100

LOCATE+30,+20
PAINT

Fill area with color.
PAINT [color source],X,Y[,mode]

COMMODORE 128 GRAPHICS PROGRAMMING

where:
color source 0 Bit map background
1 Bit map foreground (default)
2 Multi-color 1
3 Multi-color 2
XY starting coordinate, scaled (default at pixel cursor (PC))
mode 0 = paint an area defined by the color source selected
1 = paint an area defined by any non-background source
EXAMPLE:
10 CIRCLE 1, 160,100,65,50 Draws an outline of a circle.
20 PAINT 1, 160,100 Fills in the circle with color from source 1 (VIC

foreground), assuming point 160,100 is colored
in the background color (source 0).
10 BOX 1, 10, 10, 20, 20 Draws an outline of a box.

20 PAINT 1, 15, 15 Fills the box with color from source 1, assuming
point 15,15 is colored in the background source
(0).

30 PAINT 1, +10, +10 PAINT the screen in the foreground color source

at the coordinate relative to the pixel cursor's
previous position plus 10 in both the vertical and
horizontal positions.

SCALE
Alter scaling in graphics mode.
SCALE n [,Xmax,Ymax]
where:
n = 1 (on) or O (off)
X max = 320-32767
(default = 1023)

Y max = 200-32767
(default = 1023)

The default scale values are:

Multi-color mode X=0t019Y = 0to 19
Bit map mode X =0t0319Y = 0to 19
EXAMPLES:
10 GRAPHIC 11 Enter standard bit map, turn scaling

20 SCALE 1.CIRCLE 1,180,100,100,100 on to default size (1023, 1023) and
draw acircle.

10 GRAPHIC 13 Enter multi-color mode, turn scaling

20 SCALE 1,1000,5000 on to size (1000,5000) and draw a
30 CIRCLE 1,180,100,100,100 circle.
SSHAPE

Save shapes to string variables.

SSHAPE and GSHAPE are used to save and load rectangular areas of multi-color or bit
mapped screens toffrom BASIC gtring variables. The command to save an area of the
screen into a string variable is:

SSHAPE string variable, X1, YI [,X2,Y2]

where:
string variable String name to save data in
X1Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)
EXAMPLES:
SSHAPE A%, 10,10 Saves a rectangular area from the coordinate 10,10
to the location of the pixel cursor, into string vari-
able A$.

SSHAPE B$, 20,30,47,51 Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (47,51) into
string variable B$.

SSHAPE D$,+ 10,+ 10 Saves a rectangular area 10 pixels to the right and 10
pixels down from the current position of the pixel
Cursor.

Also, see the example program under GSHAPE for another example.

WIDTH
Set the width of drawn lines.

WIDTH n

This command sets the width of lines drawn using BASIC'S graphic commands to either
single or double width. Giving n a value of 1 defines a single width line; a vaue of 2
defines a double width line.

EXAMPLES:

WIDTH 1 Set Single width for graphic commands
WIDTH 2 Set double width for drawn lines

D

MACHINE
LANGUAGE

ON THE
COMMODORE 128

This chapter introduces you to 6502-based machine language programming. Read this
section if you are a beginner or novice machine language programmer. This section
explains the elementary principles behind programming your Commodore 128 in machine
language. It aso introduces you to the 8502 machine language instruction set and how
to use each ingtruction. If you are adready an experienced machine language program-
mer, skip this section and continue to the 8502 Instruction and Addressing Table at the
end of the chapter for reference materia on machine language instructions. The 8502
instruction set is exactly the same as the 6502 microprocessor instruction set.

WHAT IS MACHINE LANGUAGE?

Every computer has its own machine language. The type of machine language depends
on which processor is built into the computer. Your Commodore 128 understands 8502
machine language, which is based on 6502 machine language, to carry out its opera-
tions. Think of the microprocessor as the brain of the computer and the instructions as
the thoughts of the brain.

Machine language is the most elementary level of code that the computer actually
interprets. True machine language is composed of binary strings of zeroes and ones.
These zeroes and ones act as switches to the hardware, and tell the circuit where to apply
voltage levels.

The machine language discussed in this chapter is symbolic 6502 Assembly
language as it appears in the C128 Machine Language Monitor. This is not the
full-blown symbolic assembly language as it appears in an Assembler package, since
symbolic addresses or other higher level utilities that an Assembler software package
would provide are not implemented.

Machine language is the lowest level language in which you can instruct your
computer. BASIC is considered a high-level language. Although your Commodore 128
has BASIC built in, the computer must first interpret and trandate it to a lower leve that
it can understand, before the computer can act upon BASIC instructions.

With each microinstruction, you give the computer a specific detail to perform.
The computer takes nothing for granted in machine language, unlike BASIC, where
many unnoticed machine-level functions are performed by one statement. One BASIC
statement requires several machine language instructions to perform the same operation.
Actually, when you issue a BASIC command, you are redlly calling a machine language
subroutine that performs a computer operation.

WHY USE MACHINE LANGUAGE?

If machine language is more intricate and complicated than BASIC, why use it? Certain
applications, such as graphics and telecommunications, require machine language be-
cause of its speed. Since the computer does not have to trandate from a higher-level
language, it runs many times fagter than BASIC.

MACHINE LANGUAGE ON THE COMMODORE 128 1%

Programs such as those used in arcade games cannot operate in the relatively dow
speed of BASIC, so they are written in machine language. Other instances dictate the
use of machine language simply because those programming operations are handled
better than in a high-level language like BASIC. But some programming functions such
as string operations are easier in BASIC than in machine language. In these cases,
BASIC and machine language can be used together. You can find information on how to
mix machine language with BASIC in Chapter 7.

Inside your computer is a perpetualy running program caled the operating
system. The operating system program controls every function of your computer. It
performs functions at lightning speeds you are not even aware of.

The operating system program is written entirely in machine language and is
stored in a portion of the computer caled the Kernd ROM. (Chapter 13 describes how
to take advantage of the machine language programs within the Kernal, and how to use
parts of the operating system in your own machine-language programs.)

Though machine language programming may seem more complicated and difficult
than BASIC a first, think back to when you didn't know BASIC or your first
programming language. That seemed difficult at firgt, too. If you learned BASIC or
another programming language, you can learn machine language. Although it's a good
idea to learn a higher-level language such as BASIC before you start machine language,
it's not absolutely necessary.

WHAT DOES MACHINE LANGUAGE
LOOK LIKE?

Chapter 2 describes the C128 BASIC 7.0 language. Most statements in BASIC dart
with a BASIC verb or keyword, followed by an operand. The BASIC keywords
resemble English verbs. The operands are variables, or constants, that are part of an
expression. For example, A + B = 2, is an expression where A, B, and 2 are operands
in the expression. Machine-language ingtructions are similar, though they have a uniform
format. Here's the format for an 8502 symbolic machine language instruction as it
appears in the C128 Machine Language Monitor:

OP-CODE FIELD OPERAND FIELD

OPERATION CODE (OP-CODE) FIELD

The firg part of a machine-language instruction is called the operation code or op-code.
The op-code is comparable to a BASIC verb, in that it is the part of the instruction that
performs an action. A machine language op-code is also referred to in an assembly
language as a mnemonic. All 8502 (6502) machine language assembler mnemonics are
three-letter abbreviations for the functions they perform. For example, the first and most
common ingtruction you will learn is LDA, which stands for LoaD the Accumulator.
This chapter defines al of the mnemonics.

OPERAND FIELD

The second portion of a machine-language instruction is the OPERAND field. In the
C128 Machine Language Monitor, the operand is separated from the op-code with at
least one space and preceded by a ($) dollar sign, (+) plus sign (decima), (&)
ampersand (octal), or a (%) percent (binary) sign to sgnify that the operand is a
hexadecimal, decimal, octal or binary number. An ADDRESS is the name of or
reference to a specific memory location within the computer.

The number of a memory location is its address, just like houses on your street are
numbered. Addresses in your computer are necessary so they can receive, store and send
(LOAD) data back and forth to the microprocessor.

When you use the Commodore 128's built-in machine-language monitor, all
numbers and addresses default to hexadecimal numbers, but they can be represented in
decimal, octal or binary. The address is the hexadecima number of the specified
memory location. When you use an ASSEMBLER, the addresses are referred to as
symbolic addresses. Symbolic addresses allow you to use variable names, instead of
absolute addresses that specify the actual memory location. You declare the symbolic
address to be the numeric address in the beginning of your machine language program or
alow the assembler to assign the address.

When you refer to that address later in the program, you can refer to the symbolic
address rather than to the absolute address as does the Machine Language Monitor.
Using an assembler and symbolic addresses make programming in machine language
easier than using the machine-language monitor and absolute addresses. You will
learn about the eleven addressing modes later in this chapter.

As you know, the second part of a machine-language instruction is the OPER-
AND. A machine language operand can be a constant; it does not necessarily have to be
an address reference. When a constant in machine language appears in place of an
address as the second part of an instruction, an operation is performed on a data value
rather than a memory location.

A pound sign (#) in front of the operand signifies immediate addressing, which
you will learn more about later in the chapter. The pound sign is only used as an ad for
the symbolic language programmer. The pound sign tells the computer to perform
machine-language instruction on a constant, and not an address. In the case of the
Machine Language Monitor, variable names are not allowed. To represent variables in
the monitor, you must reference a memory location where your variable data vaue is
stored.

EXAMPLES OF
MACHINE-LANGUAGE INSTRUCTIONS

LDA $100 ; Absolute addressing
LDA $10 ; Zero page absolute addressing

LDA ($FA),Y ; Indirect indexed addressing
LDA $2000,X ; Indexed addressing (absolute)
LDA #$10 ; Immediate addressing (constants)

MACHINE LANGUAGE ON THE COMMODORE 128 127

THE SIMILARITIES AND DIFFERENCES BETWEEN AN
ASSEMBLER AND A MACHINE LANGUAGE MONITOR

An assembler and machine-language monitor both provide for symbolic op-codes.
Assemblers typically alow symbolic operands as well, whereas the C128 machine-
language monitor refers to addresses and operands literaly (absolutely).

An assembler typically has two forms of a file source code and object code.
Source code is the file you create when you are writing the program including symbolic
start addresses and comments.

The source code file is not executable. It must be assembled (in an intermediate
process) into object code, which is executable code.

The machine language monitor start address is determined by where you place the
actua instructions in memory. The monitor does not provide for comments. The resulting
program, once it is input, is executed immediately as a binary file. No intermediate
assembly step is needed.

THE 8502 MICROPROCESSOR REGISTERS

You have learned that an address is a reference to a specific memory location among the
2 banks of RAM within the Commodore 128. Separate and independent of those RAM
locations are specia purpose work and storage areas within the microprocessor chip
itself, called registers. These registers are where the values are manipulated. The
manipulation of the microprocessor registers and their communication with the comput-
er's memory (RAM and ROM) accomplishes dl the functions of machine language and
your computer's operating system.

Figure 5-1 shows a block diagram of the 8502 microprocessor. As shown in the
figure, the 8502 microprocessor registers are:

Accumulator

X index register
Y index register
Status register
Program counter
Stack pointer

Following are descriptions of these registers.

THE ACCUMULATOR

The accumulator is one of the most important registers within the 8502 microprocessor.
As the name implies, it accumulates the results of specific operations. Think of
the accumulator as the doorway to your microprocessor. All information that enters
your computer must first pass through the accumulator (or the X or Y register).

For example, if you want to store a value within one of the RAM locations, you must
first load the value into the accumulator (or the X or Y register) and then store it into the
specified RAM location. You cannot store a value directly into RAM, without placing it
into the accumulator or the index registers first. (The index registers are described in the
following section.)

DATA
DIRECTION Po---Pg
REGISTER T T
PERIPHERAL PERIPHERAL
K oUPUT KIH wierrace
REGISTER BUFFER
AEC
<] |
INDEX
INTERRUPT
REGISTER E LOGIC
A, <— b
A, = 1 INDEX
REGISTER
X
Ay B~
2 K
- - STACK
A‘ o .t POINT
o] 2 REGISTER
b < S
A, % — E
@ o
Ap =1 5 2 N ecooe
[%2] ALY
w > o=
A, - g (L SO
8 il
A =2 S S 4
e €1 W P < i L
— - ACCUMULATOR TIMING
2 E: Py [*1 conTrOL
b bd CE d
Ay & g T
w z
')
Apd F ko PCL = 2y T
I B : o o IN
A, -] = Ko eow o b4
3 PROCESSOR ‘
- K STATUS i
Au e bnd REGISTER t
INPUT I
DATA
— LATCH
A,, < - fto8)
I—>¢w.
A, — i
| e s |
REGISTER
A, s TS SN U N O J
A 4 Ht{ Y *i
)
LEGEND b0
-o |
Q: 8817 UNE Oy | oara
th # D, | BUS
- D,
] = 1BITUNE —» C,
o,

Figure 5-1. 8502 Block Diagram

MACHINE LANGUAGE ON THE COMMODORE 128 129

All mathematical operations are performed within the arithmetic logic unit (ALU)
and stored in the accumulator. It is considered a temporary mathematical work area. For
example, you want to add two numbers, 2 + 3. Firgt, load the accumulator with the 2.
Next add 3 with the ADC mnemonic. Now, you want to perform another operation. You
must store the answer from the accumulator into a RAM location before you perform the
next math operation. If you don't, your original answer is erased.

The accumulator is so important that it has an addressing mode of its own. All the
instructions using this mode pertain specificaly to the accumulator. The following three
sample instructions pertain solely to the accumulator in its own addressing mode:

LDA - LOAD accumulator with memory
STA - STORE the accumulator in memory
ADC - ADD contents of memory to the accumulator

Details on al of the accumulator addressing commands are given later in this chapter.

THE X AND Y INDEX REGISTERS

The second most used registers are the X and Y index registers. These index registers are
used primarily to modify an address by adding an index within a machine-language
instruction. They also can be used as temporary storage locations or to load values and
store them in RAM like the accumulator.

When modifying an address, the contents of the index registers are added to an
original address, called the base address, to find an address relative to the base address.
The resulting address yields the effective address—i.e., the location where a data value
is stored or retrieved. The effective address is acted upon by machine-language instruc-
tions. For example, you want to place the value O in locations 1024 through 1034. In
BASIC, here's how you do it:

10 FOR | = 1024 to 1034
20 POKE 10
30 NEXT

Here's how you do it in symbolic machine language by using the X or Y index
register. NOTE: Don't worry if you don't understand al of the following instructions. They
are discussed fully in the TYPES OF INSTRUCTIONS section, later in this chapter.

LDA #$00 Load the Accumulator with O

TAX Transfer the contents of Accumulator (0) to X
Register.
START STA $0400,X Store contents of Accumulator in address $0400 + X
INX Increment the X register

CPX #$0B Compare the X register with $0B (11 decimal)
BNE START If X register does not equal 11 branch to START.
BRK Stop
* = In the machine-language monitor the symbolic label START is not allowed, so it
would appear as an absolute address reference (eg; $183B).

The BASIC example above places a 0 in locations (addresses) 1024 through 1034.
Line 10 sets up a loop from memory locations 1024 to 1034. Line 20 POKEs the value O
into the location specified by 1. The first time through the loop, | equals 1024. The
second time through the loop, | equals 1025 and so on. Line 30 increments the index
variable | by 1 each time it is encountered.

The previous machine-language example accomplishes the same task as the BA-
SIC example. LDA #$00 loads a 0 into the accumulator. TAX transfers the contents of
the accumulator into the X-index register. The following machine-language instructions
form a loop:

START STA $0400,X
INX
CPX #$0B
BNE START

Here's what happens within the loop. STA $0400,X stores a O in location $0400
(hex) the first time through the loop. Location $0400 is location 1024 decimal. INX
increments the X register by 1, each cycle through the loop. CPX #$0B compares the
contents of the X register with the constant 11 (SOB). If the contents of the X register do
not equal 11, the program branches back to START STA $0400,X and the loop is
repeated.

The second time through the loop, 0 is stored in address $0401 (1025 decimal) and
the X register is incremented again. The program continues to branch until the contents
of the X register equal 11.

The effective address for the first cycle through the loop is $0400 which is 1024
decimal. For the second cycle through the loop the effective address is $0400 + 1, and
so on. Now you can see how the index registers modify the address within machine-
language instruction.

THE STATUS REGISTER

The microprocessor's status register indicates the status of certain conditions within the
8502. The status register is controlled by seven programming states of the microproces-
sor, and indicates the conditions with flags. The status register is one byte, so each flag
is represented by a single bit. Bit 5 is not implemented.

Branching instructions check (4 of the 7 bits in) the status register to determine
whether a condition has occurred. The conditions for branching pertain to the value of
the bits in the status register. If a condition is true, meaning the FLAG hit corresponding
to one of the four conditions is high (equa to a 1), the computer branches. If the
condition you are testing is not true, the computer does not branch and the program
resumes with the instruction immediately following the branch.

Figure 5-2 shows the layout of the 8502 status register and lists the conditions
the status register flags.

MACHINE LANGUAGE ON THE COMMODORE 128

N V BO I 2 C PROCESSOR STATUS REG "P"

_».CARRY 1 = TRUE
-*-ZERO 1 = RESULT ZERO
-*»+ |IRQ DISABLE 1 = DISABLE
-*- DECIMAL MODE 1 = TRUE
-*" BRK COMMAND

-««OVERFLOW 1 = TRUE
NEGATIVE 1 x NEG

Figure 5-2. 8502 Status Register

The Carry bit (0) is set if an addition operation carries a hit into the next position
to the left of the leftmost bit. The Carry bit is set by other conditions, of which this is
one. The SEC ingruction sets the Carry bit. CLear the Carry bit with the CLC
instruction.

The Zero bit (1) is st if the result of an operation equals zero. The command BEQ
stands for Branch on result EQud to Zero. The command BNE stands for Branch on
Result Not Equal to zero. If the zero bit in the dtatus register is set, the program
branches to the address relative to the current program counter value (for a BEQ
instruction). Otherwise, the BEQ command is skipped and the program resumes with the
instruction immediately following the BEQ statement.

The IRQ Disabled bit (2) is set if your program requests interrupts to be dis-
abled with the SEI command (Set Interrupt Disable Status). The Disable Interrupt
Status bit is cleared with the CLI command (CLear Interrupt Disable bit) to permit
interrupts to occur. You will learn more about programming interrupts in the section
entitted TYPES OF INSTRUCTIONS and in the Raster Interrupt program explanation in
Chapter 8.

The microprocessor sets the Decima Mode bit (3) if you instruct the microproces-
sor to SEt Decima Mode with the SED instruction. CLear the Decimal Mode bit with
the CLD instruction, CLear Decima Mode.

The BRK flag (bit 4) operates similar to the IRQ disable flag. If a BRK instruction
occurs, it is st to 1. Like an IRQ interrupt, the BRK causes the contents of the
program counter to be pushed onto the stack. The contents of the status register is
pushed on top of the stack and evaluated. If the BRK flag is set, the operating system
or your application program must evaluate whether or not a BRK or interrupt has
occurred.

If the BRK flag is cleared once the status register is pushed onto the stack, the
processor handles this as an interrupt and services it. Unlike an interrupt, the BRK flag
causes the address of the program counter plus two to be saved. The microprocessor
expects this to be the address of the next instruction to be executed. You may have to

131

adjug this address since it may not be the actual address of the next instruction within
your program.

The Overflow flag (bit 6) is set by a signed operation overflowing into the sign
bit (bit 7) of the status register. You can clear the Overflow bit in the status register with
the CLV ingtruction (CLear Overflow flag). You can conditionaly branch if the
Overflow bit is set with the BVS (Branch Overflow Set) instruction. Similarly, you can
conditionally branch if the overflow hit is clear with the BVC (Branch Overflow Clear)
instruction. The BIT instruction can be used to intentionally set the overflow flag.

The microprocessor sets the negative flag (bit 7) if the result of an arithmetic
operation is less than 0. You can conditionally branch if the result of an arithmetic
operation is negative, using the BMI instruction, (Branch on result Minus) or positive
using the BPL instruction, (Branch on Result Positive).

The status register indicates seven important conditions within the microprocessor
while your machine language program is executing. Your program can test for certain
conditions, and act upon the results. It gives you a way to conditionally control certain
machine level functions depending on the value of the status flags.

THE PROGRAM COUNTER

So far dl of the registers within the 8502 are 8 bits, or one byte. The program counter
is twice as wide (16 bits) as the accumulator, X or Y registers or the status register. The
program counter is a 16-bit register because it holds the current address of the next
instruction to be executed. The addresses used in an 8502-based microprocessor are al 16
bits wide. They have to be in order to address dl locations within each 64K RAM
bank.

The program counter holds the address of the next instruction to be executed. It
fetches the addresses of the instructions sequentialy (usually) and places them on the
16-bit address bus. The processor obtains the data or instructions at the specified 16-bit
address from the data bus. Then they are decoded and executed.

THE STACK POINTER

Within the RAM of the Commodore 128 is a temporary work area caled the stack. It
starts at location decimal 256 and ends at location 511 (hex $100 to $1FF). This area of
computer RAM s referred to as page 1. Paging is explained in the next section.

The stack is used for three purposes in your computer: temporary storage, control
of subroutines, and interrupts. The stack is a LIFO (Last In, First Out) structure which
means the last value placed on the stack is the first one taken off. When you place a
value on the stack, it is referred to as pushing. When you take a value off the stack, it is
considered pulling or popping.

Think of the structure as a stack of lunch trays in a cafeteria. The firgt tray used is
the one that is pulled off the top. The last one used is the one on the bottom, and it is
used only if al the others are pulled off before it.

The stack pointer is the address of the top stack value (plus 1). When a value
is pulled from the stack, the stack pointer then indicates the new address of the
next item on the stack. When a subroutine is called or an interrupt occurs, the

MACHINE LANGUAGE ON THE COMMODORE 128

address where the interrupt or subroutine occurs is pushed on top of the stack. Once
the interrupt or subroutine is serviced, the address where it occurred is popped off
the stack and the computer continues where it left off when the interrupt or subroutine
occurred.

16-BIT ADDRESSING:
THE CONCEPT OF PAGING

The Commodore 128 contains 128K of Random Access Memory (RAM). This means
you have two banks of 65536 (64K) RAM memory locations (minus two for locations 0
and 1, which are always present in a RAM bank). Since the 8502 is an 8-bit micropro-
cessor, it needs two 8-hit bytes to represent any number between 0 and 65535. One
eight-bit byte can only represent numbers between 0 and 255. Your computer needs a
way to represent numbers as large as 65535 in order to address dl the memory
locations.

Here's how your computer represents the largest number in one 8-bit byte. The
computer stores it as a binary number. You usualy represent it as a hexadecimal number
in your machine-language programs. Figure 5-3 shows the relationship between binary,
hexadecima and decima numbers.

Bl NARY HEXADECI MAL DECI MAL
leight-bitByte =11111111 $FF 255

Figure 5-3. Comparison of Number Systems

A byte contains eight binary digits (bits). Each bit can have a value of O or 1. The
largest number your computer can represent in eight binary digitsis1 11111 1 1,
which equals 255 in decimal. This means dl eight bits are set, or equal to 1. A
bit is considered off if it is equa to 0. In converting binary to decimal, dl the binary
digits that are set are equa to 2 raised to the power of the bit position. The bit
positions are labeled O through 7 from right to left. Figure 5-4 provides a visud
representation of converting binary to decimal.

27

One hinary byte = 1 1 1 1 1 1 1 1
The byte in decimal = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =255

Figure 5-4. Binary/Decimal Conversion

133

The top of each column represents the value of 2 raised to the power of the bit
position. Since each bit is turned on when you represent the largest number in one byte,
add dl the values a the bottom of each to obtain the decimal equivalent. Figure 55
shows another example that converts the binary number 1 1 00 1 0 1 O to decimal.

27 285 25 24 23 22 21 9o

One binary byte = 1 1 0 0 10 10
The byte in decimal = 128 + 6 4 + 0 + 0 + 8§ + 0 + 2 + 0= 202

Figure 5—5. Binary/Decimal Conversion

Remember, only add the values of two raised to the bit position if the bit is set.
If a bit is off, it equals zero.

Now that you can convert one byte from binary to decimal, you are probably
wondering what this has to do with 16-bit addressing. We mentioned before that the
program counter—the register responsible for storing the address of the next instruction
to be executed—is 16 bits wide. This means it uses two bytes side-by-side to calculate
the address.

You just learned about the low byte, the lower half of the 16 bits used to represent
an address. The upper half of the 16-bit address is called the high byte. The high byte
calculates the upper half of the address the same way as the low byte, except the hit
position numbers are labeled from 8 on the right to 15 on the left. When you raise 2 to
the power of these bit positions, and add the resulting values to the low byte of the
address, you arrive at addresses that go up to 65535. This alows your computer
to represent any number between O and 65535, and address any memory location
within each 64K RAM bank. Figure 5-6 is an illustration of a 16-hit address in
decimal:

High Byte 2 v 213 212 2" 10 7 7

One binary byte= 1 1 1 1 1 1 1 1

The byte in

decimal =32768 + 16384+ 8192 + 4096 + 2048 + 1024 + 512 +256=65280
Low Byte 27 28 22 7 7 Ve 2 »

One binary byte= 1 1 1 1 1 1 1 1

The byte in

decimal = 128 +64 + 32 66+ 8 + 4+ 2 + 1 = 255-255

65535

Figure 5-6. Example of 16-Bit Address in Decimal

MACHINE LANGUAGE ON THE COMMODORE 128

You can see that the highest number of the high byte of the 16-bit address is
65280. And you know that the highest number of the low byte of the 16-bit address
equals 255. Add the highest high-byte and the highest low-byte number (65280 + 255),
to arrive at 65535, the highest address within each of the two 64K RAM banks.

When the microprocessor calculates the address of the next instruction, it looks at
the high byte of the 16-bit program counter. Try to think of the high byte of the address
asjust another 8-bit byte. If this was the case, the bit positions would be labeled from O
on the right through 7 on the left, just like the low byte of the address. Therefore, the
largest number this 8-bit byte can represent again is 255 decimal.

The value in the high byte determines which 256-byte block is accessed. These
256-byte blocks are referred to as pages. The high byte determines the page boundary of
the address, so the high byte is calculated in increments of 256 bytes. The high byte of
the program counter determines which of the possible 256 pages is being addressed. If
you multiply the number of possible pages, 255 by 256 bytes, you redlize the highest
page starts at location 65280, decimal, the same number as in the high byte in Figure
5-6. Location 65280 is the highest page boundary addressable.

What if you want to address a memory location that does not lie on a page
boundary? That's where the low byte of the 16-bit address comes in.

The high byte of the program counter represents the 256-byte page boundary.
All addresses between boundaries are represented by the low byte. For example, to
address location 65380 decima represent the high byte as 255, since 255 times
256 equals 65280. You ill have to move 100 addresses higher in memory to location
65380.

The low byte contains the value 100 decimal. The low byte value is added to the
high byte to find the actual, or effective address.

When you look a the memory map of your Commodore 128, you will see
references to the low byte and high byte pointers or vectors to certain machine-language
routines within the operating system or to important syssem memory locations, like the
start of BASIC.

You can find out the contents of these addresses and where the routines reside in
your Commodore 128's memory by using the PEEK command in BASIC, or the
Memory command in the Machine Language Monitor. To find the effective address
using BASIC, look in the memory map for the reference to a specific routine or system
function, sometimes called a vector. PEEK the high byte, the page number of the
routine. Multiply by 256 to find the page boundary. Then PEEK the low byte and add it
to the page boundary to arrive at the effective decimal address.

Keep in mind that al the address calculations are performed in binary. They are
explained in decima so they're easier to understand. In your machine language pro-
grams, you will usually reference memory in hexadecima notation, explained in the
next section.

HEXADECIMAL NOTATION

Your 8502 microprocessor only understands the binary digits 0 and 1. Although machine
language usually requires hexadecimal notation and BASIC processes decimal numbers,
those numbers are trandated and processed as binary numbers. Your computer uses
three different number systems, binary (base 2), hexadecima (base 16) and decimal
(base 10). The machine-language monitor also uses the octa number base. A number
base is aso refered to as a radix; therefore, the C128 uses four radices, but the
microprocessor only understands binary at machine level.

BASIC understands decima numbers because they are easiest for people to use.
Although BASIC doesn't process as fagt as machine language, the ease of use makes up
for the loss of speed.

Machine language uses hexadecima notation because it is closer to the binary
number system and easier to trandate than decimal. Hexadecimal representation is aso
used usualy by machine-level programmers because it is easier for people to think of a
group of eight binary digits (a whole byte) than it is to think of them as separate digits
by themselves. How do you find it easier to represent this value:

3A (hexadecimal), or as 00111010 (binary)?

Once vaues are trandated from the higher level language into a form that the
microprocessor can understand (binary digits or bits), they are interpreted as electronic
switches by the interna circuitry. The switches determine if an electronic impulse will
be transmitted by the integrated circuit (1.C.) to perform a specific function, such as
addressing a memory location. If the bit equals 1, the switch is interpreted as on, which
sends a voltage level (approximately 3 to 5 volts) through the 1.C. If the binary digit is
equa to 0, no voltage is transmitted. Though this is a smplified illustration, you get an
idea of how the microcomputer system can trandate, process and perform the instruc-
tions you give to your computer. The hardware and software merge here, a machine
level.

UNDERSTANDING HEXADECIMAL
(HEX) NOTATION

The key behind understanding hexadecimal (base 16) numbers is to forget about decimal
(base 10). Hexadecima digits are labeled from O through 9 and continuing with A
through F, where F equals 15 in decimal. By convention, hexadecimal numbers are
written with a dollar sign preceding the value so that they can be distinguished from
decimal values. Figure 5-7 provides a table of the hexadecimal digits and their decimal
and binary equivalents:

MACHINE LANGUAGE ON THE COMMODORE 128 137

HEXADECI MAL DECI MAL Bl NARY

$0 0 0000
$1 1 0001
$2 2 0010
$3 3 0011
$4 4 0100
$5 5 0101
$6 6 0110
$7 7 0111
$8 8 1000
$9 9 1001
$A 10 1010
$B n 1011
$C 1 1100
$D 13 1101
$E 14 1110
B 15 mi

Figure 5—7. Hexadecimal Decimal Binary Conversion

Each hex digit represents four bits. The highest number you can represent with
four bits is 15 decimal. In machine language, you usualy represent operands and
addresses as two or four hex digits. Since each hex digit of a four-digit hexadecimal
address takes up four bits, four of them represent 16 bits for addressing.

At firg you'll find yourself converting decimal addresses and operands into
hexadecimal. Then you'll want to convert the other way. See the HEX$ and DEC
functions for quick and easy decima to HEX conversions. In the machine language
monitor, use the (+) plus sgn to represent decimal numbers. Use the conversions for
now, but eventually you should find yoursdlf thinking hexadecimal notation instead of
always converting from decimal to hexadecimal.

ADDRESSING MODES IN
THE COMMODORE 128

Addressing is the process by which the microprocessor references memory. The 8502
microprocessor has many ways to address the internal locations in memory. The
different addressing modes require either one, two or three bytes of storage depending
on the instruction. Each instruction has a different version and op-code. For example,
LDA (LoaD the Accumulator) has eight versions, each with a different op-code to
specify the various addressing modes. See the 8502 Instruction and Addressing Table
section for the different versions of dl the 8502 machine-language instructions.

ACCUMULATOR ADDRESSING

Accumulator addressing implies that the specified operation code operates on the
accumulator. The operand field is omitted since the instruction can only perform the
operation on the accumulator. Accumulator instructions require only one byte of stor-
age. Here are some examples of accumulator addressing instructions:

INSTRUCTION HEX OPCODE MEANING
ASL $0A Shift one bit left
LSR HA Shift one bit right
ROR $6A Rotate one bit right

IMMEDIATE ADDRESSING

Immediate addressing specifies that the operand be a constant vaue rather than the
contents of a particular address. The operand is the data, not a pointer to the data. At
machine level, the microprocessor actually interprets an operand field constant
and an address in the operand fidd as two different op-codes, so the pound sign gives
the programmer a way to distinguish between the data and a pointer to the data
Immediate addressing instructions require two bytes of storage. Here are some immedi-
ate addressing instruction examples:

INSTRUCTION HEX OPCODE MEANING

LDA #$0F $A9 Load the accumulator with 15 ($0F)
CMP #$FF $C9 Compare the accumulator with 255 ($FF)
SBC #$EO $E9 Subtract 224 ($E0) from accumulator

ABSOLUTE ADDRESSING

Absolute addressing allows you to access any of the memory locations within either 64K
RAM bank. Absolute addressing requires three bytes of storage; the firgt byte for the
op-code, the second for the low byte of the address and the third for the high byte. Here
are some examples of absolute addressing instructions:

MACHINE LANGUAGE ON THE COMMODORE 128

INSTRUCTION HEX OPCODE MEANING

INC $4FFC SEE Increment the contents of address $4FFC by 1

LDX $200C $AE Load the X register with the contents of address
$200C

JSR $FFC3 $20 Jump to location $FFC3 and save the return address

ZERO-PAGE ADDRESSING

Zero-page addressing requires two bytes of storage; the first byte is used for the opcode
and the second for the zero-page address. Since zero page ranges from addresses O
through 255, the computer only needs the low byte to represent the actual address. The
high byte is assumed to be O; therefore, it is not specified. When addressing a zero-page
location, you can till use absolute addressing; however, the execution time is not as fast
as zero-page addressing. Here are some examples:

INSTRUCTION HEX OPCODE MEANING
LDA $FF $A5 Load the accumulator with the contents of zero-page
location $FF (255)

ORA $E4 03} OR the accumulator with the contents of location

$E4
ROR $0F $66 Rotate the contents of location $OF one bit to the
right

IMPLIED ADDRESSING

In implied addressing mode, no operand is specified because the op-code suggests the
action to be taken. Since no address or operand is specified, an implied instruction
requires only one byte for the op-code. Some examples are:

INSTRUCTION HEX OPCODE MEANING
DEX ACA Decrement the contents of the X register
INY $C8 Increment the contents of the Y register

RTS $0 Return from Subroutine

139

RELATIVE ADDRESSING

Relative addressing is used exclusively with branch instructions. The branch instructions
(BEQ, BNE, BCC, etc.) alow you to alter the execution path depending on a particular
condition. Branch instructions are similar to IF ... THEN statements in BASIC since
they both conditionally perform a specified set of instructions.

The operand in the branch instruction determines the destination of the conditional
branch. For example, the op-code BEQ stands for Branch on result EQual to zero. If the
zero flag in the status register is equal to 1 add the operand to the program counter and
continue execution at this new address. Figure 5-8 provides an example in symbolic
assembly language.

LDA #$01 .01800 A901 LDA #$01
STA TEMP 01802 85FA STA $FA

DEC TEMP .01804 C6 FA DEC $FA
START BEQ START .01806 FOFC BEQ $1804

LDX #$01 01808 A201 LDX #$01

STA COUNT .0180A 85FB STA $B

A) ®) ©

*NOTE: The machine language monitor does not provide for
symbolic addresses and labels like TEMP and START.

Figure 5-8. Relative Addressing

Figure 5-8 lists the (A) code on the left as it appears in symbolic assembly
language. The code (B) in the middle is the actua machine-level machine code
as it appears in the machine language monitor. The (C) code to the right is the symbolic
machine language as it appears in the monitor as executable code.

In this program segment, the firg instruction LoaDs the Accumulator with 1.
STA is the op-code for STore the contents of the Accumulator in the variable
TEMP. The third instruction, DEC, decrements the contents of the variable TEMP. In
the third instruction, START is a label which marks the beginning of the conditional
loop. The branch instruction (BEQ) checks to see if the value stored in TEMP equals
0 as a result of the DECrement instruction. The instruction marks the end of the
loop.

The firgt time through this loop, the result in TEMP equals O so program control
branches back to the instruction specified by the label START.

The second time through the loop, TEMP is less than zero; therefore, the zero
flag in the dtatus register is cleared, the program does not branch to START and
continues with the statement directly following the branch instruction (LDX #3$01).

MACHINE LANGUAGE ON THE COMMODORE 128

Because of the way this program segment is written, a branch can occur only once, the
firg time through the loop.

