
INSIDE
COMMODORE

DOS
J

by

Richard Immers, Ph.D.
Adrian Public Schools

Adrian, Michigan

and

Gerald G. Neufeld, Ph.D.
Brandon university
Brandon, Manitoba

Canada

Technical illustrations by
Diane M. corraielo

~DATAMOS"t·
19821 Nordhoff Street, Northridge, CA 91324

(818) 709-1202

First Printing, July 1984
Second Printing, February 1985

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia

ISBN 0-8359-3091-2

Copyright © 1984 by DATAMOST, Inc.
All Rights Reserved

This manual is published and copyrighted by DATAMOST, Inc. All rights are reserved
by DATAMOST, Inc. Copying, duplicating, selling or otherwise distributing this pro­
duct is hereby expressly forbidden except by prior written consent of DATAMOST, Inc.

.The words COMMODORE, CBM, COMMODORE 64, VIC-20, VIC-1541 and the Com­
modore logo are registered trademarks of Commodore Business Machines, Inc.

Commodore Business Machines was not in any way involved in the writing or other
preparation of this manual, nor were the facts presented here reviewed for accuracy
by them.

The information presented in this manual is the result of intensive study of the
disassembly of the 1541 pOSe Every effort has been made to provide error-free infor­
mation. However, neither the authors nor DATAMOST, Inc.:can accept responsibility
for any loss or damage, tangible or intangible, resulting from use or improper or un­
intended use of this information.

Printed in U.S.A.

ACKNOWLEDGEMENTS
A manual like this one would not be possible without a great deal of technical assistance.
MikeTodd's Disk File columnin the IGPUG Newsletter proved to be an invaluable source
of insight into the inner workings of Commodore's DOS. Raeto West's book, Program­
ming the PET/GBM, was a constant companion. Jim Butterfield's numerous articles
also provided valuable bits and pieces of information. Brad Templeton's POWER™
system and PAL™ assembler made the development of the programs in this manual
a real joy. These packages are commercially available from Professional Software Inc.
In addition, both the PAL disassembler and MICROMON were used .as tools for
disassembling the 1541 DOS.

We would also like to acknowledge the patience and forebearance of our families and
friends. Without their support, producing this manual would have been considerably
more difficult. Mike Louder of DATAMOST,Inc. also provided tremendous support for
its production.

Finally, we would like to extend a special note of thanks to Dr. Tom MacNeil and Nancy
Neufeld for their diligent work in proofreading this manual.

This manual was written on a Commodore computer system using the WordPro 4 Plus
word processing system. The Wordf'ro Plus™ Series is commercially available from
Professional Software Inc. This sophisticated word processing system made editing and
last minute revisions much easier.

TABLE OF CONTENTS

Chapter 1 - INTRODUCTION 11
A Brief Word About the Programs 11
How to Type in the Programs 12

Chapter 2 - USING THE 1541'S DOS 15
The Purpose of DOS 15
Communicating with the 1541 15
The Command Channel 16
Using the Command Channel 17
Diskette Housekeeping 20

Chapter 3 - DISKETTE FORMATTING 29
Layout of Tracks and Sectors 29
Layout of a Sector 31
The Header Block 32
The Data Block 33

Chapter 4 - DISKETTE ORGANIZATION 35
Information Management ,............ 35
The Directory You See 35
The Block Availablity Map 36
The Directory Entries 40
Program File Storage 48
Sequential File Storage 53
Relative File Storage 56
User File Storage 69
Deleted File Storage 69
Locked Files 70

Chapter 5 - DIRECT-ACCESS PROGRAMMING 71
Introduction to Direct-Access Programming 71
Beginning Direct-Access Programming 71
Block-Read Command 73
Buffer-Pointer Command 75
Block-Write Command 77
Memory-Read Command 81
Memory-Write Command 85
Block-Allocate Command 89
Block-Free Command 94
Memory-Execute Command 96
Block Execute Command 97
Direct-Access Entomology 98

7

Chapter 6 - INTERMEDIATE DIRECT-ACCESS PROGRAMMING 103

Chapter 7 - DOS PROTECTION 113
Commodore's Data Encoding Scheme 113
Checksums 118
Description of DOS Error Messages 119
Analyzing a Protected Diskette 122
Duplicating a Protection Scheme 123
How to Create 21 Errors on a Full Track 124
How to Create a 21 Error on a Single Sector 126
How to Create a 23 Error on a Single Sector 129
How to Duplicate a 23 Error on a Single Sector 133
How to Create 23 Errors on a Full Track 137
How to Create 20 Errors on a Full Track 144
How to Create 27 Errors on a Full Track 150
How to Create a 22 Error on a Single Sector 155
How to Duplicate a 22 Error on a Single Sector 156
How to Format a Diskette with Multiple IDs 158
How to Backup a DOS Protected Diskette 162
How to Copy a File 168

Chapter 8 - GETTING OUT OF TROUBLE 173
Unscratching a File 173
Recovering a Soft Sector 175
Recovering a Hard Sector 175
Recovering a Relative File 176
Recovering an Entire Diskette 177
Recovering a Physically Damaged Diskette 177
Recovering an Unclosed File 177
Recovering from a Short New 178
Recovering from a Full New 179

Chapter 9 - OVERVIEW OF THE 1541 DOS 181
Introduction to 1541 DOS 181
The Hard Working 6502 181
Major IP Routines 182
Using the IP Routines 185
Major FDC Routines 188
Using the FDC Routines 193
The Recording Process 199
Block Diagram of the 1541 201
Writing Data to a Diskette 202
Reading Data From a Diskette 204
Summary Bugs in DOS 2.6 206
Write Incompatability with 4040 208
Late News 215

8

Appendix A - 1541 RAM VARIABLE DEFINITIONS 217

Appendix B - ANALYSIS OF THE 1541's ROM 229

Appendix C - PROGRAM LISTINGS 437

Appendix D - MATHEMATICAL CONVERSION ROUTINES 485

Index 499

9

Ignorance is a precious thing.
Once lost, it can never be regained.

CHAPTER 1

INTRODUCTION

This manual is intended to supplement the documentation provided in the 1541 User's
Manual. Although this manual is primarily designed to meet the needs of the in­
termediate to advanced programmer, it will also be of interest to the novice Commodore
user who wants to know more about how his 1541 disk drive works. This manual is not
intended to replace the documentation provided by Commodore Business Machines, Inc.
and the reader is assumed to be relatively familiar with the contents of the 1541 User's
Manual. For the sake of continuity and clarity, some of the information covered in the
1541 User's Manual is also presented here. However, the majority of the information
presented in this manual is original and is the result of intensive disassembly and an­
notation of the 1541's DOS by the authors. Some information is based on articles and
notes published in a variety of publications as well as discussions with other
knowledgeable disk experts.

This manual was not prepared with the assistance of Commodore Business Machines,
Inc. Although we cannot guarantee the accuracy of all the information presented in this
manual, the material has been thoroughly researched and tested.

There were several reasons for writing Ins-ide Commodore DOS:

1. Th correct errors and omissions in the 1541 User's Manual.
2. Th help you make more effective use of your disk drive.
3. Th provide complete information on diskette formatting.
4. Th provide complete information on the storage of files.
5. Th allow you to read and write data in non-standard ways.
6. 'Ib help you make a backup copy of your "protected" diskettes.
7. Th help you recover damaged diskettes.
8. Th help you understand the operation of your disk drive.

Although this manual focuses primarily on the 1541disk drive, much of the information
also applies to other Commodore disk drives.

1.1 A Brief Word About the Programs

This book contains listings for 46 ready-to-use programs written in BASIC. These pro­
grams are copyrighted. They may NCYr be used commercially,in whole or in part, period.
Since many of the programs are long, typing them all in would be a time consuming,
tedious task. Feel free to share your typing efforts with a friend who has also purchased
a copy of this book. In return, we simply ask that you do not share a program with some­
one who does not own a legitimate copy of this book.

11

The programs in this book are disk utilities. They do not use.flashy graphics or sound.
Rather, they are extremely powerful tools. Remember, any tool can be dangerous if it
is used improperly. Be sure that you know what you are doing before you use a given
program. Always experiment with a program on a test diskette before you actually use
it on one that contains valuable programs or data. Practice makes perfect.

Each program was individually tested on a variety of 1541 disk drives having a wide
range of serial numbers. Moreover, each program alwaysworked perfectly. Unfortunately,
it is impossible to guarantee that a particular program will work with your model. If
a given program does not seem to work properly, check your typing carefully. Any er­
rors, especially in the DATA statements which contain a machine language program, will
produce problems.

As a courtesy to the more advanced programmer, we have also included the source listings
for each machine language routine. A source listing immediately follows a related BASIC
program listing and has a file name ending in ".PAIl'. It is for use with the PAL assembler.
Note: Ifyou are using a different assembler, you may have tomake some minor changes.

The programs in this book were designed to be not only useful and beneficial, but in­
structive as well. Many of them illustrate the "state of the art" in the use of Commodore's
direct-access disk commands. Enjoy!

1.2 How to Type in the Programs

Program listings in books and magazines often suffer from two problems: typographical
errors that occur when the program is retyped into a word processor and the readabili­
ty of Commodore's control characters (e.g., the reverse field heart that means Clear
Screen). 'Ib overcome these problems, the program listings for this book were created
using a special "lister" program. This lister program took a working BASIC program
and converted it into a WordPro™ file. At the same time, control characters were spell­
ed out in words and surrounded by curly brackets. For example, a reverse field heart
was converted to {CLR}. The table below summarizes the listing conventions, the cor­
responding control characters, and the proper key/keys to press on your C64 or VIC-20.

When You See What It Represents What You Type

{CLR} Clear Screen Hold down SHIFT and press
CLR/HOME

{HOME} Home Cursor Press CLR/HOME
{DOWN} Cursor Down Press CRSR/DOWN
{UP} Cursor Up Hold down SHIFT and press

CRSR/UP
{RIGHT} Cursor Right Press CRSR/RIGHT
{LEFT} Cursor Left Hold down SHIFT and press

CRSR/LEFT
{RVS} Reverse Field ON Hold down CTRL and press 9
{ROFF} Reverse Field OFF Hold down CTRL and press 0

12

NOTE 1: When a number appears inside the curly brackets, it means you repeat the
control character immediately to the left of the number that many times. For
example:

{DOWN 5} means to press CRSR/DOWN five (5) times.

NOTE 2: All programs have been listed in a column 40 characters wide. Except where
special characters have been spelled out between curly brackets, the lines are
listed exactly as they appear on a Commodore 64 display. Spaces must be typed
in as listed. Where necessary, count the character columns to determine the
appropriate number of spaces.

Happy hunting and pecking!

13

CHAPTER 2

USING THE 1541'S DOS

2.1 The Purpose of a DOS

A disk operating system (DOS)is a machine language program that controls a disk drive.
It does several different tasks:

1. Handling communications between a disk drive and a computer.
2. Carrying out housekeeping chores such as formatting a diskette.
3. Managing the storage of information on a diskette.
4. Reading and writing information onto a diskette's surface.

In many computer systems, a DOS is loaded into the main computer's memory from
diskette when the computer is first switched on. In this type of system many of the
tasks are carried out using the computer's microprocessor and RAM. Commodore uses
a different approach. All of Commodore's disk drives are intelligent peripherals. They
do not have to use the computer's resources; they have their own. For example, the
1541 disk drive contains its own 6502 microprocessor, 2K of RAM, two 6522 I/O chips,
and a DOS program permanently stored in 15.8K of ROM.

The advantages of having an intelligent disk drive are:

1. The DOS does not use any of the computer's memory.
2. Some disk operations can be carried out independently from the CPU.
3. Disk operations do not slow down processing.
4. One disk drive can be shared among several computers.

The disadvantages of having an intelligent disk drive are:

1. It is very difficult to customize DOS routines.
2. You must replace the ROMs to convert to a new version of DOS.

2.2 Communicating with the 1541

Your Commodore 64 or VIC-20 can communicate with your 1541 disk drive in several
ways:

1. Through the LOAD, SAVE, and VERIFY commands.
2. Through I/O using the command channel.
3. Through I/O using data communication channels.

15

Let's examine each of these in greater detail.

1. LOAD, SAVE, and VERIFY commands:

These BASIC commands are used to store and retrieve programs on the Commodore
tape and disk drives. They are designed for ease of use, even by the novice. The BASIC
interpreter in the computer interprets these commands and sends the disk drive the
necessary information over the serial bus.

2. I/O using the command channel:

The command channel is used to send messages to the disk drive to carry out disk opera­
tions like: formatting a blank diskette, erasing an unwanted file, renaming a file, etc.
These operations are often referred to as disk housekeeping. The command channel is
also used to input messages, such as the current error status of the drive, generated
by the DOS. For more details on how to use the command channel, see Section 2.4.

3. I/O using data communication channels:

The 1541 DOS supports a variety of kinds of files: program files, sequential files, relative
files, user files, and direct-access files. The storage and retrieval of information in files
is carried out using a data communicationchannel. Although this manual provides detailed
information regarding how files are stored and organized, no attempt is made to teach
you how to develop programs that make extensive use of file handling. We would en­
courage readers who are interested in file handling techniques to refer to Jim Butter­
field's series of articles in COMPUTE!. The only I/O applications discussed in this manual
are those relating to direct-access programming (see Chapter 5).

Since the rest of this manual makes extensive use of the command channel, let's ex­
amine it in some detail.

2.3 The Command Channel

The command channel (channel number 15)is an important communication link between
your computer and the 1541disk drive. It has several important functions. You can use
it to:

1. Monitor the error status of the drive to ensure that everything is operating properly.
2. Send commands that direct the DOS to perform various housekeeping chores

associated with disk handling.
3. Send commands that direct the DOS to read or write information to specific areas

on a diskette.

This chapter focuses on the first two of these uses. Chapter 5 provides more detail on
reading or writing to a diskette.

16

2.4 Using the Command Channel

Using the command channel is easy. Just follow these steps:

1. Establish communications using an OPEN statement.
2. Send commands to the DOS using a PRINT# statement.
3. Read DOS messages using a GET# or INPUT# statement.
4. Close the channel using a CLOSE statement when you are finished.

Let's go over each step to ensure that you know exactly what to do.

1. Establishing communications using an OPEN statement.

In order to establish a communication channel between your computer and your 1541
disk drive, you use an OPEN statement. An OPEN statement is a BASIC command
which looks like this:

SYNTAX: OPEN file#, device#, channel#

EXAMPLE: OPEN 15, 8, 15

where

file# == the logical file number (1-127)

device# == the device number (8 for a stock 1541)

channel# == the channel number or secondary address (2-15)

NOTE: Channel numbers 0 & 1 are reserved for use by the DOS.
Channel numbers 2-14 are data communications channels.
Channel number 15 is the command channel.

The OPEN statement can be used either in immediate mode (typed and executed directly
from the keyboard) or under program control (embedded in a program).

In the example above (OPEN 15, 8, 15) we opened logical file number 15 on the C64
to device number 8 (the disk drive) through channel 15 (the command channel).

2. Sending commands to the DOS using a PRINT# statement.

In order to send commands from your computer to the 1541,you use a PRINT# state­
ment. A PRINT# statement is a BASIC command which looks like this:

SYNTAX: PRINT# file#, "command II

EXAMPLE: PRINT#15, II NC): MY DISI<ETTE, MD"

17

where

file# = the logical file number you used when you opened the command channel

command = the disk command to be sent to the DOS

NOTE: The statement is PRINT# not PRINT #. You must not put a space before the
sign. Spaces following the # sign are always optional. DO NOT use ?# as an abbrevia­
tion either. The correct abbreviation is pR(p then SHIFTED R).

In this example, the disk command is "NO:MY DISKETTE,MD". This command causes
the DOS to prepare the blank diskette in the drive for first-time use.

Although there are many different disk commands, they fall into two groups:

1. Commands related to disk housekeeping.
2. Commands to read or write data to a diskette or the disk drive's RAM.

The disk housekeeping commands are discussed in the next part of this chapter. The
commands relating to reading or writing data are discussed in Chapter 5 on Direct-Access
Programming.

3. Reading DOS messages using a GET# or an INPUT# statement.

You may use either an INPUT# or a GET# statement to read the command channel
and access any messages or data prepared for the computer by the DOS. Both INPUT#
and GET# statements are BASIC commands. They look like this:

SYNTAX: INPUT# file#, variable list
GET# file#, variable list

EXAMPLE: INPUT# 15, EN, EM$, ET, ES
GET# 15~ AS

where

file# = the logical file number you used when you opened the command channel

variable list = one or more variable names separated by commas

NOTE: As was noted for PRINT# above, the BASIC statements are INPUT# and GET#,
not INPUT # and GET #. You must not put a space before the # sign. Spaces following
the # sign are always optional. Neither the INPUT# statement nor the GET# state­
ment can be used in immediate mode (typed and executed directly from the keyboard).
They must be included within a program.

The INPUT# command and the GET# command operate in much the same way as the
more familiar INPUT and GET commands. INPUT# always reads as far as the next
carriage return character while GET# reads a single byte of information. Generally, GET#
is used in direct-access programming and INPUT# is used only for monitoring the drive's
error status as indicated immediately below.

18

You can check the error status of your disk drive using the command channel. The DOS
monitors every disk operation as it is carried out and prepares a status report indicating
whether or not the operation was completed successfully. The report consists of an er­
ror code number, an English language message, and the track and sector where the
problem, if any, was encountered. Here is a subroutine that checks the error status.

100 OPEN 15,8,15 : REM
THE OPEN COMMAND CHANNEL

500 INPUT#15,EN,EM$,ET,ES : REM
INPUT THE ERROR STATUS

510 IF EN < 20 THEN RETURN : REM
NO ERROR ENCOUNTERED

520 PRINT EN;EMS;ET;ES : REM
PRINT THE ERROR STATUS ON SCREEN

530 CLOSE 15 : END : REM
ABORT ON BAD STATUS

Line 100 opens the command channel. It is a good idea to open the command channel
at the beginning of your program and leave it open until the end. Line 500 inputs the
status report. The error code number is stored in EN, the message in EM$, the track
in ET, and the sector in ES. Error codes less than 20 may be ignored (line 510). A com­
plete list of the error codes and messages is contained in the back of your 1541 User's
Manual. A detailed explanation of the nature and cause of many of these errors is pro­
vided in Chapter 7 on Disk Protection.

4. CLOSE the command channel when you are done.

After you have finished using the command channel, it should be closed. Recall that
the open command has three parameters: the logical file number, the device number,
and the channel number. The close command has only one, the logical file number. It
looks like this:

SYNTAX: CLOSE file#

EXAMPLE: CLOSE 15

where

file# = the logical file number you used when you opened the command channel

NOTE: Loading, running, or editing a program closes down all communication channels
automatically. The command channel is closed properly in each instance. However, data
channels are aborted rather than closed. When a data channel is aborted, the file is NOT
CLOSED properly on the disk drive. You do not have to close the command channel
after the issuance of every command. If you forget to close it, the worst that can hap­
pen is a ?FILE OPEN ERROR when you attempt to open it again. However, you should
get into the habit of always closing a file when you are finished using it. You won't get
into trouble leaving the command channel open, but you may lose an important data
file if you leave a data communication channel open.

19

2.5 Disk Housekeeping
As your collection of programs grows, you will have to do some housekeeping to keep
things in shape. Disk housekeeping chores include the following:

1. Preparing a blank diskette for first-time use.
2. Erasing the contents of a diskette currently in use.
3. Initializing a diskette.
4. Renaming a file.
5. Scratching or erasing a file.
6. Copying a file.

These operations are carried out by the DOS in response to commands sent to the drive
using the command channel as indicated above. Once a disk housekeeping command is
issued, the disk drive will carry out the task without further intervention by the com­
puter. This means that you could edit or even RUN a program in RAM while the disk
drive busily formats or validates a diskette. This is not really spooling. It occurs because
the 1541 is an intelligent peripheral. The only thing that will cause your computer to
wait for the disk drive to complete its task is your attempting to perform another disk
operation. This includes closing the command channel.

Let's take a look at the disk commands used for housekeeping. NOTE: If you are using
the DOS SUPPORT program that came on your 1541TEST/DEMO, the syntax for these
disk commands is remarkably shorter. The> or @ keys are used to send a command
to the disk drive. They take the place of the PRINT# statement. In addition, you do
not have to open or close the command channel or embed the disk command in quota­
tion marks, The DOS SUPPORT program will do this automatically for you. The DOS
5.1 syntax can be used only in immediate mode, however. It cannot be used in a pro­
gram or a ?SYNTAX ERROR will result.

The New Command

When a fresh diskette is taken from its storage envelope, the 1541 cannot recognize
it. The diskette must be formatted or newed prior to first-time use. Formatting or new­
ing a diskette is performed by the DOS. The DOS proceeds to write concentric tracks
made up of blocks/sectors to the diskette. In addition, a directory is set up, wherein
the drive records information about all the files stored on the diskette. Chapter 3 pro­
vides a much more detailed account of this operation. The syntax for formatting a diskette
is really quite simple:

SYNTAX: OPEN 15~ 8, 15
PRINT#1S, "NO:DISK NAME,IDII
CLOSE 15

ALTERNATE: PRINT#15, IIN:DISK NAME,ID II

EXAMPLE:

DOS 5.1:

OPEN 15, 8, 15
PRINT#1S, IIN(): MY DISKETTE, MD II

CLOSE 15

>N(): DISK NAME,ID
>N:DISK NAME,ID

20

The disk command, "NO:MY DISKETTE,MD", is sent to the drive by the PRINT#15
statement. The command has three parameters. The first parameter within quotes is
NO:. The N stands for NEW. The 0 is a holdover from the dual drive system and in­
dicates which drive. The 0 is optional on the 1541 and may be omitted. The colon ter­
minates the DOS command. The second parameter is the disk name. It is limited to 16
characters in length. Generally these are alphanumeric characters. In the example above,
we named the diskette: MY DISKETTE. The disk name is cosmetic and appears in the
directory for reference purposes only. It is not written anywhere else on the diskette.
The disk name is followed by a comma. The DOS looks or parses for this. After the
comma are two alphanumeric characters for the disk ID. In the above example we
selected MD as our disk identifier. The ID is written to every block or sector on the
diskette. It is impossible to alter. The DOS repeatedly looks at the ID of a sector to
be sure that you have not switched diskettes on it. Each diskette should be formatted
with a unique ID. This will prevent the DOS from inadvertently overwriting programs
on what appears to be an identical diskette.

A "full" new on a diskette takes roughly 2-3 minutes. There is a quicker way to erase
a diskette that has already been used. This is accomplished by leaving off the disk ID.
For example:

SYNTAX: OPEN 15, 8, 15
PRINT#15, liNe): DISK NAME"
CLOSE 15

ALTERNATE: PRINT#15, liN: DISI< NAME"

EXAMPLE:

DOS 5.1:

OPEN 15, 8, 15
PRINT#15, IINO:TEST DISKETTE"
CLOSE 15

)NO:DISK NAME
>N:DISK NAME

Notice that no comma or ID follows the disk name. This command will work only on
a diskette that has previously been formatted. It is referred to as a "short" new. A
"short" new simply erases the first sector in the directory and writes an empty BAM
(block availability map) to tell the DOS that we have a fresh diskette in use.

NOTE: A diskette that is plagued by read or write errors does not have to be pitched.
Copy the files to another diskette first. Then do a "full" new on the offending diskette.
This will erase and reformat the entire diskette. A "short" new rewrites only sectors
oand 1 of track 18 and will not eliminate any read or write errors. See Chapter 8 about
how to recover from both a "short" new and a "full" new.

The Initialize Command

Initialization has nothing to do with formatting. APPLE™ owners format a diskette by
"initializing" it. This is NOT TRUE with Commodore. Initializing a diskette forces the
DOS to read the disk ID and the contents of the BAM and store them in the drive's
internal memory. The BAM establishes where the next available sector is for writing.
Without it files would be overwritten. To initialize a diskette perform the following:

21

SYNTAX: OPEN 15, 8, 15
PRINT#15, "Ie)"
CLOSE 15

ALTERNATE: PRINTtti5, "1 11

DOS 5. 1 : >I o
}I

The I is short for INITIALIZE. The drive number can be ignored if you are using only
one 1541.The drive motor purrs for a few seconds and then settles down. It's that sim­
ple. It is a good habit to initialize a diskette each time you insert it into your 1541drive.
This point cannot be overemphasized. Do it yourself. Do not rely upon the "autoinit"
feature of the drive. Initialization prevents the DOS from overwriting files in the event
that two diskettes with identical IDs are swapped. The drive cannot tell the difference
between two diskettes with identical IDs since it is the ID that the DOS uses to iden­
tify a diskette. Initialization also assures you that a diskette is properly seated in the
drive before use.

The 1541 drive has a built in autoinitialization feature. Once it encounters an error it
will retry a disk operation several times. Often it can recover from an error on its own.
If it fails, it gives up. Before doing so, though, it will do a "bump." On a bump the
read/write head is stepped outwards 45 tracks (slight overkill) to assure that it is on
track 1. The drive clatters when a protrusion on the stepper motor's drive pulley bumps
up against a mechanical stop. (It really isn't a melt down.) The head then steps inwards
to track 18and the DOS awaits further instructions. Self initialization avoids this scenario.
Initialize every time you insert a diskette into the drive.

Initialization clears the error channel and turns off the flashing red LED. Unless, of
course, you are trying to initialize an unformatted diskette or forgot to put one in the
drive to begin with. Clearing the error channel destroys the error status the DOS
prepared for you. If error checking is important, retrieve the error message first; then
initialize the drive.

The Rename Command

Occasionally you will want to change the name of a file stored on a diskette. To rename
a file you first open the command channel and then send the rename command like this:

SYNTAX: OPEN 15, 8, 15
PRINT.1S, II RC): NEW NAME=OLD NAME"
CLOSE 15

ALTERNATE: PRINT#1S, IIR:NEW NAME=OLD NAME"

EXAMPLE:

DOS 5.1:

OPEN 15, 8, 15
PRINT#IS, "RC): DISPLAY T8cS=DTS"
CLOSE 15

>RO:NEW NAME=OLD NAME
>R:NEW NAME=OLD NAME

22

Again the syntax is exacting but simple to follow. The RO: means to rename on drive
O. It is short for RENAMEO:.As before, the 0 is optional on the 1541. The next parameter
is the new file name. A file name is generally alphanumeric in nature and 16 characters
are allowed at the maximum. (Commas, colons, semicolons, and wild cards are not per­
mitted. Cursor control and reverse video characters should be avoided.) The new file
name is followed by an "=" sign. The last parameter is the existing or old file name.
It must be spelled out exactly as it appears in the directory. Wild cards (*,?) are not
allowed. If you make a typo on this parameter or the file does not appear in the direc­
tory, the rename command fails. No damage is done, so relax. In the above example
our new file name is DISPLAY T&S. It replaces the old file name DTS. One final point.
You cannot rename a file that is currently open for a read or write.

The Copy Command

The copy command allows you to easily backup an existing file on your diskette. There
are three restrictions attached. First, the new file must have a different name. Second,
the copy command will not work on a relative file. Third, you must have enough room
on the diskette. The copy command looks like this:

S'(NTAX:
OPEN 15, 8, 15
F'RINT#15, lice): BACKUP=(): ORIGINAL II

CLOSE 15

ALTERNATE:
F'R I NT:It 15, II c: BACI<UF'=OR I GI I\JAL ..

EXAMPLE:
OPEN 15, 8, 15
F'RINT#15, lice): MY PROGRAM B/U=(): MY PROGRAM"
CLOSE 15

DOS 5.1:
>CO:BACKUP=O:ORIGINAL
>C:BACKUP=ORIGINAL

The C is short for COPY. The new file above is called MY PROGRAM BID. It is a backup
copy of a previous program called MY PROGRAM. Note that we must specify the drive
number twice. Again this is a holdover from a dual drive configuration. The C does not
appear twice, however. The same restrictions that apply to the rename command are
also in effect here, i.e., 16 character file name limit, use of restricted characters, etc.
The drive number is optional. See the alternate syntax to save a few keystrokes.

It is also possible to merge two or more sequential data files using the copy command.
The syntax for this is as follows:

SYNTAX:
OPEN 15, 8, 15
PRINT#1S, "ce): COMBINED=(): FILEt, oeFILE2,

O:FILE3 11

CLOSE 15

23

ALT'EF:I'JA'TE :
F"RINTD15, IIC: COMBINED=FILE1, FILE2, FILE3 1

•

EXAMFaLE:
OF"EN 15, 8, 15
F"RIf\JT#15, ne(): MAILFILE=(): NAME, oeADDRESS~

o: CI TV"
CLOSE 15

DOS 5.1:
>C(): COMBINED=(): F ILE1, (): FILE2~ o ; F ILE3
>C:COMBINED=FILE1,FILE2,FILE3

Our large file now consists of several files appended together. While this feature of the
copy command is available, it is rarely used. Few programming techniques would re­
quire or ever utilize this feature. Note that this technique cannot be used to append
a subroutine onto a BASIC program; the subroutine cannot be merged into the main
program by the disk drive. You will need to use a programmer's aid like POWER™,
SYSRES™, or BASIC AID™ for the C64 to do this.

The Scratch Command

To get rid of an unwanted file, we scratch it. The only exception is an unclosed file.
An unclosed file is one that appears in the directory as having zero blocks and whose
file type is preceded by an asterisk (*SEQ, *PRG, etc.). This will be explained below.
To scratch a file, first remove the write protect tab and key in:

SytaJTAX: OF"EN 15, 8 , 15
F"RI NT# 15, IIS(): FILE NAME II

CLOSE 15

ALTEF~NATE: F·RINT#15~ liS: FILE NAME"

EXAMPLE:

DOS 5.1:

OPEN 15, 8~ 15
F"RINT#15, II SCI: TESTING 123 11

CLOSE 15

>S(l: FILE NAME
>S:FILE NAME

The scratch command requires a single parameter, the file name, preceded by S or
SCRATCH. As before, the drive number is optional.

There are some variations that incorporate wild cards. Wild cards in a file name are
asterisks (*)or question marks (?). They should be used with utmost caution since more
than one file can be scratched at a time.

EXAMPLE: OPEN 15, 8, 15
faRINT#15, "SC): T*II
CLOSE 15

DOS 5.1: >S():T*

24

In the above example all files beginning with the letter T, regardless of file type, will
be scratched. In the event that no file starts with the letter T, none will be affected.
Careless use of a wild card can have catastrophic results. For example:

EXAMPLE: OPEN 15, 8, 15
FaRINT#15, "SC): *11
CLOSE 15

DOS 5.1: >S(): *

The above command will scratch every file on the diskette. It is the equivalent of per­
forming a short new on a diskette. Be careful!

The second wild card is the question mark. It is used to mask out characters that are
not of importance. Suppose we want to scratch a number of files whose names are all
eight characters long and end in .C64. We could not use .C64* to scratch them since
the match falls at the end of the file name. However, we could use:

EXAMPLE: OPEN 15, 8, 15
PRINT#15, IISO:????C64"
CLOSE 15

DOS 5.1:)SO:????C64

Note that we used four question marks in the above example. An exact match of .C64
must occur on characters 5 through 8 of the file name. No match - no scratch. If we
had 1541.C64and CI00.C64 on the disk, both would be scratched by the previous com­
mand. However, BACKUP.C64 would not be affected.

More than one wild card can be used within the same command. For example:

EXAMPLE: OPEN 15, B, 15
FaRINT#15, IISC): T?ST*II
CLOSE 15

DOS 5.1: >SO:T?ST*

This command would scratch files with these names: TEST, TASTY, TESTINGI23. The
file TOAST would not be affected. Note that it makes no sense to send a command like
this: "SO:T*ST???". The asterisk has priority over the question mark. All characters
that appear after the asterisk are ignored.

A file type that begins with a * is unclosed: *SEQ, *PRG, etc. It was never closed proper­
ly. This can happen for a variety of reasons:

1. The diskette may have been at its physical capacity and a disk-full situation occurred
during a save or write to a diskette.

2. A bad sector may have been encountered during a write to a diskette.

25

3. The file may have been left open following a write operation because you forgot to
CLOSE the file, or you aborted the program by hitting either the RUN/STOP key
or the RUN/STOP and the RESTORE keys.

4. Your program had a syntax error in it and the BASIC interpreter returned you to
immediate mode.

(See Chapter 8 about how to recover an unclosed file.)

Whatever the cause, an unclosed file should never be scratched! Since the write opera­
tion was aborted, the internal organization of the diskette (i.e., the BAM),has been left
in disarray. It does not match the actual file contents of the diskette. Any further at­
tempt to write to that diskette will probably cause a loss of one or more files. Files can
actually overlap one another now and you will be left with a poisoned diskette. The DOS
does have a command to decorrupt itself. This is the validate command. When in doubt,
validate your diskette!

The scratch command does not actually erase the file on your diskette. Rather it traces
the file across the surface of the diskette and frees any sectors the file occupied. The
file-type byte is also changed to a zero in the directory which indicates to the DOS that
it is no longer active. If you inadvertently scratch a file that you didn't mean to, stop
right then and there! You can recover it. Do not attempt to write to the diskette. The
sectors just freed will be used on subsequent writes to the diskette. Once you write
to the diskette, recovery is impossible. Chapter 8 on Getting Out of Trouble shows you
how to recover a scratched file.

The Validate Command

This command tells the DOS to reconstruct its map which shows where information is
stored on the diskette, so it conforms to the files listed in the directory. This is a simple
way to decorrupt a damaged diskette. However, it is not a failsafe command as will be
explained shortly. A validate command looks like this:

SYNTAX: OF-EN 15, 8, 15
PRINT#15, "VO"
CLOSE 15

ALTERNATE: PRINT#15, "V"

DOS 5.1: >V()
>v

The V is an abbreviation for VALIDATE. As before, the 0 is optional for the 1541 drive.

What does a validate do? The DOS keeps a map that indicates which sectors on a diskette
are currently in use. This map is stored on track 18, sector O. It is referred to as the
Block Availability Map or just the BAM for short. When the validate command is issued,
all blocks are freed in the BAM on the diskette simulating a newly formatted blank
diskette. The drive then picks up the first file in the directory and chains through the

26

entire file. As sectors are picked up along the way, they are allocated in the BAM as
currently in use. If the file is traced successfully, all blocks associated with it are put
back into the BAM as in use. The next file is then picked up out of the directory and
the process continues. When all files have been traced, the new BAM is written to the
diskette and the internal count now matches the directory contents.

So far so good. Now let's see what happens to an unclosed file. When the DOS encounters
an unclosed file in the directory during a validate command, all it does is change the
file type byte in the directory entry to a 0 (scratched file). No attempt is made to trace
the file. When the validate operation is complete, the unclosed file will no longer appear
in a directory listing and any blocks associated with it will be free. This is what you
want to happen. Now let's see what happens if you attempt to SCRATCH an unclosed
file.

When you scratch a file, two things happen: the file-type byte in the directory for this
file is set to 0 (scratched file) and the DOS traces through the chain of sectors that make
up the file and marks each sector it encounters as available for use (free) in the BAM.
This is just what you want to have happen for a normal file, but it can poison the diskette
when you try it on an unclosed file. Here's why. The last sector of an unclosed file was
never written out to the diskette. As a result, the second to the last sector points to
a sector that is not really part of the file. The DOS doesn't realize this and continues
to follow the "chain." If you are lucky, the "unwritten sector" will be a empty sector
(never used since the disk was formatted). ·If this happens, the DOS will stop because
pointers point to a non-existent track and sector (75,1). If you are unlucky, the "unwrit­
ten sector" will be part of a file that you scratched last week and the pointer will just
happen to point into the middle of that very important file you just saved yesterday.
When this happens, the DOS will merrily deallocate the remaining sectors in your file.
The next write operation to the diskette will see this nice big open space and the new
information will be saved right on top of your active file. Now the situation has gone
from bad to worse and is in fact pathological - hence a poisoned disk. The only solution
is to inspect each file first to ensure that it is not tainted and then copy it onto another
diskette.

The validate routine is aborted if an error (an unreadable sector) is encountered. When
it aborts, nothing radical occurs. The new BAM is not written to the disk until the valida­
tion process has been completed. Don't worry about the blank BAM getting you in trou­
ble; the DOS will read the old one back in before it allows you to write to the disk.
However, the diskette still remains corrupted with no quick remedy in sight. Chapter
8 on recovery deals with this and other disasters.

27

CHAPTER 3

DISKETTE FORMATTING

When you take a new floppy diskette out of the package, it is blank. Before the drive
can store data onto it, it must be formatted. This is done by inserting the diskette into
the drive and sending a NEW command to the DOS (see Section 2.5). During "format­
ting" or "newing," 35 concentric tracks are written to the diskette. Each track is made
up of varying numbers of sectors/blocks where programs and data will eventually be
stored. In addition to laying down empty blocks/sectors, the DOS creates a directory
and a block availability map (BAM) and records them on track 18.

This chapter describes the formatting process and the tracks and sectors of a diskette.
Chapter 4 describes the directory and the block availability map (BAM).

3.1 Layout of Tracks and Sectors
During the formatting (newing) process, the DOS divides the diskette into tracks and
sectors. A track is a circular path on the diskette along which information is stored.
Each track is concentric with the hole in the center of the diskette. There are a total
of 35 tracks numbered from 1 to 35. Track 1 is the outermost track and track 35 is the
innermost track. The read/write head may be positioned to any given track. The posi­
tion of track 1 is determined by a mechanical stop that limits the outward movement
of the read/write head. The other tracks are identified by their distance from track 1.
The diagram below indicates the layout of the tracks on a formatted diskette.

TRACK 1

29

TRACK 1

Although there are only 35 tracks, the stepper motor can position the read/write head
to more than 70 different positions. This might seem to imply that additional tracks could
be recorded on the surface of the diskette to increase its storage capacity. Unfortunate­
ly, the accuracy of the head positioning mechanism and the width of the path ofmagnetiza­
tion produced by the read/write head makes the use of these "phantom" tracks unreliable.
If you would like to experiment with this, the programs described in Chapter 9 allow
you to experiment with stepping the head around.

Each track is divided into seventeen or more sectors (blocks). Each sector holds 256
bytes of data. (Some manufacturer's record data in 512 or 1024byte sectors.) Whenever
data is read from or written to a diskette, it is done one complete sector at a time.

On Commodore disk drives, the tracks are not divided into a fixed number of sectors.
The number of sectors depends on the track number. The outer tracks (lower numbers)
are longer and are divided into more sectors than the inner (higher numbered) tracks.
The table below summarizes how the diskette is organized.

Organization of Tracks and Sectors on a 1541 Formatted Diskette

Track Range of Sector Total Sectors Total Bytes
Zone Numbers Numbers Per Track Per Track

1 1 to 17 oto 20 21 5376
2 18 to 24 oto 18 19 4864
3 25 to 30 o to 17 18 4608
4 31 to 35 oto 16 17 4352

A total of 683 sectors are written at the time of initial formatting. Since the disk rotates
at a constant speed of 300 rpm, you may wonder how Commodore manages to vary the
number of sectors from zone to zone. This is accomplished by varying the rate at which
data is read or written (changing the clock rate). Each of the four zones uses a different

30

clock rate. This is accomplished by using a high speed clock and dividing the clock by
N, where the value of N is determined by the zone. The table below summarizes the
clock rates for each zone.

Zone Tracks Divisor Clock Rate Bits/Rotation

1 1 to 17 13 307,692 bits/sec 61,538.4
2 18 to 24 14 285,714 bits/sec 57,142.8
3 25 to 30 15 266,667 bits/sec 53,333.4
4 31 to 35 16 250,000 bits/sec 50,000.0

This scheme provides a recording density that varies from about 4000 bits/inch on the
outer tracks to almost 6000 bits/inch on the inner tracks.

If all of the possible bits could be used for data alone, we would be able to store a total
of 2,027,676 bits or 253,459 bytes on a diskette. Unfortunately, not all of these bytes
can be used for data. The total storage capacity of a diskette formatted on the 1541 is
174,848bytes. The need for space to store a directory to keep track of the location of
the files on a diskette (see Chapter 4) further reduces us to an effective storage capacity
of 169,984 bytes (256 bytes * 664 sectors).

3.2 Layout of a Sector

During the formatting (newing) process, the DOS creates and records onto the diskette
all 683 sectors/blocks that will eventually be used for storing information. Each sector
is comprised of two parts:

1. A header block that identifies the sector.
2. A data block that holds the 256 bytes of data.

The diagram below illustrates how these parts are arranged.

SECTOR #0

HEADER BLOCK

II = sync mark

I = inter-sec gap

DATA BLOCK

SECTOR #1

HEADER BLOCK DATA BLOCK

SECTOR #2

HEADER BLOCK

The sectors are recorded in numerical sequence along the circular track. Each sector
consists of an identifying header block followed by a data block. The sectors are separated
from each other by an inter-record gap. A special character called a SYNC MARK is
used to mark the beginning of each header or data block.

31

A SYNC MARK is a very special character. It consists of 10 or more 1 bits in a row
(normally 40 of them). This particular pattern of bits only occurs at the start of a header
or data block. The hardware in the 1541 drive can detect this character and signal the
DOS that a new data or header block is coming.

If you are puzzled about why several $FF characters in a row in the data block are
not interpreted as a sync character, you may want to skip ahead to the section on Com­
modore's GCR encoding scheme in Chapter 7.

3.3 The Header Block

The header block of a sector allows the DOS to identify which track and sector is being
read. It is composed of a sync mark, eight bytes of identifying information, and a header
gap. The diagram below shows the layout of a header block.

SYNC HEADER HEADER SECTOR TRACK 10 10 $OF $OF HEADER
MARK BLOCK BLOCK NUMBER NUMBER CHARACTER CHARACTER BYTE BYTE GAP

10 CHECKSUM NUMBER 2 NUMBER 1

NOTE: The header is recorded on disk exactly as indicated above. The diagram on page
54 of the 1541 User's Manual is incorrect.

Let's examine the bytes that make up the header block:

Sync Mark: This consists of 10 or more 1 bits as described above. It warns the DOS
that either a data block or a header block is coming.

Header Block ID: This is normally a $08 byte. It serves to indicate to the DOS that
this is a header block and not a data block.

Header Block Checksum: This is a checksum character used by the DOS to ensure
that the header block was read correctly. It is found by EORing the track number, the
sector number, and the two ID characters. If you are not sure what an EOR is, you
may want to read through Section 7.1.

Sector Number: This byte is the number of this particular sector. The sectors are
numbered consecutively around a track.

Track Number: This byte is the number of this particular track. The DOS uses this
byte to check to be sure that the record/play head is positioned to the correct track.

ID Character # 2:This is the second ID character that you specified in the NEW com­
mand when the diskette was formatted (e.g., the 1 in "NO:GAMES,Vl"). It is sometimes
referred to as the ID HI. The DOS checks this byte against a master disk ID to ensure
that you have not swapped diskettes.

32

ID Character #1: This is the first ID character that you specified in the NEW com­
mand when the diskette was formatted (e.g., the V in "NO:GAMES,V1"). It is sometimes
referred to as the ID LO. The DOS checks this byte against a master disk ID to ensure
that you have not swapped diskettes.

$OF Bytes: These bytes are used as padding (spacing)by the DOS during initial format­
ting. They are called "OFF" bytes. Once formatting is complete OFF bytes are never
referenced again.

Header Gap: The header gap consists of eight $55 bytes. These eight bytes are used
to provide breathing room between the header block and the data block.The DOSnever
reads these bytes. They allow the DOS time to set-up for reading the data block that
follows. NOTE: The 4040 drive uses a nine byte header gap. This is one of the reasons
why 1541 drives and 4040 drives are NOT WRITE COMPATIBLE! See Chapter 9 for
more information.

NOTE: A header block is written only during the formatting process. It is never rewrit­
ten again, period.

3.4 The Data Block

The data block of a sector stores the 256 data bytes for this sector. It is composed of
a sync mark, a data block ID character, the 256 bytes of data, a data block checksum
byte, two off bytes, and an inter-sector gap. The diagram below depicts the layout of
a data block.

SYNC
lARK

DATA
BLOCK
10

256
DATA BYTES

DATA $00
BLOCK BYTE
CHECKSUM

$00
BYTE

INTER· SYNC
SECTOR MARK
GAP

HEADER
BLOCK
10

Let's examine the bytes that make up the data block:

Sync mark: This consists of 10 or more 1 bits as previously described. It warns the
DOS that either a data block or a header block is coming.

Data Block ID: This byte is normally a $07. It serves to indicate to the DOS that this
is a data block and not a header block ($08).

256 Data Bytes: This is the actual data stored in the sector. See Chapter 4 about how
Commodore uses the first two bytes as a forward track and sector pointer instead of
actual data.

Data Block Checksum: This is a checksum character used by the DOS to ensure that
the data block was read correctly. It is found by EORing all 256 data bytes together.

$00 Bytes: These two bytes are also called OFF bytes. They are used to pad a data
block before it is written. They are not referenced again by the DOS.

33

Inter-sector Gap: This is also known as the "tail gap." Its purpose is to provide breathing
room between the end of the data block and the start of the next sector. The length
of the gap varies from zone to zone and from one drive to another (see the chart in Sec­
tion 7.1). Between consectutive sectors the gap is normally 4 to 12 bytes long. The gap
between the last sector on a track and sector zero is often longer - up to 100 bytes
in length. The gap is designed to be long enough so that if you write a data block on
a day when your drive is turning slightly faster than 300 rpm, you won't overwrite the
start of the next sector. (Your drive may not be turning at exactly 300 rpm all the time
because of fluctuations in the power supplied to your home or office, mechanical wear,
belt slippage, changes in temperature, etc.) Note that the DOS never reads these bytes.

The entire data block (including the preceding sync mark) is rewritten each time data
is recorded on a diskette.

This concludes our overview on how a diskette is formatted. Additional details about
how bytes are encoded on the surface of a diskette are provided in Section 7.1. The ac­
tual recording process is described in Section 9.7.

34

CHAPTER 4

DISKETTE ORGANIZATION

4.1 Information Management

The information that is stored on a floppy disk is virtually useless unless it can be retriev­
ed quickly. As a result, the organization and management of information is one of the
most important tasks of the DOS. To do an efficient job of management, the DOS must
be able to:

1. Keep track of which sectors contain data and which are still empty (availablefor use).

2. Assign names and storage locations to large blocks of related information (files).

3. Keep track of the sequence of sectors that were used to store a file.

The DOS stores most of this information in the directory on track 18, halfway between
the outermost track (1) and the innermost track (35). Centering the directory serves
to minimize head movement across the diskette and extends the life of both the drive
and the media. The directory is subdivided into two areas-the map showing which sec­
tors are in use and which are free (the Block Availability Map or BAM) and directory
entries. The BAM resides solely on sector 0 of track 18. It informs the drive as to what
sectors are currently in use and where subsequent writing to the diskette can safely
take place. The remaining sectors (1-18) of track 18contain directory entries (filenames,
file types, and pointers to where files are stored on the diskette).

4.2 The Directory You See

Let's examine the directory of the 1541TEST/DEMO diskette that came with your drive.
Insert it in your drive and type on your keyboard:

LOAD 11$0",8

then type

LIST

35

After a brief pause you should see the following on your screen:

o 111541 TEST/DEMO .. ZX 2A
13 IIHOW TO USEII PRG
5 II HOW FaART TWO" PRG
4 IIVIC-2() WEDGE" PRS
1 "C-64 WEDGE" PRG
4 liDOS 5.1 11 PRG
11 II COFay / ALL" PRG
9 "PRINTER TESTII PRG
4 IIDISI< ADDR CHANGE" PRG
4 IIDIRII PRG
6 "VIEW BAM" PRG
4 ..CHECI<: D 181< .. FaRG
14 IIDISPLAY T~(SIl PRG
9 II PERFORMANCE TEST" PRB
5 "SEQUENTIAL FILE" PRG
13 "RANDOM FILE" PRG
558 BLOC~~S FREE.

The 0 refers to which drive was accessed. This is a holdover from the 4040 dual drive
system. Next you see the diskette name - 1541TEST/DEMO. In the event that the
diskette name is less than 16 characters in length, blank spaces are appended to the
end of the name. This forced spacing is known as padding. Following the name of the
diskette is the disk ID - ZX in this instance. These two characters are generally (but
not always) the unique alphanumeric characters under which the diskette in question
was formatted originally. The diskette name and ID are cosmetic in nature and appear
in the directory for your reference purposes only. The 2A indicates the DOS version
and format, 4040 in this instance - again a holdover. Next we see the active file entries
on the diskette itself. Each directory entry has three fields:

1. The number of blocks/sectors the given file occupies.
2. The file name.
3. The file type.

Your demo diskette came with 15 active files on it. Moreover, they are all program files
denoted by PRG. The last entry in the directory is the remaining number of available
blocks/sectors left on the diskette for storage. It is the difference between 664 blocks
available at the time of original formatting and the sum of the blocks of the active files
(664 - 106 = 558).

What you see on your screen is not necessarily how the directory is stored on your
diskette, however. Let's begin our look at the directory with the Block Availability Map
(BAM).

4.3 The Block Availability Map (BAM)
The BAM is where the DOS keeps track of which sectors (blocks) on the diskette con­
tain information (are in use) and which ones can be used for storing new information
(are free). This map is stored on track 18, sector O. Here is a hex dump of that sector
on the 1541TEST/DEMO disk so we can examine it in detail.

36

I541TEST/DEMO

TRACI(18 - SECTOR 0

· 00: 12 01 41 (10 15 FF FF IF • • A ••••• BAM TRACI(i

· 08: 15 FF FF IF 15 FF FF IF · BAM TRACKS 2-3

· 10: 15 FF FF 1F 15 FF FF IF · BAM TRACKS 4-5

· 18: 15 FF FF IF 15 FF FF IF · BAM TRACKS 6-7

· 20: 15 FF FF iF 15 FF FF iF · BAM TRACKS 8-9

· 28: 15 FF FF 1F 15 FF FF iF · BAM TRACKS 10-11

· 30: 15 FF FF IF 15 FF FF 1F · BAM TRACKS 12-13

· 38: 11 07 SF 1F ()() oo 00 O() •w•••••• BAM TRACKS 14-15

· 4(): 00 00 00 OC) O() 00 00 00 ·.. BAM TRACKS 16-17

· 48: 1(1 EC FF 07 OC) ()() ()(I (I() · BAM TRACI(S 18-19

· 50: O() 00 00 00 12 BF FF 07 · •••• ? • BAM TRACKS 20-21

· 58: 13 FF FF (17 13 FF FF ()7 ·. BAM TRACKS 22-23

· 60: 13 FF FF ()7 12 FF FF 03 · BAM TRACKS 24-25

· 68: 12 FF FF 03 12 FF FF (13 · BAM TRACKS 26-27

· 70: 12 FF FF 03 12 FF FF ()3 · BAM TRACKS 28-29

· 78: 12 FF FF 03 11 FF FF (11 ·. BAM TRACKS 30-31

· 80: 11 FF FF 01 11 FF FF 01 · BAM TRACKS 32-33

· 88: 11 FF FF 01 11 FF FF 01 · BAM TRACKS 34-35

· 90: 31 35 34 31 54 45 53 54 1541TEST DISK NAME

· 98: 2f 44 45 4D 4F A() AO A() /DEMO

· AO: AO AO 5A 58 A() 32 41 A() ZX 2A DOS TYPE g(DISK ID

· A8: AC) A() A() oo O() (JO ()C) ()() UNUSED

· BC): 0(1 00 O() oo oo oo (1(1 00 ·
· B8: ()() (u) ()() 0(1 ()o (IC) ()C) (Ic) ·
· cor O() (10 O() 00 00 OCI oo (I() ·
· C8: oo oo (u) OC) (10 (J() (IC) O() ·
· D(): (I() 00 O() 00 oo OC) (10 O() ·

08: (I() ()() oo (I() oo oo 00 00 ·
E(): oo ()() OC) (I() ()o (I() ()(I oo ·

· E8: (I() 00 O() 00 00 00 00 00 ·
· FO: OC) oo oo oo oo 00 O() ()C) ·..
· Fa: 00 O() 00 00 00 oo 00 00 ·

As indicated above, the BAM does not take up all 256 bytes on this sector. There are
several other things stored here as well. The table below identifies the various parts.
Note that the sector dump above uses hexadecimal notation while the table below gives
the decimal equivalents.

Bytes Contents Purpose
0/1 18/1 Pointer to first sector of directory entries
2 65 ASCII character A indicating 1541/4040 format
3 0 Unused

4-143 Block Availability Map (BAM)
144-159 Diskette name padded with shifted spaces
160-161 160 Shifted spaces

37

162-163
164

165-166
167-170
170-255

160
50/65
160
?

Diskette ID
Shifted space
DOS version and format type (2A)
Shifted spaces
Unused

In the BAM four bytes are used to describe the status of each track. As a result, the
BAM takes up a total of 4 x 35 = 140 bytes (bytes 4-143 or $04-$8F). Let's examine
the entry for track 14 to see what these four bytes mean. The entry for track 14 begins
at byte 14 x 4 = 56 ($38). It looks like this:

• 38: 11 D7 SF IF 00 00 00 00 .W•••••• BAM TRACKS 14-15

** ** ** **

The first byte for track 14 (location $38 = 56) indicates the number of blocks free on
this track.

• 38: 11 D7 SF IF 00 00 00 00 .W•••••• BAM TRACKS 14-15

**

In this case there are $11 or 17 (1 * 16 + 1) blocks free.

When the DOS calculates the number of blocks free on a diskette, it sums this byte
from each track's entry in the BAM. Let's do our own blocks free calculation to see
how it is done. All we have to do is sum up the decimal values of every fourth byte
starting with byte 4 like this:

HEX DECIMAL
ZONE BYTE TRACK VALUE VALUE

1 4 1 $IF 21
8 2 $IF 21

12 3 $IF 21
16 4 $IF 21
20 5 $IF 21
24 6 $IF 21
28 7 $IF 21
32 8 $IF 21
36 9 $IF 21
40 10 $IF 21
44 11 $IF 21
48 12 $IF 21
52 13 $IF 21
56 14 $11 17
60 15 $00 0
64 16 $00 0
68 17 $00 0

38

2

3

4

72
76
80
84
88
92
96

100
104
108
112
116
120

124
128
132
136
140

18
19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35

$10
$13
$13
$13
$13
$13
$13

$12
$12
$12
$12
$12
$12

$11
$11
$11
$11
$11

16
19
19
19
19
19
19

18
18
18
18
18
18

17
17
17
17

+ 17

574 BLOCKS FREE

Wait a minute! We calculated 574 blocks free but the directory shows 558. How do we
explain this discrepancy? Easy. Remember that the DOS reserves track 18 for its own
use. Therefore the blocks free on that particular track are not returned to us (574 ­
16 = 558). Sixteen sectors on track 18 are still free, but available only to the DOS.

Now that you have seen how to calculate the number of blocks free on a diskette, let's
get back to our analysis of track 14. The BAM entry looked like this:

• 38: 11 D7 SF IF 00 00 00 00 .W•••••• BAM TRACKS 14-15

** ** ** **
The first byte was easy to interpret. The remaining three bytes are a bit trickier (no
pun intended). They are a bit map showing the status of the sectors on a given track.
Bit mapping is used to save space. If one byte were used for each of the 683 sectors,
the BAM would take up three sectors (683 / 256). This would be inefficient. By using
bit mapping, each byte describes the status of eight sectors. This way only three bytes
are needed for each track. Let's examine the bit map for track 14 of our 1541
TEST/DEMO.

• 38: 11 D7 SF iF 00 00 00 00 .W•••••• BAM TRACKS 14-15

** ** ** **
LOCATION

BYTE VALUE
BINARY

SECTOR
NUMBER

$39=57 $3A=58 $3B=59
$D7 $SF $lF

11()le}!11 ()1()!1111 ()()(J 11111 *
111111 21111

7654321C) 54321 ()98 xxx(}9876

* 1 = FREE
o = ALLOCATED

39

Sectors 0 to 7 are represented by the byte at location 57. Sectors 8 through 15are stored
in the byte at location 58. Finally, sectors 16 through 20 are depicted by the byte at
location 59. When decoded, a bit that is high or a 1 indicates that a sector is not current­
ly in use (free) and can be written to. A bit that is low or a 0 is currently in use (allocated)
and willbe overlookedby the DOSwhen writing subsequently takes place to the diskette.
The third byte is always incomplete since a maximum of 21 sectors are written to any
track. This particular byte is automatically adjusted by the DOS during initial format­
ting to indicate the proper number of sectors for this track. Three bytes are still used
irregardless of the zone, however. If you count up the Is in the bit map for track 14,
you will find that there are 17free sectors on track 14. This agrees with the blocks free
count for the track stored at byte location $38 (56) in the BAM, i.e., $11 or 17 decimal.

To ensure that you understand how the bit mapping works, let's take a look at track
18. Since track 18 is used for storing the directory we would expect some allocation of
sectors here. Byte 72 shows $10 or 16 sectors available here. They are bit mapped in
bytes 73, 74, and 75 as follows:

· 48: 1() EC FF ()7 O() 00 00 00 BAM TRACKS 18-19

** ** ** **
LOCATION $49=73 $4A=74 $4B=75

BYTE VALUE SEC $FF S07
BINARY 1110110() 11111111 (10000111 *
SECTOR 111111 21111
NUMBER 76543210 54321 ()98 xxx09876

* 1 = FREE
o = ALLOCATED

If you are still unsure of yourself, don't be too concerned. The DOSlooks after the BAM.
Let's move on and explore the actual directory entries themselves. Sectors 1 through
18 on track 18 are reserved specifically for them.

4.4 The Directory Entries

Recall that bytes 0 and 1 of track 18, sector 0 point to the next track and sector of the
directory. In this particular instance, the BAM points to track 18, sector 1. Let's ex­
amine this sector in detail.

1541TEST/DEMO

TRACI< 18 - SECTOR 01

· ()(): 12 04 82 11 00 48 4F 57 ••••• HOW FILE ENTRY #1

· ()8: 2() 54 4F 20 55 53 45 AO TO USE

· 10: AO AO AO AO AO 00 00 O()

40

· 18: (Ie) 0(1 oo 00 CIO (l() OD oo ·
· 2(): 0(1 00 82 11 03 48 4F 57 ••••• HOW FILE ENTRY *2
· 28: 2() 50 41 52 54 2() 54 57 PART TW

· 30: 4F A() AO AC) AO 00 (to 00 0

· 38: O() (Ic) ()O ()O 00 O() 05 oo ·
· 40: 00 00 82 11 09 56 49 43 • •••• VIC FILE ENTRY #3

· 48: 20 32 3() 2() 57 45 44 47 -20 WEDS

· S(): 45 At) AO A() AO 00 00 00 E

· 58: O() 00 (10 O() ()C) oo 04 (l() ·
· 6(): 00 00 82 13 00 46 2D 36 • •••• C-6 FILE ENTRY *4
· 68: 34 zo 57 45 44 47 45 AO 4 WEDGE.

· 70: AO ACI AO AO AO OC) 00 00

· 78: oo oo OC) 00 00 ()Q 01 (10 ·
· BCI: 00 00 82 13 01 44 4F 53 ••••• DOS FILE ENTRY #5

· 88: 2() 35 2E 31 AO AO AC) A() 5.1

· 90: AO A(t AO AO A() ()O 00 oo
· 98: oo oo oo O() oo oo 04 00 ·
· At): O() oo 82 13 03 43 4F SC) ••••. cOP FILE ENTRY #6

· AS: 59 2F 41 4C 4C AO AO AO VIALL

· BO: A() AO AC) AO AO 00 00 oo
· B8: OCI 00 00 00 00 00 OB (10 ·
· co: 00 00 82 13 ()9 50 52 49 • •••• PRI FILE ENTRY #7

· C8: 4E 54 45 52 20 54 45 53 NTER TES

· DC): 54 A() AO A() At) oo 00 oo T

· DB: oo 00 00 00 O() ()C) ()9 00 ·
· E(l: oo elf) 82 ro (IC) 44 49 53 • •••• DIS FILE ENTRY .8

· E8: 4B 2C) 41 44 44 52 20 43 I(ADDR C

· FO: 48 41 4E 47 45 ()() oo (10 HANGE•••

· F8: O() 00 00 oo O() 00 04 00 ·

The contents of any directory sector can be tabled as follows:

Byte Contents Purpose

0 Track of the next directory block
1 Sector of the next directory block

2-31 File entry #1 in the directory block

32-33 0 Unused
34-63 File entry #2 in the directory block

64-65 0 Unused
66-95 File entry #3 in the directory block

96-97 0 Unused
98-127 File entry #4 in the directory block

128-129 0 Unused
130-159 File entry #5 in the directory block

41

160-161 0 Unused
162-191 File entry #6 in the directory block

192-193 0 Unused
194-223 File entry #7 in the directory block

224-225 0 Unused
226-255 File entry #8 in the directory block

Eight file entries are recorded per sector. Let's examine the contents of a single direc­
tory file entry.

· ()O: 12 ()4 82 11 oo 48 4F 57 • •••• HOW

** **
· ()8: 2C) 54 4F 2() 55 53 45 AO TO USE

10: AO A() ACl A(I AO 0(1 ()O 00

· 18: oo oo oo 00 0(1 oo on ()()

Because this is the first entry in the directory, bytes 0 and 1 are significant. They point
to track 18, sector 4 (converts to 18). This indicates that there are further directory en­
tries. You will note that the sectors are not sequential in nature, i.e., sector 1 does not
point to sector 2, etc. Remember that the diskette itself is rotating at 300rpm. Stagger­
ing the use of the sectors allows quicker access and fewer rotations of the drive
mechanism and the media. Typically sectors are staggered in increments of 10.The direc­
tory track is staggered in increments of 3, however. The table below indicates the se­
quence in which a full directory containing 144 files is stored:

SECTOR FILLING SEQUENCE
FOR THE DIRECTORY

o(BAM)
1, 4, 7, 10, 13, 16
2,5,8, 11, 14, 17
3, 6, 9, 12, 15, 18

When a diskette is initially formatted, sector 1 is set up with 8 null entries. As you store
files on the diskette the directory grows. It soon becomes a long chain of directory sec­
tors. The first two bytes in a sector point to the next directory sector in the chain (this
is known as a forward pointer). But, what about the last sector in the chain? It has nothing
to point to! In the last sector in the chain, there is no forward pointer; byte 0 contains
a 0 ($00) and byte 1 contains a 255 ($FF) as indicated below. This indicates to the DOS
that there are no more sectors in the directory.

• 00: 00 FF xx xx xx xx xx xx ••••••••

One final note about chaining. Commodore uses only forward pointers. A sector does
not show where it came from, only where it is going. This makes recovery of corrupted
files much more difficult, but more about that later.

42

Back to our example:

· O(): 12 ()4 82 11 0(1 48 4F 57 ••••• HOW

**
· ()8: 2() 54 4F 20 55 53 45 A(I TO USE

· 10: A() A() A(I A() AO (IQ 00 00
18: oo OC) (IC) C)C) (u) Q() (ID OC)

The first byte in the file entry is the file-type byte. In this instance we see an $82. This
is interpreted by the DOS to mean that the file entry is a program. The following table
outlines Commodores file types.

HEX ASCII FILE TYPE DIRECTORY SHOWS

$00 0 Scratched Does not appear

$80 128 Deleted DEL
$81 129 Sequential SEQ
$82 130 Program PRG
$83 131 User USR
$84 132 Relative REL

$00 0 Unclosed deleted Same as scratched
$01 1 Unclosed sequential *SEQ
$02 2 Unclosed program *PRG
$03 3 Unclosed user *USR
$04 4 Unclosed relative Cannot occur

$AO 160 Deleted @ replacement DEL
$A1 161 Sequential @ replacement SEQ
$A2 162 Program @ replacement PRG
$A3 163 User @ replacement USR
$A4 164 Relative @ replacement Cannot occur

$CO 192 Locked deleted DEL <
$C1 193 Locked sequential SEQ <
$C2 194 Locked program PRG <
$C3 195 Locked user USR <
$C4 196 Locked relative REL <

Note: It is possible to edit the file-type byte and get very unusual file types appearing
in the directory (SR?< is one possibility). However, thesefile types have no practical use.