Under relative addressing, the firg byte of the instruction is the op-code and the
second is the operand, representing an offsst of a number of memory locations. The
location to branch back to is not interpreted as an absolute address but an offset relative to
the location of the branch instruction in memory.

The offsst ranges from -128 through 127. If the condition of the branch is met,
the offset is added to the program counter and the program branches to the address in
memory.

In the example in Figure 5-8, notice that the operand in the branch instruction is
only one instruction past the labed START. The operand START is interpreted by the
computer as an offset of three bytes backward in memory since the DEC instruction use
2 bytes and the BEQ op-code uses one byte. The 8502 can only branch forward 127
bytes and branch backward by 128 bytes.

If you enter the machine-language monitor and disassemble the machine-language
code, you'll see how the computer represents a branch instruction operand as in part (B)
of Figure 5-8. The symbolic code in part (C) operand field represents the operands as
absolute addresses but the assembled hexadecima code to the Ieft in part (B) of the op
code stores the operand using one byte, a number plus or minus the address of the
branch instruction. The largest number for a forward branch is $7F. A backward branch
is represented by hex numbers greater than $80. When you are within the machine-
language monitor, subtract the operand offsat from 255 ($FF) to find the actua value of
the negative offset. In this case $FF minus 3 equals $FC, which is the operand in the
branch instruction in part (B) of Figure 5-8.

Here are some examples of relative addressing branch instructions:

INSTRUCTION HEX OP-CODE MEANING

BEQ $F0 Branch on result Equal to 0
BNE $D0 Branch on result Not Equal to 0
BCC $0 Branch on Carry Clear

INDEXED ADDRESSING MODES

The Commodore 128 has two special-purpose registers: the X and Y index registers.
In indexing addressing modes, index registers modify an address by adding their
contents to a base address to arrive at the actual or effective address. For example,
here's a program segment that illustrates the importance of address modification, using
the X and Y index registers:

A4

LDA #3$0F

LDX #$00
LOOP STA $2000,X

INX

BNE LOOP

The first instruction in this program loads the accumulator with $0F(15 decimal).
The second ingtruction loads the X register with 0. The third instruction stores the
contents of the accumulator into the address $2000 added to the contents of the X index
register. The firg time the loop cycles, $0F is stored in address $2000 ($2000 + 0 =
$2000). The next instruction (INX) increments the contents of the X register. The last
ingtruction in the loop branches to the statement specified by the label LOOP, which is
the STA $2000, X instruction. The second time through the loop, $0F is stored in
location $2001 ($2000 + 1). The third cycle of the loop stores $OF in location $2002, etc.

The loop continues to cycle and stores $0F in consecutive locations until the X
register equals 0. In other words, the loop circulates 256 times until the X register
equals 0, since 255 plus 1 is represented as 0. This is because the extra hit is carried
over to the ninth bit position, which doesn't exist in an eight-bit number, so the register
is reset to zero. This is similar to when your car odometer is sat a 99,999 miles. When
you travel another mile the dia resets to 00,000.

This example shows just one way to modify addresses with the index registers.
The Commodore 128 has four indexed addressing modes. (1) indexed absolute address-
ing (illustrated in the example just shown), (2) indexed zero-page addressing, (3)
indexed indirect addressing, and (4) indirect indexed addressing.

INDEXED ZERO-PAGE ADDRESSING

This type of addressing is similar to zero-page addressing except that the index registers
(X or Y) are usaed to modify addresses within page zero ($00 to $FF) of memory. Since
zero-page addressing requires no high byte to represent the page number, this type of
instruction requires only two bytes of memory. The effective (actual) address is calcu-
lated by adding the contents of the index register to the low byte of the address in the
program counter. This addressing mode is faster and more efficient than using indexed
absolute addressing in zero page.

Here are some examples of indexed zero-page addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

INC operand, X $F6 Increment the contents of memory by 1.
The base address (the operand) is added to the
contents of the index register (X)).

CMP operand,X $D5 Compare the contents of the accumulator with
memory. The memory base address (the oper-
and) is added to the contents of the index register

X))

MACHINE LANGUAGE ON THE COMMODORE 128

INDEXED ABSOLUTE ADDRESSING

Indexed absolute addressing allows you to access and modify any of the memory
locations in each of the two 64K banks. The effective address is calculated by adding
the contents of the index register (X or Y) to the high and low byte base address
determined by the operand. Since absolute addressing can access any of the available
memory locations, high and low bytes are required to form the 16-hit address. There-
fore, this type of addressing requires three bytes.

Here are some examples of indexed absolute addressing instructions:

INSTRUCTION HEX OP-CODE MEANING

AND operand,Y $39 Perform the logical AND operation on the
accumulator and the contents of memory base
address plus the contents of the register (Y).

ASL operand,X $1E Shift the contents of the memory (the memory
is the base address (the operand) added to the
contents of the index register (X)) one bit to the
| eft.

THE INDIRECT ADDRESSING CONCEPT

So far you've learned that the computer calculates the effective address as the
base address (in the program counter) plus the offset from the contents of the index
registers if indexed addressing is used. Indirect addressing calculates the effective
address differently.

Think of indirect addressing as the address of an address. Here's an illustration
using absolute indirect addressing:

JMP ($0326)

The above JUMP instruction is an example of absolute indirect addressing. This
type of instruction requires three bytes. one for the op-code, one for the low byte and
one byte for the high byte of the 16-hit address. The parentheses indicate that indirect
addressing is used. The second and third bytes of the IMP instruction specify the low and
high byte of the address. The address in the operand field is only the low byte of the effective
address. The contents of the byte immediately following the address specified in the IMP
ingtruction is automatically placed into the program counter as the high byte of the effective
address. In this example, the contents of location $0326 and $0327 represent the address of
the actua instructions to be executed. For example, location $0326, the low byte of
the effective address, contains the value $65 and location $0327, the high byte of the
effective address, contains the value $F2. The high- and low-byte vaues are placed in

143

the program counter as the address SF265, the actual address of the next instruction
the computer executes then is SF265.

If the parentheses were not present, the assembler interprets the instruction
as an absolute addressing instruction. The computer would understand the low
byte to be $26 and the high byte to be $03 and would JUMP to the instruction
located a $0326 instead of the intended address of $F265. Since this is not the
case, the high byte is automatically presumed to be the low byte address plus 1
(the contents of $0327).

The last two addressing modes, indirect indexed and indexed indirect, use the
same principle as absolute indirect addressing. Here's an explanation of each.

INDEXED INDIRECT ADDRESSING

Indexed indirect addressing is similar to absolute indirect, athough it uses index
registers to modify an address. This type of addressing, sometimes called indirect X
addressing, requires two bytes of storage: the first byte is for the op-code and the second
is for the operand which is used in the effective address calculation. The address
specified in the second byte is added to the contents of the X register and the carry, if
any, is ignored. The results point to an address in page zero in which its contents
contain the low byte of the effective address. The zero page address plus 1 indicates the
high byte of the effective address. Both locations in which the low and high bytes of the
effective address are contained must be located in page zero, locations $00 through $FF.
Here's an example:

LDX #$04
LDA #$00
STA ($DF.X)

The firgt line loads the X register with $04. Next, the accumulator is loaded with
0. The third instruction stores zero in the effective address. Calculate the effective
address by taking the base address $DF (not the contents of it) and add the contents of
the X register ($04) to it, which equals $E3. The contents of location $E3 is the low
byte of the effective address and the contents of $E4 is the high byte of the effective
address. For example, the contents of address $E3 contain $56 and the contents of
address $E4 contain $F3. Since the contents of $E3 is the low byte and the contents of
$E4 is the high byte, the effective address is $F356. Indexed indirect addressing is
referred to as pre-indexing because the indexing occurs before the effective address is
actually obtained. Indirect X addressing is useful in addressing a series of pointers such
as the zero-page memory of the Commodore 128.

INDIRECT INDEXED ADDRESSING
This mode, also cdlled indirect Y addressing, is post-indexed, which means the adding
of the index itself obtains the effective address. This mode operates on the principle of a
base address and a displacement. Here's how it works.

The firgt of two bytes is the op-code, the second is the operand, a pointer to a

MACHINE LANGUAGE ON THE COMMODORE 128

zero-page memory address. The contents of the pointer and the contents of the Y
register are added to arrive at the low byte of the effective address. The contents of the
pointer act as the base address and the contents of the Y register act as the displacement.
The carry, if any, is added to the memory location directly following the low-byte
address which becomes the high byte of the effective address. This is true indexing,
designed specificaly for manipulating tables of data. In order to access different table
values, just change the contents of the Y register since the base address is aready
established. Here's an example:

LDY #$08
LDA #$00
STA ($EA)Y

The firgt instruction loads the Y register with $08. The second instruction loads
the accumulator with 0. The third instruction stores the contents of the accumulator in
the effective address.

To find the effective address, add the contents of the zero page memory location
(base address) specified in the instruction to the contents of the Y register (displace-
ment). In this example, the contents of the address SEA equas $F0. Add $FO to the
contents of the Y register ($08) to arrive at $F8, the low byte of the effective address of
the next instruction. The high byte of the effective address is obtained by adding the
carry (none in this case) to the zero-page memory location immediately following the
low-byte address. For example, location $F9 contains the value $3F. Since the low byte
is $F8 and the high byte equals $3F, the effective address is S3FF8.

Notice the difference between indirect indexed and indexed indirect addressing
modes as they can be confusing. Remember, the most important difference between the
two addressing modes is the way the effective address is calculated. Indexed indirect is
X indexing, which is indexed prior to the arrival of the effective address. Indirect
indexed is post-indexed with the Y register.

You havejust covered dl the addressing modes in the Commaodore 128. Each calls
for different circumstances and you should use the correct mode whenever circum-
stances dictate it to obtain optimal performance from the microprocessor. For example,
use indexed zero-page addressing when you are manipulating zero-page locations in-
stead of using indexed absolute.

TYPES OF INSTRUCTIONS

This section explains dl the types of machine-language instructions available in the
Commodore 128. They are first covered by type of instruction, such as REGISTER TO
MEMORY and COMPARE instructions; then they are listed alphabetically by op-code
mnemonic with al the different addressing options. This section provides important
information on programming in machine language on the Commodore 128 (or any
6502-based microcomputer).

145

Use this information as a reference for background on each instruction. Figure 5-9
provides an aphabetized list of the 8502 microprocessor op-code mnemonics. For
detailed, quick-reference information, see the following section for an alphabetic list of
instructions, their hexadecima op-codes, the different versions of the instructions for
each addressing mode and the way they affect the flags in the status register.

8502 MICROPROCESSOR INSTRUCTION SET -
ALPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry
AND "AND" Memory with Accumulator
ASL Shift Left One Bit (Memory or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with Accumulator
INC Increment Memory by One
INX Increment Index X by One
INY Increment Index Y by One

JMP Jump to New Location
JSR Jump to New Location Saving Return Address

LDA Load Accumulator with Memory

LDX Load Index X with Memory

LDY Load Index Y with Memory

LSR Shift Right One Bit (Memory or Accumulator)

NOP No Operation

MACHINE LANGUAGE ON THE COMMODORE 128

8502 MICROPROCESSOR INSTRUCTION SET-
ALPHABETIC SEQUENCE (cont'd)

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack
PHP Push Processor Status on Stack
PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or Accumulator)
ROR Rotate One Bit Right (Memory or Accumulator)
RTI Return from Interrupt

RTS Return from Subroutine

BC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory-

STX Store Index X in Memory

STY Store Index Y in Memory

TAX Transfer Accumulator to Index X
TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulator
TXS Transfer Index X to Stack Pointer
TYA Transfer Index Y to Accumulator

Figure 5-9. 8502 Op-Code Mnemonics

REGISTER TO MEMORY
INSTRUCTIONS

The REGISTER TO MEMORY instructions are:

LDA STA
LDX STX
LDY STY

The register to memory instructions either place a value into the accumulator, X
register or Y register from memory, or store a value from aregister (A, X, or Y) into a
memory address.

LOADING THE ACCUMULATOR

The first and most common instruction is LDA, LoaD the Accumulator. This places avaue
into the accumulator, the most powerful and active register in the microprocessor. The
value is derived from the contents of a memory location or a constant. Here's an example:

147

LDA $2000

This instruction loads the contents of the memory location $2000 (8192 decimal)
into the accumulator. The value in the memory location $2000 remains the same. The
value aso remains in the accumulator until another value is placed there or another
operation acts upon it.

The previous example isjust one of the addressing modes for loading the accumu-
lator. Another form the LDA instruction can take is to load a constant. To load a
constant into the accumulator, you must precede the dollar sign ($) with a pound sign
(#). For readability, it's a good idea to place at least one space between the op-code and
the operand but it is not necessary. Here's an example of loading a constant into the
accumul ator:

LDA #$0A

This loads the constant $0A (10 decima) into the accumulator. Remember,
precede a constant with a pound sign, or else the assembler interprets the instruction as
the contents of a memory address.

The LDX and LDY instructions work the same way as the LDA instruction.
Again, you can load a constant or the contents of a memory address into the X and Y
registers. Examples:

LDX #$0A
LDX $2000
LDX #3$FB

STORE: THE OPPOSITE OF LOAD

You know how to place a value into a register, but how do you do the opposite? The
STORE instruction performs the opposite of a load. It places a vadue from the A
(accumulator), X, or Y registers into a specified memory address. As you learned in the
addressing section, the load, store and most other machine-language instructions have
several versions, depending on the type of addressing used. Here's an example:

STA $FC3E

This stores the contents of the accumulator into memory location SFC3E. The
contents of the accumulator remain the same until another instruction modifies it. The
STX and STY ingtructions work the same way; they store the contents of the register
into a specified memory address. There is no immediate version or pound sign version
of the store command.

COUNTER INSTRUCTIONS

The COUNTER instructions are

INC DEC
INX DEX
INY DEY

Counter instructions can be used to keep track of or count the number of times an
event occurs. These ingtructions are used for mathematica manipulations or indexing a

MACHINE LANGUAGE ON THE COMMODORE 128

series of addresses. The counter instruction, INC, increments the contents of a memory
address by avalue of 1 each time it is encountered. These instructions are used primarily
within a program loop and in conjunction with a branch instruction. Here's an example
of a loop and how INC keeps track of a humber of occurrences of an event:

LDX #$00
TXA

START STA $2000,X
INX
BNE START

The firgt instruction loads a 0 into the X register. The second instruction transfers
the contents of the X register into the accumulator (without erasing the X register).
Instruction three stores the contents of the accumulator (0) into location $2000 the first
time through the loop. The fourth instruction increments the contents of the X register.
The last instruction branches to the instruction specified by the label START, until the
value of the X register equals 0.

This program segment stores O's in an entire page (256 locations) starting a $2000
and ending a $20FF. When the contents of the X register equals 255 and it is
incremented again, it is reset to 0, since it can only hold an eight-bit number. When this
occurs, the branch is skipped and the program continues with the instruction directly
following the branch instruction.

The INY ingtruction operates in the same way as INX, since it also only uses
implied addressing. The INC instruction, on the other hand, uses severa different
addressing modes including absolute, which uses 16-bit addresses. With the INC
instruction, you can count past the capacity of an 8-bit number, though you must
separate the counter into a high byte and a low byte. For example, the low byte counts
the increments of less than a page and the high byte keeps track of the number of pages.
When low-byte counter is a 255 and is incremented, it is set back to 0. When this
occurs, increment the high-byte counter. To count up to 260 (decima), the high-
byte value equals 1 and the low byte equals 4. Here's an equation to illustrate the point:

(1*256) + 4 =260
Here's the machine-language code that does this:

LDA #3$00
STA HIGH
STA LOW
LOOP INC LOW
BNE LOOP
INC HIGH
LOOP 2 INC LOW
LDA LOW
CMP #$04
BNE LOOP2

The DECrement instructions operate the same way as the increment instructions.
They are the negative number counterparts of the increment counters.

149

COMPARE INSTRUCTIONS

The Commodore 128 has three compare instructions that check the contents of a register
with the contents of memory. A compare operation can be used to determine which
instructions to execute as a result of a conditioned value. The compare instructions are:

CMP
CPX
CPY

The CMP ingtruction compares the contents of the accumulator with the contents
of the specified address in the instruction. Compare instructions essentialy subtract
memory from a register value but change neither—they just set status flags. CPX
compares the contents of the X register with the specified address. CPY compares the
contents of the Y register with the specified memory location.

All three instructions have versions that will operate in immediate, zero-page and
absolute addressing modes. This means you can compare the contents of a register
(A,X, or Y) with the contents of a zero-page location, any other address above zero page,
or againgt a constant. Here's an example:

LDX #3$00

LDA #3$00
ONE STA $DF X

INX

CPX #$0A

BNE ONE

The preceding program segment stores O's in 10 consecutive memory addresses
starting at $DF. The first instruction loads the X register with O, the second loads 0 into
the accumulator. The third instruction stores 0 in location $DF plus the contents of the X
register. The fourth instruction increments the X register. The fifth instruction compares
the contents of the X index register with the constant $0A (10 decimal). If the contents
of the X register does not equal $0A, the program segment branches back to the store
ingtruction specified by the label ONE. After the loop cycles ten times, the X register
and the constant $0A are equal. Therefore the processor does not teke the branch
and the program continues with the instruction immediately following BNE.

You can compare the value of a register with the contents of an absolute memory
address. Here's the same example as above using the contents of a memory address
instead of a constant:

LDA #$0A
STA $FB
LDX #$00
LDA #$00
ONE STA $DF X
INX
CPX $FB
BNE ONE

MACHINE LANGUAGE ON THE COMMODORE 128

Remember, if you want to compare numbers larger than eight bits can represent
(greater than 255 decimal), you must separate the number into a low byte and a
high byte.

The BIT instruction can also be used for comparisons. See the logica instructions
next.

ARITHMETIC AND
LOGICAL INSTRUCTIONS

The accumulator is responsible for al mathematical and logical operations performed in
your computer. The mathematical and logicd instructions available in machine language are:

ADC EOR
AND ORA
BIT SBC

Here's what each instruction means:

ADC—Add the contents of the specified memory address to the contents of the
accumulator with a carry. It is considered a good programming practice to clear
the carry bit with the CLC instruction before performing any addition. This avoids
adding the carry into the result.

AND—Perform the logicdl AND operation with the contents of the accumulator and the
contents of the specified memory address.

BIT—Compare the bits in the specified memory address with those in the accu-
mulator. Bits 6 and 7 are transferred to the status register flags. Bit 7 is trans-
ferred to the negative status flag bit and bit 6 is sent to the overflow status flag bit.

EOR—Perform the exclusive OR operation with the contents of the specified memory
address and the contents of the accumulator.

ORA—Perform the logical OR operation with the contents of the specified memory
address and the contents of the accumulator.

SBC—Subtract the contents of the specified memory address from the contents of the
accumulator with a borrow. (It is a good practice to st the carry flag before
performing subtraction. This avoids subtracting the borrowed bit from the result.)

ARITHMETIC INSTRUCTIONS
(ADC, SBC)

The addition and subtraction instructions are easy to understand. Here's an example:

CLC

LDA #$0A
STA $FB
ADC #$04
SEC

SBC #$06
ADC $FB
STA $FD

151

This program segment essentially performs the following mathematical operation:
(10 + 4)-6+ 10= 18.

The fird instruction clears the carry bit. The second instruction loads the accumu-
lator with $0A (10 decimal). The third instruction stores the value in address $FB for
later use. The fourth instruction adds the constant $04 to the value dready in the
accumulator. The SBC instruction subtracts the constant $06 from the contents of the
accumulator. The next instruction, ADC $FB, adds the contents of memory location
$FB to the contents of the accumulator. The resulting value (18($12)) of dl the
mathematical operations is stored in address $FD.

LOGICAL INSTRUCTIONS

(AND, EOR, AND ORA)

These instructions operate on the contents of a memory address and a register. The AND
operation is a binary (Boolean) algebra operation having two operands that can result in
one of two values, 0 or 1. The only way an AND operation can result in a 1 is if both
the operands egual 1; otherwise the result is 0. For example, the two operands are the
contents of a specified memory address and the contents of the accumulator. Here's an
illustration of this concept:

Memory address = 10001010
Accumulator = 11110010
Result of AND = 10000010

As noted, the result of an AND operation is (true) 1, only if the two operands are
equal to 1; otherwise the result is 0. Notice bit 7 (high-order bit) equals 1 because both
bit 7's in the operands are 1. The only other resulting bit equal to 1 is bit 1, since both bit
I's are equal to 1. The rest of the bits are equal to zero since no other bit positions in
both operands are equal to 1. A 1 and a0 equals O, as does a0 and a 0.

The Boolean OR works differently. The genera rule is:

If one of the operands equals 1, the resulting Boolean value equals 1.

For example, the two operands are the contents of a specified memory address and
the contents of the accumulator. Each individua bit can be treated as an operand. Here's
an illustration.

Contents of Memory Address = 10101001
Contents of Accumulator =10000011

Result of the OR operation = 10101011

For dl the bit positions that equal one in either operand, the resulting value of that
bit position equals 1. The result is 1 if either operand or both operands are equal to 1.

The exclusive OR works similarly to the OR operation, except if both operands
equa 1, the result is zero. This suggests the following general rule:

MACHINE LANGUAGE ON THE COMMODORE 128 153

If either of the operands equals 1, the resulting Boolean vaue is 1. except if both
operands are 1, then the result equals O.

Here's an example using this rule:

Contents of Memory Address = 10101001
Contents of Accumulator = 10000011
Result of the exclusive OR = 00101010

In this example, the operands are the same as in the previous OR example. Notice
bits 0 and 7 are now equa to O since both operands are equa to 1. All other bit values
remain the same.

BIT

The BIT ingtruction performs a logicdl AND operation on the contents of the specified
memory address and the contents of the accumulator, but the resulting value is not
stored in the accumulator. Instead, the zero flag in the status register is set by the result
of the operation. The BIT ingtruction compares the contents of the accumulator and the
contents of the memory address, bit-for-bit. If the result of the operation of the
accumulator being ANDed by a memory location is O, then the zero flag (in the status
register) is set to a 1. Otherwise the zero flag is 0.

Your machine language program can then act conditionaly depending on the
result of the zero flag in the status register. In addition, bits 7 and 6 from the specified
memory address are moved into the negative-flag and overflow-flag bit positions in the
status register, respectively. These flags can aso be used to perform conditional
instructions depending on the vaue of the flag. For example, the BIT instruction
performs the following:

7 0
NV BD17r
Contents of Memory Address = 10101001
Contents of Accumulator = 11001101 -» 10 0
Result of BIT instruction 10001001 Status Regigter

(Not stored in accumulator)

Since the resulting bit pattern is not 0, the zero flag in the status register is 0.
In addition, bits 7 and 6 are placed in the bit positions of the negative and overflow
flags, respectively, in the status register. Notice the result of the BIT instruction's AND
operation is not stored in the accumulator. The origina contents of the accumulator
remain intact. See the following example of 2-bit pattern operands that result in 0 when
ANDed:

7 0

NV BDIZC
Contents of Memory Address = 01111010
Contents of Accumulator = 10000100 -» 01 1
Result of BIT instruction = 00001000 Status Register

This time the bit patterns result in 0. Therefore, the zero flag in the status register
issetto 1. Bits 7 and 6 are aso placed into their respective negative and overflow status
register bit positions from their positions in the memory location.

Now you know how each of the arithmetic and logical instructions operate. The
next section discusses branching instructions. Branching instructions are designed so
you can conditionally execute a certain set of instructions, depending on the result of a
condition. Many times the conditions are contingent on the results of an arithmetic or
logical operation, which affects the flags in the status register. The branching instruc-
tions then act according to the flags in the status register.

BRANCHING INSTRUCTIONS

The 8502 microprocessor has many conditional branching instructions. By definition, a
branch temporarily redirects the otherwise sequential execution of program instructions.
It transfers control to a location of a machine-language instruction other than the one
immediately following the branch instruction in memory.

The conditional branch instructions cause the microprocessor to examine a particu-
lar flag in the status register. The processor, depending on the value of the tested flag,
either takes the branch and transfers control of the program to another location or skips
the branch and resumes with the instruction immediately following the branch.

Think of a conditional branch as a test. For example, if the condition passes the
test, the program branches or shifts control to an instruction that is not the next
sequential instruction in the computer's memory. If it fails the test, the branch is skipped
and program control resumes with the instruction immediately following the branch
ingruction in memory. Remember that program control can aso be shifted to an
instruction that is out of sequential order if it fails a test. This means you can transfer
control of the execution of your program depending on the conditions you create. You
may st a condition that branches if the value of a certain flag (operand) is zero.
In another instance, you may st a condition to branch if a specific flag is st
to L

The conditional branch instructions available in the 8502 microprocessor are:

BCC BNE
BCS BPL
BEQ BVC
BMI BVS

Here's what the conditional branch instructions mean. The phrases in parentheses
are the litera trandations of the op-code mnemonics. The remainder explains the
meaning behind the op-codes.

MACHINE LANGUAGE ON THE COMMODORE 128 155

BCC—(Branch on Carry Clear) Branch if the Carry flag in the status register equals 0.

BCS—(Branch on Carry Set) Branch if the Carry flag in the status register equals 1.

BEQ—(Branch on result EQua zero) Branch if the zero flag in the status register equals 1.

BMI—(Branch on result Minus) Branch if the negative flag in the status register equals 1,

BNE—(Branch on result Not Equal to zero) Branch if the zero flag in the status register
equals 0.

BPL—(Branch on result PLus) Branch if the negative flag in the status register equals 0.

BVC—(Branch on oVerflow Clear) Branch if the overflow flag in the status register
equals 0.

BVS—(Branch on oVeflow Set) Branch if the overflow flag in the status register
equals 1.

As you can see, dl branching instructions depend on the vaue of a flag in the
status register.
Here are some branching examples.

READY.

01828 E6 FA INC $FA
0182A A5 FA LDA $FA
0182C DO 02 BNE $1830
0182E E6 FB INC 5FB
01830 C8 I NY

This program segment keeps track of the low and high pointers in $FA and $FB
respectively. The firgt instruction (INC $FA) increments the low byte address pointer.
Next, the contents of $FA is loaded into the accumulator. The branch instruction (BNE
$1830) evaluates the value of the accumulator. If the vaue is not equa to zero, the
branch is taken to the instruction located at address $1830 (INY). In this case the high
byte pointer is not yet ready to be incremented, so the INC $FB instruction is skipped. If
the value in the accumulator is equa to zero, the branch is skipped and the high byte
address pointer is incremented.

This is an example of the BPL (Branch on Result Plus) instruction.

READY.

MONI TCR
PC SR AC XR YR SP *
FBOOO 00 00 00 00 F8

. 01858 8E 00 D6 STX $D600
. 0185B 2C 00 D6 BI T $D600
. 0185E 10 FB BPL S185B
. 01860 8D 01 D6 STA $D601

This example is a routine that checks the update ready status bit for the 8563
address register, and ensures that data is valid before writing a value to an 8563 register.
The firgt instruction stores the contents of the X register, which was previously loaded

with an 8563 register number, into the 8563 address register. The BIT instruction places
bit 7 of location SD600 into the negative flag in the 8502 status register. The BPL
instruction branches to the BIT instruction in location S185B as long as the value of the
negative flag is equa to 0. To the 8563 chip, this means the data is not yet valid and
cannot be written to or read from until bit 7 is set. This loop continues until the value of
bit 7 is 1, then it is transferred to the negative flag. The result now becomes negative
s0 the branch is skipped and control is passed to the next instruction in memory, which
stores the data into the 8563 data register. Refer to Chapter 10, Writing to an 8563
Register for an expanded version of this program.

REGISTER TRANSFER INSTRUCTIONS

Register transfer instructions move a value from one register (A, X, or Y) to another.
This instruction is useful since it only requires one byte of memory and saves the
programmer the trouble of loading the value from one register and storing it in another.
The 8502 microprocessor has the following six register transfer instructions:

TAX—Transfer contents of accumulator to X index register
TAY—Transfer contents of accumulator to Y index register
TSX—Transfer the contents of the stack pointer to X index register
TXA—Transfer the contents of X index register to the accumulator
TYA—Transfer the contents of the Y index register to the accumulator
TXS—Transfer the contents of the X register to the stack pointer

The TXS and TSX instructions transfer values from the X index register to the
stack pointer and vice versa. This is useful if you need to take a value off the stack
temporarily, in a mathematical operation (for example, to operate on it and then replace
it on the stack). Another use is to take a value off the stack, place it in the X register for
temporary storage, add a new vaue on the stack, and then place the old value back on
top. This could be the case when you need to sort values in ascending order.

SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions manipulate the bits of the accumulator or memory.
Following are the shift and rotate instructions used by the 8502 family of microprocessors:

ASL—Shift the whole byte one hit to the left

L SR—Shift the whole byte one bit to the right
ROL—Ruotate the whole byte one hit to the left
ROR—Rotate the whole byte one hit to the right

SHIFT INSTRUCTIONS

The ghift instructions are useful when evaluating the value of a single bit at atime in a
series of bits that control your program. For example, a joystick read routine is an
example that cals for the shift instruction. Locations SDC00 and $DCO1 control the
joystick direction (bits 0-3), and the joystick fire button (bit 4). One way to evaluate
these values is to shift them to the right. This causes the value to be passed to the carry

MACHINE LANGUAGE ON THE COMMODORE 128 157

flag. If the carry flag is enabled (1), then the joystick is being pushed in the direction
corresponding to that bit. Here is ajoystick read routine that uses the LSR instruction to
evaluate the direction of the joystick:

READY.

MONI TOR
PC SR ACXR YR SP
FBO0OO 00 00 00 00 F8

01800 AD 00 DC LDA $DCO0

01803 A0 00 LDY #3$00
01805 A2 00 LDX #$00
01807 4A LSR
01808 BO 01 BCS $180B
0180A 88 DEY
0180B 4A LSR
0180C BO 01 BCS $180F
0180E C8 I NY

. 0180F 4A LSR

. 01810 BO 01 BCS $1813

. 01812 CA DEX

. 01813 4A LSR

. 01814 BO 01 BCS $1817

. 01816 EB I NX

. 01817 4A LSR

. 01818 86 FA STX $FA

. 0181A 84 FB STY $FB

. 0181C 60 RTS

ROTATE INSTRUCTIONS

The rotate instructions operate a little differently. Instead of the shifted bit falling into
the carry flag, the bit "falling off the edge" is placed in the carry bit, then the carry bit
is placed a the opposite end of the byte. For example, if the ROR (rotate right)
ingtruction is specified, each bit is moved one position to the right. Now bit 7 is placed in
the carry bit and the carry hit is rotated around to the left and placed in the bit 7 bit
position. The ROL ingtruction operates in the same manner, except the rotation is
leftward rather than to the right. See Figure 5-10 to visualize the rotation concept of the
ROR (rotate right) instruction:

Bit Position

- 07654321 =———pp

Figure 5-10. Concept of ROR (Rotate Right) Instruction

SET AND CLEAR INSTRUCTIONS

The set and clear instructions are designed to manipulate the bits (flags) within the status
register and control certain conditions within the microprocessor. These are the st and
clear instructions available in 8502 machine language:

SEC Se the Carry Flag
SED Set Decima Mode
SEi St the Interrupt Disable Bit

CLC Clear the Carry Flag

CLD Clear Decima Mode

CLI Clear the Interrupt Disable Bit
CLV Clear the Overflow Flag

Each of these instructions applies to a flag in the status register that controls a
particular microprocessor condition. Notice that each clear instruction has a counterpart
which sets the condition, except for CLV (Clear Overflow Flag). The overflow flag can
be st by the BIT instruction or from the result of a signed mathematical operation
overflowing into the sign bit.

Figure 5-11 shows the 8502 status register:

[7NlVl IBIDhIngﬂ PROCESSOR STATUS REG “P"

LCARR’Y 1 = TRUE

L ZERO 1 = RESULT ZERO
L IRQ DISABLE 1 = DISABLE
‘me——5- DECIMAL MODE 1 = TRUE
3 BRK COMMAND

= OVERFLOW 1 = TRUE
B NEGATIVE 1 = NEG

Figure 5—11. 8502 Status Register

The flags of the dtatus register are st for various reasons. For example, set
decimal mode when you want to perform calculations in binary coded decimal (BCD)
notation rather than hexadecimal. Set the carry flag when you are performing subtrac-
tion. Set the interrupt disable bit when you want to prevent interrupts from occurring.
An example of a split screen, smooth scrolling raster interrupt routine is given at the end
of Chapter 8.

The clear instructions operate in the reverse of the set instructions. To make sure
that a carry does not occur during an addition operation, clear the carry flag before

MACHINE LANGUAGE ON THE COMMODORE 128

adding two numbers in the accumulator. To perform mathematical operations in hexa
decimal or binary numbers, clear the decimal mode flag so that your calculations are not
mistakenly performed in binary coded decimal. Whenever the result of a signed mathe-
matical operation overflows into the sign bit an overflow error occurs. To correct this,
clear the overflow flag with the CLV op-code.

When a program requires interrupts, firg set the interrupt disable bit (SEI) to
prevent interrupts from occurring. At the end of the interrupt initialization routine, issue
the CLI (Clear Interrupt Disable bit) instruction to enable (allow) interrupts to occur.

JUMP AND RETURN INSTRUCTIONS
JUMP INSTRUCTIONS

The 8502 processor makes use of two jump instructions:

JMP—Jump to new location
JSR—Jump to new location Saving the Return address

These instructions both redirect control of the microprocessor to a location other than
the one immediately following it in memory. The firg instruction, IMP, is a one-way trip
to the location specified in the operand field, or the contents of it (indirect). For example:

JMP $1800

jumps to location $1800 and executes the instruction contained in that location. This is a
direct jump.
You can aso jump indirectly. For example:

JMP ($1800)

jumps to the address specified in the contents of location $1800. For instance, location
$1800 contains the value $FE and location $1801 contains the value $CO. Therefore, the
above instruction jumps to location $COFE, and not location $1800. Jumping indirectly
is always denoted by parentheses around the address in the operand field, and it means
to jump to the location specified by the CONTENTS OF the address in the operand field.

The JSR instruction calls subroutines and saves the return address to the stack, so
when an RTS instruction is encountered at the end of the subroutine, the microprocessor
knows where to resume processing in the main (caling) program. Program control
resumes with the instruction in memory immediately following the JSR instruction. In
short, JR is a round trip, while JMP is one way. For example:

01804 20 58 18 JSR $1858
01807 A2 OC LDX #$0C

jumps to the subroutine starting at location $1858. The return address is saved on the
stack, so when the RTS instruction is encountered in this subroutine:

159

01858 B8E 00 D6 STX $D600
0185B 2C 00 D6 BI T $D600
0185E 10 FB BPL $185B
01860 8D 01 D6 STA $D601
01863 60 RTS

the processor resumes with the main program instruction (LDX #3$0C) in location $1807.

RETURN INSTRUCTIONS
The 8502 instruction set has two return instructions:

RTI—Return from Interrupt
RTS—Return from Subroutine

The firgt instruction returns from your interrupt service routine after the interrupt
disable bit is cleared (CLI) and the interrupt occurs. The RTI is the last instruction in the
interrupt service routine. The interrupt service routine is the series of instructions which
are performed on the occurrence of an interrupt. Refer to Chapter 8, Raster Interrupt
Split Screen Program with Horizontal Scrolling for a working example of an interrupt
Sservice routine.

The RTS ingtruction is the last instruction in a machine language subroutine called
from BASIC or by the machine language JSR instruction. See the Jump instructions
above for an example.

STACK INSTRUCTIONS

Four stack instructions are included in the 8502 instruction set to manipulate the values
on the stack. These instructions are as follows:

PHA—Push accumulator on the stack
PHP—Push processor status on the stack
PLA—Pull accumulator from the stack
PL P—Pull processor status from the stack

The term push means to place a value on the stack, while pull means to remove
a vaue from the stack. The only values pushed or pulled on to or off the stack are the
contents of the status register or the accumulator. The manipulation of the stack values
is important to the programmer when processing interrupts. The Raster Interrupt Split
Screen Program with Horizontal Scrolling section in Chapter 8 illustrates the manipula
tion of the stack values prior to returning from the interrupt.