Enough esoterica for now. Let's get back to our example:

The next two bytes in the file entry are a pointer to where the first sector of that par­
ticular file is stored on the diskette.

43

· (10: 12 04 82 11 00 48 4F 57 •.••• HOW
** **

· 08: 20 54 4F 20 55 53 45 A(I TO USE

· 1(1: ACI ACt A(I AO AO O() oo 00

· 18: oo OCI 00 (10 00 00 OD 00
This file starts on track 17 ($11), sector 0 ($00).

Next we have the file name.

· ()(I: 12 04 82 11 OC) 48 4F 57 ••••• HOW

** ** **
· 08: 2(1 54 4F 20 55 53 45 AO TO USE

** ** ** ** ** ** ** **
· 10: AO AO AO AO ,AO 00 00 00

** ** ** ** **
· 18: 00 00 00 00 00 00 OD 00
In this case our file is named "HOW TO USE". Note that file names are padded out
to 16characters with shifted spaces ($AO) just like the diskette name. The shifted spaces
do not show as part of the file name, however, when the directory is displayed.

· (IC): 12 ()4 82 11 (10 48 4F 57 ••••• HOW

· 08: 20 54 4F 20 55 53 45 AO TO USE

· 1(): AO ACI AO AO AC) 00 ()() (10

** ** **
· 18: (10 oo 00 00 CICI O() (ID (10
The next three bytes are unused except for relative file entries. For a relative file bytes
$15 (21) and $16 (22) point to the first set of side sectors. Byte $17 (23) gives the record
size with which the relative file was created. This special file type will be examined in
detail later.

The next four bytes are always unused and therefore null ($00).

· 00: 12 04 82 11 (10 48 4F 57 ••••• HOW

· (IB: 2(1 54 4F 20 55 53 45 AO TO USE

· 10: AO A() AO AO AO 00 CIO 00

· 18: (10 (10 (I() (10 (ICI CIO CID ()CI
** ** ** **

The following two bytes are reserved for use by the DOS during the save and replace
operation (@ replacement). Their function can only be viewed by interrupting the drive
during a SAVE "@O:file name",8 routine. This is not recommended for obvious reasons.
(During an @ replacement the file-type byte is ORed with $20 first. A new copy of the
file is then written to the disk. Bytes 28 ($lC) and 29 ($lD) contain the track and sector
pointer to the start of the new replacement file. At the end of the @ operation the sec­
tors that held the old file are marked as free in the BAM. The new track and sector

44

pointer is then moved from bytes 28 and 29 to bytes 3 ($03) and 4 ($04) respectively
and bytes 28 and 29 are zeroed again. The proper file type is then restored at byte 2.
See Chapter 9 about the bug in the @ replacement command.)

· O(): 12 ()4 82 11 00 48 4F 57 ••••• HOW

· 08: 20 54 4F 20 55 53 45 AO TO USE

· ro: AO A() AC) AO AC) 00 00 oo

· 18: 00 00 00 00 00 00 OD 00 ·
** **

The final two bytes in a file entry are the number of blocks it occupies on the diskette.
It is the sum of the leftmost byte Go-byte) + the rightmost byte (hi-byte) * 256.

· ()e): 12 ()4 82 11 00 48 4F 57 ••• •• HOW

· 08: 2() 54 4F 20 55 53 45 AO TO USE

· 10: AO A() AC) At) AO OC) ()C) (I()

· 18: 00 ()Q 00 00 00 00 OD 00 ·..
** **
LO HI

In our example, the file is (13 + 0 * 256) = 13 blocks long.

To be sure you understand the file entries work let's break out the first sector of the
test/demo directory to show each file entry. Remember that bytes 0 and 1 of each entry
are unused with the exception of the first entry. Here they represent a forward track
and sector chain and have nothing to do with that file in particular.

1541TEST/DEMO

TRACK 18 - SECTOR ()1

DIRECTORY ENTRY 1

· (lO: 12 ()4 82 11 oo 48 4F 57 • •••• HOW File type = $82 = PRG

· 08: 2() 54 4F 20 55 53 45 AO TO USE Starts on 17/1 ($11/$00)

· lC): A(l AO AC) AO AO ()et C)O 00 Name: HOW TO USE

· 18: 00 ()O ()O 00 00 00 ()D 00 · File length: 13 BLOCKS

DIRECTORY ENTRY 2

· 2(): 00 (to 82 11 03 48 4F 57 • •••• HOW File type = $82 = PRG

· 28: 2(1 5() 41 52 54 20 54 57 PART TW Starts on 17/3 ($11/$03)

· 30: 4F AO AO AO AO 00 oo 00 0 Name: HOW PART TWO

· 38: oo 00 00 C)O C)O oo ClS OC) · File length: 5 BLOCKS

45

DIRECTORY ENTRY 3

· 4(): oo (J() 82 11 ()9 56 49 43 • •••• VIC File type = $82 = PRG

· 48: 2D 32 30 20 57 45 44 47 -20 WEDS Starts on 17/9 ($11/09)
S(): 45 A(l A() AO AO ()() 00 oo E Name: VIC-20 WEDGE

· 58: OC) 00 ()Q oo OC) 00 04 oo · File length: 4 BLOCKS

DIRECTORY ENTRY 4

· 6(): (to oo 82 13 (IC) 46 2D 36 • •••• C-6 File type = $82 = PRG

· 68: 34 2() 57 45 44 47 45 AO 4 WEDGE Starts on 19/0 ($13/$00)

· 7(): AO AO AO AO AO ()O OC) 00 Name C-64 WEDGE

· 78: CIO (JO ()C) oo (10 OCI (11 OC) · File length: 1 BLOCK

DIRECTORY ENTRY 5

· 80: ()() oo 82 13 (II 44 4F 53 • •••. DOS File type = $82 = PRG

· 88: 2C) 35 2E 31 AO AO AO AO 5.1 Starts on 19/1 ($13/$01)

· 9(): AC) AC) ACI AO AO OC) ()O ()C) Narne: DOS 5.1

· 98: 00 00 00 00 00 00 04 00 ·... File length: 4 BLOCKS

DIRECTORY ENTRY 6

· AC): 00 00 82 13 03 43 4F 50 ••••• COP File type = $82 = PRG

· AS: 59 2F 41 4C 4C AO AO AO VIALL Starts on 19/3 ($13/03)

· B(): AO AO AO AO AO 00 00 OC) Name: COPY/ALL
BS: oo oo CIC) oo 00 oo ()B oo · File length: 11 BLOCKS

DIRECTORY ENTRY 7

· co: oo (10 82 13 09 so S2 49 • •••• PRI File type = $82 = PRG

· C8: 4E 54 45 52 20 54 45 53 NTER TES Starts on 19/9 ($13/09)

· DC): 54 AO AC) AO ACt oo (J() ()O T Name: PRINTER TEST

· 08: 00 00 oo 00 00 00 ()9 00 · File length: 9 BLOCKS

DIRECTORY ENTRY 8

· E(): 00 00 82 10 00 44 49 53 ••••• DIS File type = $82 = PRG

· EB: 4B 2() 41 44 44 52 20 43 K ADDR C Starts on 16/0 ($10/00)

· FO: 48 41 4E 47 45 00 00 00 HANGE ••• Name: DISK ADDR CHANGE

· FB: oo O() OC) 00 oo 00 04 OC) File length: 4 BLOCKS

46

We will end our tour of the directory by displaying the next sector (track 18, sector
4) which happens to end the directory chain ($00, $FF in bytes 0 and 1, respectively).
Notice that only seven directory entries are present in this block. The last directory
entry is a null entry. It will be converted into a valid entry when the directory is
expanded.

1541TEST/DEMO

TRACK 18 - SECTOR 04

· ooz 00 FF 82 10 01 44 49 52 • •••• DIR File type = $82 = PRG

· ()8: A(I AO A() AO AO AO AO A(I Starts on 16/1 ($10/01)

· 1(): AO AO AO AO AO 00 ()O 00 Name: DIR

· 18: oo ()O OC) O() ()Q (J() 04 (JO · File length: 4 BLOCKS

· 2(): 00 OC) 82 10 ()3 56 49 45 • •••• VIE File type = $82 = PRG

· 28: 57 zo 42 41 4D AO AC) AO W BAM Starts on 16/3 ($10/03)

· 3(): AO AO At) AO A() 00 00 00 Name: VIEW BAM
38: (u) ()() oo ()() oo 00 06 00 · File length: 6 BLOCKS

· 4(): O() O() 82 10 07 43 48 45 •••• • CHE File type = $82 = PRG

· 48: 43 48 2() 44 49 53 4B AO CK DISK Starts on 16/7 ($10/07)

· 5(l: A() AO AO AO AO 00 00 00 Name: CHECK DISK
58: oo (10 oo 00 ()O ()O (14 (IC) ·. File length: 4 BLOCKS

· 6(): oo 00 82 10 OF 44 49 53 • .••• DIS File type = $82 = PRG

· 68: 50 4C 41 59 20 54 26 53 PLAY T&S Starts on 16/15 ($10/$OF)

· 70: A(l AO AC) A() AO 0(1 (IC) 00 Name: DISPLAY T&S

· 78: ()() ()() oo (IC) oo ()C) OE ()O · File length: 14 BLOCKS

· 80: oo (u) 82 14 02 50 45 52 ••.•• PER File type = $82 = PRG

· 88: 46 4F 52 4D 41 4E 43 45 FORMANCE Starts on 20/2 ($14/$02)

· 90: 20 54 45 53 54 OC) 00 00 TEST••• Name: PERFORMANCE TEST
98: eu) ()() (JC) (to oo C)Q ()9 OCI · File length: 9 BLOCKS

· A(l: (10 ()O 82 14 07 50 45 52 ••••• SEQ File type = $82 = PRG

· AS: 55 45 4E 54 49 41 4C 20 UENTIAL Starts on 20/7 ($14/$07)

· BC): 46 49 4C 45 AO 00 00 00 FILE . . . Name: SEQUENTIAL FILE
B8: oo oo ()O (I() (10 OC) t)S OCt · File length: 5 BLOCKS

· co: oo 00 82 OF 01 52 41 4E • •••• RAN File type = $82 = PRG

· CB: 44 4F 4D 2() 46 49 4C 45 DOM FILE Starts on 15/1 ($OF/$OI)

· no: AO AC) AO AO AO 00 (l() 00 Name: RANDOM FILE

· DB: (lC) ()O ()() O() ()C) oo (ID (l() · File length: 13 BLOCKS

· E(l: oo 00 CIO 00 0(1 00 00 00 · NULL ENTRY

· E8: oo (IC) (10 00 00 C)O 00 oo ·.
· FO: 00 00 00 00 00 00 ()O 00 ·
· FB: ClO oo (l() 00 00 OC) oo oo ·

47

You will find four of the utilities listed in Appendix C particularly helpful in furthering
your understanding of the organization of a diskette. The first program is DISPLAY
TRACK & SECTOR. The hex dumps in this section were generated using this utility.
A hex dump can be sent either to the screen or printer. When sent to the screen only
half a page of the specified track and sector is displayed at one time to prevent scroll­
ing. Bytes 0 - 127 ($00 - $7F) are displayed first followed by bytes 128 - 255 ($80
- $FF). Use this program for your own experimentation. The second program is
DISPLAY A BLOCKAVAILABILITY MAP. It portrays the BAMin a two-dimensional
representation. The diskette name, ID, DOS version, and blocks free are also displayed.
The third program is VIRTUAL DIRECTORY. It displays a directory in its entirety
including scratched files. Output can be directed to a printer by changing the OPEN
4,3 statement in line 440 to OPEN 4,4. The last program, DISPLAY A CHAIN, traces
a file chain. The chain of sectors may be viewed on the screen or sent to the printer.

The programming techniques that are used in these sample programs will be partially
explained in later sections.

Now that we've seen how the directory is kept, let's look at how the different types
of files are actually stored on a diskette. We'll start by looking at a program file.

4.5 Program File Storage

The most common type of file is a program file, PRG. It is designated by an $82 in the
directory. Program file structure is quite simple.Diagrammatically,the first sector (block)
in a program file looks like this.

THE FIRST 252 BYTES
OF YOUR PROGRAM

Byte Purpose--------------------------
o Track of the next block in this file
1 Sector of the next block in this file
2 Lo-byte of the load address
3 Hi-byte of the load address

4-255 The first 252 bytes of the program

The first pair of bytes are the pointer to the track and sector of the next block in the
file. Technically, this is known as a "forward pointer." It points ahead to the next sec­
tor in the file. All Commodore files use this type of pointer.

The second pair of bytes is the "load address" of the file in lo-byte/hi-byte form. They
indicate where the program is to be loaded into memory. A BASIC program that was
saved from a C64 will have a $01 and a $08 in these two locations. This indicates that
the program is to be loaded into memory starting at memory location $0801 (remember
it is in lo-byte/hi-byte form). In decimal notation this is memory location 2049 - the start
of BASIC on a C64.

48

Have you ever wondered about the significance of the ",1" in the command LOAD
"name",8,I? It determines whether or not a program is "relocated" when it is loaded
into memory. If you do not specify the ",I", the C64 will ignore the load address at
the start of the file and load the program starting at memory location$0801 (2049). When
the",I" is present, the C64 (or VIC-20)will pay attention to the load address and load
the program into memory starting at the location specified by bytes $02 and $03.

The remaining sectors, except the last one, look like this:

THE NEXT 254 BYTES
OF YOUR PROGRAM

Byte Purpose--------------------------

o Track of the next block in this file
1 Sector of the next block in this file

2-255 The next 254 bytes of the program

The last block in a program file is special because:

1. It is the last sector.
2. It is usually only partially full.

To signal the DOS that this is the last block, the first byte is set to $00. The first byte
is normally the track link. Since there is no track 0, the DOS knows that this is the
last sector in the file. The second byte indicates the position of the last byte that is part
of the program file. Any bytes beyond this position are garbage.

Diagrammatically, the last sector in a program file looks like this:

Byte Purpose

THE FINAL BYTES
OF YOUR PROGRAM

GARBAGE

o Null byte to indicate that this is the last sector
1 Number of bytes to read from this sector (N)

2-N The last (N- 2) bytes of the program
(N+1)-255 Garbage

Let's examine the program file "DIR" on your 154ITEST/DEMO disk. DIR appears
in the directory on track 18, sector 04. The directory entry looks like this:

49

TRACJ< 18 - SECTOR (J4

()O: ()O FF 82 ro ()1 44 49 c-...... • •••• DIR.JL

· (IB: A() A(l A() At) A() A() A() At) ·
· Ie): AO A() A() AO AO oo oo 00 ·

18: ()() (H) oo oo oo O() ()4 oo ·

From the entry we see that "DIR" starts at track 16 ($10), sector 01 ($01) and that
the file is four blocks long (4 + 0 * 256).

· ()(): ()() FF 82 1() ()1 44 49 52 • •••• DIR
** **

· ()B: AO A(l AO AO A(l A() A() A() ·
· 10: A() AO A() AO AO 00 00 ()Q ·
· 18: 00 (I() ()O 00 00 oo ()4 oo ·

** **

Let's look at the first block in this file.

TRACI< 16 - SECTOR 01

· 0(1: ro 08 ()1 ()4 ()D ()4 04 oo ·.
· 08: 9F 32 2C 38 2C 31 35 00 .2,8,15.

ro: 1E t)4 ()S ()O 99 22 93 22 II ..·
18: 3A 89 20 31 30 30 30 30 · 10()O()· · .
2(): oo 2E ()4 ()A ()() 9F 31 2C • ••••• 1 ,

· 28: 38 2C 3() 2C 22 24 3() 22 8,0, II $t) II

· 30: oo 3C t)4 14 ()() Ai 23 31 •<•••• #1

· 38: 2C 41 24 2C 42 24 00 4A ,A$,B$.J

· 4(): ()4 1E (1(1 Al 23 31 2C 41 • ••• #1, A

· 48: 24 2C 42 24 ()() 58 04 28 $, B$. X. (

· SCI: oo A1 23 31 2C 41 24 2C • • #1 ~ A$,
58: 42 24 oo b() 04 -:r-. 00 43 BS .•• 2.C",>,L.

bel: 82 3() ()(l 77 ()4 3C ()() 8B • (I ••• <••
68: 2() 41 24 83 81 22 22 20 AS •• II"·

· 70: A7 zo 43 82 C6 28 41 24 · c .. (A$

· 78: 29 O() 94 ()4 46 ()O 88 20) ••• F ••
8(}: 42 24 B3 81 22 22 2(1 A7 BS••· .

· 88: 20 43 82 43 AA C6 28 42 C.C•• (B

· 9(1: 24 29 AC 32 35 36 00 AF $) • 25b••
98: 04 50 00 99 22 12 22 CA • P •• II ..· . .

· A(): 28 C4 28 43 29 2C 32 29 c, (C) ,2)

· AS: 38 A3 33 29 38 22 92 22 ; • 3) ; II • II

· BO: 3B oo C9 04 SA (1(1 Ai 23 ; ••• z•• #

· BS: 31 2C 42 24 3A 8B 2() 53 1, as: . s
· co: 54 B3 81 3() 2() A7 20 31 T •• O . 1

· C8: 30 30 30 oo DE (14 64 O() 000•••••

50

· D(): 88 2() 42 24 B3 Bl C7 28 · BS••• (

· 08: 33 34 29 20 A7 20 39 3() 34) . 90

· Eel: O() (u) (IS bE ()() Al 23 31 • ••••• =8 1

· E8: 2C 42 24 3A 8B 2() 42 24 , B$: • B$

· F(): B3 B1 C7 28 33 34 29 A7 • •• (34) •

· Fa: 20 99 42 24 3B 3A 89 31 .B$;:.1

Not very recognizable is it? Remember this is C64 internal BASIC not a BASIC listing.
Bytes 0 and 1 are of interest. They are the track and sector link that point to the next
block in the program file. In this case, they point to track 16($10), sector 11($OB). Since
this is the first data block of the file, bytes 2 and 3 are also important. They are the
load address. We can see that the load address is $0401 or 1025 decimal. This file was
written on a PET. (The start of BASIC memory on the C64 is at $0801. The VIC-20
begins at $1001, $1201, or $0401 depending ont he amount of external memory.) DIR
will require a straight relocating load, i.e., I..JOAD "DIR",8. If you used a LOAD "DIR",
8,1 command, the program would be loaded into the screen RAM of the C64. NOTE: If
you load this program properly, you will NOT be able to get it to VERIFY correctly.
The reason is that the internal BASIC links were changed when the program was
relocated.

• 00: 10 OB 01 04 OD 04 04 00 ••••••••

** ** ** **

Let's follow the forward chain to track 16, sector 11 and take a look at the start of the
second block in our file.

TRACK 16 - SECTOR 11

• 00: 10 02 31 30 00 lC 05 78 •• 10••••
• 08: 00 Al 23 31 2C 42 24 3A •• #1,8$:
• 10: 8B 20 42 24 B2 C7 28 33 • B$ •• (3

Nothing much of interest here. Let's chain to track 16 ($10), sector 02 ($02) and take
a look at the start of the next block.

TRACK 16 - SECTOR 02

• 00: 1o OC B2 22 22 3A 99 22 : ...
• 08: 3E 22 3B 00 lA 06 AB OF >.. ; •••••
• 10: Al 42 24 3A 8B 42 24 82 .8$:.B$.

51

Again, nothing much of interest. Chain to track 16 ($10), sector 12 ($OC).

TRACI< 16 - SECTOR 12

· (1(1: (I() 68 8B 2() 41 24 82 22 · . . AS. II

· 08: 44 22 20 A7 20 31 30 O() D" · 10.

· leI: 20 ()7 3C 28 8B 2(J 41 24 ~. <(. A$

18: B2 22 2E 22 20 BO 20 41 A· · . .
· 20: 24 B2 22 3E 22 2C) Be) 20 $.11>" .
· 28: 41 24 82 22 3E 22 20 A7 AS. II)" .
· 3(): 2() 34 30 30 30 (10 3E 07 40()(). >.

38: 46 28 88 2C) 41 24 B2 22 F c. AS. II·
· 4(): 51 22 2() A7 2() BC) 00 52 gil · •• R

· 48: 07 50 28 BB 2C) 41 24 82 • P (. AS.

· 50: 22 53 22 20 A7 20 35 30 liS" . SC)

· SB: 3Ct 30 OCt SE 07 F7 2A 89 00. .. *.
· be): 2CI 31 30 31 3() 30 (J() OC) 1 (I 1oo••

· 68: OCt AO (10 At 20 54 24 3A · . . . T$:
70: 88 2C) 54 24 B3 Bl 22 22 T$ ••· ·78: 20 A7 2(1 80 20 -:r""") 30 30 20()· _'\L . ·

Now we're cooking. This is the last sector of the file. How can we tell? The track of
the next block in the file is 0 ($00). Butwhat about the sector link? It's a misnomer.
The sector link in the last block is actually a byte count. It informs the DOS that only
bytes 2 through 104 ($68) are important in this example. Recall that an end of file in
BASIC is designated by three zeros in a row. An End-or-Identify (EOI) signal will be
sent once byte 104 has been transferred across the serial bus. When the C64 receives
this EOI signal, the status variable, ST, will be set to a value of 64. (Any further at­
tempt to read a byte will cause the drive to time out.) Here's the tail end of our pro­
gram. The three null bytes, ($00), at $66/7/8are the last three bytes in our program file.

xx xx xx •

• 00: 00 68 8B 20
• 08: 44 22 20 A7
• 10: 2D 07 3C 28
• 18: B2 22 2E 22
• 20: 24 B2 22 3E
• 28: 41 24 B2 22
• 30: 20 34 30 30
• 38: 46 28 88 20
• 40: 51 22 20 A7
· 48: 07 50 28 8B
· so: 22 S3 22 20
• 58: 30 30 00 5E
• 60: 20 31 30 31
• 68: 00 xx xx xx

41
20
88
20
22
3E
30
41
20
20
A7
07
30
xx

24
31
20
80
20
22
oo
24
80
41
2()

F7
3()

82 22
3() 00
41 24
20 41
BO 20
2() A7
3E ()7
82 22
00 S2
24 82
35 30
2A 89
00 00

• •• AS."
D" • 1(1.

-.«. AS
• ". II • A

AS. II :>11 •
4000. >.

F(. AS.II
gil ••• R
.P(. A$.
"B" • S()
00. •• *.

1()100••

52

What about the rest of the block? Ignore it. It is garbage. The DOS does not zero out
a buffer before it begins filling it with new information sent from the computer. As a
result, the last block in a file, which is almost never filled with new information, is padded
with whatever happened to be left in the buffer from a previous read or write opera­
tion. There are two exceptions to the rule, namely, the directory and relative files. A
partial directory block is always padded with nulls ($00). Moreover, it always appears
as a full block. Bytes 0 and 1 of the last directory block will contain a $00 and a $FF,
respectively. Relative file structure will be explained shortly.

4.6 Sequential File Storage

The format of a sequential file is very straightforward. All the sectors, except the last
one, look like this:

254 BnES OF DATA

Byte Purpose---.;;;;...------------------------

o Track of the next block in this file
1 Sector of the next block in this file

2-255 254 bytes of data

The last block in a sequential file is special for two reasons:

1. It is the last sector.
2. It is usually only partially full.

To signal the DOS that this is the last block, the first byte is set to $00. The first byte
is normally the track link. Since there is no track 0, the DOS knows that this is the
last sector in the file. The second byte indicates the position of the last byte in the file.
Any bytes beyond this position are garbage.

Diagrammatically, the last sector in the file looks like this:

Byte Purpose

THE FINAL DATA BnES IN
YOUR SEQUENTIAL FILE

GARBAGE

o
1

2-N
(N+1)-255

Null byte to indicate this is the last sector
Position of the last byte in the file (N)

The last N -2 bytes of the sequential file
Garbage

53

No sequential files appear on the 1541TEST/DEMO. (The file named SEQUENTIAL
FILE is a program file demonstrating the sequential access method.) The C-64 DISK
BONUS PACK does come with one sequential file on it. The file named " DIREC-
TORY " appears as a SEQ when displaying the directory. " DIRECTORY "
can be found at track 18, sector 01 on the C-64DISK BONUS PACK. Let's take a peek
at the directory entry for this file:

TRACI< 18 - SECTOR (ll

· 20: O() 00 81 11 ()1 2() 20 20 ·
· 28: 44 49 52 45 43 54 4F 52 DIRECTOR

· 30: 59 20 2() 2~) At) ()() O() 00 y

38: oo ()O 00 (u) Cu) 00 ()2 (1(1 ·

" DIRECTORY " is the second file entry in the directory.

· 2(): O() oo 81 11 ()1 2() 20 2() ·
** ** **

· 28: 44 49 52 45 43 54 4F 52 DIRECTOR

· 3t): 59 20 2(} 2() AO oo OCI oo Y

· 38: oo 00 00 oo oo 00 02 00 ·
**

A sequential file is designated by an $81 in the directory. The first block of this file
is stored on track 17 ($11), sector 1 ($01). We also see that" DIRECTORY " is
two blocks long (2 + 0 *256). Let's take a look at the first half of the starting data block.

TRACI< 17 - SECTOR 01

· OCt: 11 08 43 36 34 2() 53 54 • .C64 ST

· 08: 41 52 54 45 52 20 48 49 ARTER KI

· t o: 54 2(1 2() 2() 36 34 2() 2() T 64

· 18: 32 41 OD 31 35 34 31 20 2A.1541

· 2(): 42 41 43 48 55 50 OD 41 BACKUP. A

· 28: 4D 4F 52 54 20 54 41 42 MORT TAB

· 3(): 4C 45 ()D 41 52 52 4F 57 LE.ARROW

· 38: OD 42 49 54 53 20 41 4E .BITS AN

· 4(1: 44 20 42 59 54 45 53 OD D BYTES.

· 48: 43 41 4C 45 4E 44 41 52 CALENDAR

· S(): (ID 43 48 41 4E 47 45 2(1 • CHANGE
58: 44 49 C"'""'T 48 ()D 43 48 41 DISK.CHA-J-_'\

· 6(1: 52 20 42 4F 4F 54 OD 43 R BOOT.C

· 68: 4F 4C 4F 52 20 54 45 53 OLOR TES
7(1: 54 (ID 4"7 4F 5Cl 59 2D 41 T.COPV-A· ,.)

· 78: 4C 4C 36 34 OD 44 45 4D LL64.DEM

54

Bytes 0 and 1 are the track and sector link (forward pointer). They inform us that the
next data block can be found at track 17, sector 11. The remaining 254 bytes are data.
The sequential data that appear here are in fact the disk name (C64 STARTER KIT),
the cosmetic disk ID (64), and the file names found on the C-64 DISK BONUS PACK.
It is interesting to note that a carriage return character ($OD) was used as a delimiter
to separate record entries. Next we see:

TRACJ< 17 - SECTOR 11

· 00: 00 86 2D 20 59 41 4E 48 •• - YANK

· ()8: 45 45 (ID 53 4F 55 4E 44 EE.SOUND

· 10: 20 2D 2C) 41 4C 49 45 4E - ALIEN
18: OD -=-,r 4F 55 4E 44 20 2D .SOUND -..J•..:>

· 2(1: 2(J 42 4F 4D 42 ()D 53 4F BOMB. SO

· 28: 55 4E 44 zo 2D 20 43 4C UND - CL

· 3(): 41 50 OD 53 4F 55 4E 44 AP.SOUND
38: 2() 2D 2() 47 55 4E 46 49 - 6UNFI

· 4t): 52 45 on 53 4F 55 4E 44 RE.SOUND

· 48: 2() 2D 2() SC} 4F 4E 47 OD - PONG.
50: 53 4F C"C" 4E 44 2C) 2D 20 SOUND -..J~

· 58: 52 41 59 47 55 4E ()D 53 RAYGUN.S

· be): 4F 55 4E 44 20 2D 20 53 OUND - S

· 68: 49 52 45 4E (ID 53 5CI 52 IREN.SPR

· 7(): 49 54 45 20 42 4F 4F 54 ITE BOOT

· 78: OD 53 55 50 45 52 4D 4F .SUPERMO

· 80: 4E 36 34 2E 56 31 OD 59 N64.Vl.Y

· 88: 54 53 SC) 52 49 54 45 53 TSPRITES

· 9(): A() AO A() AO AC) 00 00 00 ·
98: oo OCI oo oo oo oo 05 (10 ·

· AO: (10 00 82 07 00 53 4E 4F ••••• SNO

· AS: 4F 5Cl 59 2() 4D 41 54 48 OPY MATH

· BC): A(J AO AO AO At) 00 00 00 ·
B8: 00 oo (JO (JQ 0(1 00 33 0(1 7'·..... ~.

· cos O(J 00 82 lD 00 41 4D 4F • •••• AHO

· C8: 52 S4 2() S4 41 42 4C 45 RT TABLE

· DO: AO A(I AO AO AO oo ()O 00 ·
DB: oo oo O() CIQ (I() (1(1 27 00 :a·

· EO: OC) 00 82 OS 02 4D 4F 52 ••••• MOR

· E8: 54 47 41 47 45 AO AO AO TGASE•••

· FO: AO AO AO AO AO 00 00 00 ·
Fa: 00 C)O oo 00 (IQ 00 2D 00 ·

We can see from the above data block that this is the last sector in the chain. Byte 0
contains a zero indicating no forward track. Byte 1 then is a byte count ($86=134). Byte
134 is the last byte in our data file. Recall that the status variable (ST) will be set to
64 on the C64 side after byte 134 has been read.

. 8(): 4E 36 34 2E 56 31 OD x x Nb4.Vl.

55

The remainder of the block has been padded ($87-$FF). The padding is clearly
recognizable this time around. It has no rhyme or reason but it is still interesting to
say the least. A portion of the C-64 DISK BONUS PACK directory itself was used to
pad the remainder of the data block in question.

· 80: xx xx xx xx xx xx x x 59 N64.Vl.Y

· 88: S4 53 SC) 52 49 54 45 53 TSPRITES

· 90: AO AO AO A() AO 00 00 00 ·
· 98: CIO ele) ()() O() oo ()O 05 (10 ·
· AO: O() oo 82 (17 ()O 53 4E 4F ••••• SNO

· AS: 4F SC) 59 20 4D 41 54 48 OPY MATH

· B(): AO AO A() AO AO 00 oo 00 ·
B8: oo oo O() (10 (l() 00 33 00 ..".· ~.

· co: O() oo 82 1D O() 41 4D 4F • •••• AHO

· CB: 52 54 2() 54 41 42 4C 45 RT TABLE
DO: AC) AO AO A() AO ()e) oo 00 ·
08: ()O ()() 0(1 (I() 0(1 (10 27 ()O

,.·
· EO: oo O() 82 05 02 4D 4F 52 • •••• MOR

· E8: 54 47 41 47 45 AO AO A(l TGAGE•••

· FO: AO AO A() AO AO 00 00 00 ·.
Fa: (l() C)() ()e) (10 ()O (l() 2D oo ·.

4.7 Relative File Storage

Relative file types have the most elaborate internal structure. Relative files are often
referred to as random access files. A relative file is actually two files in one:

1. A sequential data file with records of a fixed length.
2. A file of track and sector pointers called side sectors.

The sequential data file uses fixed length records so that the DOS can calculate where
to find any given record. This makes it possible to position to a particular record and
read or write it without disturbing the rest of the file. In the jargon of relative files,
the length of one record in the sequential data file is known as the record size.

The complete file of track and sectors pointers is called the side sector file. The size
of this file depends on the length of the sequential file. In general it is 1/120th the length
of the sequential file (minimum length = 1 block; maximum length = 6 blocks). Each
block in this file is known as a side sector. There are really two sets of track and sector
pointers in this file. The larger set is a list of the track and sector numbers of the blocks
used to store the sequential data file (its file chain). The other is a list of the track and
sector numbers of the side sectors (the file chain of the side sector file).