THE NOP INSTRUCTION

The NOP ingtruction stands for no operation. It is often used to add space between
program segments for readability. This instruction is not executable.

MACHINE LANGUAGE ON THE COMMODORE 128

8502 INSTRUCTION AND
ADDRESSING TABLE

The next 16 pages contain the 8502 Instruction and Addressing Table. These are the

conventions used in the table:

Bow~Noo s wNg

OP-CODE

Brief definition
Operation notation
Status flags

Flags affected
Addressing Modes
Assembly language form
OP-CODE (in hex)
Number of bytes

Number of ingtruction cycles

The following notation applies to this summary:

N TZ XP

>+

P <

&

Accumulator
Index Registers
Memory

Processor Status Register

Stack Pointer
Change

No Change

Add

Logicd AND
Subtract

Logica Exclusive Or
Transfer from Stack
Transfer to Stack
Transfer to
Transfer from
Logica OR

PC
PCH
PCL
OPER

Program Counter
Program Counter High
Program Counter Low
OPERAND

IMMEDIATE ADDRESSING MODE

161

ADC Add memory to accumulator with carry

Operation: A + M + C->A, C N EC I
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate ADC # Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4*
Absolute, Y ADC Oper, Y 79 3 4*
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 71 2 5*

Add | if page boundary is crossed.

AND "AND" memory with accumulator AND

Logica AND to the accumulator

Operation: A AM —* A N E C I D V
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4*
Absolute, Y AND Oper, Y 39 3 4*
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 163

ASL ASL Shift Left One Bit (Memory or Accumulator) ASL
Operation: C |716]5]413|2]1]0]<-0 N z C I DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Accumulator ASL A QA 1 2
Zero Page ASL Oper 06 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper OE 3 6
Absolute, X ASL Oper, X IE 3 7
BCC BCC Branch on Carry Clear BCC
Operation: Branchon C = 0 Nz C1I DV
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BCC Oper 90 2*

Add 1 if branch occurs to same page.
Add 2 if branch occurs to different page.

BCS BCS Branch on carry set BCS
Operation: Branch gnc = 1 N zZ C 1| DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Relative BCS Oper BO 2 2*

Add 1 if branch occurs to same page.
Add 2 if branch occurs to next page.

BEQ

Operation: Branch on zZ =1

ADDRESSING

MODE

Relative

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

BIT

Operation: AAM ,M7-> N, Mg -* V

Bit 6 and 7 are transferred to the status register.

If the result of AAM is zero then Z = 1, otherwise

Z =0
ADDRESSING
MODE
Zero Page
Absolute
BMI

Operation: Branchon N = 1

ADDRESSING
MODE

Relative

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BNE

BEQ Branch on result zero BEQ
N z C | D V
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
BEQ Oper FO 2 2*
BIT Test bits in memory with accumulator BIT
N Z C | DV
Mzyv - - - Ms
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
BIT Oper 24 2 3
BIT Oper 2C 3 4
BMI Branch on result minus BMI
N zZ C I DV
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
BMI Oper 30 2 2*
BNE Branch on result not zero BNE

Operation: Branch on Z = 0

ADDRESSING
MODE

Relative

ASSEMBLY
LANGUAGE FORM

BNE Oper

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

OP NO.
CODE BYTES

DO 2

N ZzZ C 1l DV

NO.
CYCLES

2*

MACHINE LANGUAGE ON THE COMMODORE 128

BPL BPL Branch on result plus

Operation: Branchon N = 0

ADDRESSING ASSEMBLY oP NO.
MODE LANGUAGE FORM CODE BYTES
Relative BPL Oper 10 2
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BRK BRK Force Break
Operation: Forced Interrupt PC + 2 | P i
ADDRESSING ASSEMBLY oP NO.
MODE LANGUAGE FORM CODE BYTES
Implied BRK 00 1
1. A BRK command cannot be masked by setting |.
BVC BVC Branch on overflow clear
Operation: BranchonV = 0
ADDRESSING ASSEMBLY oP NO.
MODE LANGUAGE FORM CODE BYTES
Relative BVC Oper 50 2
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
BVS BVS Branch on overflow set
Operation: BranchonV = 1
ADDRESSING ASSEMBLY oP NO.
MODE LANGUAGE FORM CODE BYTES
Relative BVS Oper 70 2

* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.

N z C 1 DV

NO.
CYCLES

2*

N zZ C 1 DV

NO.

CYCLES

7

N Z C 1 DV

NO
CYCLES

2*

N z C 1| DV

NO.
CYCLES

2*

BPL

BRK

BvVC

BVS

165

CLC CLC Clear carry flag
Operation: 0 N Z C
— — 0

ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLC 18 1 2

CLD CLD Clear decimal mode

Operation: 0 D N zZ C
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLD D8

CLI CLI Clear interrupt disable bit

Operation: 0—» | N zZ C
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied CLI 58 1 2

CLV CLV Clear overflow flag

Operation: 0—* V N Z C
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES

Implied

CLV

B8

1

2

o<

CLC

CLD

CLI

CLV

MACHINE LANGUAGE ON THE COMMODORE 128 167

CMP CMP Compare memory and accumulator

Operation: A - M N Z C |
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate CMP #Oper C9 2 2
Zero Page CMP Oper C5 2 3
ZeroPage, X CMP Oper, X D5 2 4
Absolute CMP Oper cb 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Ope, Y D9 3 4*
(Indirect, X) CMP (Oper, X) Cl 2 6
(Indirect), Y CMP (Oper), Y DI 2 5

Add 1 if page boundary is crossed.

CPX
Operation: X - M

ADDRESSING
MODE

Immediate
Zero Page
Absolute

CPY
Operation: Y - M

ADDRESSING
MODE

Immediate
Zero Page
Absolute

CPX Compare Memory and Index X
N z CI| DV

ASSEMBLY OP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
CPX #Oper EO 2 2

CPX Oper E4 2 3

CPX Oper EC 3 4

CPY Compare memory and index Y CPY

N zZ C 1 DV

ASSEMBLY OP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
CPY #Oper aQ 2

CPY Oper &4 2

CPY Oper ccC 3

DEC

Operation: M -1 M

ADDRESSING
MODE

Zero Page
Zero Page, X
Absolute
Absolute, X

DEC Decrement memory by one

N Z C
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
DEC Oper C6 2 5
DEC Oper, X D6 2 6
DEC Oper CE 3 6
DEC Oper, X DE 3 7

DEX
Operation: X - 1 —» X

ADDRESSING
MODE

Implied

DEX Decrement index X by one

N z C
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES

DEX CA

DEY DEY Decrement index Y by one

Operation: Y - 1 N Z
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied DEY 83

EOR EOR "Exclusive—Or" memory with accumulator

Operation : A-> M™A N Z C
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4*
Absolute, Y EOR Oper, Y 59 3 4*
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect), Y EOR (Oper), Y 51 2 5*

* Add 1 if page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 169

INC INC Increment memory by one INC
Operation: M + 1—> M N zZ C 1| DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INX INX Increment Index X by one INX
Operation: X N z C 1 DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied INX E8
INY INY Increment Index Y by one INY
Operation: Y + 1-»Y N z C 1 DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied INY C8
JMP JMP Jump to new location JMP
Operation: (PC + 1) ~~> PCL Nz Cc I DV

(PC + 2~APCH

ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Absolute JMP Oper 4C 3

Indirect JMP (Oper) 6C 3 5

JSR JSR jump to new location saving return address JSR

Operation: PC + 2|, (PC + 1) -> PCL N Z C I DV
(PC + 2) = PCH

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Absolute JSR Oper 20
LDA LDA Load accumulator with memory LDA
Operation: M N Z C I D V

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Immediate LDA #Oper A9 2 2

Zero Page LDA Oper A5 2 3

Zero Page, X LDA Oper, X B5 2 4

Absolute LDA Oper AD 3 4

Absolute, X LDA Oper, X BD 3 4*

Absolute, Y LDA Oper, Y B9 3 4%

(Indirect, X) LDA (Oper, X) Al 2 6

(Indirect), Y LDA (Oper), Y BI 2 5*

Add 1 if page boundary is crossed.

LDX LDX Load index X with memory LDX
Operation: M N Z C | D V

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Immediate LDX #Oper A2 2 2

Zero Page LDX Oper A6 2 3

Zero Page, Y LDX Oper, Y B6 2 4

Absolute LDX Oper AE 3 4

Absolute, Y LDX Oper, Y BE 3 4*

Add 1 when page boundary is crossed.

MACHINE LANGUAGE ON THE COMMODORE 128 171

LDY LDY Load index Y with memory LDY
Operation: M N z C 1| DV

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Immediate LDY #Oper AO 2 2

Zero Page LDY Oper A4 2 3

Zero Page, X LDY Oper, X B4 2 4

Absolute LDY Oper AC 3 4

Absolute, X LDY Oper, X BC 3 4*

Add 1 when page boundary is crossed.

LSR LSR Shift right one bit (memory or accumulator) LSR
Operation: 0 7|61514|3]2|ITal -> C N zZ C 1l DV
0

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Accumulator LSR A 4A 1 2

Zero Page LSR Oper 46 2 5

Zero Page, X LSR Oper, X 56 2 6

Absolute LSR Oper 4E 3 6

Absolute, X LSR Oper, X 5E 3 7
NOP NOP No operation NOP
Operation: No Operation (2 cycles) N Zz C 1 DV

ADDRESSING ASSEMBLY oP NO. NO.

MODE LANGUAGE FORM CODE BYTES CYCLES

Implied NOP EA 1 2

ORA
Operation: AV M

ADDRESSING
MODE

Immediate
Zero Page
Zero Page, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

ORA "OR" memory with accumulator

A N zZ C
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
ORA #Oper 09 2 2
ORA Oper 05 2 3
ORA Oper, X 15 2 4
ORA Oper oD 3 4
ORA Oper, X ID 3 4*
ORA Oper, Y 19 3 4*
ORA (Oper, X) 01 2 6
ORA (Oper), Y 11 2 5

* Add 1 on page crossing

PHA PHA Push accumulator on stack

Operation : A 1 N Z C
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied PHA 48

PHP PHP Push processor status on stack

Operation: PJ, N Zz C
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied PHP 08 1 3

PLA PLA Pull accumulator from stack

Operation: A "'f N z C
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES

Implied

PLA 68

ORA

PHA

PHP

PLA

MACHINE LANGUAGE ON THE COMMODORE 128 173

PLP PLP Pull processor status from stack PLP
Operation: Pf Nz C 1| DV
From Stack
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied PLP 28 1 4
ROL ROL Rotate one bit left (memory or accumulator) ROL
M or A
Operation: A716|5/413]2]1]|Q Nz C1l DV
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
ZeroPage, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7
ROR ROR Rotate one bit right (memory or accumulator) ROR
Operation: [C_ [7[6/543 2[1o] o0 Nz Cl DV
ADDRESSING ASSEMBLY OoP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
ZeroPage, X ROR Oper y 76 2 6
Absolute ROR Oper’ 6E 3 6
3 7

Absolute, X ROR Oper X 7E

RTI RTI Return from interrupt RTI

Operation: P f PC t Z C 1 D
From Stack
ADDRESSING ASSEMBLY oP NO. NO,
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied RTI 40 1 6
RTS RTS Return from subroutine RTS
Operation: PCf, PC + 1 -» PC N Z C I DV
ADDRESSING ASSEMBLY opP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied RTS 60
SBC SBC Subtract memory from accumulator with borrow SBC
Operation: A-M -C A N Z C I DV

Note: C = Borrow

ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Immediate SBC #Oper E9 2 2

Zero Page SBC Oper E5 2 3

Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4*
Absolute, Y SBC Oper, Y F9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5*

Add 1 when page boundary is crossed.

SEC
Operation: 1—>C

ADDRESSING
MODE

Implied

SED
Operation: 1—»D

ADDRESSING
MODE

Implied

SH

Operation: 171

ADDRESSING
MODE

Implied

STA
Operation:A M

ADDRESSING
MODE

Zero Page
Zero I;nge, X
Absolute
Absolute, X
Absolute, Y
(Indirect, X)
(Indirect), Y

MACHINE LANGUAGE ON THE COMMODORE 128

SEC Set carry flag
N zZz C

ASSEMBLY OP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES

SEC 38

SED Set decimal mode

N X C
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
SED F8 1

SEI Set interrupt disable status

N z C
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
SEI 78

STA Store accumulator in memory

N Z C
ASSEMBLY OP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
STA Oper 8 2 3
STA Oper, X % 2 4
STA Oper 8D 3 4
STA Oper, X 9D 3 5
STA Oper, Y 9 3 5
STA (Oper, X) 81 2 6
STA (Oper),Y 9. 2 6

D

\Y

SEC

SED

SEI

STA

STX STX Store index X in memory STX

Operation: X M N Z C 1 DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y % 2 4
Absolute STX Oper 8E 3 4
STY STY Store index Y in memory STY
Operation: Y — M N zZz C I DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X %} 2 4
Absolute STY Oper 8C 3 4
TAX TAX Transfer accumulator to index X TAX
Operation: A—* X N zZ C I DV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES
Implied TAX AA 1
TAY TAY Transfer accumulator to index Y TAY
Operation: A—* Y N z C 1 DV
vV
ADDRESSING ASSEMBLY oP NO. NO.
MODE LANGUAGE FORM CODE BYTES CYCLES

Implied TAY A8 1

TSX
Operation: S—» X

ADDRESSING
MODE

Implied

TXA
Operation: X * A

ADDRESSING
MODE

Implied

TXS
Operation: X ' S

ADDRESSING
MODE

Implied

TYA
Operation: Y —» A

ADDRESSING
MODE

Implied

MACHINE LANGUAGE ON THE COMMODORE 128

TSX Transfer stack pointer to index X TSX
N Z C I DV
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
TSX BA 1
TXA Transfer index X to accumulator TXA
N Z C I DV
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
TXA 8A 1
TXS Transfer index X to stack pointer TXS
N Z C I DV
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
TXS 9A 1
TYA Transfer index Y to accumulator TYA
N Z C I DV
ASSEMBLY oP NO. NO.
LANGUAGE FORM CODE BYTES CYCLES
TYA 98 1 2

177

INSTRUCTION ADDRESSING MODES AND
RELATED EXECUTION TIMES (in clock cycles)

ACCUMULATOR
IMMEDIATE
ZERO PAGE
ZERO PAGE, X
ZERO PAGE, Y
ABSOLUTE
ABSOLUTE, X

ADC

AND

ASL

BCC

BCS

BEQ

BIT .. 3 . . 4

BMI

BNE

BPL.

BRK

BVC

BVS

cLC

CLD.

CLI

cLv. .

CMP . 2 3 4

CPX .2 3.
2 3
5

N N
w W
NGNS
N
*

o b
N
*

5 6

)
~

CPY
DEC
DEX.
DEY. . : : .
EOR .2 3 4 . 4 4
INC .. 56 .6 7
INX.

INY.

JMP . . : 3
JSR . : . 6
LDA . 2 3 4 4
LDX 2 3
LDY
LSR
NOP : : : : .
ORA .2 3 4 . 4 4
PHA.

PHP

ABSOLUTE, Y

oA
* %

.4*

.4*

4*.
4%

.4*

IMPLIED

NN NN

N

RELATIVE

(INDIRECT, X)

(o2)}

..2** .

.2* *
.2* *

.2* .

.2* *
.2* *

.2.* * .

.2* *

(NDIRECT),Y

(620N}

* %

ABSOLUTE INDIRECT

MACHINE LANGUAGE ON THE COMMODORE 128 179

ABSOLUTE INDIRECT

ACCUMULATOR
IMMEDIATE
ZERO PAGE, X
ZERO PAGE, Y
(INDIRECT, X3
(INDIRECT),Y

RELATIVE

ABSOLUTE, X
ABSOLUTE, Y

ZERO PAGE
ABSOLUTE
IMPLIED

PLA

PLP . .
ROL 2 .56 . v

ROR 2 .56 .67
RTI

RTS S
SBC . 23 4 . 4 4 4 . . 6 5*.
SEC
SED.
SEI
STA .03 .4

STX .. 3 .4 4
STY 3 4

TAX

TAY.

TSX

TXA

TXS

TYA

oo NG

NN N

[SENENENENENE

* Add one cycle if indexing across page boundary
** Add one cycle if branch is taken. Add one additiona if branching
operation crosses page boundary

A clock cycle is the speed a which the processor operates as determined by the
number of bytes transferred from one interna logic component to another. The 8502
operates at a default speed of 1 MHz, which is equivalent to 1,000,000 cycles per
second.

&

HOW TO ENTER
MACHINE LANGUAGE
PROGRAMS INTO THE
COMMODORE 128

Now that you know about addressing modes, types of instructions and opcodes, you
need to know how to actualy enter machine language instructions into the Commodore
128 memory. The C128 offers three methods of inputting instructions so that they may
be operated on by the microprocessor. You can enter machine language instructions by:

1. Using the built-in machine language monitor (available in C128 mode only).

2. POKEing the trandated decima opcode values into memory with a BASIC
program (C128 and C64 modes).

3. Using an additiona software program called an assembler.

All three methods have advantages and disadvantages. For instance, the built-in
machine language monitor is easy to use and alows you to program in machine
language without any additional aids such as an assembler. It makes merging BASIC
and machine language easy. In addition, you can save machine language programs as
binary files with the monitor SAVE command. Since you are aready working in an
object code, there is no need to compile from source code into an object code, as is
necessary with an assembler.

Though these are powerful features, the monitor does not alow the use of symbolic
operand names or commented code. The monitor produces executable (object) code;
hence, no source files are produced. The resulting coded program contains actua
(absolute) address references, whereas an assembler source code file adlows the use of
symbolic addresses and arguments as well as comments. When you display a machine
language program in the monitor, you do not have the luxury of comments or symbolic
address variables, so you redly have to know what you are looking for when reading
other people's code. On the other hand, an assembler source file must be compiled into
executable object code, then used often with an additional program caled a loader. This
requires three steps, whereas the monitor's machine language is ready to run as soon as
you finish writing the program.

The second method, POKEing trandated decima opcode data into memory with a
BASIC program, is an aternative usually implemented only when the first two options
are not available. This is the case if you have no assembler and are writing a machine
language routine in Commodore 64 mode, which does not make the built-in monitor
available to you. However, it is sometimes handy to POKE smal routines from
BASIC if the application program you are writing is more suited for BASIC and you
need the speed of machine language for only a small portion of the program (though for
the most part, this method is tedious, bulky and time-consuming). Use it only if you
have no aternative, since once it is POKED into memory, you cannot display a listing
of the machine language routine as in the monitor or the assembler.

This chapter explains how to enter machine language programs in the firg two
methods described above. The third method, using an assembler, requires an additiona
software package similar to the Commodore 64 Assembler Development System. For
specific details on how to enter machine language programs with the assembler, refer to
the manual that is packed with the assembler software package you buy.

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 183

ENTERING MACHINE LANGUAGE
INSTRUCTIONS IN THE MONITOR

Begin entering machine language instructions by entering the monitor from BASIC with
the following command:

MONITOR RETURN
The Commodore 128 responds with the following display:

MONITOR

PC SR ACXR YR SP
; FBOOO 00 00 00 00 F8

These values indicate the contents of the microprocessor registers upon entering
the monitor. The abbreviations and definitions of the register names are as follows:

PC—Program Counter Marks the address of the current machine language

instruction
SR—Status Register Flags that alert the microprocessor of certain conditions
AC—Accumulator Register for dl mathematical operations

XR—X Index Register Used for effective address modification

YR—Y Index Register Same as X register

SP—Stack Pointer Indicates the address of the first available memory
location on the stack

Now you can begin to enter machine language instructions. The ASSEMBLE
command within the monitor enters the instructions into the specified memory location.
To enter instructions, follow the format of this example:

A 01800 LDA #$00

Make sure to leave at least one space between each of the fields. Here's what each
part of the instruction means:

<Asemble> <Address in memary where opoode is sored> <Opcode> <Operand>

The A dands for ASSEMBLE an opcode. The second part (field) is the address
where the opcode in the ingtruction is placed in the Commodore 128 memory. Notice
the 5-digit hexadecimal number specifying the address. The leftmost digit (0-F) speci-
fies the configuration of the Commodore 128 memory layout. This is the same as the
BANK command in BASIC.

Once the entire machine language program is entered, reference the address that is
contained in the firg instruction you entered to start execution of the program. Execute
the program with the GO command in the monitor, or exit the monitor with the X
(EXIT) command and issue the SYS command from BASIC. If you SYS to the start of
the program, you must use the decima equivalent of the hexadecimal address, which

appears in the firg instruction you entered. You must have an RTS instruction at the end
of the routine if you want to return to BASIC. Often, the Kernal must be resident in the
current configuration in context in order to obtain results.

The opcode is the 8502 ingtruction that is carried out by the microprocessor when
your program is running. See the 8502 Instruction Set Table in Chapter 5 for alowable
instructions.

The operand is the address or value that is acted upon by the opcode in the
instruction. If the operand fidd is preceded by a pound sign (#), the opcode will act
upon a constant value. If no pound sign is specified, the microprocessor assumes the
opcode will act upon an address.

Remember to separate each fidd in the instruction with at least one space. If you
don't, the computer indicates that an error has occurred by displaying a question mark at
the end of the instruction.

Once a routine is displayed on the screen, the monitor allows shortcuts in entering
instructions. To display a listing of a machine language program, issue the DISASSEM-
BLE command as follows:

D 04000 04010 RETURN

The "D" sands for disassemble. The first number (04000) specifies the starting
memory location in which you want the contents displayed. The second number
specifies the end address in which to display.

Now for the shortcut. Since the address where the opcodes are stored is aready on
the screen, you can simply move the cursor to the opcode field, type over the exist-
ing opcode and operand on the screen, erase any unwanted characters and press
RETURN . The computer registers the instruction in memory by displaying the
hexadecimal values for the opcode and operand directly to the Ileft of the opcode
mnemonic you just entered. This is a faster and easier way of entering machine-
language routines, rather than typing the ASSEMBLE command and the address each
time you enter an instruction.

EXECUTING (RUNNING)
YOUR MACHINE-LANGUAGE PROGRAM

Once you have finished entering your machine language routine, you may execute it in
three different ways. Within the monitor, issue the GO or JUMP to Subroutine com-
mand as follows:

G F1800 (IMP)
JF1800 (JSR)

The G stands for GO, or go to the start address of the machine language program
in memory, and begin executing it at the specified address. The value following the
letter G refers to the dtart address of your routine. The J stands for Jump to Subrou-
tine, similar to the JSR mnemonic in machine language.

The third way to invoke a machine language routine is to exit the monitor by

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128

pressing the X key and RETURN . This places you back within the control of the
BASIC language. Next, issue the SYS command and reference the starting address in
decimal as follows:

BANK 15
SYS 6144

This SYS command is the same as the GO command (G F1800) example above.
The BANK 15 command and the leading F in the 5-digit hexadecimal number F1800
specify memory configuration 15. The Kernal, BASIC and other ROM code are
resident in this configuration. The only difference is that it executes the machine
language routine from BASIC, instead of within the monitor.

The machine language routine given below clears the text screen. Starting at
location 1024 ($0400), the value 32 ($20) is stored in each screen location. The
character string value 32 is the space character, which blanks out each character position
on the screen. When finished, an RTS instruction returns control to BASIC. Here's the
main BASIC program and the machine language screen-clear subroutine as it appears in
the machine language monitor.

10 FOR1=1TO25

20 PRINT"FILL THE SCREEN W TH CHARACTERS"
30 NEXT

40 PRI NT: PRI NT

50 PRI NT"NOW CALL THE MACHI NE LANGUAGE"
60 PRINT" ROUTINE TO CLEAR THE SCREEN'

70 SLEEP 5

80 SYS DEC("1800")

90 PRINT"THE SCREEN |S NOW CLEARED"

READY.

MONI TOR

PC SR AC XR YR SP
FBOOO 00 00 00 00 F8
01800 A2 00 LDX #%00
01802 A9 20 LDA #5$20
01804 9D 00 04 STA $0400, X
01807 9D 00 05 STA $0500, X
0180A 9D 00 06 STA $0600, X
0180D 9D E7 06 STA $06E7, X

01810 B8 | NX
01811 DO H BNE $1804
01813 60 RTS

In this sample program, the SYS command executes the subroutine to clear the
text screen. Once the text screen is cleared, control of the microprocessor is returned to
BASIC by the RTS instruction, and the READY prompt is displayed.

185

MACHINE LANGUAGE
MONITOR COMMANDS

The C128's built-in machine language monitor has several additional commands that
manipulate your machine language routines once they are entered into memory. Figure
6-1 is a summary of al the commands available to you in the machine language

MONITOR.

KEYWORD

ASSEMBLE

COMPARE

DISASSEMBLE

FILL
GO

HUNT

GOSsuB
LOAD

MEMORY
REGISTERS
SAVE
TRANSFER
VERIFY
EXIT
(period)

(greater than)
(semicolon)

FUNCTION

Assembles a line of 8502 code

Compares two sections of mem-
ory and reports differences
Disassembles a line or lines of 8502
code

Fills a range of memory with spec-
ified byte

Starts execution at the specified
address

Hunts through memory within a
specified range for all occurrences
of a set of bytes

Jumps to the subroutine
Loads a file from tape or disk

Displays the hexadecimal values
of memory locations

Displays the 8502 registers

Saves to tape or disk

Transfers code from one section
of memory to another

Compares memory with tape or
disk

Exits Commodore 128 MONITOR
Assembles a line of 8502 code
Modifies memory

Modifies 8502 register displays

FORMAT

<start address> <opcode>
[operand]

<start address> <end address>
<new start address>

[<start address> <end address>]

<start address> <end address >
<byte>
[address]

<start address> <end address>
<bytel> [<byte n> . .]
<start address> <end address>
<ascii string>

[address]
"<fllename>"[,<device #>
[,<load address>]]

[<start address>

[<end address>]]

"<filename>",<device #>,
<start address> <last address
+ 1>

<start address> <end address>
<new start address>
"<filename>"[,<device #>[,
<load address>]]

[address]

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128

KEYWORD FUNCTION FORMAT
(at sign) Displays disk status, sends disk @
command, displays directory
disk status ©[device #]
disk command @[device #],<command
string>]
disk catalog ©[device #],$[[<drive>:<file
spec>]]

NOTES <> endose required parameers
[] enclose optional parameters

Figure 6-1. Summary of Commodore 128 Monitor Commands

NOTE: 5-Digit Addresses

The Commodore 128 displays 5-digit hexadecima addresses within the
machine language monitor. Normally, a hexadecima number is only four
digits, representing the allowable address range. The extra left-most (high
order) digit gspecifies the BANK configuration (at the time the given
command is executed) according to the following memory configuration

table:

0—RAM 0 only
1—RAM 1 only
2—RAM 2 only
3—RAM 3 only
4—INT ROM, RAM 0,

5—INT ROM, RAM 1, 1/0

6—INT ROM, RAM 2,
7—INT ROM, RAM 3,

8—EXT ROM, RAM 0, /O

9—EXT ROM, RAM 1, 1/O

A—EXT ROM, RAM 2, I/O

B—EXT ROM, RAM 3, I/O

C—KERNAL + INT (l0). RAM 0, 1/0
D—KERNAL + EXT (l0), RAM 1, 1/O
E—KERNAL + BASIC, RAM 0, CHARROM
F—KERNAL + BASIC, RAM 0, 1/O

SUMMARY OF MONITOR

FIELD DESCRIPTORS

The following designators precede monitor data fidds (e.g., memory dumps). When
encountered as a command, these designators instruct the monitor to ater memory or

register contents using the given data.

<period> precedes lines of disassembled code.
> <right angle> precedes lines of a memory dump.
; <semicolon> precedes line of a register dump.

The following designators precede number fields (e.g., address) and specify the radix
(number base) of the value. Entered as commands, these designators instruct the monitor

simply to display the given value in each of the four radices.

187

<null> (default) precedes hexadecimal values.
$ <dollar> precedes hexadecima (base-16) vaues.
+ <plus> precedes decimal (base-10) values.
& <ampersand> precedes octal (base-8) values.
% <percent> precedes binary (base-2) values.

The following characters are used by the monitor as field delimiters or line terminators
(unless encountered within an ASCII string).

<space> deimiter—separates two fields.
<comma> delimiter—separates two fields.
: <colon> terminator—Ilogical end of line.
? <question> terminator—logical end of line.

MONITOR COMMAND DESCRIPTIONS

The following are descriptions of each of the C128 Machine Language Monitor commands.

COMMAND: A
PURPOSE: Enter a line of assembly code.
SYNTAX: A <address> <opcode mnemonic> <operand>
<address> A number indicating the location in memory to
place the opcode. (See 5-digit address note on

previous page.)

<opcode> A standard MOS technology assembly language
mnemonic, e.g., LDA, STX, ROR.
<operand> The operand, when required, can be any of the

legal addresses or constants.

A RETURN is usd to indicate the end of the assembly line. If there are
any erors on the line, a question mark is displayed to indicate an error, and the
cursor moves to the next line. The screen editor can be used to correct the error(s) on
that line.

EXAMPLE:

A 01200 LDX #$00
A 01202

NOTE: A period (.) is equa to the ASSEMBLE command.

EXAMPLE:
.02000 LDA #3$23

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128

COMMAND:
PURPOSE:
SYNTAX:

COMMAND:
PURPOSE:

SYNTAX:

Compare two areas of memory.
C <address 1> <address 2> <address 3>
<address 1> A number indicating the start address of the area
of memory to compare against.
<address 2> A number indicating the end address of the area
of memory to compare against.
< address 3> A number indicating the start address of the other
area of memory to compare with. Addresses that
do not agree are printed on the screen.

D

Disassemble machine code into assembly language mnemonics and
operands.

D [<address>] [<address 2>]

<address> A number setting the address to dart the dis
assembly.

<address 2> An optiona ending address of code to be dis-
assembled.

The format of the disassembly differs dightly from the input format of an assembly. The
difference is that the first character of a disassembly is a period rather than an A (for
readability), and the hexadecimal value of the op-code is listed as well.

A disassembly listing can be modified using the screen editor. Make any changes
to the mnemonic or operand on the screen, then hit the carriage return. This enters the
line and cdls the assembler for further modifications.

A disassembly can be paged. Typing aD RETURN causes the next page
of disassembly to be displayed.

EXAMPLE:
D3000 3003
.03000 A9 00 LDA #$00
.03002 FF 7

.03003 DO 2B BNE $3030

COMMAND:
PURPOSE:
SYNTAX:

F

Fill a range of locations with a specified byte.

F <address 1> <address 2> <byte>
<address 1> The firg location to fill with the <byte>.
<address 2> The last location to fill with the <byte>.
<byte value> A 1- or 2-digit hexadecima number to be written.

This command is useful for initiaizing data structures or any other RAM area.

189

EXAMPLE:

F0400 0518 EA
Fill memory locations from $0400 to $0518 with $EA (a NOP instruction).

COMMAND: G
PURPOSE: Begin execution of a program at a specified address.
SYNTAX: G [<address>]
<address> An address where execution is to start. When
address is left out, execution begins at the current
PC. (The current PC can be viewed using the R
command.)

The GO command restores al registers (displayable by using the R command) and
begins execution at the specified starting address. Caution is recommended in using the
GO command. To return to the Commodore 128 MONITOR &fter executing a machine
language program, use the BRK ingtruction at the end of the program.

EXAMPLE:

G 140C

Execution begins at location $140C in configuration (BANK)O. Certain applica-
tions may require that Kerna and/or I/O be present when execution begins.
Precede the four-digit hexadecimal number with the hex configuration number
which contains those appropriate portions of memory.)

COMMAND: H
PURPOSE: Hunt through memory within a specified range for al occurrences of a
st of bytes.
SYNTAX: H <address 1> <address 2> <data>
<address 1> Beginning address of hunt procedure.
<address 2> Ending address of hunt procedure.
<data> Data st to search for data may be hexadecimal
for an ASCII string.

EXAMPLE:

H A000 A101 A9

Search for data $A9 from A000 to A101.
H2000 9800 'CASH'

Search for the apha string "CASH".

COMMAND: J
PURPOSE: Jump to a machine language subroutine.
SYNTAX: J <address>

The JUMP to SUBROUTINE command directs program control to the machine language

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128 191

subroutine located at the specified address. This command saves the return address as
does the 8502 instruction JSR (Jump to Subroutine). In other words, the JUMP
command is a two-way instruction, where the application gains control of the computer.
Only &fter the subroutine encounters an RTS ingtruction does the machine language
monitor regain control.

EXAMPLE:

J2000
Jump to the subroutine starting at $2000 in configuration O.

COMMAND: L
PURPOSE: Load a file from cassette or disk.
SYNTAX: L <"file name">[,<device>[,alt load addresd]]
<"file name"> Any legd Commodore 128 file name.
<device> A number indicating the device to load from. 1 is

cassette. 8 isdisk (or 9, A, etc.).
[alt load address] Option to load a file to a specified address.

The LOAD command causes a file to be loaded into memory. The starting address is
contained in the first two bytes of the disk file (a program file). In other words, the
LOAD command aways loads a file into the same place it was saved from. This is very
important in machine language work, since few programs are completely relocatable.
The file is loaded into memory until the end of file (EOF) is found.

EXAMPLE:
L "PROGRAM",8 Loads the file nane PROGRAM from the disk.

COMMAND: M
PURPOSE: To display memory as a hexadecima and ASCIlI dump within the
specified address range.
SYNTAX: M [<address 1>] [<address 2>]
<address 1> Firgt address of memory dump. Optional. If omit-
ted, one page is displayed. The firg digit is the
bank number to be displayed, the next four digits
are the firgt address to be displayed.
<address 2> Last address of memory dump. Optional. If omit-
ted, one page is displayed. The firgt digit is the
bank number to be displayed; the next four digits
are the ending address to be displayed.

Memory is displayed in the following format:
>1A048 41 42 43 44 45 46 47 48:ABCDEFGH

Memory contents may be edited using the screen editor. Move the cursor to the data to be
modified, type the desired correction and hit RETURN . If a syntax error
or an attempt to modify ROM has occurred, an error flag (?) is displayed. An
ASCII dump of the data is displayed in reverse (to contrast with other data displayed on
the screen) to the right of the hex data. When a character is not printable, it is displayed
as a reverse period. As with the disassembly command, paging down is accom-
plished by typing M and RETURN

EXAMPLE:

M 21C00
>21C00 41 4A 4B 4C 4D 4E 4F 50 :AJKLMNOP

NOTE: The above display is produced by the 40-column editor.

COMMAND: R

PURPOSE: Show important 8502 registers. The status register, the program counter,
the accumulator, the X and Y index registers and the stack pointer are
displayed. The data in these registers is copied into the microprocessor
registers when a "G" or "J" command is issued.

SYNTAX: R

EXAMPLE:

R
PC SRACXRYRSP
: 01002 01 02 03 04 F6

NOTE: ; (semicolon) can be used to modify register displays in the same
fashion as > can be used to modify memory registers.

COMMAND: S
PURPOSE: Save the contents of memory onto tape or disk.
SYNTAX: S <"filename">,<device>,<address 1>, <address 2>

<"filename"> Any legd Commodore 128 filename. To save
the data, the file name must be enclosed in dou-
ble quotes. Single quotes cannot be used.

<device> A number indicating on which device the file is
to be placed. Cassette is 01; disk is 08, 09, etc.

<address 1> Starting address of memory to be saved.

<address 2> Ending address of memory to be saved + 1. All
data up to, but not including, the byte of data at
this address is saved.

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128

The file created by this command is a program file. The first two bytes contain the
starting address <address 1> of the data. The file may be recaled, using the L
command.

EXAMPLE:

S "GAME",8,0400,00)0
Saves memory from $0400 to $OBH- onto disk.

COMMAND: T
PURPOSE: Transfer segments of memory from one memory area to another.
SYNTAX: T <address 1> <address 2> <address 3>
<address 1> Starting address of data to be moved.
<address 2> Ending address of data to be moved.
<address 3> Starting address of new location where data will
be moved.

Data can be moved from low memory to high memory and vice versa. Additional
memory segments of any length can be moved forward or backward. An automatic
"compare" is performed as each byte is transferred, and any differences are listed by
address.

EXAMPLE:

T1400 1600 1401
Shifts data from $1400 up to and including $1600 one byte higher in memory.

COMMAND: V
PURPOSE: Verify a file on cassette or disk with the memory contents.
SYNTAX: <"filename">[,<device>][,alt start address]|
<"filename"> Any legd Commodore 128 file name.
<device> A number indicating which device the file is on.

Cassette is 01; disk is 08, 09, etc.
[at start address] Option to start vertification at this address.

The VERIFY command compares a file to memory contents. If an error is found, the
words VERIFY ERROR are displayed; if the file is successfully verified, the cursor
reappears without any message.

EXAMPLE:
V"WORKLOAD" ,08

193

COMMAND: X
PURPOSE: Exit to BASIC.
SYNTAX: X

COMMAND: > (greater than)
PURPOSE: Can be used to assign values for one to eight memory locations at a time
(in 40-column mode; up to 16 in 80-column mode).

SYNTAX: > <address> <data byte 1> <data byte2 . . . 8>
<address> First memory address to set.
<data byte 1> Data to be put at address.

<data byte 2 ... 8>Data to be placed in the successive memory
locations following the first address (optional)
with a space preceding each data byte.

COMMAND: @ (at sign)
PURPOSE: Can be used to send commands to the disk drive.
SYNTAX: @ [<device number>], <disk cmd string>
<device number> Device unit number (optiona).
<diskemd string>String command to disk.

NOTE: (ci aone gives the status of the disk drive.

EXAMPLES:
checks disk status
00, OK, 00, 00
(21 initializes drive 8

@.$ displays disk directory on unit 8.
(a,$0:F* display dl files on Drive O, unit 8 starting with the letter F.

As a further aid to programmers, the Kernd error message fecility has been automati-
caly enabled, while in the Monitor. This means the Kernal will display 'l/O ERROR#'
and the error code, should there be any faled I/O attempt from the MONITOR. The
message facility is turned off when exiting the MONITOR.

MANIPULATING TEXT WITHIN
THE MACHINE LANGUAGE MONITOR

Certain machine language application programs require the manipulation of strings of
characters. If you are using an assembler package, it contains provisions for handling
strings of characters. However, within the monitor, strings of characters must be placed
in memory, either (1) through modifying a memory dump using the screen editor, or (2)

HOW TO ENTER MACHINE LANGUAGE PROGRAMS INTO THE COMMODORE 128

by placing the ASCII values of the characters in memory locations within a program.
To modify a memory dump using the screen editor, issue the MEMORY com-
mand with the address range in which you want to place the character string informa-
tion. For example, suppose you want to place the word "TEXT" in memory starting at
location $2000. First, enter the machine language monitor with the MONITOR com-
mand. Next, issue the memory command containing the address $2000 as follows:

M 2000
The 128 responds with this display:
02000 FF 00 FF 00 FF 00 FF 00: pi.PI.PI..PI.

The entire screen is filled with the contents of the memory (dump) locations $2000
through $205F. For illustrative purposes, only one line of the memory dump is shown.
This line pertains to the address range $2000 through $2007. At the right of the screen is
an area that displays the corresponding ASCII character for each value within a memory
location in that line of the memory dump. The left character in the display area
corresponds to location $2000, the second character position to the right pertains to
address $2001, and so on. To place the word "TEXT" in memory starting at location
$2000, move the cursor up to the firg line of the memory dump, move the cursor right
to the memory address that pertains to address $2000, and place the ASCII character
string code for the letter T in this position. To do this, type over the characters that are
there and replace them with the hexadecimal equivalent of decimal 84 ($54) and press
RETURN . Notice that the letter T is now displayed at the right of the screen.
Refer to Appendix E, ASCII and CHR$ Codes, for a ligt of the Commodore ASCII
codes for each character available in the Commodore 128.

Now do the same procedure for the letters E, X and T. When you are through, the
word "TEXT" is displayed in the display area. The firg line of the memory dump now
looks like this:

02000 54 45 58 54 FF 00 FF 00: TEXT IT. IT.

Now the character string you wish to manipulate is in memory, starting at address
$2000. Your machine language routine can now act upon the characters of the word
"TEXT" in order to display them on the screen. An efficient way of manipulating
entire words is to use the start address in memory where the text begins, in this case
$2000. Determine the length of the string, and use an index register as an offset to the
end of the word. See the section Raster Interrupt Split Screen Program with Horizontal
Scrolling in Chapter 8, for a working example of manipulating text. This chapter has
described the use of machine language. For additional information on machine language
topics, see Chapter 5, 7, 8, 9, 10, 11, and 13.

195

v

MIXING
MACHINE
LANGUAGE
AND BASIC

WHY MIX BASIC AND
MACHINE LANGUAGE?

Certain application programs are better suited for a high-level language such as BASIC
rather than low-level machine language. In other cases, however, certain portions of a
program, such as displaying graphics, may require the speed of machine language while
the rest of the program lends itsef to the use of BASIC. This is the main reason for
mixing BASIC programs with machine language subroutines. Another reason may be
the lack of an aternative in programming machine language. For example, in C64
mode, a machine language monitor is not ordinarily available to the user. In addition,
you may not have an assembler package, so the only alternative is to enter machine
language programs through the BASIC language. This method has disadvantages; it can
be tedious and time-consuming, and once the routine is entered into memory, you have
no way of listing it to the screen for editing. This method is recommended only if no
aternative is available.

ENTERING MACHINE LANGUAGE
SUBROUTINES THROUGH BASIC

In Chapter 6, you saw an example of how to use the SYS command to go from BASIC
to a machine language routine that cleared the text screen. The SYS command invoked
the subroutine, cleared the screen, and returned to BASIC with the RTS instruction.
This example illustrated the SYS command within a program. You can aso SYS to a
machine language subroutine outside a BASIC program, as follows:

SYS 8192

This example assumes you entered the machine language subroutine through the
monitor (and it is still in memory). What if you don't have the monitor available to you,
as in C64 mode, and you want to mix a machine language subroutine with a BASIC
program?

The answer to this is to POKE decimal data that represents the hexadecimal
opcodes and operands into memory. To activate the subroutine, you SYS to it as you did
before. This method of entering machine language programs requires these steps:

1. Write your machine language program on a piece of paper.

2. Trandate the hexadecimal op-code values into decimal. Some instructions
require 3 bytes of memory, while others only use 1 or 2 bytes of memory. For
a ligt of hexadecima opcodes for the 8502 machine language instruction set,
see the 8502 Instruction and Addressing Table, in Chapter 5.

3. Enter the decimal equivalents of the opcodes into DATA statements in such a
way that a 2-byte instruction, for example, is entered as follows:

MIXING MACHINE LANGUAGE AND BASIC

1000 DATA 162,0: REM = LDX #$00 = $A2, $00

The hexadecimal number $A2 represents the 8502 instruction for LDX, which
equals 162 in decimal. The O (zero) represents the operand 0, which is
loaded into the X register in the ingtruction. In hex, 0 is the same as in
decimal, so the second byte of the instruction is the operand value 0. The
hexadecimal opcodes are trandated into strings of binary digits (bits), so the
microprocessor can interpret and operate them. This is the true machine
language of the computer at its lowest level.

Once you have trandated al the opcodes and operands into decimal, you
must place them in memory. Accomplish this by READing a DATA vaue in
BASIC and POKEing it into memory in an appropriate address range. For
example, to enter the LDX #$00 instruction into memory, in C128 mode,
perform the following routine:

10 ALPHA = 8192

201 =0

30 DO

40 READ A

45 IF A =-999 THEN EXIT

50 POKE ALPHA +1,A

601 =1+1

70 LOOP

80 PRINT "ALL DATA IS NOW IN MEMORY™

1000 DATA 162,0,-999
For C64 mode use this routine:

10 ALPHA = 8192

20FOR1=0TO1

40 READ A

50 POKE ALPHA +1,A

60 NEXT

80 PRINT "ALL DATA IS NOW IN MEMORY™

1000 DATA 162,0

The firgd example, in C128 mode, READs adl DATA and POKEs it into
memory, starting at location 8192 ($2000), until a data item is equal to -999.
When the data item equals -999, EXIT the loop and print a message saying
al the data is read into memory at the specified locations. This DO . . .
LOOP dlows you to enter as many data items as you please without the need
to know how many data items are in the data list, since it checks for the
terminator value -999. This programming approach makes it easy to modify
the number of data entries without having to change any of the code. This
program assumes that the bit map screen is not being used ($2000-$3FFF).

The second example, in C64 mode, uses a FOR. . . NEXT loop to
enter the data. This requires you to know how many data items are in the data
list. You can add an IF ... THEN statement to check for a terminator value
like -999, as in the first example. However, this method illustrates a different
way of accomplishing the same thing.

5. The find step in entering machine language subroutines through BASIC is
executing the subroutine with the SYS command. Add line 90 to your BASIC
routines above as follows:

90 SYS 8192

This command executes the machine language routine that you POKEd into
memory starting at location 8192.

Although the DATA satement in the example in Step 4 does not show it, al
machine language subroutines must end with an RTS instruction so you can return to
BASIC. The decimal code for an RTS machine language instruction is 96. Your last
decima data item in the find data statement in your program must be 96, unless you use
a terminator like -999; then -999 will be your last decima data item.

Figure 7-1 shows a step-by-step trandation from the machine language screen-
clear routine as it appears in the monitor and a complete program that mixes the clear
screen routine with the BASIC program that POKEs in the data and executes the
machine language subroutine. It only operates in the 40-column (VIC) screen.

MIXING MACHINE LANGUAGE AND BASIC 201

Symbolic

Address Hex Opcode Instruction Decima Equivalent

1stByte 2nd Byte 3rd Byte

(Opcode) (Operand)
. 02000 A2 00 LDX #$00 162 0
. 02002 A9 20 LDA #$20 = 169 32
. 02004 9D OO0 04 STA $0400, X 157 0 4
. 02007 9D 00 O5 STA $0500, X 157 0 5
. 0200A 9D 00 06 STA $0600, X 157 0 6
. 0200D 9D E7 06 STA $06E7, X 157 231 6
. 02010 Es8 I NX = 232
. 02011 DO FI BNE $2004 - 208 241
. 02013 60 RTS — %

Figure 7-1. Step-by-step Trandation into Decimal

To find the hexadecimal opcodes, refer to the 8502 Instruction and Address-
ing Table in Chapter 5. Notice in Figure 7-1 that the hexadecima opcodes are displayed
within the monitor, directly to the left of the symbolic instruction. These hexadecimal
numbers are the codes that you trandate into decimal data items in a BASIC program.

Notice that the second byte in the BNE instruction is the value 241. In a branch
instruction, the operand is not an absolute address, but is instead an offset to the
instruction to which it will branch. In this case, the BNE instruction branches backward
to location $2004; therefore, it branches backward 15 locations in memory to the first
store (STA) instruction.

You're probably wondering how the code 241 tells the computer to branch
backward by 15. The number 241 (decimal) is the 2's complement of the value 15.
When bit 7 is enabled, the microprocessor branches backward. The number 241
signifies to branch backward by 15 memory locations and execute the instruction in that
location. To find the root value of a 2's complement number, do this:

1. Trandate the value into binary: 241 = 11110001
2. Subtract 1: =1111 0000 = 240
3. Convert each hit to its complement; in other words,

change each hit to the opposite value: = 0000 1111 = 15

To find the two's complement of a number, peform steps 1 and 3 above;
then add 1 to the value instead of subtracting.

Here's the complete C128 mode program, including dl the decima DATA
equivaents of the ingtructions in the machine language, clear-screen subroutine above:

10 ALPHA=8192

201=0

30 DO

40 : READ A

45 . IF A=-999 THEN EXIT

50 : POKE ALPHA*I , A

60 : 1=1+1

70LOCOP

80 PRINT"ALL DATA IS NOW IN MEMORY"
85 SLEEP 1

90 SYS 8192

1000 DATA 162, 0, 169, 32, 157, 0, 4, 157, 0, 5, 157, 0, 6, 157, 231, 6
2000 DATA 232. 208. 241. 96. - 999

Here is the corresponding program in C64:

10 ALPHA=8192
20 FOR 1=0 TO 19

40 : READ A
50 : POKE ALPHA+I,A
60 NEXT

80 PRINT"ALL DATA IS NOWIN MEMORY"

85 FCR 1=1 TO 2500: NEXT

90 SYS 8192

1000 DATA 162, 0, 169, 32, 157, 0, 4, 157, 0, 5, 157, 0, 6, 157, 231, 6
2000 DATA 232, 208, 241, 96

When you run this program, the computer READs the DATA, POKEs it into
memory, and executes the machine language, clear-screen subroutine with the SYS
command. After you RUN the program, enter the machine language monitor (assuming
you are currently in C128 mode) and disassemble the code in the range $2000 through
$2015 with this command:

D 2000 2015

Notice that the subroutine you POKEd in through BASIC is the same as the
subroutine that appears in Figure 7-1. The two different methods accomplish the same
goa—programming in 8502 machine language.

WHERE TO PLACE MACHINE
LANGUAGE PROGRAMS IN MEMORY

The Commodore 128 has 128K of RAM memory, divided into two 64K RAM banks.
Much of the 128K of RAM is overlad by ROM, but not a the same time. The
Commodore 128 memory is layered, so RAM is beneath the overlad ROM. The
designers of the Commodore 128 have managed to squeeze 28K of ROM and 128K of
RAM into 128K of address space. Only one bank is available or mapped in a a time,
since the highest address an 8-bit microprocessor can address is 65535 ($FFFF).
However, because the C128 is capable of banking RAM and ROM in and out so fast, it
may seem as though 128K is always available.

In the portions of memory shared by RAM and ROM, a read operation returns a
ROM data value and a write operation "bleeds through" to the RAM beneath the
layered ROM. The data is stored in the RAM memory location. If the data in RAM
beneath the ROM is a program, the ROM on top must be switched out before the
program in RAM can be executed. The RAM and ROM layout in memory is dl
regulated and controlled through the Configuration Register (CR) of the Memory-

MIXING MACHINE LANGUAGE AND BASIC

Management Unit (MMU). For detailed information, refer to the sections on the

Registers of the Memory Management Unit (specifically, the discussion of the Configu-
ration Register) in Chapter 13.

WHERE TO PLACE MACHINE LANGUAGE ROUTINES
IN CONJUNCTION WITH BASIC

Within BASIC, the operating system takes care of the mapping in and out of ROM and
RAM. The C128 operating system provides sixteen (default) memory configurations.
They each contain different values in the Configuration Register; therefore, each has a
different configuration. This gives you sixteen different configurations of memory to
choose from. Figure 7-2 lists the sixteen default memory configurations available under
the control of the BASIC language.

BANK CONFIGURATION

RAM(O) only

RAM(I) only

RAM(2) only

RAM(3) only

Internal ROM, RAM(O), 1/0

Internal ROM, RAM(l), 1/O

Internal ROM, RAM(2), 1/0

Internal ROM, RAM(3), 1/0

External ROM, RAM(0), 1/0

External ROM, RAM(l), 1/O

External ROM, RAM(2), 1/0

External ROM, RAM(3), I1/O

Kernal and Internal ROM (LOW), RAM(O), I/O
Kernal and External ROM (LOW), RAM(O), I/O0
Kernal and BASIC ROM, RAM(O), Character ROM
Kernal and BASIC ROM, RAM(O), /0

= o

Figure 7-2. Bank Configuration Table

If you want to place a machine language subroutine in memory while the BASIC
language is running, put the subroutine in a bank that contains RAM, preferably bank O
since this bank is composed entirely of RAM. If you place the machine language
subroutine in a bank other than 0, not all of the RAM is available for pro-
grams, since ROM overlays some of the RAM. You must check the vaue of the
Configuration Register within that bank to see which addresses within these banks
contain ROM. Check the vaue of the Configuration Register within each of the sixteen

configurations and compare the value with the table in Figure 13-5 to see exactly where
ROM maps in.

Follow this procedure when calling machine language subroutines from BASIC:

1

Place the subroutine, preferably in bank O, either through the monitor or by
POKEing in the code through BASIC. J the Kernal, BASIC, and I/O are
required, execute your program from configuration (BASIC Bank) 15. If you
enter the subroutine through the monitor, place the routine in bank O by
placing the digit O before the 4-digit hexadecimal address where the instruc-
tions are stored. If you are POKEing the codes in through BASIC (not the
preferred method), issue the BANK 0 command within your program, assum-
ing you are placing the routine into BANK 0; then POKE in the decimal data
for the opcodes and operands. The recommended memory range to place
machine language routines in conjunction with BASIC is between $1300 and
S1BFF. The upper part of BASIC text is also available, provided your BASIC
program is small and does not overwrite your routine.

Now, to process the rest of your BASIC program, return to bank 15 (the
default bank) with this command:

BANK 15

Now call the subroutine with the SYS command. SYS to the start address
where the firs machine language instruction of your program is stored in
memory. In this case, assume the subroutine starts at hex location $2000
(assuming the VIC bit map screen is not used) and enter:

SYS 8192

The RAM in configuration O in Figure 7-2 is the same RAM that appears in configura
tions (BANKYS) 4, 8, 12, 13, 14, and 15. For example, you can enter programs into
BANK 15, but you must make sure that no ROM overlays your program area.

NOTE: If you plan to return to BASIC, make sure your subroutine ends
with an RTS instruction.

WHERE TO PLACE MACHINE LANGUAGE
ROUTINES WHEN BASIC |S DISABLED
When you are programming in machine language and you don't require the services of
the BASIC ROM, you can disable BASIC by mapping out the BASIC ROMs. Do this

by placing certain values into the Configuration Register in your own machine language
routines as follows:

LDA #$0E ;Set up the Configuration Register value
STA $D501 ;Write to Preconfiguration Register A
STA $FFO1 ;Write to LCR A to change value of CR

You can use this sequence:

LDA #$0E
STA $FFO0

When you switch out BASIC, the sixteen default configurations no longer exist

MIXING MACHINE LANGUAGE AND BASIC

via the BASIC command, so it becomes your responsibility to manage the memory
configurations by manipulating the Configuration Register in your application program.
Figure 13-5, on page 462, defines the values to place in the configuration register to
arrive a the different memory configurations.

When you switch out the BASIC ROMs, the address range where BASIC usually
resides ($4000 through $7FFF for BASIC low and $8000 through $BFFF for BASIC
high), is available for your machine language programs. Be careful when switching out
the Kernal, since the Kernal controls the entire operation of the C128, including routines
that seem transparent to the user (i.e., routines that you may take for granted).

At certain points within your machine language programs, you may need to
disable the 1/O operation of the C128 temporarily. For instance, if you want to copy
portions of the character ROM into RAM when programming your own characters, you
must switch out the I/O registers $D000 through $DFFF of the C128, transfer the
character data into RAM, and then switch the I/O back in.

See the section discussing the Configuration Register, in Chapter 13, for a full
explanation of how the C128 RAM and ROM memory is configured.

This chapter has described the use of BASIC and machine language together. For
material on using BASIC alone, see Chapters 2, 3 and 4. For materia on using machine
language see Chapters 5, 6, 8, 9, 10, 11 and 13.

205

8

THE POWER
BEHIND
COMMODORE 128
GRAPHICS

THE RELATIONSHIP BETWEEN
VIDEO BANKS, RAM BANKS
AND MEMORY CONFIGURATIONS

Many of you are familiar with how the Commodore 64 manages memory. This section
explains how the Commodore 128 manages video memory, and how the video banks
relate to the currently selected memory configuration.

MANAGING BANKED MEMORY

Banking is a process in which a section of memory is addressed by the microprocessor.
The memory is said to be banked in when it is available to the microprocessor in the
current memory configuration.

The Commodore 128 is programmable in its memory configuration. BASIC and
the Machine Language Monitor give you 16 pre-programmed default configurations of
memory (referred to in BASIC as banks). For the purposes of this discussion, BASIC
banks are referred to simply as default memory configurations which are combinations
of ROM and RAM in various ranges of memory. The current configuration, whether in
BASIC or machine language, is determined by the value in the configuration register of
the C128 Memory Management Unit (MMU) chip.

The sixteen different configurations in BASIC and the Machine Language Monitor
require different values to be placed in the configuration register so that particular
combinations of ROM and RAM can be banked into memory simultaneously. For
example, the character ROM is only available in memory configuration 14 (Bank 14 in
BASIC; the fifth digit hexadecimal prefix "E" in the Machine Language Monitor),
since this configuration tells the C128 MMU to swap out the 1/O registers between
$D000 and $DFFF, and replace them with the character ROM. To swap the I/O
capabilities back in, change to any configuration number that contains 1/0O. Figure 8-1
lists the sixteen default memory configurations available in BASIC and the Machine
Language Monitor. Information on programming the MMU is contained in Chapter 13,
The Commodore 128 Operating System.

THE TWO 64K RAM BANKS

The Commodore 128 memory is composed of two RAM banks (labeled 0 and 1), each
having 64K of RAM, giving atotal of 128K. The 8502 microprocessor address bus is 16
bits wide, alowing it to address 65536 (64K) memory locations at a time. Figure 8-2
illustrates the two separate 64K RAM banks.

Although only 64K can be accessed a one time, the MMU has provisions for
sharing up to 16K of common RAM between the two RAM banks. Common RAM is
discussed in Chapter 13.

The 8502 microprocessor and the VIC chip can each access a different 64K RAM
bank. The 8502 RAM bank is selected by the configuration register (bits 6 and 7) and

THE POWER BEHIND COMMODORE 128 GRAPHICS 209

BANK CONFIGURATION

REBowow~wourwNnRmo

[=
SN

Figure 8-1. C128 Default Memory Configurations

~

P 64K

VAN

64K

/

Figure 8-2. CI28 64K RAM Banks

the VIC RAM bank is sdected by the RAM configuration register (bits 6 and 7). This
also is covered in detail in Chapter 13.

The configuration determined by the configuration register can be composed of
RAM and ROM, where the ROM portion overlays the RAM layer underneath, as
illustrated in Figure 8-3.

Write

Operation
(POKE, STA § - - - -} ooy p——=eREAD Operation (PEEK, LDA $----)

'

1

i

\ ROM ROM

‘ RAM

0 65535

memory

Figure 8-3. ROM Overlay

A read (PEEK) operation returns a ROM value, and a write (POKE) operation
bypasses the ROM and stores the value in the RAM underneath.

Many different combinations of memory can be constructed to comprise a 64K
configuration of accessble memory. Bits sx and seven of the configuration register
specify which RAM bank lies beneath the ROM layers specified by bits zero through
five. The underlying RAM bank can be switched independently of any ROM layers on
top. For instance, you may switch from RAM Bank 0 to RAM Bank 1, while
maintaining the Kernal, BASIC and 1/O.

16K VIDEO BANKS

In C128 graphics programming, a video bank is a 16K block of memory that contains
the essential portions of memory controlling the C128 graphics system: screen and
character memory. These two types of memory, which are discussed in the following
section, must lie within the 16K range of memory referred to as a (VIC) video bank.
The VIC chip is capable of addressing 16K of memory at any one time, so dl graphics
memory must be present in that 16K. Since the Commodore 128 microprocessor
addresses 64K a a time, there are four video banks in each 64K RAM bank, or a tota
of eight video banks. (See Figure 8-4.)

Where you place the VIC video bank depends on your application program. The
Commodore 128 ROM operating system expects this bank in default video Bank O, in
the bottom of RAM Bank 0. Screen and character memory may be located at different
positions within each 16K video bank, though in order to successfully program the VIC
chip, the current 16K bank must contain screen and character memory in their entirety.
You'll understand this after reading the next few pages.

video bank 3
video bank 2
video bank 1
video bank 0
video bank 3
video bank 2
video bank 1
video bank 0

O L N W O L NN W

THE POWER BEHIND COMMODORE 128 GRAPHICS

~

b 64K

Z
\

b 64K

/

Figure 8-4. Video Banks within RAM Banks

The four video banks in each 64K RAM bank are s&t up in the memory ranges

specified in Figure 8-5:

BANK ADDRESS RANGE
0 $0-$3FFF

1 $4000-$7FFF

2 $8000-$BFFF
3 $C000-$FFFF

VALUE OF BITS 1 & 0 IN $DD00

BINARY DECIMAL

11= 3 (DEFAULT)
10= 2
01= 1
00= 0

Figure 8-5. Video Banks Memory Ranges

Each RAM bank (0 and 1) has this memory layout.
Bits 0 and 1 of location $DDO00 sdlect the video bank. To sdlect a video bank in

BASIC, type this command:

POKE 56576, (PEEK (56576) AND 252) OR X

Where X is the decimal vaue of bits 1 and 0 in Figure 8-5.
In machine language, run the following program segment to select video banks:

LDA $DDO0O0; load the accumulator with contents of $DDO00

AND #$FC; preserve the upper 6 bits of $DD00

OR A #3$X; where X is the hex value of bits 1 and 0 from Figure 8-5 above
STA $DDO00; Place the vaue in $DD00

211

In the third instruction, replace X with the hexadecimal value of bits 1 and O in
Figure 8-5. The default value is $03, which selects video bank zero.

Whenever you change video banks, you must add $4000 to the address of your
starting screen memory (video matrix) and character memory (bit map in bit map mode)
for each bank above 0. To change to video Bank 1, add $4000 to your starting screen
and character address; for Bank 2 add $8000; for Bank 3 add $C000. You must dways
add an offset of $4000 to the start of your screen and character memory for each video
bank that is greater than zero.

SUMMARY OF BANKING CONCEPT

The major features of the banking concept can be summarized as follows:

1. BASIC and the Machine Language Monitor have sixteen 64K memory con-
figurations that give you sixteen different combinations of memory layouts.
The MMU chip, particularly the value in the configuration register, controls
most of the memory management in the Commodore 128. In order to PEEK
(read) from or POKE (write) to a particular portion of memory, you must
choose a BASIC or monitor configuration that contains the desired section of
memory. Figure 8-1 lists the sixteen default memory configurations available
in BASIC and the Machine Language Monitor.

2. The 128K of memory is divided into two 64K RAM banks. Only one bank is
addressable a a time by the microprocessor. RAM bank selection is con-
trolled by the MMU configuration register (bits 6 and 7), which is part of the
C128 1/0 memory. The VIC chip and 8502 microprocessor can each access a
different 64K RAM bank. Figure 8-2 illustrates the two separate and indepen-
dent 64K RAM banks.

3. Each 64K RAM bank is divided into four 16K video segments. The screen
and character memory must both lie within the selected 16K video segment in
order to successfully display graphics and characters on the screen. For each
16K video bank higher than zero, remember to add $4000 (16384 decimal) to
the start address of screen and character memory. Figure 8" shows how four
16K video banks fit into each of the two 64K RAM banks.

Here's how the banks fit together and operate within the Commodore 128. One
64K RAM bank is aways mapped into memory. Within BASIC or the Machine
Language Monitor, sixteen different memory configurations are available in a 64K bank.
To change the configuration, issue the BASIC BANK command, or precede the four
digit hexadecimal address in the Machine Language Monitor with an additional hexadec-
imal digit 0O through F. Outside of BASIC or the monitor, you can select other
configurations, by changing the value in the configuration register at location $FF00
(or $D500). See Chapter 13 for details.

Within the selected configuration, and part of the current 64K RAM bank, is a
16K range reserved for a video bank. The 16K video bank must encompass IK of screen
memory, and either 4K of character ROM or an 8K block of memory for the bit map
data. All these components must be present in order for graphics to operate.

THE POWER BEHIND COMMODORE 128 GRAPHICS

In essence, the bank concept can be thought of in this way: The C128 has a 16K
(VIC) video bank within a selected memory configuration within a 64K RAM bank.

Figures 8-28 through 8-32 at the end of this chapter provides a graphics program-
ming summary.

SHADOW REGISTERS: INTERMEDIATE STORAGE
LOCATIONS USED BY THE CI28 SCREEN EDITOR

Users who are experienced in programming the Commodore 64 VIC chip will find that
most of the graphics operations of the Commodore 128 are performed in the same way
as the C64. The main difference between the Commodore 64 and the Commodore 128
graphics systems is the hardware implementation of split-screen modes.

C128 mode provides two types of split-screen displays:

1. Standard character mode and bit map mode
2. Standard character mode and multi-color bit map mode

Because the split-screens switch from one display mode to ancther at a given
time, the screen editor must be interrupt-driven. The interrupt indicates a what point
the mode is to be switched. At that point, the VIC chip is loaded with preset vaues
aready contained in RAM. These preset values are known as shadow registers. Each
time an interrupt occurs, certain video-chip registers are cleared and refreshed with the
values in the shadow registers. These shadow registers add a variation in programming
the VIC chip compared to the way the Commodore 64 handles it.

The primary intermediate storage locations for VIC chip programming are:

NAME INDIRFXT LOCATION- ACTUAL LOCATION DESCRIPTION
GRAPHM BIT 7 - 216 (SO0D8) BIT 4 - 53270 (SD016) Multicolor Mode Bit

GRAPHM Bit 6 - 216 ($00D8) Split Screen Bit

GRAPHM BIT 5 - 216 ($00D8) BITS -S3265 ($D011) Bit Map Mode Bit

VM1* BITS 7-4 - 2604 ($0A2C) BITS 7-4 - 53272 (SD018) Video Matrix (screen memory) Pointer
VM1 BITS 3-0 - 2604 ($0A2C) BITS 3-0 - 53272 ($D018) Character Base Pointer

VM2** BITS 7-4 - 2605 ($0A2D) BITS 7-4 - 53272 ($D018) Video Matrix (screen memory) Pointer
VM2 BITS 3-0 - 2605 ($0A2D) BITS 3-0 - 53272 ($D018) Bit Map Pointer

*VM1 applies only to standard and multi-color character (text) mode?

**VM2 applies only lo standard and multi-color bit map modes.

213

You must store to and load from the indirect locations when accessing the above
features of the VIC (8564) chip. For example, in C64 mode, this is how you set up the
video matrix and bit map mode:

10 POKE 53272, 120: REM Select bit map @ 8192, video matrix @ 7168
20 POKE 53265, PEEK (53265) OR 32: REM Enter bit map mode

Line 10 sets the video matrix at 7168 (S1C00) and the bit map at 8192 ($2000).
Line 20 enables bit map mode.

Normally, you would perform this operation with the high-level, 7.0 BASIC
command:

GRAPHIC 1

The comparable way to accomplish this with POKE commands in C128 mode is
as follows:

10 POKE 2605,120
20 POKE 216,PEEK(216) OR 32
In C128 machine language, use these instructions:

LDA #3$78; set bit map @ $2000

STA $0A2D; st video matrix @ 7168

LDA $00D8

ORA #$20

STA $00D8; sdlect bit map mode

Although these examples do more than just select bit map mode and set up the
video matrix and bit map pointer (such as wait on a video retrace when the raster is off
the visible coordinate plane), these examples give you an idea of how to perform these
programming steps.

As you can see, C128 mode requires a dight variation in programming the VIC
chip. You must keep this in mind when programming graphics in C128 mode. Usualy,
the high-level BASIC 7.0 commands take care of these variations. However, if you are
programming in machine language, remember to address these indirect storage locations
and not the actua ones. If you store values directly to the actua registers, the value will
be cleared in ajiffy and no apparent action occurs.

DISABLING THE INTERRUPT DRIVEN
SCREEN EDITOR

You can disable the interrupt-driven C128 screen editor by storing the value 255
($FF) in location 216 ($00D8). The actua VIC registers are not affected, and you
can program the VIC chip the same way as the C64. This makes it unnecessary to
address the indirect shadow registers. In BASIC, enter:

POKE 216,255

In machine language, you enter:

THE POWER BEHIND COMMODORE 128 GRAPHICS

LDA #$FF
STA $00D8

Since disabling the interrupt alows you to program the VIC chip in the same way
as the Commodore 64, you can store values directly to the actual registers. You do not
have to address the indirect storage locations for VIC chip programming. However, if
you don't disable the interrupt, it is till active and your values will be cleared upon the
first occurrence of the raster interrupt.

Remember, you must either disable the interrupt or address the indirect storage
locations. Failure to do one or the other can cause serious problems in your program.

The 80-column chip indirect memory locations are discussed in Chapter 10,
Programming the 80-Column 8563 Chip. Certain other 1/O functions require the use of
indirect locations also. These are covered in Chapter 12, Input/Output Guide.

THE COMMODORE 128
GRAPHICS SYSTEM

This section describes where the SCREEN, COLOR and CHARACTER memory com-
ponents in the graphics system are located in character modes and bit map modes.

Screen and character memory are addressed and stored differently in the character
modes than in the bit-map modes. The split-screen modes use a section of both the
character screen storage and the bit map screen storage.

In graphics operations, the C128 can operate in either BASIC or machine language
in both C128 and C64 modes.

This section tells you where the graphics locations and screen color character
memory are stored under each graphic mode. The next section details the inner workings
of each graphic display mode including how color and data are assigned and how
screen, color and character memory are interpreted.

SCREEN MEMORY (RAM)

The location in which screen RAM s stored in memory and the way the data are stored
within it depends on the current graphics mode and operational mode of the C128.

C128 BASIC

In Commodore 128 BASIC, the character screen memory is located in the default address
range 1024 ($0400) through 2023 ($07E7). The text screen memory can be moved.
Remember, certain addresses use indirect memory locations to change the value of the
actual address. The shadow register for the pointer to the text screen memory is location
2604 ($0A2C). The actua location is 53272, but the screen editor uses a shadow since
the VIC screen is interrupt-driven. A direct poke to 53272 ($D018) is changed back to
its origina value every sixtieth of a second. Here's how to change the location of screen
memory in C128 BASIC:

215

POKE, 2604 (PEEK (2604) AND 15) OR X

where X is avaue in Figure 8-6.

If you move the screen memory, make sure that the screen and character memory
do not overlap. In addition, make sure to add an offset of $4000 to the start address of
screen and character memory for each bank above 0. Additional commands are required
to make the program work. Details follow in the discussion of each graphic mode, as
well as program examples.

LOCAT ION*

X BITS DECIMAL HEX

0 OO0OOXXXX 0 $0000
16 0001XX XX 1024 $0400 (DEFAULT)
32 0010XXXX 2048 $0800
48 001IXXXX 3072 $0C00
64 0100XXXX 4096 $1000
80 010LXXXX 5120 $1400
% 0110XXXX 6144 $1800
112 011IXXXX 7168 $1CO0
128 1000X XXX 8192 $2000
144 1001X XXX 9216 $2400
160 1010X XXX 10240 $2800
176 1011X XXX 11264 $2C00
1P 1100X XXX 12288 $3000
208 110X XXX 13312 $3400
224 110X XXX 14336 $3800
240 11X XXX 15360 $3C00

*Remember that the BANK ADDRESS offsst of $4000 per
video bank must be added if changing to a higher video
bank above 0.

Figure 8-6. Screen Memory Locations

This register aso controls where character memory is placed in memory. The
upper four bits control the screen, the lower four control character memory. The "AND
15" in the POKE 2604 statement ensures that the lower nybble is not upset. (If it had
been, you would not see the correct character data.)

In Commodore 128 bit map mode (standard or multi-color), the default bit map
screen memory (video matrix) is located between 7168 ($1C00) and 8167 ($1FFF).
Screen memory is interpreted differently in bit map mode than in text mode. The video
matrix in bit map mode actually supplies color information to the bit map. This is
explained in detail in the Standard Bit Map Mode section elsewhere in this chapter. To
change the location of the bit map screen memory (video matrix), use this command:

POKE 2605, (PEEK (2605) AND 15) OR X

THE POWER BEHIND COMMODORE 128 GRAPHICS

where X isavaue in Figure 8-6. Location 2605 is also a shadow register for 53272, but
only for bit map mode. When you move the video matrix you must ensure that it does
not overlap the bit map (data). In addition, be sure to add an offset of $4000 to the start
address of the video matrix and the bit map for each video bank above zero.