The purpose of the side sector file is to allow the DOS to find any given record with
remarkable efficiency. One disk read of a side sector is all that is required to locate the
track and sector of the block where a particular record is stored. Two additional reads
may then be required to retrieve a record itself if it spans two data blocks. This will
be explained 'shortly when we examine records in more detail.

56

Remember that sequential data blocks have the following format:

Byte Purpose-------------
o Track of the next block in this file
1 Sector of the next block in this file

2-255 254 bytes of data

Diagrammatically, each block (side sector) in the side sector file looks like this:

TRACK SECTOR SIDE RECORD TRACK/SECTOR TRACK/SECTOR
LINK LINK SECTOR SIZE LINKS FOR 6 LINKS FOR 120

NUMBER SIDE SECTORS DATA BLOCKS

Byte Purpose----------------
o Track of the next side sector
1 Sector of the next side sector

2 Side sector number

3 Record length

4-15 Track and sector list of the side sector file

4-5 Track and sector of side sector #0
6-7 Track and sector of side sector #1
8-9 Track and sector of side sector #2

10-11 Track and sector of side sector #3
12-13 Track and sector of side sector #4
14-15 Track and sector of side sector #5

16-256 Track and sector list of 120 data blocks

16-17 Track and sector of data block #1
18-19 Track and sector of data block #2
20-21 Track and sector of data block #3

~
254-255 Track and sector of data block #120

To help you make some sense out of this, let's begin with the directory entry for a relative
file. Here's the start of the directory of a diskette that has a relative file stored on it.

57

TRACIe: 18 - SECTOR eli

00: oo FF 81 11 00 53 43 2() • •••• SC

· 08: 31 4D 41 47 2() 46 49 4C IMAG FIL

· 10: 45 AO A(l A() A() (IQ oo 00 E •••••••
18: ()C) oo oo 00 ()(l OC) o i ()C) ·

· 2C): 00 O() 81 11 ()1 53 43 20 • •.•• se
· 28: 32 4D 41 47 2() 46 49 4C 2MAG FIL

· 30: 45 A(l A() AO AO (10 (u) 00 E •••••••
38: oo ()() ()C) 00 (IQ CIO 01 (JO ·

· 40: 0(1 ()() 81 11 (J2 53 43 20 • •••• SC

· 48: 33 4D 41 47 20 46 49 4C 3MAG FIL

· S(): 45 AC) AO A(l A() ()() oo oo E •••••••

· 58: 00 00 00 0(1 00 (l() 01 00 ·..
· b(l: (IC) oo 84 11 ()3 4D 41 47 • •••• HAG Here's the entry

· 68: 20 46 49 4C 45 AC) A(l AO FILE••• for the REL file:

· 7CI: AO AC) ACI AO AC) 11 OD 96 ·
· 78: oo 00 00 C)Q 00 O() B4 01 ·

"MAG FILE" will serve as our demo throughout this section. Let's examine its direc-
tory entry in detail from track 18, sector 1.

· 6(): 00 00 84 11 ()3 4D 41 47 ••••• MAS

** ** ** File type and T/S link

· 68: 20 46 49 4C 45 AO AC) AC) FILE•••

· 70: AO AO AO AO AO 11 OD 96 ·
· 78: OC) 0(1 00 OC) ()C) 00 B4 ()l ·

From the directory entry we can see that "MAG FILE" is a relative file. A relative
file is indicated by an $84as the file type. The track and sector pointers in the directory
reveal that "MAG FILE" starts at track 17 ($11), sector 03 ($03). This is the sequential
data file portion of the relative file. -It is the beginning of our data.

• 70: AO AO AO AO AO 11 OD 96

** ** ** Side sector information
Record length

Side sector information follows the file name. The first side sector begins at track 17
($11), sector 13 ($OD). In addition, we see our record length ($96= 150). Each record in
our sequential data file is 150 bytes long. This is fixed throughout the entire data file.

• 78: 00 00 00 00 00 00 84 01

** **

58

File length (lo/hi-byte)

Our sample relative file consumes a total of 436 blocks on the diskette (180 + 1 * 256).
(There is still room for expansion.) We can determine the number of side sectors by
simple divison. A side sector stores track and sector pointers for 120data blocks of our
sequential file. To determine the number of side sectors, simply divide the total number
of blocks that appear in the directory entry by 120 and round up to the next higher
integer:

436 / 120 = 3.6 -+ 4

Four side sectors are needed to keep track of this much data. To figure out how many
records currently exist requires a little more arithmetic. First we have to subtract the
number of side sectors from the total number of blocks.

436 - 4 = 432

Now we can determine the total number of data bytes currently in use by our sequen­
tial file.

432 * 254 = 109728

Why 254 as a multiplier? Remember that the first two bytes of any data block are for­
ward track and sector pointers (256 - 2 = 254). We finish our set of calculations by
dividing this total by the fixed record length.

109728 / 150 = 731.52

A total of 731 records exist at the current time in "MAG FILE."

Let's examine the first side sector.

TRACK 17 - SECTOR 13 SIDE SECTOR #0

· ()O: OC 13 00 96 11 OD OC 13 · Forward pointer, SS #, size,

· (IB: 06 to 13 (IF 00 ()O O() ()O · and 6pairs of side sector pointers

· 10: 11 03 11 OE 11 04 11 OF · 120 pairs of data block

· 18: 11 (IS 11 1() 11 (16 11 11 · pointers

· 2(): 11 07 11 12 11 08 11 13 ·
· 28: 11 (19 11 14 11 CIA 11 (IB ·
· 3(): 11 OC 10 (u) 10 ()A 10 14 ·..
· 38: It) (IB ro 12 1(1 ()6 1(1 10 ·...
· 4(): i o 04 ro (IE 10 02 10 OC ·
· 48: 1() ()1 10 (IB i o ()3 1(1 OD ·..
· SC): 10 (IS ro OF 10 (17 10 11 ·
· 58: 1(1 (}9 ro 13 OF 07 OF 11 ·..... . .
· 60: ()F ()5 OF OF OF 03 OF OD ·
· 68: (IF 01 (IF (IB (IF oo OF OA ·
· 7(): OF 14 OF 08 OF 12 OF 06 ·
· 78: ()F ro OF (14 OF OE OF ()2 ·
· 80: OF OC OF 09 OF 13 OE 07 ·
· 88: OE 11 (IE (IS ()E OF OE ()3 ·

59

· 9C): OE OD OE 01 OE 08 OE 00 ·
· 98: OE C)A OE 14 OE ()S ()E 12 ·
· AO: OE 06 OE 10 OE (14 OE OE ·
· AS: ()E ()2 ()E oc OE ()9 OE 13 ·.
· BO: OD 07 on 11 OD 05 OD OF ·
· 88: on ()3 OD OD OD 01 OD ()B ·
· co: OD 00 OD OA OD 14 OD 08 ·
· C8: ()D 12 ()D 06 ()D ro ()D 04 ·
· DC): OD OE OD 02 OD OC OD 09 ·
· 08: ()D 13 oe ()7 oe 11 oc ()5 ·
· Eel: oc OF OC 03 ()e ()D oc (11 ·
· E8: OC OB OC oo OC OA OC 14 ·
· FO: OC oe OC 12 oc ()6 oc ro ·..
· FB: OC 04 OC ()E OC ()2 OC OC ·

Of primary interest are the first 16 bytes.

• 00: OC 13 00 96 11 OD OC 13
• 08: 06 10 13 OF 00 00 00 00

Bytes 0 and 1 show us that the next side sector resides at track 12($OC), sector 19($13).
Byte 2 informs us that this is side sector o. A maximum of 6 side sectors are used by
anyone relative file. This is determined solely by the physical storage capacity of the
diskette (664 blocks free after formatting divided by 120 track and sector pointers in
a side sector equals 5.53 side sectors). Side sectors are numbered from 0 to 5. Byte 3
shows us the record size again (150bytes). Bytes 5-15are the track and sector locations
of the six possible side sectors. They can be tabled as follows:

BYTE SIDE SECTOR TRACK • SECTOR

4- 5 0 17 ($11) - 13 ($OD)
6- 7 1 12 ($OC) - 19 ($13)
8- 9 2 6 ($06) - 16 ($10)

10-11 3 19 ($13) - 15 ($OF)
12-13 4 o ($00) - 0 ($00)
14-15 5 o ($00) - 0 ($00)

We can see from the table above that side sectors 4 and 5 have not yet been allocated.
Once our data file expands to encompass more than 480 and 600 sectors, respectively,
they will be allocated, provided there is room on the diskette.

The remaining 240 bytes are track and sector pointers to the first 120blocks in the se­
quential file. From bytes 16 and 17 of side sector 0 we see that our data begins at track
17 ($11), sector 03 ($03). (This is the track and sector recorded in the directory itself.)
Track 17, sector 03 chains to track 17 ($11), sector 14 ($OE) which chains to track 17
($11), sector 4 ($04) and so on.

60

TRACK 17 - SECTOR 13 SIDE SECTOR #0

· 1(): 11 (13 11 OE 11 (J4 11 OF ·...
** **

· 18: 11 05 11 1() 11 06 11 11 ·..
· 20: 11 07 11 12 11 08 11 13 ·
· 28: 11 ()9 11 14 11 OA 11 ()B ·
· 3(): 11 OC 10 ()O 10 OA 10 14 ·..
· 38: ro (IS 1() 12 10 (16 ro 10 ·..
· 40: 1() 04 10 OE 10 02 10 OC ·.......
· 48: 1(1 (II 10 ()B 10 03 1(1 (JD ·
· 50: ro 05 10 OF 1() ()7 10 11 ·
· 58: t o 09 10 13 OF 07 OF 11 ·..
· be): OF OS OF OF OF ()3 ()F OD ·
· 68: (IF 01 (IF ()B ()F (10 (IF (IA ·
· 70: or 14 (IF 08 OF 12 OF 06 ·
· 78: (IF 10 (IF 04 OF OE OF (12 ·...... .
· 80: OF OC OF 09 OF 13 OE 07 ·..
· 88: OE 11 (IE 05 (JE OF (IE 03 ·..... ..
· 90: OE OD OE 01 OE 08 OE 00 ·
· 98: OE (IA (JE 14 OE ()s OE 12 ·..
· AO: OE 06 (IE ro OE 04 OE OE ·
· AS: OE ()2 ()E oc (IE 09 OE 13 ·..
· BO: OD 07 OD 11 OD 05 OD OF ·
· B8: (JD (J3 on OD OD ()1 OD OB ·
· co: OD 0(1 OD OA OD 14 OD 08 ·..
· C8: OD 12 OD 06 (ID 10 OD (14 ·
· DO: OD OE OD 02 OD OC OD 09 ·
· 08: OD 13 oc 07 oc 11 oc 05 ·
· EO: oc OF oc 03 OC OD oe 01 ·
· EB: (Ie OB oc oo oc OA oc 14 ·
· FO: OC 08 OC 12 oe 06 oe ro ·
· Fa: oc (14 oc (IE oc ()2 oc oc ·

Let's trace the remaining side sectors now.

TRACK 12 - SECTOR 19 SIDE SECTOR #1

· 00: 06 10 01 96 11 OD oe 13 ·
· 08: 06 ro 13 OF 00 00 00 00 ·
· 1(): OC 09 OB 13 OB 07 OB 11 ·
· 18: 08 05 (IB OF OB ()3 oa OD ·
· 20: OB 01 OB OB OB 00 OB OA ·
· 28: OB 14 OB 08 CIB 12 08 06 ·
· 3(1: OB 10 OB 04 OB OE OB 02 ·
· 38: (IB OC OB 09 CIA 13 OA 07 ·...
· 40: f)A 11 OA 05 OA (IF OA 03 ·...
· 48: CIA ()D ()A 01 (IA OB (IA 00 ·
· SCI: OA ()A (IA 14 OA 08 OA 12 ·.......

61

· 58: OA 06 OA 10 OA 04 OA OE ·
· 60: OA 02 OA OC (IA 09 (19 13 ·
· 68: 09 07 09 11 09 05 09 OF ·.
· 70: (19 (13 (19 on 09 01 ()9 (IB ·
· 78: ()9 O() 09 OA 09 14 09 08 ·
· 80: 09 12 09 06 09 1(1 ()9 (14 ·.
· 88: 09 OE 09 02 09 OC 09 09 ·
· 9(): (IB 13 (IS (17 ()S 11 (IS 05 ·
· 98: 08 (IF 08 03 (18 OD 08 ()1 ·
· A(I: ()8 (IB (18 (1(1 08 (IA ()B 14 ·
· AS: ()S 08 08 12 08 06 OB 10 ·
· 80: (18 (14 ()B (IE ()8 ()2 ()B oc ·
· B8: (18 ()9 07 13 07 cr ()7 11 ·
· co: (17 (IS ()7 (IF ()7 03 ()7 ()D ·
· C8: 07 ()1 07 08 07 00 07 OA ·
· DCI: f)7 14 (17 ()8 ()7 12 ()7 oe ·.
· 08: ()7 ro 07 04 07 OE 07 02 ·
· EO: 07 OC 07 ()9 (16 13 06 07 ·
· E8: 06 11 06 05 06 (IF ()6 03 ·
· FC): os (ID C)6 01 (16 OB 06 (10 ·
· Fa: ()6 OA ()6 14 06 08 06 12 ·

Side sector 1 looks OK on this end.

TRACK 06 - SECTOR 16 SIDE SECTOR #2

· 00: 13 (IF 02 96 11 (ID OC 13 ·
· ()S: 06 10 13 OF (10 OC) 00 00 ·
· 10: (16 06 ()b 02 ()6 oc 06 (14 ·
· 18: Ob OE (16 09 05 13 05 07 ·
· 2(): OS 11 05 05 (15 OF 05 03 ·.
· 28: OS (ID 05 01 05 OB os 00 ·
· 30: 05 (IA ()S 14 (IS 08 05 12 ·
· 38: 05 06 os 10 05 04 OS OE ·
· 4CI: 05 ()2 05 (Ie os 09 ()4 13 ·
· 48: 04 07 04 11 04 05 04 OF ·
· SC): (J4 ()3 ()4 ()D ()4 01 04 OB ·.
· 58: 04 00 04 OA ()4 14 04 08 ·
· 60: ()4 12 C)4 06 04 ro 04 04 ·
· 68: 04 OE ()4 02 04 OC 04 09 ·
· 70: (J3 13 ()3 (J7 ()3 11 ()3 05 ·
· 78: 03 OF 03 ()3 ()3 on 03 ()1 ·
· 8C): 03 (IB (13 00 ()3 OA ()3 14 ·
· BS: 03 ()8 03 12 03 06 03 10 ·
· 90: 03 04 03 OE ()3 02 03 oe ·
· 98: 03 ()9 02 13 02 07 02 11 ·
· AO: ()2 05 ()2 OF 02 ()3 02 OD ·..... ..
· A8: 02 01 02 08 02 00 02 OA ·.... ...
· 80: 02 14 02 08 ()2 12 02 06 ·.... ...

62

· BS: ()2 1() 02 ()4 ()2 OE ()2 ()2 ·..
a eCI: (12 oc (12 ()9 or 13 01 07 a • a • • • • •

· C8: ()1 11 ()1 os 01 OF 01 03 • • • • a • • a

· D(): 01 (ID ()l ()l (II OB (II ()() a • • • • • • •

· D8: ()i (IA (11 14 01 (IB (II 12 • a • • a • • •

· EO: 01 o« 01 ro 01 04 01 OE a a • a a a • •

· E8: ()l 02 CII OC ()l (19 13 (IA ·
· FO: 13 O() 13 OB 13 01 13 oc ·
· Fa: 13 ()2 13 (ID 13 ()3 13 OE ·

Side sector 2 seems to be in order too.

TRACK 19 - SECTOR 15 SIDE SECTOR #3

· at): 00 9F 03 96 11 OD oc 13 ·
· ()S: os 10 13 OF ()() (I() 00 oo ·.
· 10: 13 04 13 ro 13 06 13 11 a a • • a a • •

a 18: 13 07 13 12 13 ()B 13 ()5 ·
· 20: 13 09 14 oo 14 OA 14 ()1 a • • • • • • •

· 28: 14 (IB 14 ()2 14 (Ie 14 03 ·
· 30: 14 (ID 14 04 14 OE 14 05 ·
· 38: 14 ()F 14 ()6 14 t o 14 ()7 ·
· 4(): 14 11 14 08 14 12 14 09 ·
· 48: 15 O() 15 (IA 15 (II 15 (IB ·..
· 50: 15 ()2 15 oc 15 03 15 OD ·
· 58: 15 ()4 15 OE 15 (IS 15 (IF ·
· 60: 15 06 15 1() 15 07 15 11 ·
· 68: 15 ()8 15 12 15 ()9 16 (ICI ·
· 7(1: 16 OA 16 01 16 OB 16 02 ·.
· 78: 16 (Ie 16 ()3 16 OD 16 04 • a • a • • • •

· at): 16 (IE 16 05 16 OF 16 C)6 • a • • • • • •

· 88: 16 ro 16 07 16 11 16 08 ·
· 90: 16 12 16 ()9 17 00 17 CIA ·
· 98: 17 ()l 17 (IB 17 ()2 17 OC ·
· AO: O() 00 ()O O() ()o 00 ()o ()Q ·...

AS: oo (le) oo c)o oo oo oo oo ·
· BO: C)O (10 oo O() 00 oo 00 00 ·
· B8: oo (10 oo (10 (u) oo 0(1 ()o ·.
· co: O() 00 00 00 O() oo 00 00 ·...
· C8: oo oo O() oo oo O() oo (JO ·
· DO: oo 00 oo 00 oo 0(1 00 O() ·
· 08: (10 oo oo ()() oo ()Q O() 0(1 ·
· EO: CIO O() oo 0(1 00 00 O() 00 ·
· EB: oo (I() oo ()O O() oo O() (IC) ·
· FO: OC) 00 00 0(> 00 O() 00 00 ·

F8: O() oo oo oo ()() ()e) oo oo ·

63

Hold it right there please. Bytes 0 and 1 should look familiar by now. Still thinking?
(Hint: End of chain and a byte count.)

. 00: 00 9F (13 96 11 OD ()C 13
** **

Byte 1 of side sector 3 shows a byte count of 159 ($9F). Recall that bytes 16-255 in a
side sector are a list of track and sector pointers to 120 data blocks. As a result, bytes
158and 159must be interpreted together. They point to the last block in our sequential
data file in this instance. The last block is stored on track 23 ($17), sector 12($OC). Notice
too, that the remainder of the side sector is padded with nulls. The remaining 96 bytes
are in limbo until our relative file is expanded. Bytes 160and 161will then point to the
next track and sector of data and so on. When side sector 3 is full, a new side sector
will be created. Bytes 0 and 1 of side sector 3 will then point to side sector 4. Bytes
12 and 13 in side sectors 0, 1, and 2 will also be updated to reflect the creation of side
sector 4.

Now let's take a brief glance at the sequential file itself.

TRACK 17 - SECTOR 03

· 00: 11 OE 4D 41 47 20 46 49 • • MAG FI

· 08: 4C 45 00 20 37 30 39 (ID LE. 709.

· ro: 2() 36 (JD D4 49 54 4C 45 6 •• ITLE

· 18: OD C3 4F 4D 50 55 54 45 • .OMPUTE

· 20: 52 OD CD 41 47 41 SA 49 R•• AGAZI

· 28: 4E 45 00 C9 53 53 55 45 NE•. SSUE

· 3(1: (JD DO 41 47 45 (ID C3 4F • • AGE •• 0

· 38: 4D 40 45 4E 54 OD 00 00 MMENT•••

· 40: oo oo 00 ()O (10 00 00 00 ·.
· 48: 00 OCI 00 00 ()O 00 00 00 ·
· SC): oo O() oo 00 00 00 O() 00 ·
· 58: 00 00 00 00 00 00 (10 00 ·
· bel: (10 (I() (JO (10 (IQ oo O() O() ·
· 68: 00 00 00 00 00 00 00 00 ·.
· 70: 00 00 (10 00 (10 00 OC) OCt ·
· 78: 0(1 00 00 00 00 00 00 00 ·.
· 80: C)O ()C) (10 oo 00 00 00 00 ·
· 88: 00 00 00 00 00 00 00 00 ·..
· 90: CIO (l() ()Q 00 O(J 00 00 oo ·..
· 98: 20 31 35 30 20 OD 2E OD 150 . . .
· A(): 2E (In 2E on 2E OD 2E OD ·
· AS: 2E OD 2E OD 2E OD 2E OD ·
· BO: 2E OD 2E OD 2E on 2E OD ·
· B8: 2E 00 2E ()D 2E OD 2E OD ·
· eel: 2E ()D 2E OD 2E OD (10 0(1 ·
· C8: 00 00 oo 00 00 00 00 00 ·
· D(): 00 ()() 00 oo 00 oo 00 00 ·

64

· 08: OC) ()O 00 OC) 00 OC) 00 00 ·..
· EO: OCJ (I() ()(I 00 00 00 00 00 ·
· E8: 0(1 00 00 00 00 00 00 00 ·..
· Fe): (10 (10 (JC) (to OCI (10 00 OCt ·
· F8: oo 00 00 00 00 00 00 00 ·.

The block reveals a typical sequential file. Bytes 0 and 1 are the chain. The first data
block links to track 17 ($11), sector 14 ($OE). The next 150 bytes (2 - 151) constitute
our first record. Note that the unused bytes within a record are written as nulls ($00)
by the DOS so the record is always a fixed length. The content of individual records
will vary enormously. This is program dependent so the data block in question contains
whatever data was specified by the program used. This particular record is from a free
form data base. It was reserved to for management information by the main program
and contains the following data:

1. The name of our relative file ("MAG FILE").
2. The number of active records (709).
3. The number of fields in use (6).
4. The field titles (TITLE, COMPUTER, MAGAZINE, ISSUE, PAGE, COMMENT).

In the sequential data file portion of a relative file, the record length (record size) is
constant. In this case, the records are all 150 bytes long. Record number 2 begins at
byte 152($98) and will extend on into the next data block. Two reads would be required
to fetch the entire contents of this record. The first 104bytes of the record will be found
here, but the remaining 46 are in the next block of the file. Here they are.

TRACK 17 - SECTOR 14

· 00: 11 04 (J() O() 00 00 00 00 ·...
· 08: 00 00 00 00 00 00 00 00 ·
· 10: OCI (to oo 00 00 00 ()C) (10 ·.... . ..
· 18: ()O 00 00 00 00 00 00 00 ·...
· 20: 00 00 00 (to 00 (10 oo 00 ·
· 28: 00 00 00 00 00 00 00 00 ·.... . ..
· so: D3 4F 55 4E 44 20 D3 59 • DUND .Y

· 38: 4E 54 48 45 53 49 53 OD NTHESIS.

· 4(): 41 4C 4C OD C3 4F 4D 5CI ALL•• OMP

· 48: 55 54 45 (ID CA 41 4E 20 UTE•• AN

· 5(): 38 33 OD 32 36 OD 2E OD 83.26•••

· 58: OD 2E OD 2E OD 2E OD 2E ·...... .
· 60: oo 2E (ID 2E OD 2E 00 2E ·..... ..
· 68: OD 2E OD 2E OD 2E OD 2E ·.
· 7(): (ID oo (10 00 00 00 00 00 ·...... .
· 78: 00 00 00 00 00 00 00 00 ·
· BC): 00 0(1 OCt 00 00 00 00 00 ·.......
· 88: 00 00 00 00 00 00 00 00 ·
· 90: O() ()O OCI (10 00 00 00 00 ·...
· 98: 00 OC) 00 00 00 00 00 00 ·..... ..
· AO: 00 00 00 00 00 (10 OC) ()O ·

65

· A8: OC) 00 00 OCt 00 OCt 00 00 ·...
· B(}: 00 00 ()(t 00 (u) 00 (10 00 ·
· B8: 00 00 O() 00 00 00 00 00 ·
· co: oo ()() (10 oo OCt ()() D7 52 • •••••• R

· C8: 49 54 49 4E 47 zo D4 52 ITING .R

· DO: 41 4E S3 SC) 4F 52 54 41 ANSPORTA

· DB: 42 4C 45 2() C2 41 53 49 BLE .ASI

· E(): 43 (ID 41 4C 4C OD C3 4F C.ALL•• O

· E8: 4D SC) 55 54 45 ()D CA 41 MPUTE•• A

· FO: 4E 20 38 33 OD 33 36 00 N 83.36.

· F8: 2E ()D on 2E OD 2E OD 2E ·

Record number 2 is used again for management information by our data base. It simply
contains the record length. One can see from the number of carriage returns ($OD) that
while only 6 fields are in use, 21 were established by the main program. One can also
see that a blank field from this data base is stored as a period ($2E = CHR$(46) = ".").
Record number 3 begins at byte 48. It contains our first actual data. It would look like so:

Title: Sound Synthesis
Computer: All
Magazine: Compute (sic)
Issue: Jan 83
Page: 26
Comment: (none)

Just out of curiosity let's examine the last two sectors of our sequential file chain as
reported in bytes 156-159 of side sector 3. Why two sectors? Our fixed length of 150
bytes dictates this. (A fixed record length of 1,2, 127, or 254 would not span a given
sector. The maximum length of a relative record is 254 bytes. 254 is the only number
evenly divisible by these factors. A record length of 1 or 2 would be rather impractical.)

TRACK 23 - SECTOR 02

· 00: 17 oc 00 00 00 00 00 00 ·
· 08: OC) OCI 00 (10 CIO CIO 00 (10 ·
· 10: 00 oo oo 00 00 00 00 00 ·
· 18: 00 OC) (10 00 00 00 00 00 ·
· 20: 00 00 00 O() 00 00 ()O O() ·
· 28: oo oo 00 00 oo 00 00 0(1 ·
· 30: 00 00 00 00 00 00 00 00 ·.... . . .
· 38: 00 O() O() ()O (to oo 00 oo ·.... .. .
· 40: (10 00 00 00 00 00 00 00 ·..... . .
· 48: (10 (I() oo oo ()O oo 00 oo ·..
· 50: 00 00 00 00 00 ()Q 00 O() ·
· 58: oo oo oo O() 00 00 (to oo ·.
· 6(): 00 00 OC) 00 00 00 00 00 ·.
· 68: O() 00 oo ()O 00 00 00 00 ·.... ...
· 7(): 00 00 00 00 00 00 00 00 ·
· 78: OCt 00 (I() OCI oo (to 00 oo ·.

66

· 80: O(J C)O OC) (JCJ FF 00 OC) O() ·
· 88: O() oo OC) ()o c)o oo oo (u) ·
· 90: Ot) 00 00 00 00 O() (10 (J() ·
· 98: 0(1 oo oo (u) oo (10 ()(I O() ·
· A(): oo oo ()O (J() 00 00 ()O 00 ·
· AS: 0(1 ()O (10 00 (10 (10 0(1 O() ·
· BO: (J() OC) O() 00 00 OC) oo 00 ·
· B8: 0(1 oo 00 00 0(1 (IC) O() OCJ ·
· CO: oo OC) 00 00 00 00 C)O OC) ·
· C8: (JC) oo O() 0(1 00 (l() OCt OCI ·
· D(): 00 00 00 00 OC) 00 (10 00 ·
· D8: oo ac) (10 00 oo oo (10 ()o ·
· EO: 00 00 00 00 00 00 (10 00 ·
· E8: oo 00 (I() 00 00 oo 00 00 ·.
· FO: 00 00 00 00 00 00 00 00 ·
· Fa: (IC) O() (1(1 (10 (J() oo 00 oo ·

TRACK 23 - SECTOR 12

· 00: 00 B1 00 00 00 ()() 00 00 ·
· 08: OC) 00 (10 (10 Ot) (10 OC) 00 ·.......
· 10: (I() 00 00 00 00 00 00 00 ·..
· 18: (to oo oo 00 FF O(J OC) oo ·
· 20: 00 O() 00 00 00 (JO 00 0(1 ·
· 28: 00 oo 00 (to oo (J() oo 00 ·
· 3(1: oo 00 00 00 00 00 00 00 ·..
· 38: (I() 00 oo 0(. (If) (J() (I() O() ·.
· 4(): (l() (J() 00 O() O() oo oo 00 ·.
· 48: 00 00 00 00 00 OCI 00 00 ·
· 50: 00 (to (I() 00 00 00 (IC) (1(1 ·
· 58: 00 00 oo 00 00 oo (JO 00 ·...
· 6(): 0(1 ()c) oo 00 (I() (10 00 O(J ·
· 68: 00 00 OC) 00 00 00 00 00 ·
· 70: OC) oo (10 00 00 oo oo (10 ·
· 78: 00 00 00 00 (JO 00 (10 OC) ·.... . . .
· 80: O() (10 oo (10 O() 0(1 O() CIO ·
· 88: 00 OCI 00 (I() Ot) 00 00 00 ·
· 90: oo ()O 00 0(1 O() 00 oo ()O ·
· 98: O(J 00 00 (10 00 00 00 00 ·
· A(): O() oo oo 00 OCI O(J 00 oo ·
· A8: 00 00 00 00 00 00 00 (10 ·
· BO: 00 00 FF OC) 00 00 00 0(1 ·
· B8: 00 00 00 0(1 00 oo O() O() ·
· co: (10 O() 00 00 00 (10 00 (10 ·
· C8: 00 00 00 00 00 OC) 00 O() ·
· DO: 00 (J() (Ic) (IQ O() oo (10 0(1 ·.
· DB: 00 OC) 00 00 00 00 (10 00 ·.
· EO: 0(1 (10 00 00 00 00 00 00 ·
· E8: 00 O() 00 00 00 00 00 00 ·
· FO: oo 00 oo 00 OC) (J(I (I() 0(1 ·
· F8: 00 (JO 00 00 00 00 00 00 ·

67

An analysis of the preceding two sectors will all but end our discussion on relative file
structure. Bytes 2-131 of track 23, sector 2 are the overflow of a previous record, Bytes
132-255 of this same track and bytes 2-27 of track 23, sector 12make up the next record.
This record is empty, as indicated by a 255 ($FF) in the first byte and nulls in the re­
maining bytes. Track 23, sector 12 has no forward chain and a byte count of 177($Bl).
Our last record in the relative file ends at byte 177(28-177). What is interesting is the
padding beyond this point:

· Bel: xx xx FF 00 O() 00 OC) oo ·.......
· B8: 00 00 oo 00 00 00 00 00 ·
· co: (10 cu) oo 00 oo 00 00 OC) ·..... . .
· CB: OCt 00 00 OC) 00 00 00 00 ·
· DC): O() (IC) oo oo 00 00 00 00 ·
· DB: 00 00 00 00 00 00 00 00 ·
· E(): O() 00 (to oo (u) 00 (Ic) 00 ·...
· EB: (to 00 00 00 00 (to 00 00 ·...
· FO: oo (IC) (IC) 0(1 00 (10 oo oo ·.
· Fa: 00 (to oo 00 00 00 00 00 ·

We would expect to find all nulls ($00). Byte 178 ($B2), however, shows an $FF, i.e.,
the start of a new record. The DOSis one step ahead of the game when expansion time
rolls around. A partial record has already been created in this instance. The DOSneed
only calculate the difference between 255 and the byte count to determine the number
of nulls that must follow to complete the record:

255 - 177 = 78 bytes already in existence

It then takes the record size to figure out the padding needed:

Total Record Length - Bytes in Existence = Nulls to Go

150 - 78 = 72

Slick!

We will close our section on relative file structure by taking a brief look at how the
computer, or you, can locate a particular relative record. Pick a number, any number.
Record number 4 you say. No problem if you know the record length.

First we find the appropriate side sector.

4 - 1 = 3 previous records

3 * 150 fixed length = 450th starting byte (i.e., 0 - 449 previous bytes)

450 / 254 = 1.7716535

INT (1.7716535) + 1 = pointer set 2

68

Pointer set 2 / 120 sets of pointers in a side sector = 0.01666667

INT (0.01666667) = side sector 0

Where in side sector 0 is it? Easy.