C64 BASIC

In C64 mode, the text screen defaults to locations 1024 ($0400) through 2023
($07E7). In bit map mode, the video matrix (screen memory) also defaults to this range
though the screen memory is interpreted differently in either mode. Commodore 64
BASIC dlows you to move the location of the video matrix to any one of the sixteen
locations specified in Figure 8-6. The upper four bits of location 53272 (SD018) control
the location of the screen memory. To change the location of screen memory, use the
following command:

POKE 53272, (PEEK (53272) AND 15) OR X

where X is equal to one of the values in Figure 8-6

NOTE: The following paragraph pertains to both C128 and C64 modes.

Bits zero and one of location 56576 (SDDO0OQ) control which of the four video
banks is selected. The default bank is 0. If you change to another video bank (from O to
1, for example), then for each bank higher than bank zero, you must add an offset of
$4000 to the starting video matrix (screen memory) address in Figure 8-6. This yields
the actual address of the video matrix. For example, if you're changing from bank O to
bank 1, add $4000. If you are going to bank 2, add $8000; if you are changing to bank
3, add $C000. Remember, this is true for both C128 and C64 modes.

MACHINE LANGUAGE

In machine language, use the commands listed under A in Figure 8-7 to move the C128
(VIC) text screen. Use the commands under B to move the C128 bhit map screen memory
(video matrix). Use the commands under C to move the C64 text or bit map screen
memory (video matrix).

) ®) ©
MOVE C64

MOVEC128 MOVEC128 TEXT OR BIT MAP
TEXT SCREEN BIT MAP SCREEN SCREEN MEMORY
LDA $0A2C LDA $0A2D LDA $D018
AND #$0F AND #$0F AND #$0F
ORA#$X ORA #$X ORA #$X
STA $0A2C STA $0A2D STA $D018

Figure 8-7. Moving Screen Memory in Machine Language

217

In Figure 8-7, X is the hexadecimal equivalent of the decima value X in the left
column in Figure 8-6. The second and third instructions in each example in Figure
8-7 make sure not to upset the lower four bits of location 53272 or its shadow registers,
2604 ($0A2C) and 2605 ($0A2D), since they control the character data for text and bit
map modes.

COLOR RAM

C128 BASIC

Color RAM within the Commodore 128 is always stationary in memory. It occupies the
address range 55296 ($D800) through 56295 ($DBE7). In standard character mode,
screen RAM and color RAM correspond to one another on a one-to-one basis. Location
1024 gets color data from 55296, 1025 gets color from 55297 and so on. Multi-color
character mode utilizes color RAM also, but in a different manner. Additional explana-
tions and examples are provided in the Standard Character Mode section of this chapter.

COLOR RAM BANKING

In C128 mode, the LORAM and HIRAM signa lines alow the graphics system to
make use of an additional Color RAM bank, which is not available in C64 mode. This
allows fagt and clean switching of colors for the character or multi-color bit map screen.
The LORAM signa line alows the 8502 microprocessor to access one color RAM
bank, while the HIRAM control line allows the VIC chip to access either Color RAM
bank independently of the microprocessor. Bit O of location 1 controls the LORAM
sgnal line. LORAM sdlects color RAM bank O or 1 as seen by the 8502 microprocessor
depending on the vaue of the bit. If the bit value is low, the color RAM bank O is
accessed by the 8502. If the value of the bit is high, the upper color RAM bank is
accessed by the 8502 microprocessor.

Bit 1 of location 1 controls the HIRAM signd line. HIRAM selects color RAM
bank 0 or 1 as seen by the VIC chip, depending on the value of the bit. If the bit value is
low, the color RAM bank 0 is accessed by the VIC chip. If the vaue of the bit is high,
the upper color RAM bank 1 is accessed by the VIC chip.

These control lines add flexibility to the aready powerful C128 graphics system.
This alows you to change colors of the multi-color bit map or character screen on the fly,
without any time delay. It allows you to swap color RAM banks instantly.

In standard bit map mode, color information is obtained from the bit map
screen memory (the video matrix, S1C00 through $1FFF). not color memory. Bit
map mode interprets screen memory differently than character mode. Color RAM
is used in standard character mode, multi-color bit map mode, multi-color character
mode and the split-screen mode.

C64 BASIC
In standard character mode, color RAM s located in the same place as in C128 mode:
55296 ($D800) through 56295 (SDBEY7).

In bit map mode, C64 BASIC receives color information from screen memory (the

THE POWER BEHIND COMMODORE 128 GRAPHICS

video matrix) as does C128 mode, though the default location for screen memory is
1024 ($0400) through 2023 ($07E7).

MACHINE LANGUAGE

In machine language or in BASIC, standard character mode color data always comes
from the same place. Color RAM is used for multi-color character mode. In
standard bit map mode, however, color data originates from screen memory, so wher-
ever you place screen memory, the color data for the bit map comes from the specified
screen memory (video matrix) range. Multi-color bit map mode receives color from three
places: color RAM, screen memory and background color register 0. This is explained in
depth in the sections on the multi-color character and multi-color bit map modes.

CHARACTER MEMORY (ROM)

C128 BASIC-CHARACTER MODES

In standard character mode, character information is stored in the character ROM in the
memory range 53248 ($D000) through 57343 (SDFFF). In location 1 of the Com-
modore 128 memory map, the CHAREN (CHARacter EN able) signal determines whether
the character set is available in any given video bank (0-3). Bit 2 of location 1 is the
CHAREN hit. If the CHAREN hit is high (1), the Commodore character set is not
available within the currently selected video bank in context. If the value of hit 2 in
location 1 is low, equal to zero, then the C128 character set is available in the currently
selected video bank. This is true in any of the four video banks in both 64K RAM
banks. This feature allows the Commodore 128 character set to be available in any video
bank at any time. To read the character ROM, enter BANK 14 either in BASIC or the
MONITOR, and read the ROM, starting at location 53248. This configuration switches
out 1/O, and maps in character ROM in the range $D000 through SDFFF. Figure 8-8
shows how the character sets are stored in the character ROM:

ADDR ESS

VIC*
BLOCK DECIMAL HEX IMAGE CONTENTS

0 53248 D000-D1FF 1000-1IFF Upper case characters
53760 D200-D3FF 1200-13FF Graphics characters
54272 D400-D5FF 1400-15FF Reversed upper case characters
54784 D600-D7FF 1600-17FF Reversed graphics characters

1 55296 D800-D9FF 1800-19FF Lower case characters
55808 DAQO-DBFF 1A00-1BFF Upper case & graphics characters
56320 DCO00-DDFF 1CO00-1DFF Reversed lower case characters
56832 DEQO-DFFF 1EQ0-1FFF Reversed upper case & graphics

characters
* = in C64 mode only

Figure 8-8. Breakdown of Character Set Storage in Character ROM

219

The character memory is relocatable as is screen memory. To move standard
character memory in C128 BASIC, alter the lower four bits (nybble) of location 2604
($0A2C). Location 2604 is a shadow register for 53272 for the text screen memory
(upper four bits) and character memory (lower four bits). To move the standard
character memory use the following command:

POKE 2604, (PEEK (2604) AND 240) OR Z.

where Z is a value in Figure 8-9.

LOCATION OF CHARACTER MEMORY

VALUE
OFz BITS DECIMAL HEX
0 XXXX000X 0 $0000-$07FF
2 XXXX001X 2048 $0800-$0FFF
4 XXXX010X 4096 $1000-$17FF ROM IMAGE in BANK 0 & 2

(default)*
6 XXXX011X 6144 $1800-$1IFF ROM IMAGE in BANK 0 & 2*
8 XXXX100X 8192 $2000-$27FF
10 XXXX101X 10240 $2800-$2FFF
12 XXXX110X 12288 $3000-$37FF
14 XXXX111X 14336 $3800-$3FFF

* = in C64 mode only.

Figure 8-9. Character Memory Locations

As with the other graphic system components, character data behaves differently in
bit map mode than in text mode.

Remember, the upper nybble controls where the screen memory maps in, so make
sure not to upset those bits. The AND 240 in the POKE statement above takes care of
preserving the upper four bits.

In C128 mode the character sets are available in al video banks depending on the
value of CHAR ENable

NOTE: Remember to add an offset of $4000 to the start address of
character memory, for each bank above O; i.e., for bank 3 add
3*$4000 = $C000

THE POWER BEHIND COMMODORE 128 GRAPHICS

C!28 BASIC-BIT MAP MODES

In bit map mode, the character memory data, aso referred to as the bit map, defaults to
the range 8192 ($2000) to 16191 ($3F3F). The hit patterns of these 8000 bytes tell the
computer which pixels to turn on. This block of memory "maps out" the picture on the
screen, according to the data in this 8000-byte block. Since the standard bit map screen
is 320 x 200, 64000 pixels make up the screen image. Divide 64000 by 8 to arrive at
8000 bytes of memory for the bit map.

Besides the upper four bits for the video matrix, bit 3 of location 2605 ($0A2D) is
the only significant bit in bit map mode. Location 2605 is the indirect memory location
of 53272 for bit map mode only.

When you issue the GRAPHIC 1 command, bit 3 in 2605 is set. This specifies
the bit map (data) to start at location 8192 ($2000). Whenever you enter bit map mode
with the GRAPHIC command, bit 3 is aways set. Outside of BASIC, you can specify
the bit map to start a location $0000; therefore, the value of hit 3 is zero.

If the C128 is running under the control of C128 BASIC, the bit map always starts
on a boundary of $2000 (since bit 3 is set) within a given video bank. In video bank
zero, the bit map starts at $2000. For banks 1, 2 and 3, the bit map begins at $6000,
$A000 and $EO00O, respectively, since you must add an offset of $4000 for each bank
number above zero. In machine language, however, bit 3 may have a vaue of zero or
one. Therefore the bit map may start at $0000 if bit 3 is zero, or a $2000 if bit 3 is one,
in each video bank. This means that the bit map has eight possible starting locations
(per 64K RAM bank) in machine language—two for each of the four video banks. In
C128 BASIC, the bit map can only start a one of the four locations.

Don't forget to add the mandatory $4000 offset for each video bank above 0. The
eight possible starting locations of a bit map in a machine language program are shown
in Figure 8-10.

This gives you the choice of eight starting locations in which to place your bit map
data. Though only one bit map can fit in each video bank, you must leave room for the
video matrix. Since the C128 has two RAM banks—each with four video banks per
RAM bank—you may have a total of eight bit maps in memory, one for each video
bank. Each video bank can fit only one bit map, because you need IK for screen RAM,
and 8K for the bit map since a video bank has a maximum of 16K. To access another bit
map, you must switch video banks. To access a bit map in the upper RAM bank (1),
you may have to switch RAM banks and video banks.

VIDEO BANK VALUE OFBIT 3 =
0 1
0 $0000 $2000
1 $4000 $6000
2 $8000 $A000
3 $C000 $E000

Figure 8-10. Starting Locations for Bit Map in Machine Language

221

C64 BASIC CHARACTER MODES

In standard character mode in C64 BASIC, the lower four bits of location 53272 control
where character memory is placed. As in C128 mode, the character ROM is actualy
mapped into memory between 53248 ($D000) and 57343 ($DFFF). The ROM image
appears in RAM in the range 4096-8191 (in video bank 0) and 36864-40959 in bank 2,
since it must be accessible to the VIC chip in a 16K range in video banks 0 and 2. The
character sets are not accessible in video banks 1 and 3. This ROM imaging in RAM
applies only to character data as seen by the VIC chip. These memory ranges are il
usable for data and programs and have no effect on the contents of RAM as far as your
programs are concerned.

In C64 mode, the ROM image overlays the RAM underneath. A write operation
"bleeds through" to the RAM underneath, while a read returns a ROM value depending
on which memory configuration is currently in context. Since the VIC chip accesses
16K at atime, the character set images must appear in the 16K which the VIC chip is
currently addressing in video banks O and 2. Remember, in C128 mode, the character
sets are available in dl video banks according to the value of the CHAREN hit in
location 1.

You can change the location of character memory with the following command:

POKE 53272, (PEEK(53272) AND 240) OR Z

where Z is a decimd value in the table in Figure 8-9.
The breakdown of the character sets is the same as in the C128 for the character
ROM (see Figure 8-8).

C64 BASIC BIT MAP MODE

In bit map mode, bit 3 of location 53272 specifies the start of the bit map either at
$0000 or $2000 depending whether the value of bit 3 is 0 or 1, respectively. Use the
following command:

POKE 53272 (PEEK (53272) AND 240) OR Z

where Z is zero if you want the bit map to start at $0000 in each bank, or Z =8 if you
want to place the bit map starting at 8192 ($2000) in each video bank.

See Figure 8-10 for the arrangement of the bit map in each of the four 16K video
banks within the two RAM banks. If you switch video banks, don't forget to add the
$4000 (hex) offset for each bank above 0. See the Character Memory section under
C128 Bit Map Mode in the last section for more detail on the arrangement of bit maps in
memory.

THE POWER BEHIND COMMODORE 128 GRAPHICS

MACHINE LANGUAGE

There are three ways to select the placement of character memory, as shown in Figure
8-11. Example A places character memory using the shadow register $0A2C in place of
the actual $D018 register. Example B specifies the start of the bit map at $2000 (using
shadow register $0A2D). Example C specifies the start of the C64 bit map or character
memory.

A B c
LDA $02AC LDA $02AD LDA $D018
AND #$FO0 AND #$FO0 AND #$FO
ORA #$Z ORA #$08 ORA #$7Z
STA $02AC STA $02AD STA $D018
Figure 8-11. Selected Character Memory Location
In Figure 8-11, Z is avaue in the table in Figure 8-9.

STANDARD CHARACTER MODE

HOW TO ENTER STANDARD
CHARACTER MODE

The C128 powers up in standard character mode. This mode displays characters on the
default screen. The character is displayed in a single color on a single color background.
This is the mode in which you write (enter) programs. When you press RUN/STOP and
RESTORE, the C128 defaults to the text screen.

Location 53265 (and its shadow register $00D8) determine whether the C128 is
operating in standard character mode. If bit 5 is O, as it is on power-up, the C128 is in
character mode; otherwise it is in bit map mode.

Location 53270 (and its shadow register SO0D8) determine whether the characters
are standard (single color) or multi-color. Bit 4 of 53270, and the shadow bit, bit 7 of
$00D8, specify multi-color mode. If these bits are equa to zero, characters are standard;
otherwise they are multi-color. See the Multi-color Character Mode section for more
details on selecting multi-color character mode.

223

SCREEN LOCATION

In standard character mode, the screen memory defaults to the range 1024 ($0400) through
2023 ($07E7). This is relocatable. See the Screen Memory section in the preceding pages.
Since the screen is 40 columns by 25 lines, the text screen requires 1,000 memory
locations to store dl of the screen information in memory. The fina twenty-four memory
locations in screen memory do not store displayed data; they are used for other purposes.
Each column of every row you see on the screen has its own screen memory location.
The top-left screen location, referred to as HOME, is stored at address 1024 ($0400).
The second screen location marked by the cursor is 1025 ($0401), and so on. Although
the screen you see is constructed in rows and columns, the screen memory within the
computer is stored linearly, starting at 1024 ($0400) and ending at location 2023 ($07E7).
Figure 8-12 shows a screen memory map, so you can visudize how a screen memory
location corresponds to the location on the physical screen of your video monitor.

SCREEN MEMORY MAP

COLUMN
0 10 20 30 39

1063

1024 —— LI
1064 I
1104
1144
1184
1224
1264
1304
1344
1384
1424 10
1464 |

1504
1544
1584
1624
1564 i
1704 [
1744
1784
1824 20
1864
1904
1944 T
1984 I I 24

A
—
L=y

Moy

i

t
2023

Figure 8-12. Screen Memory Map

HOW THE SCREEN MEMORY DATA
IS INTERPRETED
This screen memory range stores whole characters only. The characters are not repre-

sented as ASCII character string codes (CHR$). Instead, they are stored in memory as
screen codes as shown in Appendix D. The screen codes and character string codes are

THE POWER BEHIND COMMODORE 128 GRAPHICS

different due to the way they are stored in the character ROM. Notice in Appendix D
that the screen code for an at-sign (@) is 0. The &> is numbered 0 because it is the first
character to be stored in the character ROM. The letter "A" is the second character
ROM; therefore its code is 1. The letter "B" is the third character in the character
ROM, etc. The screen code is actudly an index from the starting location of the
character ROM, beginning with zero.

If you want to POKE a character directly into screen memory, use the screen code
rather than the ASCII character string (CHR$) code. The same holds true for the
machine language monitor. For example:

POKE 1024,1

places the letter A in the HOME position on the VIC screen. From the monitor, placing
the value 1 in location $0400 (decima 1024) aso displays the letter A in the HOME
position on the VIC screen.

COLOR DATA

In standard character mode, color information comes from color RAM, in the address
range 55296 ($D800) through 56295 ($DBE7). This memory determines the color of the
characters in each of the 1,000 screen locations. The background color of the screen is
determined by the background color register O which is location 53281.

The color RAM and the screen RAM locations correspond on a one-to-one basis.
Screen location 1024 pertains to color RAM location 55296; screen location 1025
corresponds to color location 55297, etc. Figure 8-13 is the color RAM memory map.
The map shows how color RAM corresponds to the locations in screen RAM and the
placement on your video display.

COLOR MEMORY MAP

COLUMN
0 10 20 30 38

55335

55296 0
55336 :
55376
55416
55456
55496
55536
55576 I
55616 i
55656
55696 10

[0]

55736
55776
55816
55856
55896
55936
55976
56016
56056
56096 20

56136
56176
56216
56256 24

¢
Figure 8-13. Color Memory Map 56295

225

HOW COLOR MEMORY IS
INTERPRETED
The contents of the color RAM locations contains the color codes 0-15. Each color

memory location may have a different color code. The lower four bits (nybble) of
COLOR RAM are significant. Figure 8-14 shows the COLOR RAM color codes:

0 Black 8 Orange
1 White 9 Brown
2 R 10 Light Red

3 Cyan 11 Dark Gray

4 Purple 12 Medium Gray
5 Green 13 Light Green
6 Blue 14 Light Blue

7 Yelow 15 Light Gray

Figure 8-14. Color Codes—40 Columns

Notice these color code values are one less than the color codes used by the
keyboard and BASIC. If you want to store a value directly into COLOR RAM, store the
values in the table above, not the color codes used by BASIC and the keyboard. For
example:

POKE 55296,1

colors the character in the HOME position white. From the monitor, place the value 1 in
location $D800, and the same results occur.

Remember, these color codes only control the color of the foreground character.
The background color is controlled by background color register 0 (53281). The pixels
that make up the character image are enabled by bits in character memory. If the bit is
enabled, the pixd in the foreground is turned on in the foreground color, and is
therefore controlled by color RAM. If the bits making up the character are turned off,
they default to the color in background color register 0. The combination of on and off
bits makes up the image of the character. The vaue of these bits determines whether the
color data comes from color RAM or background color register 0. You'll learn more
about character patterns in the next few paragraphs.

CHARACTER MEMORY

In standard character mode, the C128 receives character data from the CHARACTER
ROM. The character ROM is stored in the range 53248 ($D000) through 57343
(SDFFF). Since the VIC chip is capable of accessing 16K a a time, the C128 needs a
way to have the character ROM available in the 16K VIC range. In C128 mode, the
character ROM is available in any VIC bank in C128 mode, based on the value of

THE POWER BEHIND COMMODORE 128 GRAPHICS

CHAREN. See the chapter set availability in the Character Memory section in the
beginning of this chapter.

In C64 mode the character ROM is available only in banks O and 2. This is
accomplished by having a ROM IMAGE of the character ROM (53248-57343) mapped
into memory in place of RAM, in the range 4096-8191 ($1000-$1FFF) in video BANK
0, and 36864-40959 ($9000-$9FFF) in video BANK 2. In banks 1 and 3, the character
ROM is not available to the VIC chip.

Notice that the range where the character ROM is actually stored (53248-57343)
is also occupied by the I/O registers but not at the same time. When the VIC chip
accesses the character ROM, the character ROM is switched into the currently selected
video bank as a ROM image (in C64 mode only). When the character ROM is not
needed, the 1/O registers are available in the usua range. It is important to note the
ROM image applies only to the character deta as seen by the VIC chip. The RAM loca
tions where the ROM image maps in are il usable for programs and data. The locations
where the VIC chip looks for the character data are relocatable. See the Character
Memory section elsewhere in this chapter for information on moving character memory.

HOW TO INTERPRET CHARACTER MEMORY
IN STANDARD CHARACTER MODE

Typically, a complete character set contains 256 characters. The C128 contains two sets
of characters, for a total of 2 times 256 or 512 characters. In 40-column (VIC) output,
only one character st is available at a time. Upon power-up, the uppercase/graphics
character set is available through the keyboard. To access the second character set, press
the Commodore key (0°) and shift key at the same time. The second character st is
composed of the upper- and lowercase/graphics characters.

In character ROM, each character requires eight bytes of storage to make up the
character pattern. Since 256*8 is equd to 2048 bytes or 2K, and since there are two
character sets, the C128 has a tota of 4K of character ROM. Figure 8-15 shows where
esch character st is stored in the character ROM.

A DDR ESS

VIC-II
BLOCK DECIMAL HEX IMAGE CONTENTS

0 53248 D000-D1FF 1000-11FF Upper case characters
53760 D200-D3FF 1200-13FF Graphics characters
54272 D400-D5FF 1400-15FF Reversed upper case characters
54784 D600-D7FF 1600-17FF Reversed graphics characters

1 55296 D800-D9FF 1800-19FF Lower case characters
55808 DAOO-DBFF 1A00-1BFF Upper case & graphics characters
56320 DCOO-DDFF 1CO00-1DFF Reversed lower case characters
56832 DEOO-DFFF 1EQ0-1FFF Reversed upper case & graphics

characters

Figure 8—15. Location of Character Sets in Character ROM

227

Note that there is redly 8K of character ROM—4K for C64 mode and 4K for
C128 mode. The system automatically selects the appropriate character ROM for each
mode of operation.

The bit patterns stored in the character ROM have a direct relationship to the
pixels on the screen, where the character is displayed. In memory, each character
requires eight bytes of storage. On the screen, a character is made up of an 8 by 8 pixel
matrix. Think of a character as eight rows of eight pixels each. Each row of pixels
requires one byte of memory, so each pixel requires one bit.

Since a character is an 8 by 8 pixdl matrix, each character requires a total of 64
bits or eight bytes. Within each byte, if a hit is equa to 1, the corresponding pixel in
that character position is turned on. If a bit in a character ROM byte is equal to 0, the
corresponding pixel within the character on that screen position is turned off. The
combination of on and off pixels creates the image of the characters on the screen.
Figure 8-16 demonstrates the correspondence between a character on the screen and the
way it is represented in the character ROM.

|1 = 60 Bytel glojti1/11/0]0 $D000

= 102 Byte2 {p{1/1/0/0/1/1/0 $D001

= 110 Byte3 |g|1.110/1]1/1i0 $D002

= 110 Byte4 Ipl1i1i0[1]1]1]0 $D003

= 96 Byte5 |0/1!1/0]/0/0|0{0 $D004

= 98 Byte6 [p/11/0{0{0[110 $D005

= 80 Byte7 fplol1/1/1/1]0/0 $D006

L =0 Byte8 |plolololoio 00 $D007
Character on Character as
the Screen Represented

in Character ROM

Figure 8-16. Relationship of Screen Character to Character ROM.

In Figure 8-16, the firgt eight bytes of character ROM, ($D000-$D007) are equa
to 60,102,110,110,96,98,60 and 0. These decima numbers are calculated from the
binary value of the eight bytes that pertain to each row of pixels in the character. For
each hit that is equa to one, raise two to the bit position (0-7). For example, the first
byte of character ROM ($D000) is equal to 60, which is caculated by raising two to the
following hit positions:

22+ 22+ 2 + 25 = 4+8+16+32=60

The bits that are set (on) correspond to pixels that are enabled on the screen in the
foreground color. Bits that are clear correspond to pixels that are disabled, which are
displayed in the background color, according to background color register O a location
53281.

The second byte (row of pixels) of the at-sign (@) character is equa to 102
(decimal) and is obtained by the following:

THE POWER BEHIND COMMODORE 128 GRAPHICS

28+ 22 + 25 + 2% = 12

The lagt byte of the a-sign character is equal to zero, since no hits are set.
Therefore, each pixel on the screen is displayed in the background color. The values of
the binary digits on the right in Figure 8-16 are directly related to the image of the
character as it appears on the screen on the Ieft in Figure 8-16.

ACCESSING CHARACTER ROM

C128 BASIC

To access character ROM in C128 BASIC, type and run the following program:
10 BANK 14

20 FCR 1=53248 TO 53248+7: PRI NTPEEK(1) ; : NEXT

3 0 BANK 15

Enter Bank 14, the only BASIC bank where the character ROM is accessible.
Then print the PEEK value of the firg eight bytes of the character ROM. When
finished, return to Bank 15.

MACHINE LANGUAGE

To access character ROM in C128 Machine Language, type and run the following
program:

MONI E(g?
; FBO0O 00 00 00 00 F6

01800 A9 01 LDA #$01
01802 8D 00 FF STA $FF00
01805 A2 00 LDX #$00
01807 BD 00 DO LDA $D000, X
0180A 9D 40 18 STA $1840, X
0180D E8 I NX

0180E E0 07 CPX #$07
01810 DO P5 BNE $1807
01812 A9 00 LDA #$00
01814 8D 00 FF STA SFFQO
01817 60 RTS

10 SYS 6144
20 FCR 1=6208 TO 6208 +7: PRI NTPEEK(I);: NEXT

These machine language and BASIC routines accomplish the same task as the preceding
four-line BASIC program. The first two machine language instructions switch in the
character ROM, and switch out 1/0. The next sx instructions transfer the first eight

229

bytes of character ROM into locations 6208 ($1840) through 6215 ($1847). The last
three instructions switch out the character ROM, replace it with the /O registers and
return from the machine language subroutine to BASIC.

The BASIC routine activates the machine language subroutine, then prints the
values that were temporarily stored in 6208 through 6215. See Chapter 6, How to
Enter Machine Language Programs, for details on how to input machine language
instructions on the C128.

C64 BASIC
To access character ROM in C64 BASIC, enter and run the following program:

40 POKE 56334, PEEK(56334) AND 254

5 0 POKE 1, PEEK(1) AND 2 51

80 FCR 1=0 TO 7: POKE 6144+1, PEEK(53248+1): NEXT
90 POKE 1, PEEK(1) CR 4

105 PCKE 56334, PEEK(56334) OR 1

130 FCR 1=6144 TO 6144+7: PR NTPEEK(1); : NEXT

Line 40 turns off the interrupt timer. Line 50 switches out I/O and replaces it with
character ROM. Line 80 transfers the first eight bytes of character ROM (53248-53255)
to 6144—6151. Line 90 switches out character ROM, and replaces it with the 1/0O
registers. Line 105 turns on the interrupt timer. Line 130 prints the first eight character
ROM values that were temporarily stored in 6144 through 6151.

You may need to transfer parts of the character ROM data into RAM if you are
creating your own character set, and you want the remainder to be from the C128
character set. This is covered in more detail later in the chapter. These methods of
looking at the character ROM demonstrate how the character ROM is accessed, what the
patterns of the characters look like and why you would want to access the character
ROM.

The next section explains how to program your own custom characters in C128
mode.

PROGRAMMABLE CHARACTERS

The Commodore 128 has a feature that alows you to redefine the character set into
custom characters of your own. In most cases, you'll want to redefine only a few
characters a most, while obtaining the rest of the character set from the Commodore
128 character ROM.

With programmable characters, you tell the C128 to get character information
from RAM. Usuadly, characters are taken from the character ROM. If you only want
certain characters, you can choose the ones you want, copy the character patterns into
RAM and leave the rest in ROM. You cannot write to the character data in ROM;
however, the character data placed in RAM can be redefined.

The first step in programming your own characters is to define the image. In the

THE POWER BEHIND COMMODORE 128 GRAPHICS

Standard Character Mode section, you saw how a character on the screen is stored in the
character ROM. Each character requires eight bytes of storage. Each byte corresponds to
arow of pixels on the visible screen within the 8 by 8 character matrix; therefore, eight
rows of pixels make up one character.

This section shows how to customize an uppercase cursive (script) character set
for the letters A through H. Figure 8—17 shows the design for the uppercase cursive
letter A. The grid in the figure demonstrates how the character appears on the screen
within the 8 by 8 pixel matrix. Each row of the grid determines which bits are on within
the character bit pattern, and, hence, which corresponding pixels are enabled on the
screen. The eight-bit binary strings to the right of the grid are the bit patterns as stored
in RAM. The numbers to the right of the binary strings are the decima equivalents of
the binary bit patterns. This decimal value is the data you POKE into RAM in order to
display the character.

/ 5 4 3 2 10
0 o o | o = 00001110 = 14
1 . © | =00010001 = 17
2 2 = 00100000 = 32
3 . . = 01000010 = 66
4 o = 10000010 = 130
5| . = 10000100 = 132
6 - . 0 = 10001010 = 138
7 o o | . | = 01110001 = 123

Figure 8-17. Design for Cursive letter "A"

The following program creates and displays the upper-case cursive characters A
through H. Enter it into the computer and RUN it. You'll see the letters A through H
change from uppercase block letters to uppercase cursive letters. When you press the
newly defined lettered keys, they are displayed in cursive form.

Line 10 sdects the uppercase character set, the set being redefined. Line 20
protects the character set from being overwritten by the BASIC program and prepares a
location in RAM in which to place your character set. The end of user BASIC text and
the top of string storage is moved from 65280 to 12288 (decimal), which substantially
cuts down the size of BASIC programming space. The character st will be placed
beginning at location 12288, but it does not have to be located there. The character set
does have to be within the firs¢ 16K of memory unless another bank is selected. The
VIC chip can only access 16K at atime s0 each video bank consists of 16K of memory.

231

10 PRINT CHR$(142) :ReM SELECT UPPER CASE

20 POKES54, 48: POKESS, 48: CLR REM PROTECT CHAR SET

30 BANK 14 :REM SWTCH TO BANK 14 FCR CHARACTER ROM

40 FCR =1 TO 511: POKEIl +12288, PEEK(1+53248) : NEXT: REM ROM TO RAM TRANSFER
50 BANK 15: REM SWTCH TO DEFAULT BANK

60 POKE 2604, (PEEK(2604) AND 240)+12: REM START CHAR BASE AT 12288
70 FORJ=12288T012288+71 :REM PLACE CHARACTER DATA IN RAM

80 READ A

90 PCKEJ, A

100 NEXT J

110 SONCLR

120 DATA 0,0,0,0,0,0,0,0: REM ?

130 DATA 14,17, 32, 66, 130, 132, 138, 123: REM A

140 DATA 124, 66, 66, 124, 66, 81, 225, 126: REM B

150 DATA 62,67, 130, 128, 128, 128, 131, 126: REM C

160 DATA 125,98, 125, 65,65, 193, 161, 254: REM D

170 DATA 225,6 6,64, 56, 120, 65, 66, 124: REM E

180 DATA 127,129,2,4,14,228,68,56: REM F

190 DATA 193, 163, 253, 3 3,2 49, 65, 99, 190: REM G

200 DATA 227, 165, 36, 36, 126, 36, 37, 231: REM H

You can leave yoursdf more BASIC text areg, but to do this you must enter a video
bank higher than zero. This sample program operates in Bank O. If you place your
character set in a higher video bank, remember to add an offsat of 16384 ($4000) to the
start of RAM character memory for each bank above video Bank 0.

The CLR in line 20 clears out memory starting at 12288 because, prior to the
placement of the character et there, the memory locations are filled with random bytes.
The random bytes must be cleared before new character information can be stored.

. Line 30 selects BANK configuration 14. This configuration makes the character
ROM visible with a PEEK command or within the machine language monitor, and
temporarily switches out the 1/0 registers. Both the I/O functions and the 4K character
ROM share the same locations ($D000-$DFFF). Depending on whether bit 0 in the
configuration register (location $FF00) is on or off, the C128 addresses the /O registers
or the character ROM. Normadly the C128 powers up with bit 1 turned off; therefore,
the 1/0O registers in locations $D000-$DFFF are addressed. The BANK command in line
30 sets hit 0 in location $FFQ0; therefore, the character ROM in locations 53248-57343
($D000-$DFFF) is addressed. The character ROM is accessed in order to make the
transfer of characters to RAM.

Line 40 makes the actua transfer from ROM to RAM. Since the character ROM is
accessed in line 30, it now begins at location 53248. The firg 512 bytes (the uppercase
character set) from the character ROM are POKEd into the 512 bytes of RAM beginning
a location 12288 and ending a 12800. At this point the character set is ready to be
redefined to custom characters.

Line 50 switches the I/O registers back in, meaning the character ROM is no
longer available.

Line 60 specifies the start of the character set base at location 12288. The character
st base can be stored in locations other than 12288. (See the Character Memory section
earlier in this chapter for more information on moving character memory.) Location
2604 is the intermediate memory location that the interrupt-driven C128 screen editor
uses to point to screen and character memory in character mode. You must use this
indirect location to change the vaue of the actua register that points to the screen and
character memory 53272. If you try to POKE directly to location 53272, the interrupt will

THE POWER BEHIND COMMODORE 128 GRAPHICS

change the value back to the original one within a sixtieth of a second. (You can, how-
ever, disable the interrupt-driven screen editor. See the Shadow Register section for details.)

The value (AND 240) or 12 is placed in address 2604 to tell the C128 to point to
character memory in RAM, darting at address 12288. If the value (AND 240) or 8 is
placed into 2604, the character set will begin a 8192 and your BASIC program must be
less than 6K, but the complete 4K of characters can be redefined. If the value (AND 240)
or 14 is placed into that location, the character set starts at 14336. Your BASIC program
then must be less than 2K, since the programmable character set must reside within a
single 16K block, but the BASIC program that creates the characters can be amost 14K.
If a number other than 12 is POKED into 2604, other program lines must be modified.

Lines 70 through 100 start a loop at the beginning of the character base (12288),
read the values from the data statements which define the new characters (lines 120 and
200), and POKE them (line 90) into the locations alocated for the character set base,
starting at location 12288. The value 12283+ 71 in line 70 sets aside seventy-two
storage locations for the data values in lines 120 through 200 for storage in locations
12288 through 12359. When more data statements are added, the value (12288 + 71)
must be increased to 122838 plus the number of data values in the data statements minus
1. For example, if more characters were defined and there were twenty data statements
with eight values in each, then line 70 would read:

70 FOR J = 12288 TO 12288+ (160-1)

MULTI-COLOR CHARACTER MODE

Standard character mode displays text in two colors. the foreground color of the
character as determined by COLOR RAM, and the background color as determined by
background color register O at location 53281 ($D021).

Multi-color character mode gives you the ability to display characters in four colors
within an 8 by 8 character matrix. This substantially increases the freedom of using color.
However, the horizontal resolution is only hdf the resolution of standard character mode
(160*200), since multi-color mode bits and screen pixels are grouped in pairs. This means
that the color definition and pixel dendty is twice as wide as standard character mode. The
tradeoff in horizontal resolution is compensated for by the increased freedom of using color.

HOW TO ENTER MULTI-COLOR MODE

Location 53270 and its shadow register ($00D8) determine whether the C128 is output-
ting standard or multi-color characters on the screen. Bit 4 of 53270 and hit 7 of 216
(S00D8) control multi-color mode for character and bit map modes. If bit 4 of 53270
(and bit 7 of 216) is equa to 1, multi-color mode is enabled. Otherwise, standard mode
is enabled. Mogt of the new 7.0 BASIC graphics commands have provisions for multi-
color mode. However, if you want to enter multi-color mode with a POKE command, type:

10 POKE 216,255: REM Disable IRQ Editor
20 POKE 53270, PEEK (53270) or 16: REM Sdlect MCM

This enters multi-color mode, either for character mode or bit map mode.

233

SCREEN LOCATION

The screen location in multi-color character mode defaults to 1024 ($0400) through 2023
(SO7E7), the same as standard character mode. The screen memory locations can be
relocated. See the Screen Memory section for details.

HOW SCREEN DATA IS INTERPRETED

In multi-color character mode, the screen data from screen memory is interpreted as
screen codes the same way as in standard character mode. The screen codes are listed in
Appendix D. See the screen data interpretation in the standard character memory
section. The only difference between standard character mode and multi-color character
mode is the way color is assigned to the characters on the screen.

CHARACTER MEMORY LOCATION

The character memory in multi-color character mode, as in standard character mode, is
taken from between 53248 ($D000) and 57343 ($DFF) when I/O is switched out. See
standard character mode for more detailed information on character memory.

HOW CHARACTER MEMORY IS INTERPRETED
IN MULTI-COLOR CHARACTER MODE

Character memory is interpreted virtually the same way in multi-color and in
standard character modes, except for one differencel In standard character mode, if
a bit in the character definition image is on, the pixe corresponding to that bit
is colored in the foreground color as specified by color RAM. If a bit in the character
image in the character ROM is equal to zero, the corresponding pixel on the screen is
colored in the background color, as specified by background color register O (loca
tion 53281).

In multi-color character mode, color assignments to the pixels that make up the
character on the screen are not in a direct one-to-one relationship to the bits in the
character ROM data patterns. Instead, the bits that make up a character are grouped in
pairs, as shown in figures 8-18, 8-19 and 8-20.

Figure 8-18. "At" Sign ((a) Character as It Appears on the Screen

THE POWER BEHIND COMMODORE 128 GRAPHICS

olo[1]111]1]0]0
olj1l1lolo]1/1]0
oi1l1lo1]111]0
ol1l10/1/11/0
o/110000/0
ol1l1lololol1l0
o011l 1lolo
ololofololololo

Figure 8-19. Bit Patterns of the "At" Sign (@) Character as They Appear in
Character ROM

00 11 11 oo
01 10 01 10
01 10 11 10
01 10 11 10
01 10 00 o0
01 10 00 10
00 11 11 00
00 00 00 o0

Figure 8-20. Bit Patterns of the "At" Sign (@) Character as They Are Grouped
in Pairs in Multi-Color Character Mode

The bits are grouped in pairs, since the horizontal resolution is only haf as wide in
multi-color mode. The hit pair determines the color assignments for the pixels within the
character on the screen. The following section describes how the colors are assigned in
multi-color character mode.

COLOR DATA

The color of the pixels in a multi-color character originate from four sources, depending
on the hit pairs. Since the bit pairs have four color possibilities, two bits are needed to
represent four values. 00, 01, 10 and 11. In Figure 8-21, the value of the four bit pair
combinations determines the color assignments for the pixels in a multi-color character.

BIT PAIR COLOR REGISTER LOCATION
00 Background #0 color (screen color) 53281 ($D021)
0oL Background #1 color 53282 ($D022)
10 Background #2 color 53283 ($D023)
1 Color specified by the color RAM

lower 3 bits in color memory

Figure 8-21. Truth Table for Color Data

If the bit pair equals 00 (binary), the color of those two pixels corresponding to the
bit pair are colored by background color register O (location 53281 ($D021)). If the bit
pair equals 01 (binary), the pixels are colored by background color register 1 (location
53282 (SD022)). If the bit pair equals 10 (binary), color for those two pixels within the
character are colored from background color register 2 (location 53283 ($D023)).
Finally, if the bit pair from the character pattern equals 11 (binary), those two pixels are
colored from the color specified in the lower three bits (2, 1, 0) of color RAM. Color
RAM is located between 55296 (SD800) and 56295 ($DBE?).

When multi-color character mode is selected, you can dill display standard
characters on some screen locations, and display others in multi-color mode. Bit 3 of
each color RAM location determines whether the character is displayed in standard or
multi-color mode. If bit 3 in color RAM is sat (1), characters are displayed in
multi-color mode. If bit 3 is clear (0), characters are displayed in standard character mode.
This means that in order to display characters in multi-color mode, you must fill color
RAM with a color code greater than 7. The colors greater than 7 (the ones that are
displayed in multi-color mode) are shown in Figure 8-22.

COLOR CODE COLOR

Orange
Brown

Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

R OREBo®

Figure 8-22. Color Codes

Remember, the multi-color bit (bit 3) must be set to display multi-color characters.
The following program illustrates multi-color character mode.

10 COLOR 0,1 :REM BKGND = BLACK
20 COLR 2,1 :REM MULTCLR 1 = WH TE
30 COLCR 3,2 :REM MULTCLR 2 = RED

31 FOR | =1TQ25

32 PRI NT " ABCDEFGHI JKLMNOPOQRSTUVWKYZ"

33 NEXT

35 FOR 1=55296+512 TO 55296+1023: POKE |, 7: NEXT: REM PLACE YELLOW IN COLCR RAM
37 PCKE 216, 255: REM DI SABLE SCREEN EDI TOR

40 POKE 53270, PEEK(53270) OR 16: REM SET MULTI COLOR BI T

50 FOR | =1TQ25

60 PRI NT " ABCDEFGHI JKLMNOPQRSTUVWKYZ"

70 NEXT

85 FOR 1=55296 TO 55296+1023: POKE |, 14: NEXT: REM FILL COLOR RAM W TH BLUE
90 GRAPHIC 0:REM RETURN TO STANDARD COLOR

Lines 10, 20 and 30 place the color codes for black, white and red into background
color registers 0, 1 and 2, respectively. Lines 31 through 33 print the letters of the

THE POWER BEHIND COMMODORE 128 GRAPHICS

alphabet on the screen twenty-five times. Line 35 fills the last 512 bytes of color RAM
with yellow. Line 37 disables the IRQ VIC screen editor. Line 40 enables multi-color
mode. At this point, al the screen locations corresponding to the color RAM locations
which have a color code greater than or equal to 8 are displayed in multi-color mode.
Since the ydlow color code is 7, dl the color RAM locations having this code are
placed in standard character mode. The default color for color RAM is code 13 (light
green) for C128 mode, and code 14 (light blue) for C64 mode. Line 85 fills color RAM
with the light blue color code. The multi-color characters displayed on the screen are
red, white and blue on a black background.

EXTENDED BACKGROUND COLOR MODE

The third type of character display mode, extended background color mode, alows you
to display three colors at atime on the text screen. For example, you have the character
color, the background color of the screen, and an additional background color within
each 8 by 8 character matrix. This means you can display a white character with a green
background in the 8 by 8 character matrix, on a black screen background. This mode
offers the use of an additional color in an 8 by 8 character matrix, without any loss in
screen resolution.

There is one sacrifice, however. In extended background color mode, only the
first sixty-four characters of the screen code character st are available. The reason for
this is that bits 6 and 7 determine which color will be selected for the background within
the 8 by 8 pixel character matrix. This only leaves five bits for the computer to interpret
which character is currently on the screen. The highest number you can represent with
five bits is 63. This means only the screen code values between 0 and 63 are available
for display on the screen within extended background color mode.

HOW TO ENTER EXTENDED
BACKGROUND COLOR NODE

Enabling bit 6 of location 53265 sdlects extended background color mode. Use this
POKE in BASIC:

POKE 53265, PEEK (53265) OR 64
To turn it off, use this POKE:
POKE 53265, PEEK (53265) AND 191

SCREEN LOCATION

The screen location in extended background color mode is the same as the standard
character and multi-color character modes, 1024 ($0400) through 2023 ($07E7). This
screen range can be relocated. See the SCREEN MEMORY section for details.

237

HOW TO INTERPRET SCREEN DATA

The data in screen memory is interpreted as screen codes, which are actualy the indexes
into the character ROM. Instead of representing the data as ASCII characters, the screen
codes represent the index into the character ROM which provide the ASCII codes. The
first character in character ROM is the at sign ((2); therefore the first screen code, 0, is the
code for the a sign.

Remember, since extended background color mode only uses five bits to deter-
mine the screen code value, only the firgt 64 screen code characters (0-63) are available.

COLOR DATA

The color assignments for the three colors on the screen stem from three sources. Just as
in standard character mode, the foreground color is assigned by COLOR RAM, in the
range 55296 (SD800) through 563295 (SDFE7). As described in the standard character
mode section, each color RAM location has a direct one-to-one correspondence with the
screen memory locations. See the Standard Character Mode section for screen and color
memory maps and an explanation of how the two sections of memory correspond to one
another.

The screen background color is assigned by background color register zero (location
53281 ($D021)). This is the color of the entire screen, on which the foreground and an
additional 8 by 8 character matrix background is placed.

The additional 8 by 8 character matrix background colors are determined by the
value of bits 6 and 7 of the screen code character value. Depending on the value of these
bits, the extended background color (the color within the 8 by 8 character matrix for
each character), comes from one of the four background color registers. Since there are
four choices for the extended background color, the computer needs two bits to
represent the four color choices. Figure 8-23 shows the four-bit combinations and the
corresponding background color registers associated with them.

BACKGROU ND COLOR

CHAR ACTER CODE REGISTER
RANGE BIT 7 BIT 6 NUMBER ADDRESS
0-63 0 0 0 53281 ($D021)
64-127 0 1 1 53282 ($D022)
128-191 1 0 2 53283 ($D023)
192-255 1 1 3 53284 ($D024)

Figure 8-23. Extended Background Color Registers

For example, POKE the screen code for the letter A (1) into screen location 1024.
Now POKE the screen value 65 into screen location 1025. You might expect the
character to be a reverse A, the second character of the second screen code character set.

THE POWER BEHIND COMMODORE 128 GRAPHICS

However, in this mode, you can only represent the first sixty-four characters, since you
only have five bits to represent screen characters. By trying to represent the screen code
65, bit 6 is enabled, which tdls the computer to select the background color register 1
(location 53282 (SD022)), and display the same character, but with the extended
background color specified by background color register 1.

Here's a program that illustrates how extended background color mode operates:

5 SONCLR

10 COLCR 0,1 :REM BKGRD=BLACK

20 COLR 2,1 :REM MLTICOLCR 1

30 COCR 3,2 :REM MLTI COLCR 2

40 PCKE 53284, 3: REM BACKGRD COLCR 3

45 POKE 53265, PEEK(53265) OR 64: REM SET EXTENDED BKGRND BI T
50 FCR 1=1024 TO 1256: PCKE I, 1-1023: NEXT

60 PRI NT: PRI NT: PRI NT: PRI NT

In the program, line 5 clears the screen. Lines 10 through 40 assign colors to the
four background color registers: black, white, red and cyan, respectively. Line 45
enables extended background color mode. Line 50 POKEs 232 characters into screen
memory. Each time sixty-four characters are stored into the screen memory, the same
st of sixty-four characters is POKEd into the next sixty-four screen locations. However,
the next extended background color is displayed. First, the sixty-four characters are
displayed with a black extended background, then a white extended background, then
red, then cyan.

CHARACTER DATA

Character data is interpreted the same way as in standard character mode, except only
the first 64 characters of the screen character set are available. The character data is also
located in the same range as in standard character mode. See standard character mode
for more information on character data.

STANDARD BIT MAP_ MODE

Standard Bit Map Mode, aso referred to as high-resolution mode, offers the ability to
display detailed graphic images in two colors. The resolution of bit map mode is
320 by 200 pixels. In this mode, the C128 no longer operates in terms of characters,
which are 8 by 8 pixd images stored in those complete units at a time. Bit map mode
allows you to address single pixels at a time, therefore exercising a substantial amount
of control over the detail of images on your screen. The smalest unit addressed in the
character display modes is an 8 by 8 pixd character. Standard bit map mode allows you
to address every individua pixel of the possible 64000 pixels that make up an entire
high-resolution screen image. Figure 8-24 shows how that bit-map coordinate plane is
st up.

239

X Coordinate
0,0 319,0

Y Coordinate

0,199 319,199

Figure 8-24. Bit Map Screen Coordinates

HOW TO ENTER STANDARD BIT MAP MODE

To enter standard bit map mode, st bit 5 of location 216 ($00D8) (the shadow
register of location 53265 (SD011)). When you issue the GRAPHIC 11 command
in C128 BASIC, hit map mode is enabled and the bit map screen is cleared.

You can also use a POKE command as follows, but you should use the highest-
level commands wherever possible:

POKE 216, PEEK (216) OR 32

This command turns on bit 5 of the GRAPHM register, which is the interface between
the VIC chip and the interrupt-driven C128 screen editor. This indirectly turns on bit 5
in location 53265 and enters hit map mode.

You can disable the interrupt-driven screen editor and select bit map mode directly
with these commands:

POKE 216, 255
POKE 53265, PEEK (53265) OR 32

In C128 mode machine language, use this program seguence:

LDA $00D8
ORA #3$20
STA $00D8

In C64 mode machine language, try this:

LDA $D011
ORA #$20
STA $D011

THE VIDEO MATRIX
(SCREEN MEMORY) LOCATION

The default location of the C128 video matrix (i.e., the bit map screen memory) is 7168
($1C00) through 8167 ($1FE7).
The default location of the C64 video matrix is 1024 ($0400) through 2023

THE POWER BEHIND COMMODORE 128 GRAPHICS

($07E7). The video matrix can be moved, however. See the Screen Memory section
elsewhere in this chapter for information on relocating the video matrix.

HOW THE VIDEO MATRIX
IS INTERPRETED

In bit map mode, the video matrix (bit map screen memory) is interpreted differently
than it is in the character display modes. In the character display modes, the screen
memory data is interpreted as screen codes corresponding to the characters in character
ROM. However, in bit map mode, the video matrix data is interpreted as the supplier of
color information for the bit map. The upper four bits (nybble) supply the color
information for the bit map foreground, and the lower nybble supplies the color code for
the bit map background.

The next section explains how pixels on the bit map screen are assigned to either
the foreground color or the background color.

BIT MAP DATA

In bit map mode, the character data, referred to as the bit map, is aso interpreted
differently than in the character display modes. The character data is not taken from
character ROM at all. Instead, it is taken from an 8K section of RAM memory, known
as the bit map.

The standard high-resolution screen is composed of 200 rows of 320 pixels, so
that the entire screen is composed of 64,000 pixels. In bit map mode, one bit in memory
is dedicated to an individual pixel on the screen. Therefore 64000 pixels require 64000
bits (or 8000 bytes) of memory to store the entire bit mapped image.

If a bit in memory in the 8000 byte bit map is set, the corresponding pixel on
the screen is enabled, and becomes the color of the foreground as specified in the upper
four bits of the video matrix. If a bit in the bit map is equal to zero, the corresponding
pixel on the screen becomes the color of the background, as specified in the lower four
bits of the video matrix. The combination of on and off bits in the bit map and the
corresponding pixels on the screen define the highly detailed image on the video screen.

The bit map default location in memory ranges from 8192 ($2000) through 16191
($3F3F). This requires 8000 bytes or just under 8K of memory. The spare bytes are used
for other purposes. Location 53272 determines the location of the video matrix and bit
map in memory. Since the screen editor is running on the IRQ, location 2605 ($0A2D)
is an indirect address you must use to place a vaue in location 53272 ($D018). The
upper four bits of 53272 determine where the video matrix begins and the lower four
bits determine where the bit map begins. In bit map mode, only bit 3 is significant, so
the bit map is either placed starting at location O or location 8192 ($2000) in each video
bank.

If you change to a higher bank number, remember to add an offsat of $4000 to the
start of the bit map and the video matrix for each bank number above O.

The video matrix is relocatable. See the Screen Memory section in the beginning
of the chapter for details on how to move the video matrix.

241

The bit map tells the computer which pixels in the foreground to enable on the
screen. Like a road map, it spells out exactly which pixels to turn on (in the foreground)
and off (in the background color) in order to display a picture on the screen. For
example, if the bit map started a location 8192 (the C128 BASIC default) the first
byte of the bit map corresponds to the bit map pixel coordinates 0,0 through 0,7. The
second byte of the bit map, location 8193, corresponds to coordinates 1,0 through 1,7
and so on. See Figure 8-25 to see how the bit map data in locations 8192-16191
correspond to the pixels on the visual screen:

X Coordinate

8192 | ‘
| 8193 | Y Coordinate
| 8194
8197 |
| 8198 | 0,199 319,199
8199
_.8200
8201
_ 8203
8204 . 16184 |
8205 | 16185 |
8206 16186
8207 16187 |
| 16189
16191

Figure 8-25. Relationship of Bit Map Data to Screen Pixels

Now you know how bit map mode operates internally within your C128. However,
you need an easy way to turn on and off pixels in the bit map in order to display
graphics on the screen. The new, high levd BASIC 7.0 commands such as DRAW,
CIRCLE, BOX and PAINT alow you to control the turning on and off of bits and their
corresponding screen pixels. The use of the X and Y coordinates on the bit map
coordinate plane easily orient you to displaying graphics. You can display high-
resolution graphics in other ways, outside of the BASIC 7.0 graphics commands.
This includes using commercial software packages that employ graphics tablets or
joysticks to draw on the screen, writing your own draw routines using a joystick or
paddle, or physically entering data into the bit map (which is painfully tedious and not
recommended).

THE POWER BEHIND COMMODORE 128 GRAPHICS

Another way to display graphics, which involves manipulating bits in the bit map,
is through mathematical equations, using geometry. Several books are available which
offer geometrical equations on how to draw three-dimensional objects and to move them.
Refer to the Suggestions for Further Reading the back of the book for sources on graphics.

COLOR RAM

In standard bit map mode, color RAM is not used since the color information for the bit
map is taken from the upper and lower nybble of screen RAM. Color RAM is used,
however, in multi-color bit map mode.

MULTI-COLOR BIT HAP MODE

Multi-color bit map mode is a combination of standard bit map mode and multi-color
character mode. Multi-color bit map mode allows the display of four colors within an 8
by 8 pixel bit map area. Like multi-color character mode, the horizontal resolution is
only half of the standard bit map mode, though the tradeoff in resolution is compensated
for by the use of two additional colors within an 8 by 8 pixel, bit mapped area.

HOW TO ENTER MULTI-COLOR
BIT MAP MODE

To enter multi-color bit map mode from C128 BASIC, issue the following command:
GRAPHIC 3

You can enter this mode with a POKE command as well. But make use of the
highest level commands available for the easiest programming:

POKE 216, PEEK (216) OR 160

This POKEs the value 160 and turns on the multi-color mode bit 7 (value 128) and
the bit map mode hit 5 (value 32) in the GRAPHM register which interfaces to the C128
interrupt driven screen editor. This indirectly turns on, respectively, bit 4 (multi-color
mode) of location 53270 (SD016), and bit 5 (bit map mode) of location 53265 ($D011).

Bit 5 of location 53265 determines whether the C128 is in bit map mode or
character mode. If bit 5 is equal to 1, bit map mode is enabled. Bit 4 of location 53270
determines whether the C128 is in standard or multi-color mode. If bit 4 is set, the
C128 operates in multi-color mode, regardless of whether it is in character or bit map
mode.

In C64 mode, you can store a value directly to these registers. But in C128 mode,
the GRAPHM intermediate register must be used as a gateway to these actua registers.
Again, this is because the C128 screen editor is interrupt driven, enabling the split-
screen modes for text and simultaneous bit map displays. Since the screen editor is
interrupt driven, an indirect register is used to restore the values that you need to use for

243

specific VIC registers. GRAPHM is one such register; therefore, every sixtieth of a
second, the value in the GRAPHM register is loaded into the appropriate VIC registers.

MACHINE LANGUAGE

To sdect multi-color bit map mode in C128 machine language, perform the following
instructions:

LDA $AO0; enables bits 4 and 5 of GRAPHM, the shadow location
STA $00D8

In C64 machine language, enter:

LDA $D011

ORA #%$20; sdlect Bit map mode
STA $D011

LDA $D016

ORA #%$10; sdect multi-color mode
STA 3$D016

In both cases, you must clear the screen, color RAM and the bit map in your own
program.

VIDEO MATRIX LOCATIONS

The video matrix defaults to locations 7168 ($1CO0) through 8167 (S1FE7) in C128
mode.

In C64 mode, the video matrix defaults to locations 1024 ($0400) through 2023
(SO7E7). This is relocatable. See the Screen Memory section earlier in this chapter.

HOW TO INTERPRET THE VIDEO MATRIX

The contents of the video matrix are interpreted the same way as in standard bit map
mode. The upper nybble is the color code for the foreground color; the lower nybble is
the color code for the background color of the bit map.

ADDITIONAL COLOR DATA

The upper and lower nybbles of screen memory supply the multi-color bit map screen
with two of the color sources. This mode offers two additional colors—background
color register 0 (location 53281) and the lower nybble of color RAM.

As in multi-color character mode, the bit patterns of the bytes in the bit map
determine the color assignments for the pixels on the screen. The bits are similarly
grouped in pairs, within 8-bit bytes, so there are 4-bit pairs in each byte. Bits 0 and 1, 2
and 3, 4 and 5, and 6 and 7 are grouped in pairs respectively. Depending on the values
of the bit pairs, the corresponding pixels in the bit map are assigned colors from the
sources in Figure 8-26.

THE POWER BEHIND COMMODORE 128 GRAPHICS

BITS COLOR INFORMATION COMES FROM

00 Background color #0 (screen color)
01 Upper four bits of video matrix

10 Lower four bits of video matrix

11 Color RAM

Figure 8-26. Multi-Color Bit Map Pixel Color Assignments

THE BIT MAP

Bit patterns determine how color is assigned to the multi-color bit map screen. If the bit
pair is equa to 00 (binary), color is taken from background color register O (location
53281). If the hit pair is equal to 01 (binary), the color assigned to these two pixels
comes from the upper nybble of video matrix. If the bit pair in the bit map is equal to
10 (binary), then the color assigned to those two pixels comes from the lower nybble of
video matrix. Finaly, if the bit pair in the bit map is equal to 11 (binary), the color is
taken from the lower four bits of color RAM. Unlike multi-color character mode, the
screen is either al standard bit map, or al multi-color bit map, unless you develop a
sophisticated interrupt-driven application program that handles the two separate bit

maps.

COLOR RAM

In multi-color bit map mode, color RAM is used if the bit pair from the bit map equals
11 (binary). Each color RAM location may have one of sixteen color codes, which
means that one 8 by 8 hit map area can have black, red, white and blue colors,
respectively, for the background color register O, the upper nybble, the lower nybble, and
the color RAM. The 8 by 8 multi-color bit map area next to it can have black, red, white
and green colors, since each color RAM location is independent of any other. The other
three color sources usualy remain constant throughout a bit map screen, though you can
change the upper and lower nybbles of the video matrix. The background color register
is amost adways the same throughout a bit map screen.

The C128 has powerful and varied graphics display capabilities. Certain applica
tions call for one type of display over another. Experiment with them al and see which
one meets your needs best. Figures 8-28 through 8-32 provide a graphics programming
summary that should be helpful in understanding graphics on the C128.

SPLIT-SCREEN MODES

The Commodore 128 has a split-screen feature that allows you to display the top portion
of the screen in bit map mode and the bottom portion in character mode. This alows you to
enter a BASIC graphics program and RUN it while the BASIC program ligting is

245

present and the bit map image is displayed, which saves time switching back and forth
between bit map and character modes.

Before, you would have had to enter the graphics program (in machine language),
RUN it and switch back to the text screen to make a change. Now you can display the
graphic image and have your text screen available to you al at the same time. You can
alter the program while your bit map image is gill on the screen, RUN it and see the
immediate results without losing the text screen.

Without the Commodore 128's split-screen capabilities, you would have to pro-
gram a split screen yoursdlf. This involves raster interrupts which utilize either two
screen memories in two different video banks, or a fairly choppy single-screen memory,
usually with a visible raster line. With the C128 split-screen mode, dl you have to do to
enter a split-screen mode is to issue the GRAPHIC command in BASIC. For example,
the command:

GRAPHIC 21

sets up a standard bit map screen on top and a text screen on the bottom. Similarly, the
command:

GRAPHIC 4,1

constructs a multi-color bit map screen on the top portion of the screen and a text screen
on the bottom portion. The " 1" in these commands clears the bit map screen. To leave
the bit map screen intact, once you have aready displayed an image, replace the " 1"
with a zero (0).

The GRAPHIC command has an additional parameter that allows you to define
where the split occurs. The split-screen starting location is defined in terms of a
character row, as if the C128 were in a character display mode. For example,

GRAPHIC 4,1,15

selects a split screen with multi-color bit map mode on top of the screen and the text
screen on the bottom, dtarting at character row 15. If the start of the split screen is not
defined, the C128 defaults the start to line 19.

HOW SPLIT-SCREEN MODES ARE
ORGANIZED IN MEMORY

SCREEN LOCATIONS

The split-screen modes, both multi-color and standard, use two independent screen
memories. The bit map video matrix is taken from the address range 7168 ($1COO)
through 8191 ($1FFF), just as in standard and multi-color bit map modes. The text
portion of the screen takes its screen memory from default character mode screen
locations 1024 ($0400) through 2023 ($07E7), just as in standard and multi-color
character mode. The hidden portions of the screen, the bottom portion of the bit map
screen and the upper portion of the text screen, ill store data, but it is invisible
since the other screen memory has overlaid it.

THE POWER BEHIND COMMODORE 128 GRAPHICS

INTERPRETING SCREEN DATA

The text portion of the split screen is interpreted according to the standard character mode
section. The bit map portion, whether standard or multi-color, is interpreted according to the
description in the bit map mode section. Consult the Standard Character Mode, Standard Bit Map
Mode and Multi-color Bit Map Mode sections for information on how screen data is interpreted.

CHARACTER MEMORY LOCATIONS

The split-screen modes also take character data from two independent parts of memory.
The bit map data, referred to Smply as the bit map, is taken from the default range 8192
($2000) through 16191 (S3FE7) for both the multi-color and standard bit map mode
portions of the screen.

The character memory for the text portion of the split screen is derived from the
character ROM. The actud character ROM occupies the memory locations 53248
($D000) through 57343 ($DFFF) overlaying the 1/O registers. The I/O registers must be
switched out to view the actual character ROM, in bank configuration 14, for example.

For information on how character data is interpreted in standard character, stan-
dard bit map and multi-color bit map modes, see the sections describing these modes.
See also the Color RAM Banking section.

COLOR DATA

Each of the standard bit map, multi-color bit map and standard character modes interpret
color differently. See each section for detailed information on color assignments.

MACHINE LANGUAGE

In machine language, you must program a split screen yoursdlf. This is not the easiest of
programming tasks, since it involves raster interrupt processing, which can be tricky. In
C128 mode, hit 6 in the GRAPHM register is the split screen bit. If bit 6 of $0008
(GRAPHM) is set, a split screen is displayed. Otherwise, bit 6 is clear (0) and a single
screen is displayed.

The C64 mode has no corresponding split screen bit. C64 mode is programmed
differently for split screens. See the Raster Interrupt Split-Screen Program at the end of
the chapter to learn how to program a split screen in machine language.

CAUTION: A system crash may occur if the display mode is changed
while the interrupt-driven screen editor is enabled. See the Shadow
Register section for details.

THE INTERRUPT-DRIVEN SCREEN EDITOR

The intermediate memory locations, sometimes referred to in this guide as shadow
registers, are designed specifically for handling the split-screen modes. In order to
provide split-screen modes, the C128 screen editor has to be wedged into the system's
interrupt handling routines.

247

Unlike the Commodore 64, the C128 handles interrupts exclusively according to
the raster beam. This has made it necessary to merge the C128 screen editor into the
interrupt request routines (IRQ). The C64 uses interrupt timers which makes interrupt
processing less predictable. By processing the interrupts from the raster beam, the
operating system aways knows where and when the interrupt will occur. Timer inter-
rupts made catching a raster interrupt less reliable because the operating system never
knew exactly where an interrupt would occur in relation to the raster beam.

The raster interrupt-driven screen editor made it necessary to use indirect storage
locations for certain registers of the VIC chip and 80-column chip. This way, the
intermediate memory locations refresh the actual video chip registers every sixtieth of a
second, each time the raster beam begins a new scan at the top of the screen. The raster
beam scans the entire screen sixty times a second, so on each pass of the raster beam the
intermediate memory locations refresh the actual VIC chip and 8563 chip registers.

RASTER INTERRUPT
SPLIT SCREEN PROGRAM
WITH HORIZONTAL SCROLLING

This section explains how and provides a program to perform split screen raster
interrupts in machine language. The program is explained as it applies to Commodore
64 mode, but it can be modified to run in Commodore 128 mode.

You dready have a way to split the screen in C128 mode with the BASIC
GRAPHIC command. The program provided in this section splits the screen in machine
language in C64 mode. See the figure in the shadow register section to see which
addresses must be changed to make this program work in C128 Mode. A few differ-
ences will occur in the timing of the raster. In Commodore 128 mode, al interrupts
occur according to the position of the raster beam as it scans the screen. This is why
shadow registers are necessary for certain graphics locations, since the C128 screen
editor is interrupt driven to allow the split screen modes in BASIC.

The program in this section aso scrolls text on the bottom quarter of a standard
character screen, while the top three quarters are displayed in multi-color bit map mode.
The standard character screen resides in video bank 0 ($0400-$07E7) while the multi-
color hit map video matrix is stored in video bank 1 starting at $5C00 ($1COO +
$4000 = $5C00). Every time an interrupt occurs, the program changes video banks,
display modes, the character memory and video matrix pointers. This program supplies
the data that scrolls at the bottom of the screen, but it assumes you have placed an 8000
byte bit map starting at address 8192 ($2000) plus an offset of 16384 ($4000) for the
change of video banks. This makes the absolute start address of the bit map 24576 ($6000).

An 8000 byte bit map isjust too large to present in this book. However, the easy
way to place a bit map in this area is as follows:

THE POWER BEHIND COMMODORE 128 GRAPHICS

1. First start in C128 mode, and enter split screen (multi-color) bit map
mode through BASIC with this command:

GRAPHIC 4,1

2. Now draw on the screen with the BOX, CIRCLE, DRAW and PAINT
commands either in a program or in direct mode.

3. When you are finished drawing, enter the machine language monitor either by
pressing the F8 function key or by typing the MONITOR command.

4. Now transfer the video matrix and bit map from the C128 default locations of
$1C00 through $1FFF and $2000 through $3FFF respectively, to $5C00 through
$5FFF and $6000 through $7FFF respectively. The new start addresses are
the default locations plus an offset of $4000 for both the video matrix and bit
map pointers. The new start of the video matrix is at $5C00 ($IC00 +
$4000). The new hit map begins a address $6000 ($2000+ $4000). This
transfer can be accomplished with a single transfer command within the
machine language monitor as follows:

T 1C00 3FFF 5C00

This command transfers the contents of memory locations $IC00 through $3FFF
to $5C00 through $7FFF. Since the default locations of the video matrix and bit map are
continuous in memory, the transfer can be done with a single command. If the default
addresses of the video matrix and bit map had not been contiguous, two transfers would
have been necessary. See Chapter 6 for details on using the Machine Language Monitor.

Now that you are gill within the control of the Machine Language Monitor, begin
entering the machine language instructions in the listing provided in the next few pages.
Start entering the program at address $0C00. The program, including the scrolled data
occupies memory up to address $0DF9, which means the program is a total of 505 bytes,
or amost hdf a kilobyte (K).

Now save the program you just painstakingly entered with the Monitor Save (S
command as follows:

S "filename", 08, 0C00, ODFF

If you have a C128 assembler, create a source file, assemble and load it. If your
assembler dlows it, save the program as a binary file.

NOTE: If you have the Commodore 64 Assembler Development System,
create a source file (with start address $0C00), assemble and load it in
C64 mode. Then press the RESET button (not the ON/OFF switch) to enter
C128 mode. Don't worry, your program will till be in memory, but this
time it's in C128 memory. Next enter the Machine Language Monitor
and use the Monitor Save (S) command to make a binary file as described
above.

249

Now you are ready to enter C64 mode and run the program with the following
command:

GO 64

Reply to the question "ARE YOU SURE?' by pressing the "Y" key and
RETURN. You are now placed in C64 mode.

At this point, you may say to yoursdf, "After | just did dl that work, why am |
going to waste it by changing modes?’

Actualy, you are not wasting any effort. When you GO 64 (or press the reset
button), much of the RAM for machine language programs and data is preserved in
RAM bank 0. BASIC programs are erased, however. Specifically, these are the ranges
of RAM that are preserved when changing between C128 and C64 modes.

C128 MEMORY LAYOUT

$0CO0 - $ODFF RS232 Input and Output Buffers

$1300 - $1BFF Available Memory for Machine Language application programs
$ICOO - $1FFF Bit Map Video Matrix

$2000 - $3FFF Bit Map Data

$4000 - $FF00 BASIC Text Area

Figure 8-27. Preserved RAM Between C128 and C64 Modes

The rest of the RAM memory is allocated for other purposes and the contents
change from mode to mode. There are other particular bytes that are preserved from
mode to mode, but these smdl chunks of memory are not worth mentioning here. The
blocks of memory mentioned above provide enough of a clue to the RAM used by both
modes. Remember, however, that the RAM is only preserved if you switch from C128
mode to C64 mode with the GO 64 command, or you switch from C64 to C128 mode
with the reset button (warm start). If you perform a cold start, turn the computer power
off, then on again, dl RAM is cleared and none is preserved.

Notice that the address ranges where you placed your program, the video
matrix and the bit map are in the portions of RAM that are preserved from mode to
mode.

Now start (run) the program from C64 BASIC with this command:
SYS 12*256

The top three quarters of the screen is the bit map screen you created with the
C128 BASIC graphics commands, the lower quarter is horizontally scrolling text.
The following program is the listing that performs the split screen and scrolling.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680

THE POWER BEHIND COMMODORE 128 GRAPHICS

251

1690 AND #3$7F

1700 STA $D011 ;DI SABLE INTRPT DIS BIT
1710 ;

1720 CLI

1730 ;

17 40 ;
1750 ;
1760 ;

1770 CHECK LDA FLAG2

1780 BPL CHECK

1790 LDA #500

1800 STA FLAG2

1810

1820 LDX #39

1830 LDY #39

1840 SHIFT LDA (TXTPTR),Y

1850 STA SO770, X

18 60 DEX

1870 DEY

1880 BPL SHIFT

1890 INC TXTPTR

1900 BNE WTIME ;TIME TO RESET PO NTER

1910 INC TXTPTR+1

1920 MVTI ME LDA TXTPTR ;ARE WE AT THE END OF THE TEXT YET
1930 CMP #<ENDTXT

1940 BNE CHECK

1950 LDA TXTPTR+1

1960 CMP #>ENDTXT

1970 BNE CHECK

1980 LDA #<FRANK ; SET POI NTER BACK TO THE BEGI NNI NG

1990 STA TXTPTR

2000 LDA #>FRANK

2010 STA TXTPTR+1

2020 JMP CHECK

2030 ;
2040 FRANK . BYT
2050 . BYT '

2060 .BYT 'TH'S IS AN EXAMPLE OF SCROLLI NG
2070 .BYT "IN THE HORI ZONTAL (X) DI RECTI ON.
2080 .BYT 'ONCE THE DATA HAS BEEN DI SPLAYED,
2090 .BYT ' SCROLLING STARTS AGAIN FROM THE
2100 .BYT 'BEG NNING. '

2110 ;

2120 ENDTXT .BYT

2130 . BYT

2140 ;

2150 ; I NTERRUPT SERVI CE ROUTI NE
2160

2170 M NE LDA $D019

2180 STA SD019

2190 ;

2200 LDA FLAG ; FLAG =0 . A=0
2210 EOR #1 ;FLAG =0 .A=l

2220 STA FLAG ;FLAG =1 A4l
2230 TAX ;. X=l A=

2240 LDA POINT, X ;.X=1 . A=200
2250 STA RASTRO ;.X=1 RASTRO=200
2260 CPX #1

2270 BNE BOTTOM

2280;

2290 LDA $D011 ;BIT MAP MODE
2300 ORA #$20

2310 STA 5DO11 ; BW

2320 LDA $D018

2330 ORA #3$78 ; CHAR=$2000+$4000
2340 STA $D018 ; SCR=$1C00+54000
2350 LDA $D016

2360 ORA #$10

2370 STA $D016; SET MULTI COLOR

THE POWER BEHIND COMMODORE 128 GRAPHICS 2S3

For readability, the program is listed as a source file, as though it was entered
through an assembler editor. It is easier to understand as a source file rather than a
listing from the Machine Language Monitor. To enter this program into the Machine
Language Monitor, reference the actual address in place of the variable operand ad-
dresses. Most of the actual addresses are listed in the beginning of the program (lines
1010 through 1100). Keep in mind that these are only line numbers for an assembler

editor. You will enter the program into a memory location number (address) in the
Machine Language Monitor. In this case, the program is stored in memory starting at
address SOCO0. Line 1120 specifies this start address with:

* = $ocoo

Here's an instruction-by-instruction explanation of the scrolling split screen program.