Byte 14 + (pointer set 2 * 2 bytes in a pointer) = byte 18

Bytes 18 and 19 will contain the track and sector of our record.

Where in the actual data block is it? A piece of cake.

1.7716535 - INT(I.7716535) = remainder .7716535

2 (skip over bytes 0 and 1) + (.7716535 * 254 bytes of data) = byte 198

Still a disbeliever? Check it out yourself in the preceding hex dumps of track 17, sector
13 and track 17, sector 14.

4.8 User File Storage
A user file (USR) file is one that is designed by the user. This file type is designated
by an $83 in the directory. Although a user file is a legal Commodore file type (USR),
its use is quite rare. Using a USR file rather than a more common file type is for
showmanship only.

A user file may have the structure of either a sequential file or a program file if it was
created by the DOS. It may be structured entirely differently if it was created using
direct-access techniques described in Chapter 5. Before you do something rash, remember
that the DOS will expect to find the track and sector links in their normal places. If
they are not there, all the blocks that make up your file will be earmarked as free in
the BAM whenever the disk is validated!

4.9 Deleted File Storage
A deleted file (DEL) has a file-type byte of $80 in the directory. This is not a scratched
file ($00), but an undocumented Commodore file type (DEL). It is extremely rare. Only
one vendor has dared use a DEL file on a commercial product to date. It was not a func­
tional file and was placed on the diskette to intimidate users as part of a low level pro­
tection scheme.

You cannot create a DEL file using an OPEN statement. You can only create a DEL
file by changing the file-type byte of an existing file to $80 as described in the next sec­
tion. Since a DEL file is really another file type in disguise, a DEL file may have the
structure of either a sequential file or a program file. If it has the structure of a pro­
gram file, it may be loaded using one of these commands:

LOAD IIFILE NAME,DEL,R II,8

LOAD "FILE NAME,DEL,RII,B,l

69

(RELOCATED)

(NOT RELOCATED)

If a DEL file is structured like a sequential file, it may be opened in read mode using
the following command:

OPEN 2,8,2,IIFILE NAME"DEL,R II

4.1 0 Locked Files

Earlier in this chapter you may have been surprised to see locked files of various form
in the table of legal file types. Locked file types are once again an undocumented feature
of Commodore disk drives. A locked file cannot be scratched unless it is first unlocked.
Unfortunately, the DOS does not support the locking or unlocking of a file. You have
to do-it-yourself by editing the file-type byte in the directory entry for that file. The
program EDIT TRACK & SECTOR listed in Appendix C allows you to do this. We
will not describe the technique here. See the section on Unscratching a File in Chapter
8 for instructions on how to edit the file-type byte. Use the values from the table below,
rather than those listed in Chapter 8, when locking or unlocking a file.

File Type Normal Locked

Deleted DEL $80 DEL< $CO
Sequential SEQ $81 SEQ < $C1
Program PRG $82 PRG< $C2
User USR $83 USR< $C3
Relative REL $84 REL< $C4

The DOS determines whether or not a file is locked by checking bit 6 of the file-type
byte. If it is set (1), the file is locked. Even if a file has been locked, it may be renamed
or copied using normal disk commands.

Conclusion

The material covered in this chapter is primarily of academic interest. However, do not
attempt to recover a blown file unless you thoroughly understand the structure of the
directory and how files are stored.

70

CHAPTER 5

DIRECT-ACCESS PROGRAMMING

5.1 Introduction to Direct-Access Programming
In Chapter 2 you learned how to use such DOS commands as NEW, SCRATCH, and
VALIDATE, for diskette housekeeping. This chapter describes how to use another set
of DOS commands known as direct-access commands. These commands are not com­
monly used in typical programming applications. However, they allowyou to step beyond
simple housekeeping chores to develop more powerful disk utility programs that do such
things as:

Change a disk name or cosmetic ID.
Display a block availability map (the BAM).
Display a directory.
Display a track and sector.
Chain through a directory entry.
Edit a track and sector.
Recover an inadvertently scratched file.
Recover a damaged diskette.
Duplicate a diskette.
Copy a file.
Catalog a disk library.

As you grow with your 1541, the need for routines of this nature will become increas­
ingly apparent, if it isn't already. This chapter illustrates the use of direct-access com­
mands in simple programs. A basic understanding of the function of these commands
is necessary to appreciate the routines found in subsequent chapters and Appendix C.

5.2 Beginning Direct-Access Programming

The 1541 DOS recognizes nine direct-access commands. These direct-access commands
and their functions are listed below.

Direct-Access Command

Block-Read (Ul)
Buffer-Pointer (B-P)
Block-Write (U2)

Function

Read a data block into 1541 RAM.
Set pointer to any byte in a disk buffer.
Write a data block from 1541 RAM to diskette.

71

Memory-Read (M-R)
Memory-Write (M-W)
Block-Allocate (B-A)
Block-Free (B-F)
Memory-Execute (M-E)

Block-Execute (B-E)

Peek bytes out of 1541 RAM or ROM.
Poke bytes into 1541 RAM.
Set bit in BAM to indicate a sector is in use.
Set bit in BAM to indicate a sector is not in use.
Execute a 6502 routine stored in 1541 RAM
or ROM.
Load and execute a 6502 routine in 1541 RAM.

More often than not, direct-access commands complement one another in actual use.
For example, a sector can be read from disk using a U1 command, examined using a
B-P or M-R command, altered using a B-P or M-R command, and rewritten to disk us­
ing a U2 command.

The block-read (U1), buffer-pointer, and block-write (U2)comands are the easiest to com­
prehend and, as a result, the most widely used. The memory-read and memory-write
commands represent a more sophisticated level of direct-access programming and are
sometimes used in lieu of the buffer-pointer command. The block-allocate and block-free
commands are used primarily for the maintenance of random access files. Random ac­
cess files were the forerunner of relative files and are rarely used today. The memory­
execute command is used at the guru level of disk programming and requires a rudimen­
tary knowledge of both machine language and the innards of the 1541 to implement.
The block-execute command, while documented by Commodore, is almost/never used.

In order to use the commands mentioned above you will need to learn how to open a
direct-access data channel. The format of a direct-access OPEN statement is:

SYNTAX: OPEN file#, device#, channel#, 11.11

EXAMPLE: OPEN 2,8,2~".1I

OPEN 1,8,14,11.11

where

file#

device#

channel#

= the logical file number (1 to 127)

= 8

= the secondary address of the associated open statement (2 to 14)

Opening a direct-access data channel establishes a communication link between the C64
and the 1541. In the first example, we opened logical file number 2 on the C64 side
to device number 8 with a secondary address of 2 (channel number 2) on the 1541 side.
The only time a channel number is ever referenced is as part of a direct-access com­
mand, e.g., a block-read command (U1). Data is always read from disk (GET# filet,
INPUT# filet,) or written to disk (PRINT# filet,) by way of the logical file number of
the direct-access OPEN statement NOT the channel number. The logical file number
and the channel number do not have to match as they do in our first OPEN example.
They are two separate entities. The logical file number which resides on the C64 side
passes read or write commands to the channel number on the 1541side. Any similarity

72

between the logical file number and the channel number is for mnemonic purposes only.
The second example is a perfectly legal direct-access OPEN statement. In this instance,
we opened logical file number 1 (GET#I, PRINT#I,) to device number S'with a second­
ary address of 14 (channel number 14)on the 1541side. Whether or not you use mnemonic
OPEN statements is strictly a matter of personal preference.

We will begin our tutorial on direct-access programming with a quick review of the 1541
format explained in Chapter 3. The table below outlines the range of track and sector
numbers found on a diskette.

Zone Track Sector Range Number of Sectors
1 1 - 17 0-20 21
2 18 - 24 0-18 19
3 25 - 30 o- 17 18
4 31 - 35 0-16 17

NOTE: If you attempt to access a track less than 1, a track greater than 35, or a sector
out of range for a given track, you will get a DOS error message number 66, ILLEGAL
TRACK OR SECTOR.

5.3 Block-Read Command (U1J
The block-read command (Ul) transfers the contents of a given track and sector to an
area of disk RAM commonly referred to as a buffer or workspace. The format of a block­
read command (Ul) is:

SYNTAX:
PRINT# file#, nUl"; channel*; drive#; track;

sector

ALTERNATE:
PRINT# file#, IIUI:" channel.; drive.; track;

sector
PRINT. file., nUl: channel., drive., track,

sector"

EXAMPLE:
PRINT.1S, IIU1";2;O; IB;()

where

file#

channel#

drive#

track

sector

the logical file number of the command channel

the secondary address of the associated open statement

o

1 to 35

o to the range for a given track

73

After a given track and sector has been transferred to a buffer with a block-read com­
mand (U'l), the buffer pointer is automatically left in position 255. Bytes 0~255 of the
buffer are now accessible from the starting position, i.e., byte o. The GET# command
is normally used to retrieve one byte at a time from the buffer by way of the logical
file number of the direct-access OPEN statement. The GET# command is used rather
than INPUT# because the data may contain null bytes, carriage returns and/or line feeds,
commas, colons, or other control characters. When using the GET# command you must
remember to test each incoming byte for equality with the null string "", A null byte
must be converted to CHR$(O) or an ?ILLEGAL QUANTITY ERROR will result when
you try to find the ASCII value of the byte. (The GET# command fails to make the
necessary conversion for you.) The ASCII value of a byte is used to check for control
characters. These characters are misinterpreted by the INPUT# command. The follow­
ing example reads the block from track 18, sector 0 (the BAM) into disk RAM and prints
the contents to the screen.

100 REM BLOCK-READ (Ul)
110 OPEN 15,8,15
12() PRINT#lS, 1110"
130 INPUT#15,EN$,EM$,ETS,ES$
140 IF ENS<>"OO"GOTO 290
15() OPEN 2,8,2,
160 PRINT#15,"Ul l1;2;O;lB;O

170 INPUT.15,EN$,EMS,ET$,ESS
180 IF EN$<>"OOIiGOTO 270
190 FOR 1=0 TO 255
200 GET#2,B$
21() IF BS=" "THEN B$=CHR$ (0)

22() A=ASC (BS)
230 PRINT ST,I,A,
240 IF A>31 AND A<96 THEN PRINT BS,
2S() PRINT
260 NEXT I
27() CLOSE 2
280 INPUT.15,ENS,EMS,ETS,ES$
290 CLOSE 15
300 END

Line Range

110

120
130-140
150

160

170-180
190

Description

Opens logical file number 15 (PRINT#15,) to device 8 with a
secondary address of 15 (command channel).
Initializes drive o.
Query the error channel.
Opens logical file number 2 (GET#2,) to device 8 with a secondary
address of 2 (channel number 2) letting the 1541 assign a buffer
area.
Reads the block from drive 0, track 18, sector 0 into channel 2 buf­
fer area.
Query the error channel.
Begin loop to read 256 bytes.

74

200

210
220
230

240
250
260
270
280
290
300

Transfer a byte from channel 2 buffer area to C 64 memory by way
of the GET# command (GET# logical file number not the channel
number).
Test for equality with the null string "".
ASCII conversion of a byte.
Print the status variable (ST), our loop counter, and the ASCII
value of the byte.
Print the byte if it's within normal ASCII range.
Terminate comma tabulation.
Increment loop counter.
Close logical file number 2.
Suppress the error light.
Close logical file number 15.
End.

An explanation of programming technique is in order here. Initialization (line 120) is
done prior to opening a direct-access data channel (line 150). Initialization automatically
shuts down all direct-access data channels (2 -14) that are open on the 1541 side. The
command channel (15) is not affected. Logical files still remain open on the C64 side,
however. Any attempt to access a data channel after initialization results in a 70, NO
CHANNEL error. The DOS attempts to rewrite the BAM each time a direct-access
channel is closed (line 270). If a diskette is either write protected or DOS protected,
the BAM is not rewritten and the error light remains on until cleared. Fortunately, no
damage has been done to the data on the diskette. The error light is quite distracting
nevertheless. You can suppress the error light after closing a direct-access data chan­
nel simply by inputting the error number, message, track, and sector via the command
channel (line 280).

The alternate formats of the block-read command (Ul) in line 160 are:

FaRINT#15" -ui . 2,0, 18,0"

Although the block-read command (Ul) comes in three basic flavors, line 160 uses the
preferred format. It will be used in demonstration programs throughout the chapter
for consistency. Alternate formats will appear in passing.

Additionally, lines 210-220 are often combined into one BASIC statement for the sake
of efficiency:

A=ASC(B$+CHR$(O»

Recall that lines 210-220 are necessary because the GET# command does not interpret
nulls correctly.

5.4 Buffer-Pointer Command (B-PJ

The buffer-pointer command allows access to any individual byte in a DOS buffer. Any
byte from position 0 through 255 in the buffer may be read or overwritten. The format
of a buffer-pointer command is:

75

SYNTAX:
PRINT# file., "B-pll; channel.; byte position

ALTERNATE:
PRINT# file#, "B-F-: II channel#; byte position
PRINT# file., "B-P: channel#, byte position"

EXAMPLE:
PRINT#lS,"B-PII;2;144

where

file#

channels

the logical file number of the command channel

the secondary address of the associated open statement

byte position = 0 to 255

The following program displays a disk name by reading only bytes 144to 159from track
18, sector O.

100 REM BUFFER-POINTER
110 OPEN 15,8,15
120 PRINT#IS, II ro-
130 INPUT#15,EN$,EMS,ET$,ES$
14() IF EN$(>"OO"SOTO 320
15() OPEN 2,8,2, "#11
160 PRINT#15,"Ul";2;0;18;O
170 INPUT#15,ENS,EM$,ET$,ES$
180 IF EN$<:>" O()II GOTO 300
19() PRINT#1S, ItB_PIt; 2; 144
200 FOR 1=1 TO 16
210 GET#2,B$
220 IF B$= THEN B$=CHR$(O)
23() A=ASC (BS)
240 IF A>127 THEN A=A-128
250 IF A<32 OR A>95 THEN A=63
260 IF A=34 THEN A=b3
270 DN$=DNS+CHRS(A)
28() NEXT I
290 PRINT" {DOWN}DISK NAME: II; DNS
300 CLOSE 2
310 INPUT#15,EN$,EM$,ETS,ES$
320 CLOSE 15
330 END

Line Range

190
200-280

Description

Sets channel 2 pointer to position 144 in the buffer area.
Concatenate (build) the disk name one byte at a time by jamming it
within printable ASCII range.

76

The alternate formats of the buffer-pointer command in line 190 are:

PRINT#15,"B-P:1I2;144

PRINT#15,"B-P:2,144"

5.5 Block-Write Command (U2J

The block-write command (U2) writes the data from a DOS buffer to any given track
and sector on a diskette. The format of a block-write command (U2) parallels that of
a block-read command (U1). The format of a block-write command (U2) is:

SYNTAX:
PRINT# file., "U2 11

; channel#; drive#; track;
sector

ALTERNATE:
PRINT# f i 1e#, "U2: II channel #; dri ve#; track;

sector
PRINT# file#, "U2: channel., drive#, track,

sector II

EXAMPLE:
PRINT#15,"U2";2;O;18;O

where

file#

channel #

drive #

track

sector

the logical file number of the command channel

the secondary address of the associated open statement

o

1 to 35

oto the range for a given track

The entire contents of a buffer are written to disk during the execution of a block-write
command (U2). The position of the buffer-pointer is irrelevant. It is not referred to by
the DOS during the execution of a block-write command (U2).

The first program listed below allows a disk name to be changed using a block-write
command (U2). The second example allows you to edit the cosmetic disk ID that ap­
pears in the BAM. NOTE: This program does not change the formatting ID that is
embedded in the header block of every sector.

77

100 REM EDIT DISK NAME
110 FORI=lT016
120 PAD$=PAD$+CHRS(160)
130 NEXTI
140 PRINT"{CLR}EDIT DISK NAME - 1541 11

150 PRINT"{OOWN}REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}II
160 PRINT" {DOWN} II'JSERT DISKETTE IN DRIVE..
170 PRINT"{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
180 GETC$:IFC$=uuTHEN180
190 IFC$<>CHR$(13)GOT0180
200 PRINTIIOK"
2100PEN15,8,15
220 PRINT#15,IIIO"
230 INPUT#15,EN$,EM$,ET$,ES$
240 IFENS="OO"SOT0280
250 PRINT"{DOWN}IIENS", IIEM$II,IIET$",IIES$
260 CLOSE1S
270 END
2800PEN2,B,2,1I#1I
290 PRINT#15,"Ul";2;O;18;0
300 INPUT#15,ENS,EM$,ET$,ES$
310 PRINT#15,IIB-PII.2;2
320 GET#2,B$
330 IFB$=II "THENBS=CHR$ (0)
340 DOS=ASC(B$)
350 IFDOS=65GOT0390
360 PRINT"{OOWN}73,CBM DOS V2.6 1541,00,
00"
370 PRINT"{DOWN}{RVS}FAILED{ROFF}"
380 GOT0720
390 PRINT#15,"B-PII;2;144
400 FORI=1T016
410 GET#2,B$
420 IFBS=lIuTHENB$=CHR$(O)
430 A=ASC(B$)
440 IFA>127THENA=A-128
450 IFA<320RA>95THENA=63
460 IFA=34THENA=63
470 ODNS=ODN$+CHR$(A)
480 NEXTI
490 PRINTII{OOWN}OLD DISK NAME: II;ODNS
500 INPUTII{DOWN}NEW DISK NAMEII;NDNS
510 IFLEN(NDN$)<>OANDLEN(NDN$)(17GOT0530

520 GOT0720
530 INPUTII{DOWN}ARE YOU SURE (YIN) Y{LE
FT 3}II;Q$

78

540 IFQ$<>nYIiGOT0720
550 NDNS=LEFT$(NDN$+PADS,16)
560 PRINTB15"IB-P";2;144
570 PRINT#2,NDNS;
580 F'RINT#15, II U2 II ; 2; 0; 18; 0
590 INPUT#15~EN$,EMS,ET$,ES$

600 IFENS=IIOOIIGOT0640
610 PRINT"{OOWN}"ENS", "EMS","ETS","ESS
620 PRINT"{DOWN}{RVS}FAILED{ROFF}"
630 GOT0720
640 CLOSE2
650 INPUT#15,ENS,EM$,ETS,ESS
660 PRINT#15,IIIO Il

670 INPUT#15,ENS,EMS,ETS,ESS
680 CLOSE1S
690 PRINTII{DOWN}DONE!II
700 END
710 REM CLOSE
720 CLOSE2
730 INPUT#15,EN$,EM$,ETS,ES$
740 CLOSE15
750 END

Line Range

280

310-380
550
560
570
580
660

Description

Opens logical file number 2 (GET#2, PRINT#2,) to device
8 with a secondary address of 2 (channel number 2) let­
ting the 1541 assign a buffer area.
Query DOS version.
Pad new diskette name.
Reset channel 2 pointer to position 144.
Overwrite existing disk name in channel 2 buffer area.
Write channel 2 buffer to drive 0, track 18, sector o.
Update the BAM ($0700-$07FF) to reflect a disk name
change.

The alternate formats of the block-write command (U2) in line 580 are:

PRINT#15,"U2: 112;O;18;O

100 REM EDIT DISK ID
110 PRINTII{CLR}EDIT DISK ID - 1541 11

120 PRINTII{DOWN}REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}"

79

130 PRINT" {DOWN} INSERT DISKETTE IN DRIVE
II

140 PRINT"{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
150 GETCS:IFC$=II"THEN150
160 IFCS<>CHR$(13)GOT0150
170 PRINT"OK"
1800PEN15,8,15
190 PRINT#15,IIIO"
200 INPUT#15,ENS,EMS,ETS,ES$
210 IFEN$="OOIiGOT0250
220 PRINTII{OOWN}"ENS", "EM$","ETS","ES$
230 CLOSE15
240 END
2500PEN2,B,2,1I#1I
260 PRINT#15,"Ul l1 ; 2 ; O; 18 ; O
270 INPUT#15,ENS,EM$,ETS,ES$
280 PRINT#15,IIB-PIl;2;2
290 GET#2,B$
300 IFBS=U UTHENB$=CHR$(0)
310 D05=ASC(B$)
320 IFDOS=65GOT0360
330 PRINT" {DOWN}73, CBM DOS V2.6 1541, (lO,

00"
340 PRINT"CDOWN}{RVS}FAILED{ROFF}"
350 GOT0690
360 PRINT#15,IIB-PII;2;162
370 FORI=lT02
380 GET#2,B$
390 IFB$= THENBS=CHR$(O)
400 A=ASC(B$)
410 IFA>127THENA=A-128
420 IFA<320RA>95THENA=63
430 IFA=34THENA=63
440 ODI$=ODI$+CHR$(A)
450 NEXTI
460 PRINTII{DOWN}OLD DISK 10: 11;001$
470 INPUT"{DOWN}NEW DISK IDII;NDIS
480 IFLEN(NDI$)<>OANDLEN(NDI$)(3GOT0500
490 GOT0690
500 INPUTII{DOWN}ARE YOU SURE (YIN) Y{LE
FT 3}";Q$
510 IFQ$(>uY tiGOT069()

520 NDI$=LEFTS(NDI$+CHRS(O),2)
530 PRINT#15, tlB-PIl;2;162

540 PRINT#2,NOIS;
550 PRlt"T#15, "U2"; 2; 0; 18; 0
560 INPUT#15,EN$~EM$,ET$,ES$

570 IFENS= tl OO" GOT 0 6 1()
580 PRINT"{OOWN}"EN$", IIEMS","ET$II,"ESS

80

590 PRINTII{DOWN}{RVS}FAILED{ROFF}"
600 GOT0690
610 CLOSE2
620 INPUT#15~EN$~EM$~ET$~ES$

630 PRINT#lS,IIIOIl
640 INPUT#1S,ENS,EMS,ETS,ESS
650 CLOSE1S
660 PRINT"{DOWN}DONE!"
670 END
680 REM CLOSE
690 CLOSE2
700 INPUT#15,ENS,EM$,ET$~ES$

710 CLOSE15
720 END

The alternate formats of the block-write command (U2) in line 550 are:

PRINT#15,IIU2: 112;O;18;O

PRINT#15, IIU2:2,0, 18,0"

That's enough about the block-write command (U2) for now.

5.6 Memory-Read Command (M-R)

The memory-read command allows you to read the contents of any area of the 1541's
RAM or ROM. You must specify in the memory-read command the memory address
of RAM or ROM that you want to read. The format of a memory-read command is:

SYNTAX:
PRINT. file., 11M-Rat CHR$(lo-byte) CHR$(hi­

byte) CHR$(# of bytes)

ALTERNATE:
PRINT# file#, IIM-R: II CHR$(lo-by"te) CHR$(hi­

byte) CHR$(# of bytes)

EXAMPLE:
PRINT#15,"M-R IICHR$(O)CHR$(3)

81

where

file# = the logical file number of the command channel

lo-byte = lo-byte of the memory address

hi-byte hi-byte of the memory address

of bytes 1 to 255

The third parameter of the memory-read command, CHR$(# of bytes), is undocumented
by Commodore. The use of the third parameter is always optional. The default is CHR$(l),
i.e., 1 byte.

Typically a block-read command (U1)is issued prior to a memory-read command. A block­
read command (U1) transfers the data that is recorded on a given track and sector to
one of four pages (256bytes) of RAM. A page of RAM is called a buffer. When you open
a direct-access data channel to the 1541with OPEN 2,8,2,"#", the DOS arbitrarily selects
one buffer as a workspace for that channel. As long as you use the GET# filet command
or the PRINT# file# command from the associated OPEN statement you do not need
to know which buffer the DOS is using. The buffer in use is only important when you
issue a memory-read command. You may tell the DOS which buffer area to use in the
direct-access OPEN statement itself. The format for selecting a buffer is:

SYNTAX:
OPEN file#, device#, channel#, II. buffer#1I

EXAMPLE:
OPEN 2,8,2, 11.(1"

where

buffer# = 0 to 3

The table below shows how the buffer areas are organized in the 1541.

Buffer Number

o
1
2
3

Address

$0000 - $OOFF
$0100 - $OlFF
$0200 - $02FF
$0300 - $03FF
$0400 - $04FF
$0500 - $05FF
$0600 - $06FF
$0700 - $07FF

Example

Not available (ZERO PAGE)
Not available (STACK)
Not available (COMMAND BUFFER)
OPEN 2,8,2,"#0"
OPEN 2,8,2,"#1"
OPEN 2,8,2,"#2"
OPEN 2,8,2,"#3"
Not available (BAM)

82

NOTE: Two or more direct-access data channels cannot share the same buffer area.
If you attempt to open a direct-access data channel to a buffer already in use a 70, a
NO CHANNEL error will result.

The GET# command is used followinga memory-read command to retrieve the contents
of the buffer you selected. There is one major difference, however. Bytes are now fetched
over the command channel not the logical file number of the "OPEN file#, device#,
channels, buffer#" statement. Bytes must still be tested for equality with the null string
"" and converted to CHR$(O) if need be.

The next program selects buffer #0 ($0300 - $03FF) as a workspace and does a block­
read of track 18, sector O. Bytes are returned to the C64 side from buffer #0with memory­
read and GET# commands, and printed to the screen.

100 REM TWO PARAMETER MEMORY-READ
11() OPEN 15,8, 15
120 F·RINT#15, 1110 11

130 INPUT#15,EN$,EMS,ET$,ES$
140 IF ENS<>IIOOIIGOTO 300
1S() OPEN 2,8,2, II.C)"
160 PRINT#15,IIU1";2;O;18;O
170 INPUT#15,EN$,EM$,ET$,ES$
lac) IF ENS(>II 00 II 60TO 280
190 FOR 1=0 TO 255
zoo PRINT#IS, II M-R II CHR$ (I) CHR$ (3)
21() GET#15,B$
22() IF a$= II II THEN B$=CHR$ (0)
23() A=ASC (B$)
240 PRINT I,A,
250 IF A>31 AND A<96 THEN PRINT BS,
26() PRINT
270 NEXT I
28() CLOSE 2
290 INPUT#15,EN$,EM$,ET$,E5$
3()O CLOSE 15
310 END

Line Range

150

160

190
200
210

Description

Opens logical file number 2 to device 8 with a secondary
address of 2 assigning buffer number 0 ($0300 - $03FF)
as a workspace.
Reads the block from drive 0, track 18, sector 0 into
channel 2 buffer area ($0300 - $03FF).
Begin loop to read 256 bytes ($0300 - $03FF).
Indexed memory-read command ($0300 - $03FF).
Transfer a byte from channel 2 buffer area to e64
memory via the command channel (GET#15,).

83

The alternate format of the standard memory-read command in line 200 is:

PRINT#15~IIM-R:"CHR$(I)CHR$(3)

Please note that we deliberately omitted the third parameter of the memory-read com­
mand in the preceding example. The following example incorporates all three parameters
of the memory-read command to read a disk na~e.

100 REM THREE PARAMETER MEMORY-READ
110 OPEN 15,8~15

120 F·RINT#15, 1110"
130 INPUT#15,ENS,EM$,ET$~ES$

14() IF EN$< >.. C)O" GOTO 32(l
15() OPEN 2~ 8, 2, ".1 11

16e) F·RINT#15, nUl"; 2; 0; 18; o
170 INPUT#15~EN$,EM$,ET$,ES$

lac) IF EN$<:> II oo II SOTO 300
19() PRINT.15, "M-R"CHR$ (144) CHR$ (4) CHR$ (1
6)
200 FOR 1=1 TO 16
21() GET#15, BS
220 IF as=" II THEN BS=CHR$ co
23() A=ASC(BS)
240 IF A>127 THEN A=A-128
250 IF A<32 OR A>95 THEN A=63
260 IF A=34 THEN A=63
270 DN$=DN$+CHR$(A)
28() NEXT I
29() PRINT II {DOWN}DISI< NAME: .. ; DNS
3 oo CLOSE 2
310 INPUT#15,EN$,EM$,ETS,ES$
32() CLOSE 15
33() END

Line Range

150

160

190
200
210

Description

Opens logical file number 2 to device 8 with a secondary
address of 2 assigning buffer number 1 ($0400 - $04FF)
as a workspace.
Reads the block from drive 0, track 18, sector 0 into
channel 2 buffer area ($0400 - $04FF).
Memory-read command ($0490 - $049F).
Begin loop to read 16 characters.
Transfer a byte from channel 2 buffer area to C64
memory over the command channel (GET#15,).

Inclusion of the third memory-read parameter means that we no longer have to issue
a memory-read command to fetch each byte like we did in the first sample program.
Instead, we establish a loop after the memory-read command to pull a byte in. (See lines

84

200-280 above.) The alternate format of the three parameter memory-read command
in line 190 is:

PRINT#15,"M-R:"CHR$(144)CHR$(4)CHR$(16)

5.7 Memory-Write Command IM-WJ

The memory-write command is the opposite of the memory-read command. Data is writ­
ten to a DOSbuffer via the commandchannel. The format of a memory-write commandis:

SYNTAX:
PRINT. file., "M-WII CHR$(lo-byte) CHR$(hi­

byte> CHR$(# of bytes) data

ALTERNATE:
PRINT# file#, IIM-W:II CHR$(}o-byte) CHR$(hi­

byte) CHR$(# of bytes) data

EXAMPLE:
PRINT#15,"M-W IICHR$(2)CHR$(5)CHR$(2)CHR$(1)

CHR$(8)
PRINT#15,IIM-W IICHR$(2)CHR$(S)CHR$(2)CHR$(1)D$

where

file# = the logical file number of the command channel

lo-byte = lo-byte of the memory address

hi-byte = hi-byte of the memory address

of bytes = 1 to 34

data = a string variable or a CHR$ iteration

A total of34 data bytes may be written with each issuance of a memory-write command.
Typically only 8, 16, or 32 data bytes are sent out at one time in a loop as our buffer
size (256 bytes) is evenly divisible by these factors. At the most sophisticated level of
disk programming, machine language programs can be poked into RAM inside the 1541
with a memory-write command and then executed. (See Chapter 7 for actual programs
of this nature.) In practice, however, one encounters limited use of the memory-write
command.

The following example demonstrates the use of the memory-write command. It allows
you to change the load address of a program file. A routine of this nature would be used
to aid in the disassembly of a program that normally loads into high memory (e.g.,
$8000-$BFFF) and is already occupied by a machine language monitor program
(SUPERMON64) or ROM.