Line 1010 assigns the variable IVEC to the address $0314, the hardware interrupt
request (IRQ) vector. The interrupt vector is the means by which the Commodore 128
displays split screens and scrolling. By wedging your own routine into the hardware
interrupt vector (in this case scrolling and splitting the screen), it enables you to perform
operations that usually take too long for the microprocessor to perform under an
application program not using interrupts. The interrupt vector is checked for an interrupt
routine every 60th of a second. In this program, the screen is split 60 times per second,
S0 it appears you have two different screens displayed at the same time. You could not
split the screen without requesting an interrupt; the microprocessor is not able to perform
al the required operations fast enough to keep up with the raster scan of the video
controller. The speed that the screen is continually updated, known as the raster scan,
also occurs at the speed of 60 times per second. For a split screen to occur, you tell the
computer the point on the screen where one type of display ends and the new one (bit
map for example) begins. The way you tell the computer this is by placing the number
of a pixdl row, aso caled araster row, in the raster compare register located at address
SD012. Line 1030 assigns this address to the variable RASTRO.

You'll see later in the program that the value placed in the Raster Compare Register
starts the text screen at raster row 201. The raster scan is again interrupted at raster row
50 at the top of the screen to display the bit map screen. This is repeated 60 times every
second, so it appears to the human eye that two different display modes are active at the
same time.

On with the program explanation. Line 1040 defines the BACOL variable for the
background color register zero, located at address $D021. Line 1050 assigns the variable
POINT to location $1802. POINT is used to store the raster row vaue where the text
screen begins. Line 1060 assigns the variable FLAG to location $FC. FLAG is used later
in the program (lines 2200-2270) to determine where the interrupt occurred, either raster
row 50 or raster row 200.

Lines 1070 and 1080 assign the variables FLAG2 to location $FD and SCROLL to
location $FE respectively. Both FLAG2 and SCROLL store the value of the scrolling
register. SREG is assigned to location $D016, the scrolling register. Only hits 0 through
2 are used as the scrolling bits. The other bits in this address are used for other
purposes. Three scrolling bits are necessary since characters that are scrolled are moved
over seven pixels then shifted to the next character position to the left or right, then
scrolled smoothly again seven more pixels.

Line 1100 assigns the variable TXTPTR to address $FA. This variable marks the
starting address in memory where the scrolled characters are stored.

As was mentioned earlier, line 1120 specifies where the program storage begins in
memory. This is the address where the execution of the program begins in memory. You

THE POWER BEHIND COMMODORE 128 GRAPHICS

will SYS to this address to start the program in BASIC, or GO to this address from the
Machine Language Monitor.

The first sequence of program instructions starting at line 1140 places the contents
of the address (named FRANK) of the beginning of the scrolling text into the memory
locations ($FA and $FB) caled TXTPTR and TXTPTR+ 1. FRANK is the labe in line
2040 which marks the location where the first scrolled character is stored. In this
program the firgt character is a space; in fact the firgt forty characters that are scrolled
across the screen are spaces. The forty-first character marks the beginning of the data
THIS IS AN EXAMPLE OF SCROLLING' in line 2060. The scrolled data in lines
2040 through 2130 is stored starting at location $0C98, once this source file is
assembled into object code. In this case, the low byte stored in $FA is $98 and the high
stored in $FB is $0C. The full 16-bit address $0C98 is important, since this is the base
address which you increment as you scroll each letter across the VIC screen. When the
text pointer (TXTPTR) reaches the end of the scrolling text, the base address SOC98 is
again stored in TXTPTR.

The second sequence of instructions starting at line 1190 sets the high vaue of the
two scrolling variables SCROLL ($FE) and FLAG2 ($FD) to 7. These are used and will
be explained later in the program.

Sequence three starting at line 1230 sets the data direction register to output.

The next module of instructions in lines 1280 through 1300 set the screen size to
38 columns, reducing the screen width by a column on each side. In order to scroll
smoothly, you must set the screen size to 38 columns. Clearing bit 3 of location $D016
sets 38 column size. Setting bit 3 restores the VIC screen to its normal 40 column size.

The extra column on each side of the screen border provides a place for the
scrolled data to scroll smoothly to and from offscreen. This program scrolls left, so each
newly scrolled character is placed in column 39 on the right, before it becomes visible in
column 38. At the same time, the lead character on the left scrolls from column 2 to
offscreen column 1. This occurs in lines 1770 through 2020 and is explained as the
program progresses.

Lines 1330 through 1380 set the text screen color RAM to a white fore-
ground. The lower four bits specify the foreground character color in standard
character mode.

The screen memory is stored in video bank O where the scrolling text appears at
the bottom fourth of the screen. The bit map and video matrix are stored in video bank
1, the 16K range between $4000 and $7FFF.

The reason only 200 color RAM locations are filled is because only the lower five
rows are visible on the text screen. There is no point clearing the other 800 locations
since they are not visible.

Lines 1410 through 1700 make up the interrupt initialization routine. Line 1430,
labeled LOOPL, sets the interrupt disable bit in the status register. When this bit is set,
interrupts are disabled and none can occur. Only when the interrupt disable bit is cleared

285

(0) can interrupts occur. The last line (1720) of the interrupt initialization routine clears
the interrupt disable and allows interrupts to occur.

Lines 1440 through 1470 store the original contents of the Interrupt Request (IRQ)
vector into temporary storage locations TEMP (low byte $1806) and TEMP+ 1 (high
byte $1807). This is necessary in order to store the origina contents of the IRQ vector
S0 you can jump back to this location once the interrupt is serviced as in line 2900.

Lines 1480 through 1510 store the starting location of the interrupt service routine
into the IRQ vector. In this case, MINE is the source file labd in line 2170 where the
interrupt service routine begins. In the assembled object file, as in the Machine
Language Monitor, the low byte is $71 and the high byte is $0D, to form the 16 bit
address 50D71. Once the interrupt disable hit is cleared and an interrupt occurs, the
8502 microprocessor finishes executing its current instruction and sets the interrupt
disable status bit, so no other interrupts can occur. The processor then places the
contents of the high byte and low byte of the program counter and the status register on
the stack respectively. Finaly, the 8502 fetches the address contained in the IRQ vector
and executes the routine starting at this address, in this case SOD71.

Lines 1530 and 1540 disable the CIA timer in location $DCOE. In addition, line
1550 initializes the variable FLAG to zero. This variable is used later in the program to
figure out where the raster interrupt has occurred, either at the top of the screen (raster
row 49) for bit map mode or near the bottom fourth of the screen (raster row 201) for
standard character mode.

The instructions in lines 1570 through 1590 define the variable POINT ($1802) as
the value of the raster row 49 ($31) where the interrupt occurs to select bit map mode. In
addition, this vaue is also stored in the Read/Write Raster Register ($D012) for raster
row comparisons later in the program.

The C128 VIC screen consists of 200 raster rows, each row one pixd tal, having
320 pixed columns. You know how BASIC addresses the bit map coordinates on a
coordinate plane of 0,0 in the top le&ft corner and 319,199 in the bottom right. However,
the visible raster rows are not labeled in the same way. The visible raster rows start at
50 a the top of the screen and end a 250 a the bottom. These are the same row
numbers as sprites use. Notice there are till 200 rows but that they offset the bit map
coordinate row number by 50. The raster row numbers below 50 and above 250 are off
the visible screen. These offscreen raster rows are referred to as the vertica retrace.

The instructions in lines 1610 and 1620 define the variable POINT + 1 ($1803) as
the vaue of the raster row 201 ($C9) where the interrupt occurs to select standard
character mode.

Lines 1650 and 1660 enable the raster IRQ Mask Register. Line 1670 sets the
Raster Compare IRQ Flag. By setting hit one in these registers, the raster interrupt
attached to the IRQ line is alowed to occur (once lines 1680 through 1720 are
executed), depending upon whether the physical raster row compares and matches with
either of the values in POINT or POINT+1. If either of these match, the interrupt
oCCurs.

The instructions in lines 1680 through 1700 clear the raster compare high bit (bit
8). This is an extra bit from location $D012 for raster compares.

THE POWER BEHIND COMMODORE 128 GRAPHICS

The ingtruction in line 1720 clears the interrupt disable status bit, which enables
interrupts to occur. This is the last operation to be performed by the interrupt initializa-
tion routine. Now interrupts are ready to occur and be serviced.

Lines 1770 through 1800 check the value of FLAG2. If FLAG2 is positive, the
program branches to the label CHECK in line 1770 and checks the value of FLAG2
again. The value stored in FLAG2 represents the value of the lower three bits in the
horizontal scrolling register at location $D016. The variable SCROLL is aso associated
with the variable FLAG2. In the interrupt service routine (in lines 2760 through 2810),
the vaue in SCROLL is decremented and stored in FLAG2. This value pertains to the
value placed in the actua horizontal scrolling register e $D016. The reason this is
counted is as follows.

The direction of the scrolling is right to left; therefore, you must place the
maximum value (7) in the lower three bits of SD016 and decrement that value by one. If
the program had scrolled left to right, you would initialize the scrolling register to zero
and increment the lower three bits. When the scrolling register value is decremented, the
characters in the screen memory locations which are to be scrolled are moved to the |eft
by one pixel. Each time the scrolling register is decremented, the characters move
another pixel to the left. When the value (the lower three bits) of the scrolling register
equals zero, you must move the scrolled characters up in screen memory by one location.
This routine is contained in lines 1840 through 1880. After the shift, the lower three bits
of the scrolling register are s&t back to 7, the characters are again shifted by the VIC
chip 7 pixels to the left and your routine shifts the characters up in memory again by
one. The additional details are covered in the explanation of lines 2760 through 2900.

The instructions in lines 1820 through 1880 shift the text to be scrolled up in
memory by one location for each cycle of the loop. First the X and Y registers are
loaded with the decimal value 39 ($27). The ingtruction in line 1840 loads the value of
the memory location where the scrolled text begins using indirect Y addressing. The
address is calculated by taking the contents of zero page memory variable TXTPTR
($98) and adding the offset 39 to its contents to arrive at $BF. The effective address
gives the low byte where the scrolled data begins. The first scrolled character is actudly
a space. Subsequent data elements are accessed by modifying the value of the Y register.

The store ingtruction in line 1850 stores the first character of the scrolling text in
screen location 1943 ($0770 + $27), which is the fortieth column of the twenty-third
row. This column is not visible when the screen size is set to 38 columns for horizontal
scrolling. Each newly scrolled character must be placed in this position in order to scroll
smoothly from the offscreen location. Lines 1860 and 1870 decrement the X and Y
registers respectively. Line 1880 branches to the label SHIFT if the Y register is positive
(greater than zero).

The second time through the loop, the low byte of the scrolled character (at
location $98 + $26 = $BE) is stored in screen location 1942 ($0770+ $26). so the
(space) character in $0CBE is stored in screen location $0796. The third time through
the loop, $0CBD s stored in $0795 and so on. This process continues until the X and
Y registers equa zero. So far, only the series of 39 space characters in lines 2040 and
2050 have been ghifted across the screen.

257

Once the X and Y registers have been decremented to zero, the TXTPTR is
incremented in line 1890 so that subsequent characters such as "THIS IS AN EXAM-
PLE ..." can be scrolled. In the first 39 cycles through the loop fin lines 1840 through
1880) 39 spaces are shifted (scrolled) one character position on the twenty-third character
row on the screen. The next 39 cycles shift 38 spaces and the letter " T" in "THIS" one
character position across the screen. The next 39 cycles, 37 spaces and the letters " TH"
in "THIS" are shifted in memory and scrolled one character position on the screen and
so on. This process occurs until al characters in the data (in lines 2040 through 2130)
are scrolled.

Line 1900 branches to the label MVTIME while TXTPTR (the low byte of the
start of scrolled data) is greater than zero, otherwise TXTPTR + 1 incremented to update
the high byte. Lines 1920 through 1970 check to see if the text pointers are at the end of
the scrolled character data ($0D70 in the assembled program). If the pointers are not at
the end of the character data, the program branches to the labed CHECK and the data is
shifted by the VIC chip by seven pixels and the scrolling process repeats again. If the
text pointers are a the end of the scrolled character data, lines 1980 through 2010 set the
text pointers to the beginning of the scrolled data in memory and the process is repeated
continuously as specified by the IMP CHECK instruction.

Lines 2040 through 2130 represent the data to be scrolled by the program. The
data is stored in .BYTE statements as it appears in the Commodore Assembler 64
Development System. In your case, the Machine Language Monitor handles data by
simply storing it in an absolute memory range. In the assembled object code program
the data turns out to be stored in the range $0C98 through $0D70. You will refer to the
data with these addresses and not with a labd as in this explanation.

THE INTERRUPT SERVICE ROUTINE

The program instructions in lines 2170 through the end of the program make up the
interrupt service routine. Depending upon the value of the raster comparison, particular
segments of the routine are executed upon the detection of an interrupt. For instance, if
the result of the raster comparison detects an interrupt to occur at raster row 49, lines
2290 through 2560 are executed. This selects bit map mode and performs additional
functions that are explained in a moment. If the raster comparison detects the interrupt
to occur at raster row 201, lines 2590 through 2900 are executed. These instructions
sdlect standard character mode, among other things. Keep in mind that both segments of
the interrupt service routine are executed within a single, complete raster scan of the
screen sixty times per second. Instructions 2170 through 2270 are always executed when
an interrupt occurs.

The instruction in line 2170 clears the raster compare IRQ flag after the interrupt
has occurred. The address of the label MINE, which is loaded into the IRQ vector in
lines 1480 through 1510, tells the 8502 where the interrupt service routine resides upon
the occurrence of an interrupt. In the assembled object code, this is an absolute address
($0D71).

THE POWER BEHIND COMMODORE 128 GRAPHICS

Lines 2200 through 2270 determine the location (raster row) in which the raster
interrupt has occurred. Line 2200 loads the value of FLAG, which was initialized to
zero, into the accumulator. Line 2210 XOR's the accumulator with 1, which effectively
places a one in the accumulator for the first pass through this routine. This value is then
stored back into FLAG. In each subsequent occurrence of an interrupt, the value of both
the accumulator and FLAG are toggled between zero and one. The accumulator is then
transferred to the X register in line 2230. Line 2240 loads the value of POINT or POINT
+ 1 depending upon the value in the X register. If the X register equals 0, POINT is
loaded into the accumulator, which specifies the interrupt to occur at raster row 49. If
the X register equas 1, POINT +1 is loaded into the accumulator, which specifies the
interrupt to occur at raster row 201. Line 2250 stores the accumulator vaue into the
variable RASTRO. The X register is compared with 1 in line 2260. If the X register
equals 1, the interrupt has occurred at raster row 201 and the program branches to the
instructions in lines 2590. If the value of the X register equals O, the branch in line 2270
fdls through and the instructions in lines 2290 through 2650 are performed.

The instructions in lines 2290 through 2560 perform the operations associated with
bit map mode. Lines 2290 through 2310 select bit map mode. Lines 2320 through 2340
<t the video matrix at $!C00 and the bit map at $2000. Both of these start addresses are
offsat by the compulsory $4000, since this screen appears in video bank 1 ($4000-$7FFF).
Lines 2350 through 2370 st multi-color mode. Lines 2390 through 2410 select video
bank 1. Lines 2430 through 2460 set the lower two bits of the scrolling register (to the
value 3).

The ingtructions in 2510 through 2550 restore the original vaues of the X, Y and
A (accumulator) registers. Line 2560 returns from the interrupt and exits the interrupt
service routine.

Lines 2590 through 2900 perform al the associated text mode operations. Lines
2590 through 2610 sdect standard character mode. Lines 2630 through 2650 changes
back to video bank 0, the default bank ($0000-$3FFF). Lines 2670 through 2690 disable
multi-color mode, and return to the standard color mode. Lines 2710 and 2720 set the
default screen location 1024 ($0400) and the default start of character memory, with the
decimal value 23 ($17). All numbers which are not preceded by a dollar sign are
assumed to be decimd in this particular assembler editor. Lines 2740 and 2750 set the
background color for the text screen to black.

Lines 2760 through 2890 set the value of the scrolling register, which scrolls the
characters across the screen by 7 pixels, before they are shifted in memory with the
routine in lines 1840 through 1880.

Finally, line 2900 jumps to the default IRQ vector which was saved early in the
program into the variable TEMP. This alows the 8502 to process the normal interrupt
services as though this program's service routine had not occurred.

Although this program example is long and complex, it contains useful routines
and explanations that have never appeared before in any Commodore text. Study these
routines carefully and add them into your own programs. This section includes a wealth
of information for the novice and experienced software developer alike. Figures 8-28
through 8-32 on the following four pages provide a summary of graphics programming.

259

CHANGING VIDEO BANKS

MOVING SCREEN RAM

Ccl28 POKE 56576, (PEEK (56576) TEXT
BASIC AND 252) OR X POKE 2604, (PEEK (2604 AND 15)
WHERE X IS THE DECIMAL OR X
}I'//':\IE:IEJEE eC})goB(IJTr\ngAAel\llzDzézl N WHERE X IS THE DECIMAL
VALUE IN TABLE 829 ON P. 262
BIT MAP
POKE 2605, (PEEK (2605 AND 15)
OR X
WHERE X IS A VALUE IN
TABLE 829 ON P. 262
ci28 LDA $DD00 TEXT BIT MAP
MACHINE AND #$FC LDA $0A2C LDA SOAZD
LANGUAGE | ORA #$X
AND #$0F AND #S$OF
STA $DD00 ORA #$X ORA #$X
WHERE X IS THE HEX VALUE STA $0A2C STA $0A2D
OF THE BITS IN TABLE 830 ON | WHERE X IS A HEX EQUIVA-
P. 262 LENT OF THE DECIMAL
VALUE IN FIGURE 829 ON P.
262
Co4 POKE 56576, (PEEK (56576) TEXT OR BIT MAP
BASC AND 252) OR X POKE 53272, (PEEK (53272)
WHERE X IS THE DECIMAL AND 15) OR X
\T/ﬁ'éll_JEE ggoB(')Iioggg 1IN WHERE X IS A DECIMAL
' VALUE IN FIGURE 829 ON P.
262
Cco4d LDA SDDO00 TEXT OR BIT MAP
MACHINE AND #$FC
LANGUAGE | ORA #$X LDA $D018
STA SDDO0 AND #$0F
ORA #$X
WHERE X IS THE HEX VALUE STA $D018

OF BITSOAND 1IN
TABLE 8-30 ON P. 262

WHERE X IS A HEX
EQUIVALENT OF THE DECIMAL
VALUE IN FIGURE 8-29 ON P.
262

IN C64 MODE, YOU CAN SET
UP TWO DIFFERENT SCREENS,
ONE FOR TEXT AND THE
OTHER FOR BIT MAP, AS THE
C128 KERNAL DOES.

Figure 8-28. Graphics Programming Summary—PART |

THE POWER BEHIND COMMODORE 128 GRAPHICS

MOVING CHARACTER MEMORY

ACCESING CHARACTER ROM

TEXT
POK E 2604, (PEEK (2604)AND 240) OR Z

10 BANK 14: REM SWAP IN CHAR ROM
20FORI1=0TO7

30 ? PEEK (1)
40 NEXT

BIT MAP* 50 BANK 15
POKE 2605, (PEEK (2605)AND 240) OR Z
WHERE Z IS A DECIMAL VALUE
IN FIGURE 8-31 ON P. 262
* = ONLY BIT 3 IS SIGNIFICANT
IN BIT MAP MODE
TEXT BIT MAP* LDA #$01
LDA $0A2C LDA $0A2D ﬂ)/; %FO%O
AND #$FO AND #$FO0

LDA #$D000,X
ORA #$Z ORA #$Z LOOP STA $TEMP,X
STA $0A2C STA $0A2D TN '
WHERE Z IS THE HEX EQUIVALENT OF CPX #$07
A DECIMAL VALUE IN FIGURE 831 ON BNE LOOP
P. 262 LDA #$00
* = ONLY BIT 3 1S SIGNIFICANT IN BMM STA $FF00
TEXT OR BIT MAP* 5 TEMP=6144

POKE 53272, (PEEK (53272)AND240) OR Z

WHERE Z IS A DECIMAL VALUE IN
FIGURE 8-31 ON P. 262

* = ONLY BIT 3 IS SIGNIFICANT
IN BIT MAP MODE

10 POKE 56334,PEEK (56334) AND 254
20 POKE 1, PEEK (1) AND 251
30FOR1=0TO 7

40 POKE (TEMP + |, PEEK (53248 + I)
50 NEXT

60 POKE 1, PEEK (1) OR 4

70 POK E 56334, PEEK (56334) OR 1

80 FOR | =TEMP TO TEMP + 7

90 ? PEEK (1);
100 NEXT

TEXT OR BIT MAP* LDA $DCOE
LDA $D018 é{\f ;‘E?(EEE
AND #$F0 LDA $01
ORA #$7 AND #$FB
STA $D018 STA $01

LDX #3$00
WHERE Z IS THE HEX EQUIVALENT LOOP LDA $D000,X
OF A DECIMAL VALUE IN FIGURE STA $TEMP,X
831 ON P. 262 INX
* =ONLY BIT 3 IS SIGNIFICANT gﬁ)é f%ogp
IN BIT MAP MODE LDA $01

ORA #$01

STA $01

LDA $DCOE

ORA #%$01

STA $DCOE

261

176
192
208
224
240

LOC ATI ON*

BITS DECIMAL HEX
O000XXXX 0 $0000
0001IX XXX 1024 $0400 (DEFAULT)
0010X XXX 2048 $0800
0011XXXX 3072 $0C00
0100X XXX 4096 $1000
0101XXXX 5120 $1400
0110XXXX 6144 $1800
0111IXXXX 7168 $1CO0
1000X XXX 8192 $2000
100X XXX 9216 $2400
1010X XXX 10240 $2800
101X XXX 11264 $2C00
1100X XXX 12288 $3000
110X XXX 13312 $3400
1110X XXX 14336 $3800
111IXXXX 15360 $3C00

*Remember that the BANK ADDRESS offset of $4000 for each video
bank above zero must be added to the screen memory address.

Figure 8-29. Screen Memory Locations

BANK

WN RO

ADDRESS RANG

$0-$3FFF
$4000-$7FFF

$8000-$BFFF
$CO00-$FFFF

E VALUE OF BITS 1 & 0 IN $DD00
BINARY DECIMAL

11=3(DEFAULT)
10=2

01=1
00=0

Figure 8-30. Video Bank Memory Ranges

LOCATION OF CHARACTER MEMORY*

VALUE
OFzZ BITS DECIMAL HEX
0 XXXXO00X 0 $0000-$07FF
2 XXXX001X 2048 $0800-$OFFF
4 XXXX010X 4096 $1000-$17FF
6 XXXX011X 6144 $1800-$1FFF
8 XXXX100X 8192 $2000-$27FF
10 XXXX101X 10240 $2800-$2FFF
12 XXXX110X 12288 $3000-$37FF
14 XXXX111X 14336 $3800-$3FFF

ROM IMAGE in BANK 0 & 2
(default)*
ROM IMAGE in BANK 0 & 2*

Remember to add an offsst of $4000 to the start address of character memory for each
bank above 0; for bank 3 add 3*$4000 = $3000

* = in C64 mode only.

Figure 8—31. Character Memory Locations

THE POWER BEHIND COMMODORE 128 GRAPHICS 263
SCREEN DATA COLOR DATA CHARACTER DATA
TEXT BIT MAP TEXT BIT MAP TEXT BIT MAP
C128 BASIC 1024-2023 7168-8167 55296-56295 *TAKEN 53248-57343 8192-16383
(DEFAULTS) | ($040Q~$07E7) ($1 COO- (SD800- FROM BIT (SD0O00- (S2000-S3FFF)
S| FE7) SDBE?7) MAP VIDEO SDFFF)
MATRIX
C128 1024-2023 7168-8167 55296-56295 *TAKEN TEXT 8192-16383
MACHINE ($0400-$07E7) ($1COO-$1FET) (SD80O- FROM BIT 53248-57343 ($2000-$3FFF)
LANGUAGE THIS IS THIS IS SDBE7) mi;;f)l(DEO (S?DDFFF) THIS IS
ALSO PRO- ALSO PRO- ALSO PRO-
GRAMMABLE GRAMMABLE GRAMMABLE
SEE SEE
GRAPHICS GRAPHICS
SUMMARY SUMMARY
C64 BASIC 1024-2023 1024-2023 55296-56295 TAKEN ROM IMAGE NO DEFAULT
(DEFAULTS) | (S0400-SO7E7) ($0400~$07E7) | ($D80O- FROM BIT ISAT MUST
s 1o SDBE?) MAP VIDEO 4096-8191* BE PRO-
1rilolo MATRIX ($1000- GRAMMED
ALSO PRO- 1SFFF) SEE
GRAMMABLE GRAPHICS
SUMMARY
Cc64 1024-2023 1024-2023 55296-56295 *TAKEN ROM IMAGE NO DEFAULT
MACHINE ($0400~$07E7) ($0400-$07E7) (SD800- FROM BIT ISAT MT 'OT RP
LANGUAGE SDBE?) MAP VIDEO 4096-8191* wruwbe
LIHA'SL': ALSO PROGRAM- MATRIX $1000-s1FF) PRO-
UPPER GRAMMED
NYBBLE= SEE
FOREGROUND GRAPHICS
SUMMARY
LOWER * - actua character
_ ROM location =
NYBBLE= 53248-57343
BACKGROUND| (sDooo-DFFF)

Figure 8-32. Default Graphics Memory Locations

NOTE: These locations pertain to video bank zero (0) only.

9

SPRITES

SPRITES:
MOVABLE OBJECT BLOCKS

A sprite is a movable bit-mapped object that you can define into a particular shape for
display on the screen. The sprite image can be as large as 24 pixels wide by 21 pixels
tall. Each pixel corresponds to a bit in memory in the sprite storage range; therefore,
each sprite requires 63 bytes of storage. The C128 has predefined storage locations for
sprite data in the range 3584 ($0E00) through 4095 ($OFFF).

The C128 graphics system has 8 sprites. Each sprite moves on its own indepen-
dent plane. A sprite may move in front of or behind objects or other sprites on the
screen, depending on the specified priority. Standard bit-mapped sprites may be any one
of the sixteen available colors. Multi-color sprites may have three colors. The colors that
are assigned to the pixels within the sprite depend on the bit patterns of the image. In
Sprite storage memory, the on bits (1) enable the sprite pixels to display the color
selected by the sprite color register; the off bits (0) disable the corresponding sprite pixels,
making them transparent and thus allowing the background color to pass through and be
displayed. Sprites also can be expanded to twice the norma size in both vertical and
horizontal directions.

Most of the commercialy available graphics software packages for the Commo-
dore 128 and C64 rely on sprites. For graphics programming applications, sprites offer
superior animation capabilities. Single sprites are useful for small moving objects.
However, you can adjoin and overlay several sprites to give greater detail to animated
graphic images. For example, suppose you are writing a program that animates a person
running on the screen. You can make the image of the person as a single sprite, but the
effect looks much more redligtic if you alocate separate sprites for different parts of the
person's body. The arms can be one sprite, the body another, and the legs a third. Then,
you can define two additional sprites: one as a second set of legs in a different position,
and the other as a second st of arms in a different position. Position the first set of
arms, the body and the first set of legs on the screen so that they are joined into a full
body. By continually turning on and off the two different sets of arms and legs, the
image appears to be running. This process involves overlaying and adjoining sprites.
The explanation given here is a smplified algorithm, and the actual programming can be
tricky. Sprite programming has been made easy with the new BASIC 7.0 sprite
commands.

The firg part of this section explains the new BASIC sprite commands and
illustrates the procedure for overlaying and adjoining sprites. The second part
explains the internal operations of sprites, including storage information, color assign-
ments, sprite expansion and addressing the sprite registers in machine language.

SPRITES

BASIC 7.0
SPRITE COMMAND SUMMARY

Here's a brief description of esch BASIC 7.0 sprite command:

COLLISION: Defines the type of sprite collision on the screen, either sprite to sprite or
sprite to data collision

MOV SPR: Positions or moves sprites from one screen location to another

SPRCOLOR: Defines colors for multi-color sprites

SPRDEF: Enters sprite definition mode to edit sprites

SPRITE: Enables, colors, sets sprite screen priorities, and expands a sprite

SPRSAV: Stores a text string variable into a sprite storage area and vice versa or
copies data from one sprite to another

SSHAPE: Stores the image of a portion of the bit-map screen into a text-string variable

BASIC 7.0
SPRITE COMMAND FORMATS
COLLISION
Define sprite collision priorities
where:
COLLISION type ~statement]
type Type of collision, as follows:
1 = Sprite-to-sprite collison
2 = Sprite-to-display data collision
3 = Light pen (40 columns only)
statement BASIC line number of a subroutine
EXAMPLE:

COLLISION 1,5000 Detects a sprite-to-sprite collision and program control sent
to subroutine at line 5000.

COLLISION 1 Stops interrupt action which was initiated in above example.

COLLISION 2,1000 Detects sprite-to-data collison and program control directed
to subroutine in line 1000.

MOV SPR

Position or move sprite on the screen (using any of the following four formats):

1. MOVSPR number XY Place the specified sprite at absolute
sprite coordinate X,Y .

267

2. MOVSPR number, + X, + Y Move gprite relative to its current
position.

3. MOVSPR number, X;Y Move gsprite distance x a angle y
relative to its current position.

4. MOVSPR number, angle # speed Move sprite a an angle relative to its
original coordinates, in the clockwise
direction and at the specified speed.

where:
number is sprite's number (1 through 8)
X,Y > is coordinate of the sprite location.

ANGLE is the angle (0-360) of motion in the clockwise direction relative to the sprite's
original coordinate.

SPEED is the speed (0-15) at which the sprite moves.

This statement positions a sprite at a specific location on the screen according to
the SPRITE coordinate plane (not the bit map plane). MOVSPR aso initiates sprite
motion at a specified rate. This chapter contains a diagram of the sprite coordinate
plane.

EXAMPLES:

MOVSPR 1, 150, 150 Position sprite 1 at coordinate 150,150.

MOVSPR 1, +20, +30 Move sprite 1 to the right 20 (X) coordinates and down
30 (Y) coordinates.

MOVSPR 4, 50; 100 Move sprite 4 by 50 coordinates a a 100 degree
angle.

MOVSPR 5, 45 #15 Move gprite 5 at a 45 degree angle in the clockwise
direction, relative to its original x and y coordinates.
The sprite moves at the fastest rate (15).

NOTE: Once you specify an angle and a speed in the fourth form of the
MOVSPR statement, the sprite continues on its path (even if the sprite
is disabled) after the program stops, until you set the speed to zero (0)
or press RUN/STOP and RESTORE.

SPRCOLOR

Set multi-color 1 and/or multi-color 2 colors for al sprites
SPRCOLOR [smcr-1] [,smer-2]

where:

SPRITES

smcr-1 Sets multi-color 1 for dl sprites.
smer-2 Sets multi-color 2 for al sprites.

Either of these parameters may be any color from 1 through 16.

EXAMPLES:
SPRCOLOR 3,7 Sets sprite multi-color 1 to red and multi-color 2 to blue.
SPRCOLOR 12 Sets gprite multi-color 1 to black and multi-color 2 to white.

SPRDEF

Enter the SPRite DEFinition mode to create and edit sprite images.
SPRDEF

The SPRDEF command defines sprites interactively.

Entering the SPRDEF command displays a sprite work area on the screen which is
24 characters wide by 21 characters tall. Each character position in the grid corresponds
to a sprite pixel in the displayed sprite to the right of the work area. Here is a summary
of the SPRite DEFinition mode operations and the keys that perform them:

USER INPUT DESCRIPTION
1-8 keys Sdects a grite number at the SPRITE NUMBER? prompt only.
A Turns on and off automatic cursor movement.
CRSR keys Moves cursor.
RETURN key Moves cursor to start of next line.
RETURN key Exits sprite designer mode at the SPRITE
NUMBER? prompt only.
HOME key Moves cursor to top left
corner of sprite work area.
CLR key Erases entire grid.
1-4 keys Sedlects color source and enables sprite pixels.
CTRL key, 1-8 Selects sprite foreground color (1-8).
Commodore key, 1-8 Selects sprite foreground color (9-16).
STOP key Cancels changes and returns to prompt.
SHIFT RETURN Saves sprite and returns to

SPRITE NUMBER? prompt.

Expands sprite in X (horizontal) direction.
Expands sprite in Y (vertical) direction.
Multi-color sprite.

Copies sprite data from one sprite to another.

0O <X

This SPRite DEFinition area is shown in Figure 9-1

269

Figure 9-1. SPRite DEFinition Area

SPRITE CREATION PROCEDURE IN
SPRITE DEFINITION MODE

Here's the general procedure to create a sprite in SPRite DEFinition mode:

1. Clear the work area by pressing the shift and CLR/HOME keys at the same
time.

2. If you want a multi-color sprite, press the M key and the cursor (+) appears
twice as large as the origind one. The double-width cursor appears since
multi-color mode actudly turns on two pixels for every one in standard
sprite mode. Multi-color sprites have only hdf the horizontal resolution of
standard sprites.

3. Seect a sprite color. For colors between 1 and 8, hold down the CONTROL
key and press a key between 1 and 8. To select color codes between 9 and
16¢ hold down the Commodore (CO key and press a key between 1 and 8.

4. Now you are ready to create the shape of your sprite. The numbered keys 1
through 4 fill the sprite and give it shape. For a single-color sprite, use the 2
key to fill a character position within the work area. Press the 1 key to erase
what you have drawn with the 2 key. If you want to fill one character

SPRITES 271

position a a time, press the A key. Now you have to move the cursor
manually with the cursor keys. If you want the cursor to move automatically
to the right while you hold it down, press the A key again. As you fill in a
character position within the work area, you can see the corresponding pixe
in the displayed sprite turn on. The sprite image changes as soon as you edit
the work area

In multi-color mode, the 2 key fills two character positions in the work
area with the multi-color 1 color, the 3 key fills two character positions with
the multi-color 2 color.

You can turn off (color the pixel in the background color) filled areas
within the work area with the 1 key. In multi-color mode, the 1 key turns
off two character positions at a time.

5. While constructing your sprite, you can move fredy in the work area
without turning on or off any pixels using the RETURN, HOME and cursor
keys.

6. At any time, you may expand your sprite in both the vertical and horizontal
directions. To expand verticaly, press the Y key. To expand horizontally,
press the X key. To return to the normal size sprite display, pressthe X or Y
key again.

When a key turns on AND off the same control, it is referred to as
toggling, so the X and Y keys toggle the vertical and horizontal expansion of
the sprite.

7. When you are finished creating your sprite and are happy with the way it
looks, save it in memory by holding down the SHIFT key and pressing the
RETURN key. The Commodore 128 stores the sprites data in the appropri-
ate sprite storage area. The displayed sprite in the upper right corner of the
screen is turned off and control is returned to the SPRITE NUMBER
prompt. If you want to create another sprite enter another sprite number and
edit the new sprite just as you did with the first one. If you want to display
the original sprite in the work area again, enter the original sprite number. If
you want to exit SPRite DEFinition mode, simply press RETURN at the
SPRITE NUMBER prompt.

8. You can copy one sprite into another with the C' key.

9. If you do not want to SAVE your sprite, press the STOP key. The Commo-
dore 128 turns off the displayed sprite and any changes you made are
cancelled. You are returned to the SPRITE NUMBER prompt.

10. To EXIT SPRite DEFinition mode, press the RETURN key while the
SPRITE NUMBER prompt is displayed on the screen without a sprite
number following it. You can exit under either of the following conditions:

* Immediately after you SAVE your sprite in memory (shift RETURN)
* Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition mode, your
sprite data is stored in the appropriate sprite storage area in the Commodore 128's

memory. Since you are now back in the control of the BASIC language, you have to
turn on your sprite in order to see it on the screen. To turn it on, use the SPRITE
command you learned. For example, you created sprite 1 in SPRDEF mode. To turn it
on in BASIC, color it blue and expand it in both the X and Y directions and enter this
command:

SPRITE 1,1,7,0,1,1,0

Now use the MOV SPR command to move it a a 90-degree angle a a speed of 5,
as follows:

MOVSPR 1, 90 # 5

Now you know al about SPRDEF mode. First, create the sprite, save the sprite
data and exit from SPRDEF mode to BASIC. Next, turn on your sprite with the SPRITE
command. Move it with the MOVSPR command. When you're finished programming,
SAVE your sprite data in a binary file with the BSAVE command as follows:

BSAVE "filename", BO, P3584 TO P4096 (This saves al 8 sprites.)

SPRITE

Turn on and off, color, expand and set screen priorities for a sprite

SPRITE number> [,on/off][,fngd][,priority] [,x-exp] [,y-exp] [,mode]

The SPRITE statement controls most of the characteristics of a sprite. The
brackets dgnify optional parameters. If you omit a parameter, you till must include a
comma in its place.

PARAMETER DESCRIPTION

number Sprite number (1-8)

on/off Turn sprite on (1) or off (0)

foreground Sprite foreground color (1-16)

priority Priority is O if sprites appear in front of objects on the screen. Priority
is 1 if sprites appear in back of objects on the screen,

X-exp Horizontal expansion on (1) or off (0)

y-exp Vertical expansion on (1) or off (0)

mode Select standard sprite (0)

or multi-color sprite (1)

Unspecified parameters in subsequent sprite statements take on the characteristics of the
previous SPRITE statement. You may check the characteristics of a SPRITE with the
RSPRITE function.

EXAMPLES:

SPRITE 1,1,3 Turn on sprite number 1 and color it red.

SPRITES 273

SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue, make it pass behind
objects on the screen and expand it in the verticad and
horizontal directions.

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black. The first O
tells the computer to display the sprites in front of objects
on the screen. The second 0 and the 1 following it tell the
C128 to expand the sprite vertically only. The last 1
specifies multi-color mode. Use the SPRCOLOR com-
mand to select the sprite's multi-colors.

SPRSAV

Store sprite data from a text string variable into a sprite storage area or vice versa
SPRSAV origin >, destination >

This command copies a sprite image from a string variable to a sprite storage area.
It also copies the data from the sprite storage area into a string variable. Either the origin
or the destination can be a sprite number or a string variable but both cannot be string
variables. If you are copying a string into a sprite, only the first 63 bytes of data are
used. The rest are ignored since a sprite can only hold 63 data bytes.

EXAMPLES:
SPRSAV 1A$ Copies the bit pattern from sprite 1 to the string variable A$.

SPRSAV B$,2 Copies the data from string variable B$ into sprite 2.
SPRSAV 2,3 Copies the data from sprite 2 to sprite 3.

SSHAPE

Savelretrieve shapes toffrom string variables

SSHAPE and GSHAPE are used to save and load rectangular areas of multi-color
or bit-mapped screens to/from BASIC string variables. The command to save an area of
the screen into a string variable is:

SSHAPE string variable, XI, YI [, X2,Y2]

where:
string variable String name to save data in
X1Y1 Corner coordinate (0,0 through 319,199) (scaled)
X2,Y2 Corner coordinate opposite (X1,Y1) (default is the PC)

Also see the LOCATE command described in Chapter 3 for information on the
pixel cursor.

EXAMPLES:

SSHAPE AS$,10,10 Saves a rectangular area from the coordinates 10,10 to
the location of the pixel cursor, into string variable A$.

Saves a rectangular area from top left coordinate
(20,30) through bottom right coordinate (47,51) into
string variable B$.

SSHAPEBS$,20,30,47,51

Saves a rectangular area 10 pixels to the right and 10
pixels down from the current position of the pixel cursor.

ADJOINING SPRITES

The following program is an example of adjoining sprites. The program creates an outer
space environment. It draws stars, a planet and a pacecraft similar to Apollo. The spacecraft
is drawn, then stored into two data strings, A$ and B$. The front of the spaceship, the cap-
sule, is stored in sprite 1. The back haf of the spaceship, the retro rocket, is stored in
sprite 2. The spacecraft flies dowly across the screen twice. Since it is traveling so dowly
and is very far from Earth, it needs to be launched earthward with the retro rockets. After the
second trip across the screen, the retro rockets fire and propel the capsule safdy toward Earth.
Here's the program listing:

SSHAPE D$,+ 10.+ 10

5 COLOR 4, 1: COLCR 0, 1: COLCR 1, 2: REM SELECT BLACK BORDER & BKGRND, WHI TE FRGRD
10 GRAPH C 1, 1: REM SET H RES MODE

17 FOR | = TO40

18 X=I NT(RND(|) *320) +| : REM DRAW STARS

19 Y=I NT(RND(|) * 200) +| - REM DRAW STARS

21 DRAW 1, X, Y: NEXT = : REM DRAW STARS

22 BOX 0, 0,5, 70, 40, , 1: REM CLEAR BOX

23 BOX 1,1,5,70,40: REM BOX- | N SPACESHI P

24 COLOR 1,8 CIRCLE 1,190, 90, 35, 25: PAINT 1,190, 95: REM DRAW & PAI NT PLANET

25 CIRCLE 1,190, 90, 65, 10: O RCLE 1, 190, 93, 65, 10: CI RCLE 1, 190, 95, 65, 10: COLCR 0, 1
26 DRAW 1,10,17 TO 16,17 TO 32,10 TO 33,20 TO 32,30 TO 16,23 TO 10,23 TO 10,17
28 DRAW 1,19, 24 TO 20,21 TO 27,25 TO 26, 28: REM BOTTOM W NDOW

35 DRAW 1,20,19 TO 20,17 TO 29,13 TO 30, 18 TO 28,23 TO 20, 19: REM TOP W NDOW
38 PAINT 1,13, 20: REM PAI NT SPACESH P

40 DRAW 1,34,10 TO 36,20 TO 34,30 TO 45,30 TO 46,20 TO 45,10 TO 34, 10: REM SP1
42 DRAW 1,45,10 TO 51,12 TO 57,10 TO 57,17 TO 51,15 TO 46, 17: REM ENGL

43 DRAW 1,46,22 TO 51,24 TO 57,22 TO 57,29 TO 51,27 TO 45, 29: REM ENG

44 PAINT 1,40, 15: PAINT 1,47, 12: PAINT 1,47, 26: DRAW 0, 45,30 TO 46,20 TO 45, 10
45 DRAW 0, 34,14 TO 44,14 :DRAW 0, 34,21 TO 44,21: DRAW 0, 34,28 TO 44, 28

47 SSHAPE A$, 10, 10, 33, 32: REM SAVE SPRITE IN A$

48 SSHAPE BS$, 34, 10, 57, 32: REM SAVE SPRITE IN B$

50 SPRSAV A$, 1: REM SPRL DATA

55 SPRSAV B$, 2: REM SPR2 DATA

60 SPRITE 1,1,3,0,0,0,0: REM SET SPR ATTRI BUTES

65 SPRITE 2, 1,7,0,0,0,0: REM SET SPR2 ATTRI BUTES
82 MWSPR 1,150 ,150: REM ORI G NAL PCSI TION OF SPR
83 MVSPR 2 172 , 150: REM ORI G NAL POSI TI ON OF SPR2

85 MOVSPR 1 270 # :REM MOVE SPR ACROSS SCREEN

87 MOVSPR 2 270 # . REM MOVE SPR2 ACROSS SCREEN

90 FCR |1=1TO 5950: NEXT: REM DELAY

92 MOSPR 1 150, 150: REM PCSI TION SPR FOR RETRO ROCKET LAUNCH
93 MOVSPR 2 174, 150: REM POSI TI ON SPR2 FCR RETRO ROCKET LAUNCH
95 MOVSPR 1 270 # 10 :REM SPLIT ROCKET

96 MWSPR 2 90 # 5 :REM SPLIT ROCKET

97 FOR 1 = 1 TO 1200: NEXT: REM DELAY

98 SPRITE 2,0: REM TURN OFF RETRO ROCKET (SPR2)

99 FOR | =1TO 20500: NEXT: REM DELAY

100 GRAPHIC 0, |: REM RETURN TO TEXT MODE

SPRITES

Here's an explanation of the program:

Line 5 COLORs the background black and the foreground white.

Line 10 sdlects standard bit map mode and clears the bit map screen.

Lines 17 through 21 DRAW the stars.

Line 23 BOXes in a display area for the picture of the spacecraft in the top-left
corner of the screen.

Line 24 DRAWSs and PAINTS the planet.

Line 25 DRAWS the CIRCLES around the planet.

Line 26 DRAWS the outline of the capsule portion of the spacecraft.

Line 28 DRAWS the bottom window of the space capsule.

Line 35 DRAWS the top window of the space capsule.

Line 38 PAINTSs the space capsule white.

Line 40 DRAWS the outline of the retro rocket portion of the spacecraft.

Line 42 and 43 DRAW the retro rocket engines on the back of the spacecraft.

Line 44 PAINTSs the retro rocket engines and DRAWS an outline of the back of the retro
rocket in the background color.

Line 45 DRAWS lines on the retro rocket portion of the spacecraft in the background
color. (At this point, you have displayed only pictures on the screen. You have
not used any sprite statements, so your rocketship is not yet a sprite.)

Line 47 positions the SSHAPE coordinates above the firgt haf (24 by 21 pixels) of the
capsule of the spacecraft and stores it in a data string, AS$.

Line 48 positions the SSHAPE coordinates above the second haf (24 by 21 pixels) of
the spacecraft and stores it in a data string, B$.

Line 50 transfers the data from A$ into sprite 1.

Line 55 transfers the data from B$ into sprite 2.

Line 60 turns on sprite 1 and colors it red.

Line 65 turns on sprite 2 and colors it blue.

Line 82 positions sprite 1 at coordinate 150,150.

Line 83 positions sprite 2, 23 pixels to the right of the starting coordinate of
sprite 1.

Lines 82 and 83 actually join the two sprites.

Lines 85 and 87 move the joined sprites across the screen.

Line 90 delays the program. This time, delay is necessary for the sprites to complete the
two trips across the screen. If you leave out the delay, the sprites do not have
enough time to move across the screen.

Lines 92 and 93 postion the sprites in the center of the screen, and prepare the
spacecraft to fire the retro rockets.

Line 95 propels sprite 1, the space capsule, forward. The number 10 in line 95 specifies
the speed in which the sprite moves. The speed ranges from 0 (stop) to 15
(fastest).

Line 96 moves the expired retro rocket portion of the spacecraft backward and off the
screen.

275

Line 97 is another time delay so the retro rocket, sprite 2, has time to move off
the screen.

Line 98 turns off sprite 2, once it is off the screen.

Line 99 is another delay so the capsule can continue to move across the screen.

Line 100 returns you to text mode.

SPRITE PROGRAM EXAMPLES

The best way to create sprites is with SPRDEF. The following examples assume you
have created your sprites in SPRDEF mode.

The first example sprite program illustrates the use of the SPRITE and MOV SPR
commands. It positions dl eight sprites so they appear to converge on one screen
location, then scatter in dl eight directions. Here's the listing:

10 REM MOVE SPRI TE EXAMPLE
20 FCR 1=1 TO 8

30 MOVSPR |, 100, 100

4 0 NEXT

50 FCR 1=1 TO 8

60 SPRTE 1,1,1,1,1,1,0

70 MOVSPR 1, 1*30 # |

8 0 NEXT

Lines 20 through 40 place al eight sprites at sprite coordinate location 100,100.
At this point, the sprites are not yet enabled, but when they are, dl eight are on top of
one another.

Lines 50 and 60 turn on each of the eight sprites in eight different colors. The first
"1" is the sprite number parameter. The first " 1" in line 60 signifies the enabling of
each sprite. The second " 1" specifies the color code for each sprite. The second " 1"
(the fourth parameter) sets the display priority for al the sprites. A display priority of
one tells the C128 to display the gprites behind objects on the screen. A zero display
priority enables sprites to pass in front of objects on the text or bit-map screen. The fifth
and sixth parameters, both of which are ones (1), expand the sprites' size in both the
vertical and horizontal directions to twice their original size. The find parameter in the
SPRITE statement selects the graphics display mode for the sprites; either standard
bit-map sprites (0) or multi-color bit-map sprites (1). In this example, the sprites are
displayed as standard bit-map sprites.

Line 70 moves the sprites on the screen. The firgt parameter, |, represents the
sprite number. The second parameter, "1* 30", defines the angle at which the sprites
travel on the screen. The pound dgn (#) notation dgnifies that the sprites move
according to a particular angle and speed. The find parameter " | " specifies the speed at
which the sprites travel on the screen. In this example, sprite 1 moves at the dowest rate
of 1, sprite 2 moves at the next highest speed of 2, while sprite 8 moves the fastest of
the eight sprites a speed 8. The highest speed a sprite can move is 15.

Finally, line 80 completes the FOR . . . NEXT structure of the loop.

SPRITES

Notice that the sprites move continuoudly even after the program has stopped
RUNnNing. The reason for this is that sprites are wedged into the interrupt processing of
the C128. To turn off and stop the sprites on the screen, either issue a SPRITE
command that turns them off, or press RUN/STOP and RESTORE,

The second sprite program example provides a smplified adjoining sprite ago-
rithm. It moves two adjoined sprites across the screen at a ninety-degree angle,
assuming that your sprites already reside in the sprite storage range between 3584
($0EOQ) and 4095 ($OFFF). For simplicity, if you don't have any actua sprite images
stored in the sprite data area, fill the sprite data area with 255 ($FF) from within the
Machine Language Monitor with this command:

F OEOO OFFF FF

For now, this command turns on al pixels within each sprite. Now you can see
how the adjoining algorithm places and moves sprites 7 and 8 side by side.
Here's the listing:

10 REM ADJO NI NG SPRI TE ALGORI THM

20 REM TH S PROGRAM ASSUMES YOUR SPRI TES ALREADY EXI ST I N SPRI TE STORAGE
30 1=1 :REMINTIALIZE DI STANCE |

35 SCNCLR

40 MOVSPR 8, 50, 100: REM SET ORI G PCSI TION CF SPRITE 8

gOO %/SPR 73,100: REM SET ORI G PCSI TION OF SPRITE 7 TO ADJO N SPR
70 SPRITE 1,3:REM ENABLE SPR 8

80 SPRI TE 1,4: REM ENABLE SPR 7

90 MOVSPR I ;90: REMMOVE SPR 8 | UNITS AT A 90 DEGREE ANGLE

100 MOVSPR 7,1 ;90: REMMOVE SPR 8 | UNITS AT A 90 DEGREE ANGLE

110 1=1+1 :REM | NCREMENT LOCP

120 LOCP

Line 30 initializes the distance variable | to 1.

Line 40 positions sprite 8 a absolute coordinates 50,100. Since this program
moves two adjoining sprites from the left to right at a ninety-degree angle, sprite 7,
which is attached to sprite 8 must be positioned in such away that it is touching the right
edge of sprite 8. Line 50 places sprite 7 on the exact right edge of sprite 8. Since a sprite
is 24 pixels wide (before expansion), to adjoin two sprites together, place the gjoining
sprite exactly 24 pixels to the right of the top left corner coordinate position of sprite 8.
The position of a sprite is placed on the sprite coordinate plane according to the upper
leftmost pixel of the sprite. Since the origina position of sprite 8 is 50,100, add 24
(inclusive) to the X (horizonta) coordinate to make them join exactly on the respective
edges of both sprites. This is provided your sprites are exactly 24 pixels wide. If you
don't fill the entire dimensions of a sprite, you may have to adjust the coordinates so
that they meet correctly.

At this point, the sprite coordinates are perfectly adjoined. Line 60 initiates a loop,
so that the distance can be updated to enable the sprites movement across the screen.
Lines 70 and 80 enable sprites 8 and 7 and color them red and cyan, respectively.

Lines 90 and 100 move sprite 8 and 7, respectively, a a 90-degree angle
according to the distance specified by the variable I. Line 110 updates the distance of 1
each cycle through the loop. Line 120 circulates the loop until the distance variable | is
equal to 320.

277

The third sprite example provides an algorithm to overlay two sprites and move
them on the screen on a 45-degree angle. Again, this program assumes your sprite data
resides in sprite storage. If your sprite images are not stored there, fill the sprites with
data as you did in the last adjoining example.

Here's the liting:

10 REM OVERLAY EXAMPLE

20 REM TH S PROGRAM ASSUMES SPRI TE DATA RESIDES IN SPRI TE STORAGE
30 1=1 :REMINTIALIZE DI STANCE I

35 SCNCLR

40 MOVSPR 8, 50, 100: REM SET CRI G PGSl TI ON CF SPRI TE 8

g% l\&)\)/SPR 7 50, 100: REM SET ORI G POSI TION OF SPRITE 7 TO OVERLAY SPR 8
70 SPRITE 8 1,3 :REM ENABLE SPR 8

80 MOVSPR 8 1;45 :REMMOVE SPR 8 | UNITS AT A 45 DEGREE ANGLE

90 SPRITE 8 0,3 :REM TURN CFF SPR8

100 SPRITE 7,1,4 :REM ENABLE SPR 7

110 MOVSPR 7,1;45 :REMMOVE SPR 8 | UNI TS AT A 45 DEGREE ANGLE
120 SPRITE 7,0,3 :REM TURN OFF SPR 7

140 LOCP

As in the last program, line 30 initializes the distance variable | to 1.

Lines 40 and 50 position sprites 8 and 7, respectively, at coordinate 50,100. At
this point the sprites are not yet enabled, but when they are, sprite 7 will overlay sprite 8
since the lower sprite number has display priority over the higher sprite number.

Line 60 initiates a DO loop to move the sprites aong the sprite coordinate plane.

Line 70 enables sprite 8 and colors it red. Line 80 moves sprite 8 a distance of one
coordinate according to the current value of I. Line 90 disables sprite 8.

Lines 100 through 120 perform the same operations for sprite 7 as lines 70 through
90 did for sprite 8: enable, move a single distance coordinate according to | and disable.
Line 140 repests the process.

Since this process is repeated so quickly, it appears as though the two sprites
alternate movements. When you create the actual images you will use in your overlay
sprite program, the images between which you dternate will be ones that simulate the
movement of two images and create one animated image.

Create two sprites that appear to form a single animated image. You may have to
perfect the timing of the enabling and disabling of the images to make the animated
image appear more smooth. Nonetheless, you have a basis for animating two objects
into one single moving object.

Although these program examples are written in BASIC, the algorithms are the
same whether you are programming in BASIC or machine language. The next section
discusses sprite operations independent of the BASIC language. Since this section
explained sprites according to BASIC, the next section elaborates on the inner workings
of sprites from a machine level (language) perspective.

SPRITES

THE INNER WORKINGS OF SPRITES

You have seen how to create, move, color and expand sprites with the BASIC 7.0 sprite
commands. This section explains how to control sprites outside of the BASIC sprite
commands (except SPRDEF). This tells you which VIC registers are affected and the
specific bits that must be set or cleared to manipulate the sprite features.

Registers of the VIC chip control al aspects of sprites. The enabling of specific
bits in certain VIC registers turns on the features of the eight available sprites. The order
in which you turn on these features is critica to sprite animation. Following is a
summary of the steps necessary to display, color, move and expand sprites. Next to each
step is the VIC chip register or other memory location involved in each element of sprite
programming.

SPRITE PROGRAMMING SEQUENCE REGISTERS INVOLVED

1. Create the sprite image Sprite Data Storage: 358421095 ($0E00-$0FFF)
This is also programmable. You must change the sprite
pointer values.

2. Point to the sprite data Sprite Data Pointers. 2040-2047 ($07F8-$07FF), or
8184-8191 ($1FF8-$1FFF) when the bit map screen has
been cleared with GRAPHIC 11

3. Enable (turn on) the sprite 53269 ($D015) (bits 7-0, depending on sprite number)

4. Color the sprite Standard 53287-53294 ($D027-$D02E)

Multi-color 53276 ($D01C), 53285 ($D025), 53286 ($D026)
5. Position the sprite 53248-53264 ($D000-$D010)
6. Expand the sprite 53271 ($D017) (Y direction), 53277 ($D01D) (X direction)
7. Ddfine sprite display priorities 53275 ($D01B)
8. Define sprite collision priorities 53278 ($DO1E), 53279 ($D01F)

These registers control most sprite characteristics. Once you learn these programming
steps, you will be able to exercise full control over the display and movement of sprites.

CREATING THE SPRITE IMAGE

An easy way to create sprites on the C128 is through SPRite DEFinition mode
(SPRDEF). For an explanation of SPRDEF see the SPRDEF entry in the beginning of
this chapter. This section assumes your sprite image is aready created, and it resides in
the sprite data storage area. Before leaving SPRDEF, remember to press the SHIFT key
and RETURN at the same time; this alows SPRDEF to store the sprite data in the sprite
data storage area. Press RETURN a second time to exit SPRDEF.

The Commodore 128 has a dedicated portion of memory ranging from decimal
address 3584 ($0E00) through 4095 ($0FFF), where sprite data is stored. This portion of

279

memory takes up 512 bytes. As you know, a sprite is 24 pixels wide by 21 pixelstal. In
standard sprites, each pixel corresponds to one bit in memory. If the bit in a sprite is off
(equal to 0), the corresponding pixel on the screen is transparent, which alows the
background to pass through the sprite. If a bit within a sprite is on (equd to 1), the
corresponding pixel on the screen is turned on in the foreground color as determined by
the sprite color registers. The combination of zeroes and ones produces the image you
see on the screen. Multi-color sprites assign colors differently. See the multi-color sprite
section later in this chapter for details.

Since a sprite is 24 by 21 pixels and each pixe is represented by one bit of storage
in memory, one sprite uses up 63 bytes of memory. See Figure 9-2 to understand the
storage requirements for a sprite's data

12345678 12345678 12345678

Each Row = 24 bits = 3 bytes

Figure 9-2. Sprite Data Requirements

A sprite requires 63 bytes of data. Each sprite block is actually made up of 64
bytes, the extra byte is not used. Since the Commodore 128 has eight sprites and each
one consists of a 64-byte sprite block, the computer needs 512 (8x64) bytes to
represent the data of al eight sprite images.

The area where dl eight sprite blocks reside starts at memory location 3584
($0EO0) and ends at location 4095 ($0FFF). Figure 9-3 lists the memory address ranges
where each individual sprite stores its data.

SPRITES

$OFFF (4095 Decimal)

]—Sprite 8
$OFCO

1—Sprite 7
$OF80

]—Sprite 6
$OF40

]—Sprite 5
$OF00

]—Sprite 4
$OECO

]—Sprite 3
$OE80

1—Sprite 2
$OE40

1—Sprite 1
$OEOO (3584 Decimal)

Figure 9—3 Memory Address Ranges for Sprite Storage

Keep in mind that sprites are referred to as 1 through 8 in BASIC, but O through 7
in machine language.

SPRITE POINTERS

The VIC chip needs to know where to look for the bit patterns (data) that make up the
sprite image in memory. The sprite pointers are used explicitly for this purpose.

Unlike the Commodore 64, the C128 has automaticaly filled the sprite data
pointers with values that direct the VIC chip to point to the data stored in the sprite data
range 3584 ($OE00) through 4095 ($OFFF). These sprite data pointers are located at
2040 ($O7F8) through 2047 ($07FF) for sprites 0 and 7 respectively. They are dso located
in the address range 8184 ($1FF8) through 8191 ($1FFF), once the bit map screen is
cleared with the GRAPHIC 11 command. The default contents of these locations are:

Hexadecimal 38 39 3A 3B 3C 3D 3E 3F
Decimal 56 57 58 59 60 61 62 63

To find the actud location where the sprite data pointers are looking for data in
memory, multiply the contents of the sprite data pointer by 64 (decimal). By multiplying
these values, you'll see that the pointers look for data in the default sprite storage
locations in Figure 9-3. See Figure 9-4 for an illustration.

The way the Commodore 128 automatically points to the correct sprite datais conven-
ient for programming, since it eliminates a step (provided the original values of the sprite
pointers have not been modified). If you want to store sprite data somewhere else in
memory, however, you'll have to change the origina value of the sprite pointer (from
location 2040 through 2047, or 6184 through 8191) to a value that is equd to:

Start of Sprite Data/ 64 = new contents of sprite pointer

281

DATA POINTER START OF

CONTENTS** SPRITE DATA
Sprite 0 Data Pointer = 56 * 64 = 3584 ($0E00)
Sprite 1 Data Pointer = 57 * 64 = 3648 ($0E40)
Sprite 2 Data Pointer = 58 * 64 = 3712 ($0E80)
Sprite 3 Data Pointer = 59 * 64 = 3776 ($0ECO)
Sprite 4 Data Pointer = 60 * 64 = 3840 ($0F00)
Sprite 5 Data Pointer = 61 * 64 = 3904 ($0F40)
Sprite 6 Data Pointer = 62 * 64 = 3968 ($0F80)
Sprite 7 Data Pointer = 63 * 64 = 4032 ($0FCO0)

** =This applies to video bank O only.

Figure 9-4. Sprite Data Locations

The gart of sprite data is divided by 64 because the data area is alocated in 64-byte
sections. For example, you want to place your sprite O data in the new location 6144
($1800). Divide 6144 by 64 to get 96. Place the value 96 ($60) in address 2040 ($078F).

ENABLING A SPRITE

Once the sprite image has been defined, and the data pointer is pointing to the correct
data, you can turn on the sprite. You do this by placing a value in the Sprite Enable
Register, location 53269 ($D015). The value placed in this register depends on which
sprite(s) you want to turn on. Bits O through 7 correspond to sprites O through 7. To
enable sprite 0, st bit 0. To enable sprite 1, set bit 1 and so on. The vaue you
place in the sprite enable register is equal to two raised to the bit position in decimal.

If you are programming in machine language and want to enable more than one
sprite a a time, add the values of two raised to the bit positions together and store the
result in the sprite enable register. For example, to enable sprite 5, raise two to the fifth
power (32 ($20)) and store it as follows:

LDA #$20
STA $D015

To enable sprites 5 and 7, raise two to the fifth (32 ($20)) and add it to two to the
seventh (128($80)) to obtain the result 160 (SAO):

LDA $A0
STA $D015

An easier way of percelving the idea is through binary notation in the Machine
Language Monitor as follows:

LDA # % 10100000
STA $D015

To disable the sprite display, clear the bits in the sprite enable register.

SPRITES

ASSIGNING COLOR TO SPRITES

Sprites have two kinds of color displays. standard bit-map and multi-color bit-map
sprites. The color assignments to the pixels within the sprites work in a similar way to
standard bit-map and multi-color bit-map modes for the screen.

STANDARD BIT-MAP SPRITES

Standard bit-map sprites each have their own color register. The lower four bits of each
sprite color register determine the sprite color as specified by the sixteen C128 color
codes. Figure 9-5 shows the standard bit-map sprite color registers.

ADDRESS DESCR PTI CN

53287 ($0027) SPRITE 0 COLOR REGISTER
53288 ($0028) SPRITE 1 COLOR REGISTER
53289 ($D029) SPRITE 2 COLOR REGISTER
53290 ($D02A) SPRITE 3 COLOR REGISTER
53201 ($0028) SPRITE 4 COLOR REGISTER
53202 ($D02C0) SPRITE 5 COLOR REGISTER
53203 ($D02D) SPRITE 6 COLOR REGISTER
53204 ($D02E) SPRITE 7 COLOR REGISTER

Figure 9-5. Standard Bit Map Sprite Color Registers

Figure 9-6 lists the color codes that are placed in the standard bit-map sprite color
registers:

0 Black 8 Orange

1 White 9 Brown

2 Ra 10 Light Red

3 Cyan 11 Dark Gray

4 Purple 12 Medium Gray
5 Green 13 Light Green
6 Blue 14 Light Blue

7 Ydlow 15 Light Gray

Figure 9-6. Sprite Color Codes

In standard bit-map sprites, the data in the sprite block determine how the colors
are assigned to the pixels on the screen within the visible sprite. If the bit in the
sprite storage block is equal to 1, the corresponding pixel on the screen is assigned
the color from the standard sprite color register. If the bit in the sprite data block

283

is equal to zero, those pixels on the sprite are transparent and the background data
from the screen passes through the sprite.

MULTI-COLOR SPRITES

Multi-color sprites offer a degree of freedom in the use of color, but you trade the
higher resolution of standard sprites for the added color. Multi-color sprites are displayed
in three colors plus a background color. Multi-color bit-map sprites are assigned colors
similar to the way the other multi-color modes work. Before you can assign a sprite
multiple colors, you must fird enable the multi-color sprite. The sprite multi-color
register in location 53276 ($D01C) operates in the same manner as the sprite enable
register. Bits O through 7 pertain to sprites 0 through 7. To select a multi-color sprite,
st the bit number that corresponds to the sprite number. This requires that you raise
two to the bit position of the sprite that you want displayed in multi-color. For example,
to select sprite 4 as a multi-color sprite, raise two to the fourth power (16) and place
it in the multi-color sprite register. In machine language, perform the following
instructions:

LDA #8310
STA $D01C

To select more than one multi-color sprite, add the values of two raised to the bit
positions together and store the vaue in the multi-color sprite register.

The VIC chip provides two multi-color registers (0 and 1), in which to place color
codes. These are the locations of the sprite multi-color registers;

ADDRESS

Sprite Multi-Color Register 0 53285 ($D025)
Sprite Multi-Color Register 1 53286 ($D026)

The color codes are those listed in Figure 9-6.

Like multi-color character mode, the pixels in the multi-color sprites are assigned
color according to the hit patterns in the sprite storage block. In this mode, the bits in
the sprite block are grouped in pairs. The hit pair determines how the pixels are assigned
their individual colors, as follows:

BIT PAIR DESCRIPTION

00 TRANSPARENT (SCREEN COLOR)

01 SPRITE MULTI-COLOR REGISTER #0 (53285) ($D025)
10 SPRITE COLOR REGISTER

11 SPRITE MULTI-COLOR REGISTER #1 (53286) ($D026)

SPRITES

If the bit pair is equa to 00, the pixels are transparent and the background from
the screen passes through the sprite. If the bit pattern equals 10 (binary), the color is
taken from the sprite color register (locations 53287-53294) of the sprite being defined.
Otherwise, the other two hit pair possibilities (01 and 11) are taken from sprite
multi-color registers 0 and 1 respectively.

POSITIONING SPRITES ON THE SCREEN

Each gprite has two position registers to control the sprite's position on the visible screen:
horizontal (X coordinate) and vertical (Y coordinate) positions. Figure 9— gives the
memory locations of the sprite position registers as they appear in the C128 memory.

LOCATION
DECIMAL HEX DESCRIPTION
53248 $D000 SPRITE 0 X POSITION REGISTER
53249 E$D001g SPRITE 0 Y POSITION REGISTER
53250 ($0002) SPRITE 1 X POSITION REGISTER
53251 ($0003) SPRITE 1Y POSITION REGISTER
53252 ($0004) SPRITE 2 X POSITION REGISTER
53253 ($D005) SPRITE 2 Y POSITION REGISTER
53254 ($0006) SPRITE 3 X POSITION REGISTER
53255 ($0007) SPRITE 3Y POSITION REGISTER
53256 ($0008) SPRITE 4 X POSITION REGISTER
53257 ($0009) SPRITE 4Y POSITION REGISTER
53258 ($D00A) SPRITE 5 X POSITION REGISTER
53259 ($D00B) SPRITE 5Y POSITION REGISTER
53260 ($000C) SPRITE 6 X POSITION REGISTER
53261 ($000D) SPRITE 6 Y POSITION REGISTER
53262 ($DOOE) SPRITE 7 X POSITION REGISTER
53263 ($D00F) SPRITE 7Y POSITION REGISTER

53264 ($0010) SPRITE X MSB REGISTER

Figure 9-7. Memory Location of Sprite Position Register

The gprite position registers together plot the sprite on a vertica and horizontal
coordinate. The position of reference for the calculated vertica and horizontal coordi-
nate is taken from the upper-left corner pixel within the sprite. Whenever you want to
place the sprite on a particular screen position, calculate the position using the upper left
corner pixel within the sprite. The sprite coordinate plane is not the same as the bit-map
coordinate plane. The bit-map coordinate plane starts in the upper-left corner of the
screen at coordinate 0,0. The lower right corner of the bit map coordinate plane is point
319,199. The sprite coordinate plane starts at point 24,50 in the top-left corner of the
visible screen. The find visible point on the sprite coordinate plane at the bottom-right
corner of the screen is 343,249. Figure 9-8 shows how the sprite coordinate plane
relates to the visible screen.

285

0 (s00) 24 (518
1 i

296 (s128) 344 (s158)
1 I

—————— 8 (s08)

-—50 ($32)

28 510) T

VISIBLE VIEWING AREA

NTSC*
40 COLUMNS
25 ROWS

208 (spO)—

250 (sFA)—

- 229 (SE5)
|
| { 1
I { I
| ! !

1
i
| 1 | |

488 (s1E8) 24 ($18) 320 (s140) 344 (s158)

‘North American television transmission standards for your home TV.

Figure 9-8. Visible Sprite Coordinates

After seeing the sprite coordinate plane, you may have noticed something unusual.
The vertica coordinate positions have a range of 200. The horizontal coordinate
positions have a range of 320 coordinates. Since the C128 is an 8-hit computer, the
highest value any register can represent is 255.

How do you position a sprite past the 255th horizontal screen position? The
answer is, you have to borrow a bit from another register in order to represent a value
greater than 255.

An extra bit is aready set aside in the Commodore 128 memory in case you want
to move a sprite past the 255th horizontal coordinate. Location 53264 controls sprite
movement past position 255. Each of the 8 bits in 53264 controls a sprite. Bit O controls
sprite O, bit 1 controls sprite 1 and so on. For example, if bit 7 is set, sprite 7 can move
past the 255th horizontal position.

Each time you want a sprite to move across the entire screen, turn on the borrowed
bit in location 53264 when the sprite reaches horizontal position 255. Once the sprite
moves off the right edge of the screen, turn off the borrowed bit so the sprite can move
back onto the left edge of the screen. The following commands alow sprite seven to
move past the 255th horizontal position:

SPRITES

LDA $DO010
ORA #3$80
STA $D010

The number 128 is the resulting decima vaue from setting bit 7. You arrive at this
value by raising two to the seventh power. If you want to enable bit 5, raise two to the
fifth power, which, of course, is 32. The genera rule is to raise two to the power of the
sprite number that you want to move past the 255th horizontal screen position. Now you
can borrow the extra bit you need to move a sprite al the way across the screen. To
alow the sprite to reappear on the left side of the screen, turn off bit seven again, as
follows:

LDA $D010
AND #$7F
STA $D010

Not al of the horizontal (X) and vertica (Y) positions are visible on the screen.
Only vertica positions 50 through 249 and horizontal positions 24 through 343 are
visible. Location 0,0 is off the screen as is any horizonta location less than 24 and
greater than 343. Any vertical location less than 50 and greater than 249 is aso off the
screen. The off-screen locations are st aside so that an animated image can move
smoothly on and off the screen.

EXPANDING THE SIZE OF SPRITES

The VIC chip offers a feature that alows sprites to be expanded in size, in both the
horizontal and vertical directions. When the sprite is expanded, the sprite resolution
does not increase, the pixels within the sprite just cover twice as much area; therefore,
the sprite is twice as large. Here are the locations in memory for vertica and horizontal
sprite expansion:

ADDRESS

Vertical (Y) Sprite Expansion Register 53271 ($D017)
Horizontal (X) Sprite Expansion Register 53277 ($D01D)

These registers operate in the same manner as the sprite enable register.
Bits O through 7 pertain to sprites O through 7. To expand the sprite Size in either
direction, raise two to the bit position and place it in the expansion register(s). For
example, to expand sprite 7 in both directions, perform these machine language
instructions:

LDA #$80 (% 1