85

100 REM EDIT LOAD ADDRESS
110 H$="0123456789ABCDEF"
120 PRINT"{CLR}EDIT LOAD ADDRESS - 1541 11

130 PRINT"{DOWN}REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}"
140 PRINT" {DOWN} II'!SERT DISKETTE IN DRIVE..
150 PRINT"{DOWN}PRESS {RVS}RETURN{ROFFJ­
TO CONTINUE"
160 GETCS:IFC$=III1THEN160
170 IFCS<>CHR$(13)GOT0160
180 PRINTIIOI<II
1900PEN15,8,15
200 PRINT#15,IIIOIl
210 INPUT#15,EN$,EM$,ET$~ES$

220 IFEN$=uClO IiGOT0260

230 PRINT II {DOWN} " EN$ II , IIEM$II,"ET$","ES$
240 CLOSE1S
250 END
260 PRINT#15,"M-R II CHR$ (1) CHR$ (1)
270 GET#15,DOS$
280 IFDOS$=III1THENDOS$=CHR$(O)
290 DOS=ASC(DOS$)
300 IFDOS=65GOT0330
310 PRINT"{DOWN}73,CBM DOS V2.6 1541,00,
oo-
320 GOT0910
330 II'!PUT" {OOWN}FILENAME II

; F$
340 IFLEN(F$)<>OANDLEN(F$)(17GOT0360
350 GOT0920
3600PEN2,8,2,"O:II+F$+II,P,R"
370 INPUT#15,EN$,EM$~ET$,ES$

380 I FEN$= II 00 II GOT04()O
390 GOT0940
400 PRINT#15,"M-R II CHR$ (2 4) CHR$ (O) CHR$ (2)

410 GET#15~T$

420 T=ASC(T$+CHR$(O»
430 GET#15,S$
440 S=ASC(S$+CHR$(O»
450 CLOSE2
460 INPUT#15,EN$,EM$,ET$,ES$
470 IFEN$=1I00IlGOT0490
480 GOT090()
4900PEN2,B,2"u#2 11

500 PRIN'T#15, -ui "; 2; 0; T; S
510 INPUT#15,ENS,EMS"ETS,ES$
520 IFENS=IIOOIIGOT0540
530 GOT0900

86

540 PRINT#15, ltM-R"CHR$(2)CHR$(S)CHR$(2)

550 GET#15,LOW$
560 LOW=ASC(LOW$+CHR$(O»
570 GET#IS,HIGH$
580 HIGH=ASC(HIGHS+CHR$(O»
590 D=HIGH
600 GOSUBI010
610 OLA$=HD$
620 D=LOW
630 GOSUB1010
640 OLA$=OLA$+HD$
650 PRINTII{OOWN}OLD LOAD ADDRESS: ";OLAS

660 INPUT"{DOWN}NEW LOAD ADDRESSII;NLA$
670 IFLEN(NLA$)=4GOT0690
680 GOT0960
690 INPUT"{DOWN}ARE YOU SURE (YIN) Y{LE
FT 3}";Q$
700 IFQ$<>uY"GOT0960
710 HD$=RIGHT$(NLAS,2)
720 GOSUB1060
730 IFTME=lGOT0960
740 LOW=D
750 HD$=LEFT$(NLAS,2)
760 GOSUB1060
770 IFTME=lGOT0960
780 HIGH=D
790 PRINT#15~"M-W"CHR$(2)CHR$(5)CHR$(2)C

HR$(LOW)CHR$(HIGH)
800 PRINT#15,"U2";2;O;T;S
810 INPUT#15,ENS,EMS,ETS,ES$
820 IFEN$="CtO"GOT0840
830 GOT0940
840 CLOSE2
850 INPUT#15~EN$,EM$,ET$,ES$

860 CLOSE15
870 PRINT"{OOWN}DONE!"
880 END
890 REM CLOSE
900 PRINT" {DOl,lJN} liENSII , "EMS", "ETS", "ESS
910 PRINT"{OOWN}{RVS}FAILED{ROFF}"
920 CLOSE1S
930 END
940 PRINT"{OOWN}"EN$", IIEMS","ETS",uES$
950 PRINT"{DOWN}{RVS}FAILED{ROFF}"
96(J CLOSE2
970 INPUT#15,ENS,EM$,ET$,ES$
980 CLOSE15
990 END
1000 REM DECIMAL TO HEXADECIMAL
1010 H=INT(D/16)

87

1020 L=D-(H*16)
1030 HD$=MID$(H$,H+l,l)+MID$(H$~L+l,l)

1040 RETURN
1050 REM HEXADECIMAL TO DECIMAL
1060 TME=O
1070 H=O
1080 FORI=lT016
1090 IFLEFT$(HDS,1)=MID$(HS,I,1>THENH=I:
1=16
1100 NEXTI
1110 IFH=OTHENTME=1:GOT01200
1120 H=H-l
1130 L=()

1140 FOR1=lT016
1150 IFRIGHT$(HD$,1)=MID$(H$~I,1)THENL=I

:1=16
1160 NEXTI
1170 IFL=OTHENTME=1:GOT01200
1180 L=L-1
1190 D=H*16+L
1200 RETURN

Line Range

260-320
330-350
360-390

400-440
450
490

500

540

550
570
590-640
660-700
710-780
790

800

Description

Query DOS version ($0101).
Input file name,
Opens logical file number 2 to device 8 with a secondary
address of 2 for a program read.
Fetch file name track ($0018) and sector ($0019).
Close logical file number 2.
Reopens logical file number 2 to device 8 with a second­
ary address of 2 assigning buffer number 2 ($0500 ­
$05FF) as a workspace.
Reads the starting block of the filename from drive 0 as
specified by $0018 and $0019 into channel 2 buffer area
($0500 - $05FF).
Three parameter memory-read command to fetch two
byte load address ($0502 - $0503).
Fetch lo-byte of load address ($0502).
Fetch hi-byte of load address ($0503).
Decimal to hexadecimal conversion of load address.
Input new load address.
Hexadecimal to decimal conversion of new load address.
Memory-write of new two byte load address ($0502 ­
$0503).
Write channel 2 buffer ($0500 - $05FF) to drive 0, track
($0018), sector ($0019).

88

The alternate format of the memory-write command in line 790 is:

PRINT#15,IIM-W: IICHR$(2)CHR$(S)CHR$(2)CHRS(LO)

CHR$ (HI)

5.8 Block-Allocate Command (B-AI

The block-allocatecommand allocates a sector in the BAM as in use. A sector is allocated
by setting its associated bit low (0) on track 18, sector o. (Review the coverage on bit
mapping in Chapter 4 if necessary.) The DOSwill not write to an allocated sector dur­
ing a normal write operation such as a SAVE. However, an allocated sector can be over­
written with a block-write command (U2). Hence the origin of the term "direct-access."
The format of a block-allocate command is:

SYNTAX:
PRINT# file., liB-Ali; drive.; track; sector

ALTERNATE:
PRINT# file#, liB-A:"; drive#; track; sector

EXAMPLE:
PRINT#15, ltB-AII;O;1;7

where

file#

drive #

track

sector

= the logical file number of the command channel

= 0

= 1to35

= 0 to the range for a given track

The followingprogram allocates every sector on a diskette. Run this program on a test
diskette.

100 REM BLOCK-ALLOCATE
110 OPEN 15,8,15
120 PRINT#15,IIIO"
130 INPUT#15,ENS,EMS,ETS,ES$
140 IF EN$<>IIOOIiGOTO 310
rso OPEN 2,8,2,
160 T=l
170 5=0
180 PRINT#15,"B-AII;O;T;S
190 INPUT#15,ENS,EM$,ET$,ES$

89

200 IF ENS= II oo II GOTO 180
21() IF EN$(>11 bSIISOTO 330
220 BA=BA+l
230 PRINT T,S,BA
24() T=VAL (ET$)
250 IF T=O GOTO 290
260 IF T=18 THEN T=19:S=O:SOTO 180
270 S=VAL(ES$)
2B() BOTD 1eo
290 CLOSE 2
300 INPUT#15,EN$,EM$,ET$,ES$
310 CLOSE 15
32() END
330 PRINT" {DOWN} liENS·', II EM. II , II ETS II , IIES$
340 CLOSE 2
350 INPUT#lS,ENS,EMS,ETS,ESS
360 CLOSE 15
370 END

Line Range

150
160
170
180
190
200
210
220

230
240

250

260
270

280
290
330-370

Description

Open a direct-access channel.
Initialize track to 1.
Initialize sector to o.
Block-allocate command.
Query error channel.
The track and sector were not allocated.
Something is amiss so bail out.
Counter representing the number of sectors allocated in
line 170.
Print track, sector, counter.
The sector just allocated already was but the DOS
returns the next available track in the error message (65,
NO BLOCK, track, sector).
If the next available track is zero then all 683 blocks on
the diskette have been allocated.
Don't allocate the directory.
The DOS returns the next available sector in the error
message (65, NO BLOCK, track, sector).
Allocate the next available track and sector.
Close the direct-access channel.
Error handler.

The alternate format of the block-allocate command in line 180 is:

PRINT#15, liB-A: II;O;T;S

The opening of a direct-access channel (line 150) is standard form. Why? Because the
BAM is rewritten to a diskette when a direct-access data channel is closed (line 290).

90

In reality, though, the BAM is updated on the fly but very erratically. Thus, opening
and closing a direct-access data channel is a good habit to get into. An ounce of
prevention ...

By the way, what happens when you try to save to a full disk? Error 72, DISK FULL
right? Would you believe error 67, ILLEGAL TRACK OR SECTOR,36,01? Track 36?
That's right. An error 72 only occurs during normal write mode (i.e., not a direct-access
write) where at least 1 free block exists at the outset or the directory is at its physical
limit, i.e., 144 active file entries.

A block remains allocated until a diskette is validated. Unless a given track and sector
somehow chains to a directory entry its bit will be freed (1)during validation. (See the
validate command in Chapter 2.) Caution must be taken to ensure that the block-allocate
command does not allocate an unused sector in the directory. See line 260 above. Once
a sector has been allocated in the directory, it is never deallocated by the DOS, even
during a validate. An allocated directory sector can only be freed under software control.

The following program makes use of the block-allocate command to certify a formatted
diskette. A worst-case binary pattern is written to any sector not currently in use. Bad
sectors, if any, are allocated in the BAM. However, these bad sectors will be deallocated
if the diskette is ever validated. (Sorry, but that's the nature of the beast.)

100 REM CERTIFY A DISKETTE - 1541
110 FORI=1T032
120 NULL$=NULL$+CHR$(O)
130 WRITE$=WRITE$+CHR$(IS)
14() NEXTI
150 DIMT%(681),S%(681)
160 PRINT" {CLR} CERTIFY A DISJ<
ETTE II

17() F'RINT" {DOWN} {RVS}WAR
NING{ROFF}II
180 PRINT"{DOWN}{RVS}RANDOM ACCESS{ROFF}

AND {RVS}DEL{ROFF} FILES WILL BE LOST II

19('l PRINTIIREMOVE {RVS}I-JRITE PROTECT TAB{
ROFF} II

zoo PRINT" {DO~JN} INSERT DIS~~ETTE IN DRIVE
II
21() PRINT" {DO(.lJN} PRESS {RVS}RETURN{ROFF}
TO CONT I I'JUE..
220 GETC$: I FC$=" ..THEN22()
230 IFC$<>CHR$(13)SOT0220
240 F'RINT"OK II

250 OF'EI'J15, B, 15
260 PRINT#15,IIIO"
270 INPUT#15,ENS,EM$,ETS,ES$
28() I FEN$= II oo II GOT033()
290 PRINTII{DOWN}"EN$II, IIEM$II,"ET$II,IIESS
30() CLOSE 15
31(1 END

91

320 REM BAM
33() PRINT#15, IIM-R"CH~=$(0) CHRS (7) CHR$ (192
)

34() FORI=()T0191
350 GET#15,BS
360 IFB$= THENB$=CHR$(O)
370 BAM$=BAM$+B$
380 NEXTI
390 DOS=ASC(MID$(BAM$,3,1»
400 IFDOS=65GOT0460
410 CLOSE15
420 F'RINT" {DO~JN}73,CBM DOS V2.6 1541, (H),

oo-
430 FIRI I'JTII {DOWN} {RVS}FAILED{ROFF} II
440 EI'JD
450 REM BUFFER
460 I=()
470 FORJ=lT08
48() PRINT#15, II M-W II CHR$ (I) CHR$ (4) CHR$ (32)
t.aJRITE$
49() 1=1+32
5()O NEXTJ
5IC) T=l
520 S=()
53() C=()
54() A=()
55() PRlt.JT#15, liB-Ali; (J; T; S
560 INPUT#15,ENS,EM$,ET$,ES$
57() I FENS= II ()() II GOT062()
580 T="JAL (ET$)
590 IFT=OANDC=OGOT0760
600 I FT=OGOT08(JO
61() S=VAL (ES$)
620 T$=RIGHT$(IIO"+RIGHT$(STR$(T),LEN(STR
$(T»-1),2)
630 S$=RIGHT$ (II()II+RIGHT$ (STRS (8) , LEN (STR
$(S»-1),2)
640 C=C+l
650 IFC=1THENPRINT II {UP } II

660 PRINT#15,"B-A II;0;T;S

670 PRINTII{HOME}{DOWN 6}{RVS}CERTIFYING{
ROFF} TRACK II;T$;II - SECTOR 11;5$
680 PRINTII<DOWN}NUMBER OF SECTORS CERTIF
lED :";C
69() PRINT" {DO\aJN}NUMBER OF BAD SECTORS AL
LOCATED:II;A
70() GOSUS 1()3()
710 I FE= 1GOT05S()
720 A=A+l
730 T%(A)=T

92

74() sx (A) =5
750 GOT05S(J
76() CLOSE15
770 F'RII'JT II {DOWN}ALL SECTORS HAVE BEEt~ AL
LOCATED"
780 PRINT" {DOWN} {R\JS}FAILED{ROFF}"
790 END
800 1=0
810 FORJ=lT06
82() PRINT#15, IIM-W"CHF:$ (I) CHF~$ (4) CHR$ (32)

MID$(BAM$,I+l,32>
83() 1=1+32
84() NEXTJ
85C) F'RINT#15, IIM-l.aJII CHRS (192) CHR$ (4) CHR$ (3

2) NULL$
aso PRINT#15, IIM-WIICHR$ (224) CHR$ (4) CHR$ (3
2) NULL$
87() T=18
880 8=0
89CJ GOSUB 1C)3C)
900 F·RINT#15, II I()II

910 INPUT#15,ENS,EM$,ET$,ESS
920 IFA<>OGOT0960
93C) CLOSE 15
94(J PRINT" {DOWN}NO BAD SECTORS! II
950 END
96CJ FOR1= 1TOA
97() PRINT#15, liB-Ali; (J; T/: (I) ; S% (I)
980 NEXTI
99(J CLOSE15
1000 PRINTII{DOWN}DONE~"

101C) END
1020 REM SEEI<
1()30 JOB=176
1()40 GOSUB1120
1050 IFE=lGOTOI080
1()6() RETURN
1()7C) REM WRITE
roso JOB=144
1()9() GOSUB1120
1100 RETURN
1110 REM JOB QUEUE
1120 TRY=(J
1130 PRINT#15, IIM-WIICHR$ (8) CHR$ (0) CHR$ (2)

CHR$(T)CHR$(S)
114C) PRINT#15, IIM-WIICHR$ (1) CHR$ (0) CHR$ (1)
CHR$(JOB)
1150 'TRY=TRY+l
1160 PRINT#IS, 'IM-RuCHRS (1) CHRS (0)
1170 GET#15,ES

93

i rao IFE$=II IITHENE$=CHR$ (0)
1190 E=ASC(ES)
1200 IFTRY=500GOT01220
1210 IFE>127GOT01150
122() RETURN

Line Range

330-380
390-440
460-500
510-540
550
700

710
720-740
800-890
960-980

Description

Store the BAM ($0700 - $07AO).
Query DOS version.
Write worst-case binary pattern to buffer at $0400.
Initialize track, sector, and counters.
Block-allocate command.
Write worst-case binary pattern at $0400 - $04FF to a
deallocated track and sector.
Query error channel.
Error array.
Restore the BAM.
Allocate any bad sectors in error array.

The alternate format of the two block-allocate commands above are:

550 PRINT#15,"B-A:";O;T;S

97() PRINT#i5, liB-A: ";();TX(I) ;8%(1)

Lines 330-380 and 800-890 compensate for a bug in the block-allocate command. (See
Chapter 9 for the lowdown.) Lines 330-380 store an image of the BAM in eM RAM.
The BAM is restored in lines 800-890. Lines 1020-1230 will be explained in detail in
Chapter 6 on intermediate disk programming techniques.

5.9 Slack-Free Command (S-FJ

The block-free command deallocates (frees) a sector in the BAM. A sector is deallocated
by setting its associated bit high (1) on track 18, sector o. The format of a block-free
command is:

SYNTAX:
PRINT. file., liB-Fit; drive.; trac:k; sector

ALTERNATE:
PRINT. file., "B-F:II; drive#; track; sector

EXAMPLE:
PRINTtt15,"B-FII;O;1;7

94

where

file#

drive#

track

sector

the logical file number of the command channel

o

1 to 35

o to the range for a given track

The following program deallocates every sector on a diskette. Run this program on a
test diskette.

100 REM BLOCK-FREE
110 OPEN 15,8,15
12() PRINT#lS, II If)1I
130 INPUT#15,EN$,EMS,ETS,ES$
14() I F EN$< > IIOC) IISOTO 260
15() OPEN 2,8, 2, 11.11
160 FOR T=l TO 35
170 IF T=18 GOTO 240
180 NS=20+2*<T>17)+(T>24)+(T>30)
190 FOR 8=0 TO NS
2(H) PRINT#15, IIB-F"; os T; S
21() BF=BF+l
22() PRINT T, S, BF
23(1 NEXT S
240 NEXT T
25(J CLOSE 2
260 INPUT#15,ENS,EMS,ETS,ESS
270 CLOSE 15
280 END

Line Range

150
160
170
180
190
200
210
220
250

Description

Open a direct-access channel.
Begin loop for tracks 1 to 35.
Don't deallocate the directory.
Calculate sector range.
Begin loop for sectors 0 to sector range.
Block-free command.
Counter to indicate number of blocks freed.
Print track, sector, counter.
Close the direct-access channel.

The alternate format of the block-free command in line 200 is:

PRINT#!S, IIB-F: II; (); T; S

95

The opening and closing of a direct-access channel is essential if the block-free command
is to work correctly. Experimentation in freeing a full diskette reveals that tracks 34
and 35 still remain allocated if this procedure is not followed.

5.1 0 Memory-Execute Command 1M-E)

The memory-execute command is used to execute any standard ROM routine or, at the
pinnacle of disk programming, a custom machine language program that has been poked
into 1541 RAM. The format of a memory-execute command is:

SYNTAX:
PRINT. f i I e#, 11M-Ell CHRS (I o-byte) CHR$ (hi­

byte)

ALTERNATE:
PRINT. file#, "M-E:II CHR$(lo-byte) CHR$(hi­

byte)

EXAMPLE:
PRINT#15,IIM-EIICHR$(O)CHR$(6)

where

file#

lo-byte

hi-byte

= the logical file number of the command channel

= lo-byte of the RAM or ROM address

= hi-byte of the RAM or ROM address

Machinelanguage programs are poked into 1541 RAM with the memory-write command.
The followingprimitive program pokes a single RTS instruction to RAM and executes it.

100 REM MEMORY-EXECUTE
110 OPEN 15,8,15
120 PRINT#15,IIM-WIICHRS(0)CHR$(b)CHR$(1)C
HR$(96)
13() PRINT.15, II M-EIICHR$ (0) CHR$ (6)
140 CLOSE15
150 END

Line Range

120
130

Description

Write 1 byte ($60) to RAM at $0600.
Execute RTS at $0600.

96

The alternate format of the memory-execute command in line 130 is:

PRINT#15, IIM-E: IICHR$ «(I) CHR$ (6)

More sophisticated coding is available in Chapter 7. In addition, refer to Chapter 9 for
pertinent information about the execution of standard ROM routines.

5.11 Slack-Execute Command (S-E)

The block-execute command is used to execute a machine language program that resides
on diskette. A sector is read into a DOS buffer and executed in a manner similar to
a LOAD and RUN on the C64. The format of a block-execute command is:

SYNTAX:
PRINT. file., liB-Eli; channel.; drive.;

track; sector

ALTERNATE:
PRINT. f i 1 e#, I'B-E:"; channel #; dri YeO;

track; sector
PRINT. file#, ItB-E: channel#, drive#,

track, sect.or ll

EXAMPLE:
PRINT.IS, IIB-EII;2;(); 1;0

where

file#

channels

drive #

track

sector

the logical file number of the command channel

the secondary address of the associated open statement

o

1 to 35

o to the range for a given track

The block-execute command could be used in a diagnostic routine but it is difficult to
visualize any other advantage that this command has over a normal memory-execute
command. The following program demonstrates one of the few block-execute commands
you willprobably ever see. (lights, camera, action!) Run this program using a test diskette.

100 REM BLOCK-EXECUTE
l1C) OPEN 15, B, 15
12() f-RINT#15, 1110"
130 INPUT#15,ENS,EM$,ET$,ES$
140 IF EN$< >II (1011 GOTO 250

97

15(J OPEN 2, B, 2, ".3 11

16() PR I NT# 15, II U1 II ; 2; 0; 1 ; 0
170 INPUT.15,ENS,EM$,ET$,ES$
180 IF EN$(>II00 II GOTO 22()
19() PRINT.iS, IIM-WIICHR$ (0) CHR$ <'6) CHR$ (1) C
HR$(96)
2 oo PRINT.1S, "U2 11

; 2; (); 1; o
21() PRINT#15, II M-W" CHR$ (0) CHR$ (6) CHR$ (1) C
HR$ «(I)

220 PRINT.I5, liB-Eli; 2; os 1; o
23() CLOSE 2
240 INPUT#15,ENS,EM$,ETS,ES$
25() CLOSE 15
26() END

Line Range

150

160
190
200
210
220

Description

Open a direct-access channel specifying buffer number 1
($0600 - $06FF). .
Block-read of track 1, sector 0 ($0600 - $06FF).
Write 1 byte ($60) to RAM at $0600.
Block-write to track 1, sector 0 ($0600 - $06FF).
Just to keep us honest.
Block-execute of track 1, sector 0 ($0600 - $06FF).

The alternate formats of the block-execute command in line 220 are:

PRINT#15, IIB-E: II; 2; (); 1; 0

PRINT#15, IIB-E:2,O, 1,0"

5.12 Direct-Access Entomology
We will conclude our discussion of the disk utility command set by pointing out just
a few of the DOS V2.6 direct-access anomalies we've found to date.

Block-Read (B-RJ

Throughout the preceding section we relied solely upon the use of the Ul command to
read a sector and not the traditional block-read command (B-R). Why? The block-read
command (B-R) is unreliable, period. When the contents of a buffer are accessed with
the GET# command - surprise, surprise! The number of bytes returned is a function
of the number of the track you accessed. For example, a block-read (B-R) of any sector

98

on track 15will return only 15bytes before sending an erroneous End-Or-Identify (EOI).
The C64 status variable (ST) is set to 64 and any further attempt to access the buffer
merely returns the same sequence of bytes over and over and over again. Moreover,
the byte in position 0 can only be accessed when the buffer-pointer is reset to position
o in line 190. See for yourself.

100 REM BLOCK-READ (B-R)
11 o OPEN 15, 8, 15
120 PRINT#15, II I()"
130 INPUT#15,EN$,EM$,ETS,ES$
14() IF ENS<)11 O()II GOTO 3()()

15() OPEN 2, B, 2, II# ..
16() F8RINT#15, IIB-R";2;O; 18;()
170 INPUT#15,EN$,EM$,ET$,ES$
1S() I F EN$<:> .. ()O .. GOTO 280
19() F'RINT#15,IIB-PIl;2;(J
200 FOR 1=0 TO 255
21() GET#2, BS
22() IF B$= II II THEN B$=CHR$ (0)
23() A=ASC (BS)
240 PRINT ST,I,A,
250 IF A>31 AND A<96 THEN PRINT BS,
26() PRINT
27(l NEXT I
2B() CLOSE 2
290 INPUT#15,EN$,EM$,ET$,ES$
3()O CLOSE 15
31() END

What's even more problematic is the situation that occurs when you do a block-read
(B-R)of a track and sector that was rewritten by the block-write command (B-W) which
is discussed below. The EOI occurs in connection with the ASCII value of the Othbyte
of the sector that was read. Byte 0 contains the value of the buffer-pointer position at
the time the block was written with a block-write command (B-W). The forward track
reference that was originally there, has been destroyed. The ASCII value of the Oth
byte determines how many characters you can access before the EOI occurs. Run the
block-read (B-R) program listed above against track 1, sector 0 after you've done the
block-write (B-W) experiment listed below on a test disk. Change the track number in
line 160 from an 18 to a 1 like this:

16t) PRINT#15, IIB-R II ; 2 ; (); 1;()

After further experimentation on your own, you should have little trouble understand­
ing why the VI command replaces the block-read command (B-R). Not only do user
manuals continue to promote the use of the block-read command (B-R), but they also
either ignore the VI command altogether or simply mention it in passing without even
a hint on how to use it.

99

Block-Write (B-WI

Recall that we also neglected to mention the block-write command(B-W) whichwe replaced
with the U2 command. When you write a block with the block-write command (B-W)
a different kind of dilemma occurs. Bytes 1 through 255 of the buffer are recorded on
diskette correctly but the last position of the buffer-pointer is written to the Oth byte
of the sector (the location of the forward track pointer). If it's any consolation, the data
is still intact. Too bad the link has been destroyed. Run the following block-write pro­
gram on a test diskette.

100 REM BLOCK-WRITE (B-W)
110 OPEN 15,8,15
12() PRINT#iS," I()II

130 INPUT#15,EN$,EM$,ET$,ES$
14() IF EN${:> II ()O II GOTO 26()
i so OPEN 2,8,2,
16(J PRINT#15, nUl"; 2; or I; o
170 INPUT#15,ENS,EM$,ET$,ES$
rso IF EN$(>II 00" GOTO 24()
190 FOR 1=0 TO 255
200 PRINT#2,CHR$(I>;
21() NEXT I
22t) PRINT#15, IIB-P"; 2; 6
23() F·RINT#15~ IIB-W"; 2; 0; I; o
24() CLOSE 2
250 INPUT#15,EN$,EM$,ETS,ES$
26t) CLOSE 15
27() END

Now run the original block-read (U'I) program that we wrote using this diskette. Be
sure to change the track in line 160 from an 18 to a 1 as follows:

If all goes according to our diabolical plan, byte 0 will contain a 5 which is exactly where
our buffer-pointer ended up. We arbitrarily set it to position 6 in line 220 above and
256 bytes later it wraps around to position 5. (Remember that bytes are numbered from
oto 255 in a buffer area.)

Now change the Ul to a B-R in line 160 and run the program again. This time, only
5 bytes can be accessed before an EOI signal is returned.

UJ and UI-

Commodore has traditionally had a warm reset buried somewhere in ROM on every
piece of hardware they have manufactured to date. The UJ command is to the 1541what
a SYS 64738 is to the C64, a warm reset. Or rather, that is what it's supposed to be.
The issuance of a UJ command is supposed to reset the 1541. Instead, it hangs the 1541.

100

Press the RUN/STOP key and RESTORE key in tandem to regain control of the C64
after typing in this one liner in immediate mode.

OPEN 15,8,15,IIUJII : CLOSE15

Use U: in place of UJ.

The same thing is true for the UI- command although Commodore can't really be held
responsible here. The UI- command was implemented to set the 1541to VIC-20 speed,
not to take the C64 out to lunch.

U3 - U9

The VIC-1541 User's Manual outlines 7 USER commands that perform a jump to a
particular location in RAM. These USER commands and their respective jump addresses
are:

User Number

U3 (UC)
U4 (UD)
U5 (UE)
U6 (UF)
U7 (UG)
UB (UR)
U9 (UI)

Jump Address

$0500
$0503
$0506
$0509
$050C
$050F
$FFFA

These jump locations are not quite as mystifying as they appear at first glance. Let's
modify our simplistic memory-execute program.

1oo REM U3
l1C} OF-EN 15, B, 15
12() PRINT#IS, II M-W II CHR$ (C» CHRS (S) CHR$ (1) C
HR$(96)
I3C) PRINT.IS,IIU3"
140 CLOSE1S
15() END

One should be able to discern that any of the first six USER commands, U3 - UB, could
double for a memory-execute command. It is very difficultto understand why Commodore
included six jumps to the $0500 page (buffer number 2). Moreover, the U9 command
jumps to $FFA which is a word table pointing to the NMI vector. U9 is an alternate
reset that bypasses the power-on diagonstics.

101

CHAPTER 6

INTERMEDIATE
DIRECT-ACCESS PROGRAMMING

NOTE: This chapter is not intended for beginners. The reader is assumed to berelatively
familiar with the direct-access programming commands described in Chapter 5.

The intermediate level of direct-access programming involves passing requests directly
to the Floppy Disk Controller (FDC) via the job queue. Normally a 1541 command is
initiated on the C64 side (e.g., SAVE, a block-read (U'l), etc.). The command is inter­
preted by the 1541's 6502 Interface Processor (IP) as a set of simple operations called
jobs. (This is analogous to the way the BASIC interpreter works inside the C64~) These
jobs are poked into an area of 1541 RAM called the job queue. Every 10 milliseconds
the job queue is scanned by the Floppy Disk Controller (FDC). If a job request is found
the FDC executes it. The complete set of jobs that the FDC can perform are as follows:

1. Read a sector.
2. Write a sector.
3. Verify a sector.
4. Seek a track.
5. Bump the head to track number 1.
6. Jump to a machine language routine in a buffer.
7. Execute a machine language routine in a buffer.

The hexadecimal and decimal equivalents for each job request as seen by the FDC are:

Job Code Description

$80 (128) READ
$90 (144) WRITE
$AO (160) VERIFY
$BO (176) SEEK
$CO (192) BUMP
$DO (208) JUMP
$EO (224) EXECUTE

If the FDC finds a job request in the job queue, it attempts to carry it out. Once the
job is complete or aborted the FDC replaces the job code with an error code. The error
codes returned by the FDC to the IP are listed below. The IP error codes and their
respective error messages are what you see when you read the error channel.

103

FDC Code IP Code Error Message

$01 (1) 0 OK
$02 (2) 20 READ ERROR (header block not

found)
$03 (3) 21 READ ERROR (no sync character)
$04 (4) 22 READ ERROR (data block not

present)
$05 (5) 23 READ ERROR (checksum error in

data block)
$07 (7) 25 WRITE ERROR (write-verify

error)
$08 (8) 26 WRITE PROTECT ON
$09 (9) 27 READ ERROR (checksum error in

header block)
$OB (11) 29 READ ERROR (disk ID mismatch)

A more detailed description of each of these error messages can be found in Chapter 7.

Suppose that we want to read the contents of a given track and sector. The command
initiated on the C64 side is parsed by the IP. If the syntax is correct, it is broken down
into a job code, a track, and a sector. Depending upon what buffer has been assigned,
the job code is poked into the corresponding job queue table location. The track and
sector for the job are poked into the corresponding header table locations. The buffers
and their corresponding job queue and header table addresses are outlined below:

Buffer Address Job Track Sector

#0
#1
#2
#3

$0000 - $OOFF
$0100 - $OIFF
$0200 - $03FF
$0300 - $03FF
$0400 - $04FF
$0500 - $05FF
$0600 - $06FF
$0700 - $07FF

Not available (ZERO PAGE)
Not available (STACK)
Not available (COMMAND BUFFER)
$0000 $0006 $0007
$0001 $0008 $0009
$0002 $OOOA $OOOB
$0003 $OOOC $OOOD
Not available (BAM)

For example, a block-read command (U'l) issued by the C64 to read the contents of track
18, sector 0 into buffer number 0 ($0300-$03FF) is checked for a syntax error and then
broken down by the IP. In time, the FDC will find an $80 (128) at address $0000in the
job queue table, a $12 (18) at address $0006in the header table, and a $00 (0)at address
$0007in the header table. Armed with that information, the FDC will attempt to seek
(find) the track and read the sector. Upon successful completion of the read, the con­
tents of the sector will be transferred to buffer number 0 ($0300-$03FF) and a $01 (1)
will be returned by the FDC to address $0000. (If the job request could not be com­
pleted for some reason, the job request would be aborted and the corresponding error
code would be stored at address $0000instead.) Interrogation of the error channel will
transfer the IP counterpart of the FDC error code, the English message, the track

104

number, and the sector number to the C64 side. If the job request was successful (00,
OK,OO,OO), the contents of the track and sector could then be retrieved from the buffer
at $0300 - $03FF using a GET# command as described in the previous chapter.

What happens, though, if we bypass the drive's parser routine and attempt to work
.the FDC directly ourselves? We thought you'd never ask. Grand and glorious schemes
become possibilities, and that's what intermediate direct-access programming is all about.
Armed with a lookup table of job codes, a map of the 1541's buffer areas, a track, a
sector, and a lookup table of error codes, the FDC is at your beck and call. Tired of
those horrendous grating noises when your drive errs out? Well wish no more. The
drive does not do a bump (the root of all evil) to reinitialize when you are working the
job queue directly. What more could you ask for? We know. The code, right?

The following program works the job queue directly to read the block from track 18,
sector 0 into buffer number 0 ($0300 - $03FF) and prints the contents to the screen.
Sound vaguely familiar? It should. It's a modification of the first program we wrote under
beginning direct-access programming.

100 REM JOB QUEUE READ
11C) OPEN 1S, 8, 15
120 PRINT#15,IIIO"
130 INPUT#15,EN$,EM$,ET$,ES$
14() IF EN$()-"00 II GOTO 340
1S() REM SEEK
16() T=18
17() S=C)
ISC) JOB=176
19() GOSUB 37e)
200 IF E<>l GOTO 340
21 o REM READ
22() J OB= 128
23(} GOSUB 37()
240 IF E<>1 BOTO 340
250 FOR 1=0 TO 255
260 PRINT#15,"M-R II CHR$ (I) CHR$ (3)
27() GET#1S, B$
28() IF B$= II II THEN B$=CHR$ co
29() A=ASC (BS)
300 PRINT ST,I,A,
310 IF A>31 AND A<96 THEN PRINT B$,
32() PRINT
33() NEXT I
34() CLOSE 15
35(J END
360 REM JOB QUEUE
37() TRY=()
38() PRINT.1S, IIM-WIICHR$ (6) CHR$ «(I) CHR$ (2) C
HR$(T)CHR$(S)
39() PRINT.15, II M-WIICHR$ (0) CHR$ co CHR$ (1) C

105

HR$(JOB)
4()O TRY=TRY+l
41() PRINT#IS, IIM-RIICHR$ co CHR$ co
420 GET#15,E$
43() IF E$=" II THEN E$=CHR$ co
44() E=ASC (E$)

450 IF TRY=500 GOTO 470
460 IF E>127 GOTO 400
47(l RETURN

Line Range

Main Program

110
120-140
160
170
180-190
200
220-230

240
250
260
270

280
290
300

310
320
330
340
350

Subroutine

370
380

390

400-460
470

Description

Open the command channel.
Initialize drive.
Initialize track to 18.
Initialize sector to o.
SEEK track 18.
Query FDC error code.
READ sector 0 on track 18 into buffer number 0
($0300-$03FF).
Query FDC error code.
Begin loop to read 256 bytes ($0300-$03FF).
Two parameter memory-read.
Transfer a byte from buffer number 0 to C64 memory
by way of the command channel (GET#15,).
Test for equality with the null string "".
ASCII conversion of a byte.
Print the status variable' (ST), our loop counter, and the
ASCII value of the byte.
Print the byte if it's within printable ASCII range.
Terminate comma tabulation.
Increment loop counter.
Close the command channel.
End.

Initialize try counter.
Stuff the track and sector numbers into buffer number
O's header table ($0006-$0007).
Stuff job code number into buffer number O's job queue
table ($0000).
Wait for FDC to complete the job.
Return with FDC error code in hand.

The good news is that working the job queue is not quite as complex as it at first ap­
pears. The subroutine in lines 370-470 is the very heart of the matter. We simply stuff

106

our track and sector into the header table, our job code into the job queue table, and
wait until the FDC has completed the operation.

Keep in mind that this example was using buffer number 0 ($0300-$03FF). The corre­
sponding header table and job queue table addresses were $0006 for the track, $0007
for the sector, and $0000 for the job code. Please note that every job code is greater
than 127. (Bit 7 is deliberately set high (1).) Recall that when the FDC has completed
a job, the job code is replaced with an error code. All error codes are less than 128.
(Bit 7 is deliberately set low (0).) Line 460 waits until bit 7 of the job code is set low
(0) by the FDC. If bit 7 is high (1), the FDC is still working so we must continue to
wait (line 410).

Error handling is a bit out of the ordinary too but not all that hard to comprehend either.
An FDC error code of 1 means the job was completed successfully. Any other number
indicates an error.

You will also note a simple hierarchy of jobs in the program listing. Before we can read
a sector (line 220) we must always find the track first (line 180). Now are you ready
for this one? Initialization is not necessary at all when working the job queue directly.
Lines 120-140 were included as a force of habit. Applications like reading damaged or
DOS protected diskettes may dictate that we do not initialize. Now for the bad news.

WARNING

Read this passage carefully. Then read it again for good measure.Experience is a hard
teacher - test first, lesson afterward.

1. You must remember at all times when working the job queue that you have
directly bypassed the parser routine. This is extremely dangerous because you
have in effect killed all protection built into the 1541 itself. Let us explain. If
by some poor misfortune you elect to do a read on track 99, the FDC doesn't
know any better and takes off in search of track 99. You can physically lock
the read/write head if it accidentally steps beyond its normal boundaries, i.e.,
a track less than 1 or a track greater than 35. No damage is done to the 1541
itself but if the power-onsequence doesn't return the head to center you will
have to disassemble the drive and reposition the head manually. Exceeding the
sector range for a given track is no problem, however. The drive will eventual­
ly give up trying to find a sector out of range and report an FDC error 2 (an
IP 20 error). Tracks are a pain in the stepper motor, however.

2. You must keep your header table locations and your job queue table locations
straight in relation to the buffer number you are working. If they are not in
agreement, the drive will go off into never-never land. The FDC will either at­
tempt to work a nonexistent job code or seek a track and sector out of bounds.
Remember the FDC will do exactly what you tell it to do. You are at the helm
at all times. At the minimum, you will have to power off the drive to regain
control. Again, no physical damage has been done to the 1541 but you may have
to reposition the read/write head yourself. We know from experience.

107

3. You should always monitor the job yourself. The try counter in line 450 is a
stopgap measure. Five hundred wait cycles seems like an exaggerated figure
here. However, you must give the drive adequate time to find a desired track
and settle down before performing a job. If for some reason it cannot complete
the job, it usually aborts and returns an error code on its own. If it doesn't,
something is amiss and a try counter may trap it. (You might have to power
off the drive to restore the status quo.) A try counter is a little like workman's
compensation. Don't work the job queue without it.

Now, read these three paragraphs a second time.

The following program works the job queue directly to read track 18, sector 0 into buf­
fer number 1 ($0400-$04FF). The disk name is returned with a three parameter memory­
read of bytes 144-159 ($0490-$049F). It's another oldie but goodie.

100 REM JOB QUEUE READ - DISK NAME
110 OPEN 15,8,15
120 PRINT#15, II I()"
130 INPUT#15,EN$,EM$,ET$~ES$

14() I F ENS(>II 00 ..GOTO 36()
15() REM SEEI<
160 T=18
17() S=()

1St) JOB=176
19() GOSUB 39()
200 IF E<>l SOTO 360
21 o REM READ
220 JOB=128
23() BOSUB 39()
240 IF E(>1 SOTO 360
25() PRINT#15, II M-R II CHR$ (144) CHR$ (4) CHR$ (1
6)
260 FOR 1=1 TO 16
27() GET# 15, B$
280 IF B$= II II THEN B$=CHR$ t o
29() A=ASC (BS)
300 IF A>127 THEN A=A-128
310 IF A<32 OR A>95 THEN A=63
320 IF A=34 THEN A=63
330 DN$=DN$+CHR$(A)
34() NEXT I
35C} PRINT II {DOWN}DISK NAME: "; DN$
36t) CLOSE 15
37() END
380 REM JOB QUEUE
~39() TRY=()
4oo F·RINT#15, "M-WIICHRS (8) CHR$ «» CHR$ (2) C
HR$(T)CHR$(S)
41() PRINT#15, "M-WIICHR$ (1) CHR$ co CHR$ (1) C

108

HR$(JOB)
42() TRY=TRY+l
43() F·RINT#15, II M-RIICHR$ (1) CHR$ co
440 GET#15,E$
4S() IF E$=" II THEN E$=CHR$ «»
460 E=ASC(E$)
470 IF TRY=500 GOTO 490
480 IF E>127 GOTO 420
49(1 RETURN

Line Range

120-140
160
170
180-190
200
220-230

240
250
260-340

390
400

410

420-480
490

Description

Force of habit.
Initialize track to 18.
Initialize sector to O.
SEEK track 18.
Query FDC error code.
READ sector 0 on track 18 into buffer number 1
($0400-$04FF).
Query FDC error code.
Three parameter memory-read ($0490-$049F).
Concatenate the disk name one byte at a time by jam­
ming it within printable ASCII range.
Initialize try counter.
Stuff the track and sector number into buffer number l's
header table ($0008-$0009).
Stuff the job code number into buffer number l's job
queue table ($0001).
Wait for FDC to complete the job.
Return with FDC error code in hand.

Not much new here except the buffer in use. Let's review the key memory addresses
for working buffer number 1 ($0400-$04FF):

BUFFER NUMBER 1
TRACK NUMBER
SECTOR NUMBER
JOB CODE

= $0400 - $04FF
= $0008 (HEADER TABLE)
= $0009 (HEADER TABLE)
= $0001 (JOB QUEUE TABLE)

While we're at it, we might as well review the order of jobs for the sake of posterity.
First SEEK a track. Then READ a sector.

The next program incorporates four FDC job codes, namely a SEEK, a READ, a
WRITE, and indirectly a VE RIFY. This routine is a modification of the edit disk name
program found in the previous chapter. Keep in mind that we are working buffer number
2 here ($0500-$05FF). The header table addresses are $OOOA for the track and $OOOB
for the sector. The job codes themselves will be poked into location $0002 in the job
queue table.

109

100 REM JOB QUEUE READ/WRITE - EDIT DISK
NAME

110 FOR 1=1 TO 16
120 PAD$=PAD$+CHR$(160)
13() NEXT I
14() F-RINT" {CLRJEDIT 0191< NAME - 1541 11

rso PRINT II {DOWN} REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}II
16t) PRII'JTII {DOWN} INSERT DISI<ETTE IN DRIVE..
17() PRINT II {DOWN}F'RESS {RVS}RETURN{ROFF}
TO CON1- I NUE II

i ao GET CS: IF C$=II "THEN lSC)
190 IF C$<>CHR$(13)GOTO 180
zoo F'RINTIIOI-::: 1I

21() OPEN 15, 8~ 15
22t) F'RINT#15~ lilt)"
230 INPUT#15,ENS,EMS,ET$,ES$
24() IF EN$=II()()IIGOTO 29()
250 PRINTII{DOWN}IIEN$II, IIEMSII,IIET$II,IIESS
26() CLOSE 15
27t) END
28() REM SEEI<:
29() T=18
3t)() s=()

31() JOB=176
32() GOSUB 66()
33() REM READ
34() JOB=128
35() GOSUB 66()
36() PRINT#15~ IIM-RIICHR$ (144) CHR$ (S) CHR$ (1
6)
370 FOR 1=1 TO 16
3B() GET#lS, BS
390 IF a$= II II THEN B$=CHR$ (())
4 oo A=ASC (BS)
410 IF A>127 THEN A=A-128
420 IF A<32 OR A>95 THEN A=63
430 IF A=34 THEN A=63
440 ODN$=ODN$+CHR$(A)
45() NEXT I
46() PRINT" {DOWN}OLD DISI< NAME: II; ODN$
47() INPUT" {DOWN}NEW DISK NAME"; NDNS
480 IF LEN(NDN$)(>O AND LEN(NDN$)(17 GOT
o 5()0
49() GOTO 63()
5()() INPUTII{DOWN}ARE YOU SURE (Y/N) Y{LE
FT 3}II;Q$
51C) IF QS(>"YIIGOTO 630
520 NDN$=LEFT$(NDN$+PADS,16)

110

53(1 PRINT#lS, IIM-WIICHR$ (144) CHR$ (5) CHR$ (1
6)NDN$
54() REM WRI TE
S5e) J OB= 144
56() GOSUB 66()
57() PRINT#15, II I()"

580 INPUT#15,EN$,EM$,ET$,ES$
59() CLOSE 15
6(H) PR I NT II {DOWN} DONE! II

61() END
62() REM CLOSE
63t) CLOSE 15
64(J END
650 REM JOB QUEUE
66(1 TRY=(J
67() FaRINT#15, "M-WIICHRS (10) CHR$ co CHR$ (2)

CHR$(T)CHR$(S)
6BC) PRINT#IS, IIM-WII CHR$ (2) CHR$ (0) CHR$ (1) C
HR$(JOB)
69() TRY=TRY+ 1
7(u) PRINT#15, 1It1-RIICHR$ (2) CHR$ «(I)

71(1 GET#iS, E$
72() IF E$=" "THEN E$=CHR$ «(J)

73t) E=ASC (E$)
740 IF TRY=500 GOTO 780
750 IF E>127 GOTO 690
760 IF E=l THEN RETURN
770 REM ERROR HANDLER
780 ET$=RIGHT$(STR$(T),LEN(STR$(T»-l)
79C) IF T< 10 THEN ET$="()II+ET$
800 ES$=RIGHT$(STR$(S),LEN(STR$(S»-l)
81 c) IF S< 1o THEI\J ES$= II o II +ES$
82(1 IF E>1 AND E< 12 T"HEN EN$=RIBHT$ (STR$
(E+18),2):GOTO 840
83() ENS= II ()2 II : EM$= II ?T I ME OUT": BOTO 860
84() IF E=7 OR E=8 THEN EM$=IIWRITE ERROR II

: GOTO aso
S5C) EM$=..READ ERROR"
86t) F"RINT II {DOWN} "EN$II, IIEM$", IIETSII, IIES$
87() PF~INT" {DOWN} {RVS}FAILED{ROFF} II

BBC> CLOSE 15
89() END

Line Range

290-320
340-350

550-560

770-890

Description

SEEK track 18.
READ contents of sector 0 from track 18 into buffer
number 2 ($0500-$05FF).
WRITE buffer number 2 ($0500-$05FF) to track 18, sec­
tor O.
Error handler.

111

Lines 100 to 530 should be self explanatory by now. Lines 540-560 are equivalent to
a block-write command (U2). To write a sector via the job queue we stuff the track and
sector in the header table and a $90 (144) into the job queue table and let her rip.

The error handler, however, is of interest. The conversion from FDC code to IP code
is quite easy. 'Ve simply add 18 to the FDC error code (line 820). Note that we try to
restrict all errors within a range of 20 to 29. An FDC error code of 0 or greater than
11 is indicative that something went radically wrong. Line 820 arbitrarily reports a
?TIME OUT in this situation. Speaking from experience, the job just plainly didn't get
done. A time out occurs very rarely, unless of course, one is inspecting a damaged or
DOS-protected diskette.

Line 840 is another highlight. An FDC WRITE ($90) automatically flips to an FDC
VERIFY ($AO) to compare the contents of the buffer against the sector just written.
Kind of neat, isn't it? If the buffer and the sector do not match, we see an FDC error
7, i.e., an IP error number 25, WRITE ERROR. Since a VERIFY is done automatical­
ly by the FDC, we will not elaborate any further on this particular job code.

The job code for a BUMP is a $CO (192). Why anybody would ever want to implement
this job request is beyond us.

A subtle difference exists between the remaining two job codes, a JUMP ($DO) and an
EXECUTE ($EO). A JUMP executes a machine language routine poked into RAM. No
more, no less. Like a BUMP job, it is seldom used. The program that moves the
read/write head in Chapter 9 is the only place where we have ever found a practical
use for it.

An EXECUTE ($EO) is the Rolls Royce ofjob codes, however. Before a machine language
routine is executed, the FDC makes sure that:

1. The drive is up to speed.
2. The read/write head is on the right track.
3. The read/write head has settled.

The FDC cannot be interrupted when performing an EXECUTE job. Once the FDC
starts to EXECUTE the machine language routine, control is not returned to the IP
until the routine is completed. A runaway routine cannot be debugged even with BRK
instructions. You must power down the 1541 and try to second guess the side effects
of the routine to determine what went wrong.

NOTE: The FDC does not automatically return an error code when the routine is com­
pleted. It is the programmer's responsibility to change the job code in the job queue
table from an EXECUTE ($EO) to an $01 at the end of the routine. If this is not done,
the FDC will find the same EXECUTE request on its next scan of the job queue and
re-run the routine. Infinite regression!

Most of the programs in Chapter 7 make use of the EXECUTE job code in one form
or another. Therefore, example programs will be given there.

112

CHAPTER 7

DOS PROTECTION

7.1 Commodore's Data Encoding Scheme

Before we can enter the netherworld of DOS protection you have to possess a thorough
understanding of how the 1541 records a sector on a diskette. Any given sector is di­
vided into two contiguous parts, a header block and a data block. For clarity sake let's
review the parts of a sector discussed in Chapter 3.

Header Block (16 S-bit bytes)

Number of Bytes

1
1
1
1
1
1
2
8

Data Block (260 8-bit bytes)

Number of Bytes

1
256

1
2

Variable

Description

Sync Character
Header Block Identifier ($08)
Header Block Checksum
Sector Number
Track Number
ID LO
IDHI
Off Bytes ($OF)
Header Gap ($55)

Description

Sync Character
Data Block Identifier ($07)
Data Bytes
Data Block Checksum
Off Bytes ($00)
Tail Gap ($55)

The 1541 writes a track on the surface of a diskette as one continuous bit stream. There
are no demagnetized zones between sectors on a track to delineate where one sector
ends and another one begins. Instead, Commodorerelies upon synchronizationcharacters

113

for reference marks. A DOS 2.6 sync mark can be defined as five 8-bit $FF's written
in succession to disk. Note that a sync mark is recorded at the front end of each header
block and each data block. To differentiate a sync mark from a normal data byte, the
1541 writes to diskette in two modes, a sync mode and a normal write mode.

To appreciate the uniqueness of a sync mark we must first look at how a normal data
byte is recorded. During normal write mode each 8-bit byte is encoded into 10bits before
it is written to disk. Commodore calls this encoding scheme binary to GCR (Group Code
Recording) conversion. The conversion technique itself is quite straightforward. Each
8-bit byte is separated into two 4-bit nybbles, a high nybble and a low nybble. For ex­
ample, the binary representation of $12 (18) is %00010010. The breakdown of this 8-bit
byte into its two 4-bit nybbles is depicted below:

Hexadecimal

$12 (18)

Binary

00010010

High Nybble Low Nybble

0001xxxx xxxx0010

Mathematically speaking, a 4-bit nybble can be decoded into anyone of 16 different
decimal values ranging from 0 (all bits turned off) to 15 (all bits turned on) as follows:

Bit Number
Power of 2
Weight

3
3
8

2
2
4

1
1
2

o
o
1

Hence, the 1541's GCR lookup table contains just sixteen 4-bit nybble equivalencies:

Hexadecimal Binary GCR

$0 (0) 0000 01010
$1 (1) 0001 01011
$2 (2) 0010 10010
$3 (3) 0011 10011
$4 (4) 0100 01110
$5 (5) 0101 01111
$6 (6) 0110 10110
$7 (7) 0111 10111
$8 (8) 1000 01001
$9 (9) 1001 11001
$A (10) 1010 11010
$B (11) 1011 11011
$C (12) 1100 01101
$D (13) 1101 11101
$E (14) 1110 11110
$F (15) 1111 10101

Using the binary to GCR lookup table above, let's walk through the necessary steps
to convert a $12 (18) to GCR form.

114

STEP 1. Hexadecimal to Binary Conversion

$12 (18) = 00010010

STEP 2. High Nybble to GCR Conversion

0001xxxx = $1 (1) = 01011

STEP 3. Low Nybble to GCR Conversion

xxxxOOl0 = $2 (2) = 10010

STEP 4. GCR Concatenation

01011 + 10010 = 0101110010

Two things should stand out when scrutinizing the 1541's binary to GCR lookup table.

1. No combination of any two 5-bit GCR bytes will ever yield 10 consecutive on bits
(Is) which is used as the sync mark. Binary to GCR conversion eliminates all likelihood
that a permutation of normal data bytes can ever be mistaken by the read/write elec­
tronics for a sync mark.

2. No more than two consecutive off bits (Os) appear in any given 10-bit GCR byte or
combination of GCR bytes. This latter constraint was imposed for accuracy when
clocking bits back into the 1541 during a read. (See Chapter 9 for additional
information.)

This brings us full circle to what actually differentiates a sync mark from a normal data
byte. Simply put, a sync mark is 10 or more on bits (Is) recorded in succession. Only
one normal data byte, an $FF (%11111111), can even begin to fill the shoes of a sync
mark. During normal write mode, however, an $FF would take the following GCR form,
1010110101. Enter sync mode. When the 1541 writes an $FF in sync mode no binary
to GCR conversion is done. A single $FF is only eight consecutive on bits and falls short
of the ten consecutive on bits needed to create a sync character. To remedy this, Com­
modore writes five consecutive 8-bit $FFs to disk. This records 40 on bits (Is) in succes­
sion. the overkill is intentional on the DOS's part. Commodore is trying to guarantee
that the 1541 will never have any trouble finding a sync mark during subsequent
reads/writes to a diskette.

Four 8-bit data bytes are converted to four 10-bit GCR bytes at a time by the 1541DOS.
RAM is only an 8-bit storage device though. This hardware limitation prevents a 10-bit
GCR byte from being stored in a single memory location. Four 10-bit GCR bytes total
40 bits - a number evenly divisible by our overriding 8-bit constraint. Commodore sub­
divides the 40 GCR bits into five 8-bit bytes to solve this dilemma. This explains why
four 8-bit data bytes are converted to GCR form at a time. The following step by step
example demonstrates how this bit manipulation is performed by the DOS.

STEP 1. Four 8-bit Data Bytes
$08 $10 $00 $12

115

STEP 2. Hexadecimal to Binary Conversion
1. Binary Equivalents

$08 $10 $00 $12
00001000 00010000 00000000 00010010

STEP 3. Binary to GCR Conversion
1. Four 8-bit Data Bytes

00001000 00010000 00000000 00010010

2. High and Low Nybbles

0000 1000 0001 0000 0000 0000 0001 0010

3. High and Low Nybble GCR Equivalents

01010 01001 01011 01010 01010 01010 01011 10010

4. Four 10-bit GCR Bytes

0101001001 0101101010 0101001010 0101110010

STEP 4. 10-bit GCR to 8-bit GCR Conversion
1. Concatenate Four 10-bit GCR Bytes

0101001001010110101001010010100101110010

2. Five 8-bit Subdivisions

01010010 01010110 10100101 00101001 01110010

STEP 5. Binary to Hexadecimal Conversion
1. Hexadecimal Equivalents

01010010 01010110 10100101 00101001 01110010
$52 $56 $A5 $29 $72

STEP 6. Four 8-bit Data Bytes are Recorded as Five 8-bit GCR Bytes

$08 $10 $00 $12 are recorded as $52 $56 $A5 $29 $72

Four normal 8-bit bytes are always written to diskette as five 8-bit GCR bytes by the
DOS. The 1541 converts these same five 8-bit GCR bytes back to four normal8-bit bytes
during a read. The steps outlined above still apply but they are performed in the reverse
order. (The appendix contains various mathematical conversion routines for your use.)

In light of the above discussion, we need to recalculate the number of bytes that are
actually recorded in a sector. We stated in Chapter 3 that a header block was comprised
of eight 8-bit bytes excluding the header gap. This is recorded on the diskette as ten
8-bit GCR bytes. The formula for determining the actual number of bytes that are re­
corded is:

Number of 8-bit GCR Bytes Recorded = (Number of 8-bit Data Bytes/4) * 5

116

Similarly, a data block consisting of 260 8-bit bytes is written to disk as 325 8-bit GCR
bytes. Lest we forget, each sync mark is five 8-bit bytes. We must also remember to
add in the header gap which is held constant at eight bytes. (Header gap bytes ($55)
are not converted to GCR form and serve only to separate the header block from the
data block.) An entire sector is recorded as 353 bytes not 256 data bytes.

Sync Character ($FF)
Header Block
Header Gap ($55)
Sync Character ($FF)
Data Block

* No binary to GCR conversion.

Data Bytes

5 *
8
8 *
5 *

260

GCR Bytes

5
10
8
5

325

We deliberately excluded the inter-sector (tail) gap in calculating the number of bytes
in a given sector. Why? Because the tail gap is never referenced again by the DOS once
formatting is complete. During formatting the Floppy Disk Controller (FDC) erases a
track by writing 10240overlapping 8-bit $FFs. Once a track has been erased the FDC
writes 2400 8-bit $FFs (%11111111) followed by 2400 8-bit $55s (%01010101). The intent
is to wrap around the circumference of the track with a clearly discernable on/off pat­
tern of bytes. The FDC then counts to see how many sync ($FF) and nonsync ($55) bytes
were actually written to the track. From this count the FDC subtracts the total number
of bytes that the entire range of sectors in a given zone will use. The remainder is then
divided by the number of sectors in that zone to determine the size of the tail gap. The
algorithm is analogous to cutting a pie. The tail gap varies not only between tracks due
to a decrease in both circumference and the sector range but between disk drives as
well, due to varying motor speeds. A stopgap measure is incorporated into the algorithm
for the latter reason. If a tail gap is not computed to be at least four bytes in length
formatting will fail and an error will be reported. In general, the length of the tail gaps
fall into the ranges tabled below:

Zone Tracks Number of Sectors Variable Tail Gap

1 1 - 17 21 4 - 7
2 18 - 24 19 9 - 12
3 25 - 30 18 5 - 8
4 31 - 35 17 4-8

Note that the values given above do not apply to the highest numbered sector on a track.
The gap between this sector and sector 0 is usually much longer. We have seen tail gaps
in excess of 100 bytes here.

Also note that a header block is never rewritten after formatting is complete. The data
block of a sector, including the sync character, is completely rewritten every time data
is written to that sector. The eight byte header gap is counted off by the DOS to deter­
mine where to start writing the data block.

117

7.2 Checksums

The only remaining concern we have at this time is how we compute a checksum. Unlike
tape storage where a program file is recorded twice in succession, data is recorded on
diskette only once. In other words, there is no cyclic redundancy. Checksum comes to
the rescue. A single byte checksum or hashtotal is used by the DOS to determine whether
or not an error occurred during a read of a header block or a data block. A checksum
is derived by Exclusive-ORing (EOR) bytes together. Two bytes are EORed together
at one time by comparing their respective bits. The four possible EOR bit combinations
are shown in the following truth table.

EOR Truth Table

oEOR 0 = 0
oEOR 1 = 1
1 EOR 0 = 1
1 EOR 1 = 0

A header block checksum is the EOR of: the sector number, the track number, the ID
LO, and the ID HI. (These four bytes serve to differentiate sectors from one another
on a diskette.) A data block checksum is the EOR of all 256 8-bit data bytes in a sector.
Recall that a data block normally consists of a forward track and sector pointer plus
254 data bytes. Please note that bytes are EORed by the DOS prior to their GCR
conversion.

The following example demonstrates how a header block checksum is calculated. The
algorithm for calculating a data block checksum is identical, only longer.

Sector Number
Track Number
ID LO
ID HI

Hexadecimal

$00 (0)
$12 (18)
$58 (88)
$5A (90)

Binary

00000000
00010010
01011000
01011010

STEP 1. Initialization
EOR $00 (0) With Sector Number

STEP 2. EOR With Track Number

118

$00 = 00000000
Sector Number ($00) = 00000000

00000000

00000000
Track Number ($12) = 00010010

00010010

STEP 3. EOR With ID LO

00010010
ID LO ($58) = 01011000

01001010

STEP 4. EOR With ID HI

01001010
ID HI ($5A) = 01011010

00010000

STEP 5. Binary to Hexadecimal Conversion

00010000

$10 (16)

The checksum for $00, $12, $58, and $5A is thus $10 (16). This checksum just happens
to be the header block checksum for track 18, sector 0 on the 1541TEST/DEMO. In ad­
dition, the binary to GCR conversion tour presented earlier was for the first four bytes
($08 $10 $00 $12) of the same header block.

7.3 Description of DOS Error Messages
In Chapter 6 we presented a table of FDC and IP error codes.The following table outlines
the order in which errors are' evaluated by the DOS during a read and a write,
respectively.

READ ERRORS

FDC Job
Request

SEEK
SEEK
SEEK
SEEK
READ
READ
READ
READ

FDC
Error Code

$03 (3)
$02 (2)
$09 (9)
$OB (11)
$02 (2)
$04 (4)
$05 (5)
$01 (1)

IP
Error Code Error Message

21 No Sync Character
20 Header Block Not Found
27 Checksum Error in Header Block
29 Disk ID Mismatch
20 Header Block Not Found
22 Data Block Not Present
23 Checksum Error in Data Block
o OK

119

WRITE ERRORS

FDC Job FDC IP
Request Error Code Error Code Error Message

WRITE 73 DOS Mismatch
WRITE $OB (11) 29 Disk ID Mismatch
WRITE $08 (8) 26 Write Protect On
WRITE $07 (7) 25 Write-Verify Error
VERIFY $01 (1) 0 OK

Each error is described in greater detail below.

21 READ ERROR (NO SYNC CHARACTER)

The FDC could not find a sync mark (10 or more consecutive on bits) on a given track
within a prescribed 20 millisecond time limit. A time out has occurred.

20 READ ERROR (HEADER BLOCK NOT FOUND)

The FDC could not find a GCR header block identifier ($52) after 90 attempts. The FDC
did a seek to a track and found a sync character. The FDC then read the first GCR
byte immediately following it. This GCR byte was compared against a GCR $52($08).
The comparisonfailed and the try counter was decremented. The FDC waited for another
sync character and tried again. Ninety attempts were made.

27 READ ERROR (CHECKSUM ERROR IN HEADER BLOCK)

The FDC found a header block on that track. This header block was read into RAM
and the GCR bytes were converted back to their original binary form. The FDC then
EORed the sector number, the track number, the ID LO, and the ID HI together. This
independent checksum was EORed against the actual checksum found in the header
block itself. If the result of the EOR was not equal zero, the checksums were not equal.
The comparison failed and the FDC returned a $09 to the error handler.

29 READ ERROR (DISK 10 MISMATCH)

The IDs recorded in the header block found above did not match the master copy of
the disk id's stored in $0012 and $0013. These zero page memory addresses are normal­
ly updated from track 18 during initialization of a diskette. Note that they also can be
updated by a seek to a track from the job queue.

20 READ ERROR (HEADER BLOCK NOT FOUND)

A GCR image of the header was created using the sector number, the track number,
and the master disk IDs. The FDC attempted to find a header on this track that match­
ed the GCR image in RAM for that sector. Ninety attempts were made before this er­
ror was reported.

120

22 READ ERROR (DATA BLOCK NOT PRESENT)

The header block for a given track and sector passed the previous five tests with flying
colors. The FDC found the data block sync mark and read the next 325 GCR bytes into
RAM.These GCR bytes were converted back into 2608-bit binary bytes. The first decod­
ed 8-bit byte was compared against a preset data block identifier at $0047 and failed
to match. Note this zero page memory address normally contains a $07.

23 READ ERROR (CHECKSUM ERROR IN DATA BLOCK)

An independent checksum was calculated for the 256 byte data block converted above.
This checksum did not match the actual checksum read from the diskette.

00, OK,OO,OO

Nothing wrong here.

73 DOS MISMATCH (CBM DOS V2.6 1541)

An attempt was made to write to a diskette with a non-compatible format. The DOS
version stored at location $0101 was not a $41. This memory address is normally up­
dated during initialization by reading byte 2 from track 18, sector o.

29 READ ERROR (DISK 10 MISMATCH)

Same as 29 READ ERROR above but conflicting id's were found during a write at­
tempt rather than a read. Repeated occurrance of this error on a standard diskette is
indicative of a seating problem or a slow-burning alignment problem.

26 WRITE PROTECT ON

An attempt was made to write to a diskette while the write protect switch is depress­
ed. Remove the write protect tab from the write protect notch.

25 WRITE-VERIFY ERROR

The contents of the data just written to a sector did not match the data in RAM when
they were read back. This was probably caused by a flaw on the surface of the diskette.
The end result was an unclosed file. Validate the diskette to decorrupt the BAM. (See
Chapter 2.)

OO,OK,OO,OO

Looking good.

121

7.4 Analyzing a Protected Diskette
Bad sectoring is central to any disk protection scheme. In a nutshell, disk protection
involves the deliberate corruption of a given track or sector. The authenticity of a diskette
is often determined by a short loader program that reads the corrupted track or sector.
In essence the FDC or IP error code is a password allowingaccess to the run time module.
As a result the loader is extremely protected. If it can be cracked the program is generally
freed from its bonds. This is easier said than done though. A loader is usually rendered
indecipherable (Coda Obscura) through an autostart feature, the use of unimplemented
6502 op codes, encryption, or compilation. Frankly speaking, it's much easier to go after
the whole disk. The followingpassages will introduce you to the black art of bit copying.

The appendix contains four routines written specifically to assist in the interrogation
of a diskette. They are:

1. Interrogate Formatting IDs
2. Interrogate a Track
3. Shake, Rattle, and Roll
4. Interrogate a Diskette

These four programs tend to complement one another quite well in actual use. Their
uses and limitations are discussed below.

INTERROGATE FORMATTING ID'S returns the embedded disk ID for each track
using a SEEK. Recall that working the job queue prevents the dreaded BUMP. A seek
to a track is deemed successful by the FDC if at least one intact sector can be found.
The header of said sector is stored in zero page from $0016-$00IA.The ASCII equivalents
of the ID HI ($0016) and ID LO.($0017) are read and printed to the CRT if the SEEK
was good. At a glance one can determine if a protected diskette has a blown track or
if it has been formatted with multiple ID's. This latter scheme is less commonly used
to date. This program will not report the integrity of each individual sector. We have
other routines for that task.

There is one severe drawback to this program as it stands. Occasionally the FDC gets
hung up on a track. The SEEK may continue to attempt to find a sync mark without
timing out. (You must power off the 1541 to recover from this situation.) Experimenta­
tion in interrogating unformatted diskettes has produced the same effect. We surmise
that the track in question was passed over during high-speed duplication. The FDC may
in fact be homing in on a residual bit pattern left over from the manufacturer's certifica­
tion process. The program has a built-in fail-safe mechanism for this very reason. Please
take note: Lines 110-140 establish an active track array. All tracks are presumed active
at the onset (line 130). Line 240 tests the integrity of the track prior to a seek. If a track
is inactive (its flag equals 0) the track is bypassed and the program will work from start
to finish. Should the need arise simply patch in a line that reads:

145 T(track number)=O

145 T(I7)=O, for example.

If it's any comfort at all, a loader cannot check the integrity of said track either. The
sole function of such a track is to discourage prying eyes.

122

INTERROGATE A TRACK scans a single track using the job queue. The track is found
with a SEEK and then the integrity of each sector is verified with a READ. IP error
codes are returned to the screen. No BUMP occurs. The routine may occasionally pro­
vide erroneous information. This is a major shortcoming of a READ from the queue.
Certain errors are returned clean as a whistle (22, 23, 27). A partially formatted track
(mid-track 21 error) or a smattering of 20 errors tend to throw the FDC into an absolute
tizzy. Make note of this. Repeated runs of the same track often return a different error
pattern. Errors tend to accumulate when a BUMP is overridden. Solution?See the follow­
ing paragraph.

SHAKE, RATTLE, AND ROLL also scans a single track by using a Ul command rather
than a direct READ from the job queue. The track is still found by a SEEK, however,
to prevent 29 errors in the event that multiple formatting played a part in the protec­
tion scheme. A 29 error is not an error per se. It is merely a stumbling block. A Ul
without a SEEK to a multiple-formatted diskette will report a DISK ID MISMATCH.
Information can be stored on a track with a different ID. A loader will retrieve it by
the same method we're using here. Errors will force a BUMP so use discretion. Please
note that a full track of 21 errors, 23 errors, or 27 errors does not need to be read with
this routine. After you analyze a track, write the errors down and file your notes away
for archival needs. Your 1541 will love you for it.

INTERROGATE A DISKETTE is the lazy man's routine. It scans an entire diskette
reporting only bad sectors to the screen. The program is essentially INTERROGATE
A TRACK in a loop. Note that you may have to patch around a track to map the entire
diskette. See the example patch above.

7.5 Duplicating a Protection Scheme

The following table represents the state of the error. The rank order in which errors
tend to crop up on copy protected diskettes are as follows:

1. 21 ERROR (FULL TRACK)
2. 23 ERROR (SINGLE SECTOR)
3. 23 ERROR (FULL TRACK)
4. 20 ERROR (SINGLE SECTOR)
5. 27 ERROR (FULL TRACK)
6. 29 ERROR (MULTIPLE FORMATTING)
7. 22 ERROR (SINGLE SECTOR)
8. 21 ERROR (PARTIAL TRACK)

Historically speaking, the 21 error (full track) and the 29 error appeared on the scene
concurrently. At the present time, a full track 21 error and a single sector 23 error are
the predominant errors used to corrupt a diskette. These same two errors are also the
easiest to duplicate. The last entry, partial formatting of a track, is the new kid on the
block.

123

The following 13programs can be used to duplicate a multitude of errors on a diskette.
They are:

File Name

21 ERROR
DESTROY A SECTOR
23A ERROR
23B ERROR
23M ERROR
20 ERROR
20M ERROR
27M ERROR
22A ERROR
22B ERROR

FORMAT A DISKETTE

BACKUP
COpy

Error Number

21
20,21

23
23
23
20
20
27
22
22

29

Error Range

FULL TRACK
SINGLE SECTOR
SINGLE SECTOR

*SINGLE SECTOR
FULL TRACK
SINGLE SECTOR
FULL TRACK
FULL TRACK
SINGLE SECTOR

*SINGLE SECTOR

MULTIPLE FORMATTING ID'S

SINGLE DRIVE BACKUP
SINGLE FILE COpy

* Creates an exact duplicate of a bad sector.

Source listings for the machine language routines in these programs are included as
a courtesy to the more advanced reader. The BASIC drivers themselves are nondescript
and will not be explained in depth. It is assummed that the reader has digested the
sections on beginning and intermediate direct-access programming in Chapters 5 and
6. Algorithms will be briefly mentioned along with any new techniques and/or limita­
tions that apply.

7.6 How to Create 21 Errors on a Full Track

Limitations: None.

Parameters: Track number.

FULL TRACK 21 ERROR

100 REM 21 ERROR - 1541
110 PRINT"{CLR}21 ERROR - 1541 11

120 PRINTII{DOWN}INSERT CLONE IN DRIVEII
130 INPUTII{DOWN}DESTROY TRACKII;T
140 IFT<10RT>35THENEND
150 INPUT"{DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$
160 IFQ$<>lIyuTHENEND
1700PEN15,8,15
180 PRINT#15, II I C)"

124

190 INPUT#15,EN$~EM$~ET$,ES$

200 I FEN$= II O() II GOTD250
210 PRINT II {DOWN} UEN$ II , IIEM$II,IIET$II,IIES$
220 CLOSE15
230 END
240 REM SEEK
250 JOB=176
260 GOSUB4C)O
270 FORI=OT023
280 READD
290 DS=D$+CHR$(D)
300 NEXTI
310 PRINT#15,"M-W"CHR$(O)CHR$(4)CHR$(24)
DS
320 REM EXECU1-E
330 PRINT" {DOWN} {RVS}DES·TROYING{ROFF} TR
ACKII;T
340 JOB=224
350 GOSUB400
360 PRIt"T" {DOWN}OONE! II

370 CLOSE15
38() END
390 REM JOB QUEUE
400 TRY=O
410 PRINT#15~"M-W"CHR$(8)CHR$(O)CHR$(2)C

HR$ (T) CHR$ co
420 PRINT#lS!' "M-W"CHR$ (1) CHRS «() CHR$ (1) C
HR$(JOB)
430 TRY=TRY+l
440 PRINT#15~IIM-R"CHR$(1)CHR$(O)

450 GET#15,E$
460 IFE$= THENES=CHR$(O)
470 E=ASC(E$)
480 IFTRY=500GOT0510
490 IFE>127GOT0430
5()0 RETURN
510 CLOSE15
520 PRINTII{DOWN}{RVS}FAILED{ROFF}"
530 END
540 REM 21 ERROR
550 DATA 32,163,253~169, 85,141, 1, 28

560 DATA 162,255,160, 48, 32,201,253, 32

57() DATA O~254,169, 1, 76,105,249,234

125

FULL TRACK 21 ERROR SOURCE LISTING

100 REM 21.PAL
110 REM
120 OPEN2,B,2,"@O:21.B,P,W II

130 REM
140 SYS40960
150 ;
160 .OPT P,02
170 ;
180 *= $0500
190 ;
200 JSR $FDA3 ; ENABLE WRITE
210 LDA #$55 ; NON SYNC BYTE
220 STA S1COl
230 LDX #SFF
240 LDY #$48
250 JSR SFDC9 ; WRITE 18432 NON SYNC BYT
ES
260 JSR $FEOO ENABLE READ
270 LDA #$01
280 JMP $F969

Full Track 21 Error Source Annotation

This routine borrows from FORMT ($FAC7). Prior to formatting a track, the FDC erases
it with sync marks ($FDA3). Experimentation has shown that an RTS from this ROM
entry point would create a track of all 20 errors. Thus we are forced to trace the FORMT
routine a little farther. The subroutine WRTNUM ($FDC3) writes either sync or non­
sync bytes. By entering six bytes into this routine we can establish the number of bytes
it writes. A JSR to $FEOO is necessary to re-enable read mode. Otherwise the write
head is left on and it will erase everything in its path. Note that we LDA #$01, the
FDC error code for OK, and JMP to the error handler at $F969 to exit.

7.7 How to Create a 21 Error o~ a Single Sector

Limitations: Preceding sector must be intact (See the annotation below).

Parameters: Track and sector number.

DESTROY A SECTOR

100 REM DESTROY A SECTOR - 1541
110 DIMD$(7)
120 PRINT"{CLR}DESTROY A SECTOR - 1541 11

130 PRINTII{DOWN}INSERT CLONE IN DRIVEII
140 INPUTII{OOWN}DESTROY TRACK AND SECTOR

(T,S)II;T,S
150 IFT<10RT>35THENEND

126

160 NS=20+2*(T>17)+(T>24)+(T>30)
170 IFS<OORS>NSTHENEND
180 INPUTII{DOWN}ARE YOU SURE Y{LEFT 3}1I

;Q$
190 I FQ$(>.. y" THEf\JEND
2000PEN15,8,15
210 PRINTD15,IIIO"
220 INPUT#15,EN$,EM$~ET$,ES$

230 I FEN$= II ()O..GOT0280
240 PRINT II {DOWN} II EN$ " , IIEM$II, "ET$II, IIES$
250 CLOSE15
260 END
270 REM SEEK
280 IFS=OTHENS=NS:GOT0300
290 8=8-1
300 JOB=176
31 o GOSUB57()
320 REM READ
330 JOB=128
340 GOSUB570
350 FORJ=()T07
360 FORI=OT07
370 READD
380 D$(J)=O$(J)+CHR$(D)
390 NEXTI
400 NEXTJ
410 1=0
420 FORJ=()T07
430 PRINT#15,"M-W"CHR$(!)CHR$(S)CHR$(S)O
$(J)
44t) 1=1+8
450 NEXTJ
460 REM EXECUTE
47() PRINT#15, "M-W"CHR$ (2) CHR$ «(J) CHR$ (1) C
HR$(224)
48() PRINT#15~ IIM-RIICHR$ (2) CHR$ co
490 GET#15,E$
500 I FE$= II II THEI'JE$=CHR$ (0)
510 E=ASC(E$)
520 IFE>127GOT0480
530 CLOSE1S
540 PRINT"{DOWN}DONE~"

550 END
560 REM JOB QUEUE
570 TRY=()
58() PRINT# 15 .. IIM-W" CHR$ (8) CHR$ co CHR$ (4) C
HR$(T)CHR$(S)CHR$(T)CHR$(S)
590 PRII'JT#15!1 "M-WtlCHR$ (1) CHR$ «() CHR$ (1) C
HR$(JOB)
60() TRY=TRY+ 1

127

61(l PRINT#15, "M-R"CHR$ (1) CHR$ (0)
620 GET#15,E$
630 IFE$= THENE$=CHR$(O)
640 E=ASC(E$)
650 IFTRV=500GOT0680
660 IFE>127GOT0600
670 IFE=1THENRETURN
680 CLOSE15
690 PRINTII{OOWN}{RVS}FAILED{ROFF}II
700 END
710 REM DESTROY A SECTOR
720 DATA 32, 16,245, 32, 86,245,162, 0
730 DATA 80,254,184,202,208,250,162, 69
740 DATA 80,254,184,202,208,250,169,255
750 DATA141~ 3~ 28~173, 12~ 28, 41, 31
760 DATA 9,192,141, 12, 28~162, 0,169
770 DATA 85, 80,254,184,141, 1, 28,202
780 DATA208,247, 80,254, 32, 0,254,169
790 DATA 1, 76,105,249,234,234,234,234

SINGLE SECTOR 21 ERROR SOURCE LISTING

100 REM DAS.PAL
110 REM
120 OPEN2, 8, 2, "@(): DAS. B, P, W..
130 REM
140 SYS40960
150 ;
160 .OPT P,02
170 ;
180 *= $0500
190 ;
200 JSR $F510 ; FIND HEADER
210 JSR SF556 ; FIND SYNC
220 ;
230 ;* WAIT OUT DATA *
240 .,
250 LDX #$00
260 READ1 ave READ1
270 CLV
280 DEX
290 BNE READ!
300 ;
310 LDX #$45
320 READ2 Bve READ2
330 CLV
340 DEX
350 BNE READ2
360 ;
370 LDA #$FF ; DATA DIRECTION OUT

128

380 STA $lC03
390 LOA $lCOC; ENABLE WRITE MODE
400 AND #SlF
410 ORA #$CO
420 STA $lCOC
430 ;
440 LDX #$00
450 LDA #$55
460 WRITE1 ave WRITEl
470 CLV
480 STA $lCOl
490 DEX
500 BNE WRITEl
510 ;
520 WRITE2 ave WRITE2
530 ;
540 JSR $FEOO ; ENABLE READ MODE
550
560 LOA #$01
570 JMP SF969

Single Sector 21 Error Source Annotation

This routine finds the preceding sector and syncs up to its data block (lines 200-210).
Lines 250-350 wait out 325 GCR bytes. We flip to write in lines 370-420 and write out
256 non-sync bytes. This overwrites both sync marks of the sector that was input. This
routine will create a 20 error on a single sector as it stands. By serendipity, it has a
unique side effect. If two consecutive sectors are destroyed we get a 21 error on both
of them. The FDC times out trying to find one or the other or both. Caution must be
used when spanning a sector range. To duplicate the following scheme we must destroy
sector 0 first followed by sectors 20, 19, and 18 respectively.

Sector

o
1 - 17

18 - 20

Error Number

21
OK
21

Repeat. This routine will not create a 21 error on a single sector per see Two consecutive
sectors must be destroyed.

7.8 How to Create a 23 Error on a Single Sector

Limitations: None.

Parameters: Track and sector number.

129

SINGLE SECTOR 23 ERROR

100 REM 23A ERROR - 1541
110 OIMD$(11)
120 PRINT"{CLR}23 ERROR - 1541"
130 PRINTII{DOWN}INSERT CLONE IN DRIVE"
140 INPUT" {DOLaJN} DESTROY TRACJ< AND SECTOR

(T,S)II;T,S
150 IFT<10RT>35THENEND
160 NS=20+2*(T>17)+(T>24)+(T>30)
170 IFS<OORS)NSTHENEND
180 INPUTII{OOWN}ARE YOU SURE Y{LEFT 3}1I

;Q$
190 IFQ$<)lIyIlTHENEND
200 OPEN15~8,15

210 PRINT#15," IC)"
220 INPUT#15,ENS,EM$,ETS,ES$
230 I FEN$= ..oo- GOT0280
240 PRINT"{OOWN}IIENS", "EM$II,"ET$II,"ESS
250 CLOSE1S
260 END
270 REM SEEK
280 JOB=176
290 GOSUB5S()
300 REM READ
310 JOB=128
320 GOSUB550
330 FORJ=()T011
340 FORI=OT07
350 READD
360 DS(J)=D$(J)+CHR$(D)
370 NEXTI
380 NEXTJ
390 1=0
400 FORJ=()T011
410 PRINT#15,IIM-W II CHR$ (I) CHR$ (S) CHR$ (B) O
$(J)

420 1=1+8
430 NEXTJ
44() REM EXECUTE
450 PRINT#15,IIM-W IICHR$(2)CHR$(O)CHR$(1)C

HR$(224)
460 PRIN-T#15, "M-RIICHRS (2) CHR$ (0)
470 GET#15,ES
480 IFES=II uTHEI'JES=CHR$ co
490 E=ASC(E$)
500 IFE>127GOT0460
510 CLOSE15
520 PRINT II{DOWNJ-DONE!II

530 END

130

540 REM JOB QUEUE
550 TORY=O
560 PRII'JT#15, IIM-W"CHR$ (8) CHR$ (0) CHR$ (4) C
HR$(T)CHR$(S)CHR$(T)CHRS(S)
570 F·RIf\Jr#15~ IIM-WIICHR$ (1) CHR$ t o CI-IR$ (1) C
HR$(JOB)
58() TRY=TRY+1
59() PRINT#15~ "M-R"CHR$ (1) CHR$ (0)
6C)O GET#15,E$
610 IFE$=IIIITHENE$=CHR$(O)
620 E=ASC(E$)
630 IFTRY=500GOT0660
640 IFE>127GOT0580
650 RETURN
660 CLOSE1S
670 PRINT" {DOWN} {RVS}FAILED{ROFF} ,.
6BO END
690 REM 23 ERROR
700 DATA 169~ 4~133~ 49,165~ 58,170~232

710 DATA 138,133, 58, 32,143,247, 32, 16

72C) DATA 245,162, 8, 80,254,184,202,208

730 DATA 250,169,255~141,
...". 28,173, 12-->,

740 DATA 28, 41, 31, 9, 192, 141, 12, 28

750 DATA 169,255,162, 5,141, 1 , 28,184

760 DATA 80,254,184,202,208,250,160,187

770 DATA 185, 0, 1 , 80,254,184,141, 1

780 DATA 28,200,208,244,185, 0, 4, 80

790 DATA 254, 184, 141 , 1 , 28~200,208~244

SOC) DATA 80!,254~
~,..... o, 254!f 169~ 5,133_.....::.,

810 DATA 49,169, 1 , 76,105,249,234,234

SINGLE SECTOR 23 ERROR SOURCE LISTING

100 REM 23A.PAL
110 REM
1200PEN2,8,2,"@O:23A.B,P,W II

130 REM
140 SYS40960
150 ;

131

160 .OPT P,02
170 ;
180 *= $O5()O
190
200 LDA #$l)4

210 STA $31
220
230 LDA S3A
240 TAX
250 INX . INCREMENT,
CHECKSUM
260 TXA
270 STA $3A
280 ;
290 JSR $F78F . CONVERT TO,

GCR
300 J5R $F510 FIND HEADER
#
310
320 LDX #$08
330 WAITGAP Bve WAITGAP ; WAIT OUT G
AP
340 CLV
350 DEX
360 BNE WAITGAP
370
380 LOA #SFF EI\JABLE WR I
TE
390 STA S1C()3
400 LDA SlCOC
410 AND #S1F
420 ORA #SC()

430 STA s icoc
440 LDA #$FF
450 LOX #$()5

460 STA S1COl
470 CLV
480 WRITESYNC eve WRITESYNC
490 CLV
500 DEX
510 BNE WRITESYNC
520
530 LDY #$BB
540 OVERFLOW LOA $0100,Y WRITE OUT
OVERFLOW BUFFER
550 WAIT1 svc l.aJAITl
560 CLV
570 STA $lC01
580 INY
590 BNE OVERFLOW

132

600 BUFFER LOA $0400,Y l,lJRITE OUT
BUFFER
610 WAIT2 ave WAIT2
620 CLV
630 STA $lC()1
640 INY
650 BNE BUFFER
660 WAIT3 ave WAIT3
670 ;
680 JSR SFEOO • ENABLE REA
D
690
700 LOA #$05
710 STA $31
720 LDA #$01
730 JMP $F969

Single Sector 23 Error Source Annotation

This routine borrows from WRIGHT ($F56E). Our entry point is 12bytes into the routine.
This bypasses the write protect test and the computation of the checksum. The driver
routine reads the sector into $0400-$04FF. Lines 200-210 of the source listing set the
indirect buffer pointer to this workspace. The checksum is next incremented at $003A.
Buffer number 1 is converted to GCR form. Recall that 260 data bytes are converted
into 325 8-bit GCR bytes. More than one buffer is used to store the GCR image. The
first 69 GCR bytes are stored in an overflow buffer at $OlBB-$OlFF. The remaining
256 bytes are found at $0400-$04FF. We sync up to the appropriate sector in line 300,
count off the eight byte header gap, and flip to write mode. Five $FFs are then written
to disk (the sync mark) followed first by the overflow buffer and then the regular buf­
fer. We restore the indirect buffer pointer at $0031 to a $05and jump to the error handler
with a $01 in hand.

7.9 How to Duplicate a 23 Error on a Single Sector

Limitations: None (Requires disk swapping).

Parameters: Track and sector number.

DUPLICATE A SINGLE SECTOR 23 ERROR

100 REM DUPLICATE A 23 ERROR - 1541
110 DIMD$(lc)
120 PRINTII{CLR}OUPLICATE A 23 ERROR - 15
41 11

130 PRINT II {OOLaJN} INSERT MASTER DISKETTE I
N DRIVE"
140 INPUTII{DOWNJREAD TRACK AND SECTOR (T
,S)II;T,S
150 IFT<10RT>35THENEND

133

160 NS=20+2*(T)17)+(T>24)+(T>30)
170 IFS<OORS>NSTHENEND
180 INPUTIt{DOWN}ARE YOU SURE Y{LEFT 3}1I

;Q$
190 IFQS<>IIY"THENEND
200 OPEN15~8,15

210 PRINT#15,IIIO"
220 INPUT#15,EN$,EMS,ET$,ESS
230 IFENS="OOIIGOT0280
240 PRINT"{DOWN}IIENS", IIEM$II,IIET$It,IIES$
250 CLOSE15
260 END
270 REM SEEK
280 JOB=176
290 GOSUB65()
300 REM READ
310 JOB=128
320 GOSUB650
330 CLOSE1S
340 PRINT" {DOWN} II\JSERT CLONE IN DRIVE"
350 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
360 GETC$:IFC$=IIIITHEN360
370 IFCS<>CHR$(13)GOT0360
380 PR I N°T" OK II
3900PEN15,8,15
400 REM SEEt<
410 JOB=176
420 GOSUB650
430 FORJ=OTO1o
440 FOR I =()T07
450 READO
460 D$(J)=D$(J)+CHR$(D)
470 NEXTI
480 I'JEXT J
490 I=()
500 FORJ=()TOI0
510 PRINT#15~"M-WIICHR$(I)CHR$(5)CHR$(8)D

$(J)

520 1=1+8
530 NEXTJ
540 REI1 EXECUTE
550 PRINT#15,"M-W"CHR$(2)CHR$(O)CHR$(1)C
HR$(224)
560 PRIf\JT#15~ "M-R"CHR$ (2) CHR$ co
570 GET#15,E$
SSC) I FE$= II II THEI'JE$=CHR$ (0)
590 E=ASC(E$)
600 IFE>127GOT0560
610 CLOSE15

134

620 PRINTII{OOWN}DONE!II
630 END
640 REM JOB QUEUE
650 TRY=O
66t) PRINT#15, II M-W II CHR$ (8) CHR$ (0) CHRS (4) C
HR$(T)CHR$(S)CHR$(T)CHR$(S)
670 PRINT#15,IIM-W"CHR$(1)CHR$(O)CHR$(1)C
HR$(JOB)
680 TRY=TRY+1
690 PRINT#15!'IIM-R"CHR$(1)CHR$(O)
700 GET#15,E$
710 IFE$= THENE$=CHR$(O)
720 E=ASC(E$)
730 IFTRY=500GOT0760
740 IFE>127GOT0680
750 RETURN
760 PRINTII{OOWN}FAILED"
77l) CLOSE15
780 END
790 REM DUPLICATE A SECTOR
800 DATA 169, 4,133~ 49, 32,143,247, 32

81C) DATA 16!,245~162, 8, 80,254,184,202

820 DATA 208,250,169,255,141, -:J" 28,173..>,

83() DATA 12, 28!, 41, 31, 9, 192, 141, 12

840 DATA 28~169,255,162, 5,141, 1 , 28

850 DATA 184, 80,254,184,202,208,250,160

860 DATA 187,185, 0, 1 , 80!,254,184,141

870 DATA 1 , 28~200,208,244,185, 0, 4

880 DATA 80,254,184,141, 1, 28,200,208

89() DATA 244, 80,254, 32, 0,254,169, 5

900 DATA 133, 49,169, 1, 76,105,249,234

DUPLICATE A SINGLE SECTOR 23 ERROR SOURCE LISTING

100 REM 23B.PAL
110 REM
1200PEN2,8,2,"@O:23B.B,P,W"
130 REM
140 SYS40960
150 ;

135

160 .OPT P,02
170
180 *= $0500
190 ;
200 LDA #$04
210 STA $31
220
230 JSR $F78F ; CONVERT TO

GCR
240 JSR $F51() ; FIND HEADER
#
250 ;
260 LOX #$08
270 WAITGAP Bve WAITGAP . WAIT OUT G,
AP
280 CLV
290 OEX
300 BNE WAITGAP
310 ;
320 LDA #$FF ENABLE WRI
TE
330 STA $lC03
340 LOA SlCOC
350 AND #SlF
360 ORA #$CO
370 STA $lCOC
380 LOA #$FF
390 LDX #$()5
400 STA $1COI
41(J CLV
420 WRITEsvr4C ave WRITESYNC
430 CLV
440 DEX
450 BNE WRITESYNC
460 ;
470 LDY #$BB
480 OVERFLOW LDA $0100,Y . WRITE OUT,
OVERFLOW BUFFER
490 WAIT1 ave WAIT1
500 CLV
510 STA SICOl
520 INY
530 BNE OVERFLOW
540 BUFFER LOA S0400,Y WRITE OUT
BUFFER
550 WAIT2 ave LAJAIT2
560 CLV
570 STA S1COl
580 INY
590 BNE BUFFER

136

600 WAIT3 ave WAIT3
610 ;
620 JSR $FEOO
D
630 ;
640 LDA #$05
650 STA $31
660 LDA #$01
67Q JMP $F969

; ENABLE REA

Duplicate a Single Sector 23 Error Source Annotation

Identical to the 23A.PAL file with one exception. The checksum is left intact after a
corrupted data block is read from the master using the job queue. The sector is stored
at $0400-$04FF and the checksum at $003A. The checksum is not recalculated or in­
cremented. The entire sector and its checksum are rewritten to the clone.

7.10 How to Create 23 Errors on a Full Track

Limitations: None.

Parameters: Track number.

FULL TRACK 23 ERROR

100 REM 23M ERROR - 1541
110 DIMD$(11)
120 PRINT"{CLR}MULTIPLE 23 ERROR - 1541"

130 PRINT" {DOWN} INSERT CLONE Ir~ DRIVE II

140 INPUT" {OOWN}DESTROY TRACI<"; T
150 IFT<10RT>35THENEND
160 INPUTIt{DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$
170 IFQ$<>"Y"THENEND
1800PEN15,B,15
190 PRINT#15,IIIO"
200 INPUT#15,EN$,EMS,ETS,ES$
210 IFEN$=II<)()IIGOT0260
220 PRINTII{DOWN}IIEN$", "EM$II,"ETS","ES$
230 CLOSE15
240 END
250 REM SEEK
260 JOB=176
270 GOSUB580
280 NS=20+2*(T>17)+(T>24)+(T>30)
290 FORS=OTONS
300 REM READ
310 JOB=128

137

320 GOSUB58()
330 IFS>OGOT0460
340 FORJ=()TOll
350 FORI=OT07
360 READD
370 D$(J)=D$(J)+CHRS(O)
380 NEXTI
390 NEXTJ
400 1=0
410 FORJ=()T011
420 PRINT#15~"M-W"CHR$(I)CHR$(5)CHR$(8)D

$(J)
430 1=1+8
440 NEXTJ
45() REM EXECUTE
460 PRINT" {HOME} {DOWN B} {R\JS}DESTROVING{
ROFF} TRACKIITII- SECTORIIS
470 PRINT#15~"M-W"CHR$(2)CHR$(0)CHR$(1)C

HRS(224)
480 PRINT#15~ IIM-RIICHRS (2) CHRS co
490 GET#15~E$

5()O I FES= II II THEI'JE$=CHR$ (0)
510 E=ASC(E$)
520 IFE>127GOT0480
530 NEXTS
54() CLOSE 15
550 PRINTII{HOME}{DOWN 8}OONE!

II

560 END
570 REM JOB QUEUE
580 TRY=()
59() PRIJ'.JT#15 .. IIM-W"CHR$ (8) CHR$ (e) CHR$ (4) C
HR$(T)CHR$(S)CHR$(T)CHR$(S)
60l) PR11"T#15~uM-W"CHRS (1) CHR$ (0) CHRS (1) C
HR$(JOB)
610 TRY=TRV+!
620 PRINTtt15,IM-R"CHR$(1)CHR$(O)
630 GET#15"E$
64() I FE$= II II THENE$=CHR$ (0)
650 E=ASC(ES)
660 IFTRY=500GOT0690
670 IFE>127GOT0610
680 RETURN
690 CLOSE15
700 PRINTII{DOWN}{RVS}FAILED{ROFF}II
710 END
720 REM 23 ERROR
730 DATA 169~ 4,133, 49,165, 58~170~232

740 DATA 138,133, 58, 32,143,247, 32, 16

138

75() DATA 245,162, 8, 80,254,184~202~208

760 DATA 250,169,255,141, 3, 28~173, 12

770 DATA 28~ 41, 31, 9, 192, 141 ~ 12, 28

780 DATA 169,255,162~ 5,141, 1 , 28,184

79() DATA 80~254,184,202,208~250~160,187

8t)O DATA 185, 0, 1 , 80!,254,184,141, 1

810 DATA 28,200,208,244,185, 0, 4, so

820 DATA 254, 184, 141!, 1 , 28,200,208,244

83C) DATA 8(J,254, 32, O~254, 169, 5,133

840 DATA 49,169, 1,133, 2, 76,117,249

FULL TRACK 23 ERROR SOURCE LISTING

100 REM 23M. PAL
110 REM
1200PEN2,8,2,"@O:23M.B,P!'W"
130 REM
140 SYS4(J96()
150
160 .OPT P,02
170 ;
180 *= $05()()
190 ;
200 LOA #$04
210 STA $31
220
230 LDA $3A
240 TAX
250 INX ; INCREMENT CHE
CKSUM
260 TXA
270 STA $3A
280
290 JSR SF78F ; CONVERT TO BC
R
300 JSR SF510 ; FIND HEADER
310
320 LDX #$()8
330 WAITGAP Bve WAITGAP WAIT OUT GAP
340 CLV
350 DEX

139

ENABLE READ

l-aJR I "E OUT BUF

; ENABLE t,.JR I TE

; WRITE OUT aVE

#$FF
$lC03
$1C()C
#$1F
#sea
SlCOC
#$FF
#$05
s rco r

WAIT2 ave WAIT2
CL\}
STA $1C()1
INY
BNE BUFFER
WAIT3 Bve WAIT3

;
LOA
STA
LOA
AND
ORA
STA
LOA
LOX
STA
CLV
WRITESYNC BVC WRITESYNC
CLV
DEX
BNE WRITESYNC

360 BNE WAITGAP
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530 LDY #$B8
540 OVERFLOW LOA S0100,Y
RFLOW BUFFER
550 WAIT1 ave WAIT1
560 CLV
570 STA $1C()1
580 INY
590 BNE OVERFLOW
600 BUFFER LOA $0400,Y
FER
610
620
630
640
65')
b6()
67()
b8e) JSR $FE()(l

69()
70C) LOA #$()5
710 STA $31
72() LOA #$() 1
73() STA $02
74() JMP SF975

Full Track 23 Error Source Annotation

See the annotation for 23A.PAL. The BASIC driver loops to do all sectors on a given
track.

140

7.11 How to Create a 20 Error on a Single Sector

Limitations: Preceding sector must be intact.
(See the annotation for a single sector 21 error)

Parameters: Track and sector number.

SINGLE SECTOR 20 ERROR

100 REM 20 ERROR - 1541
110 DIMD$(11)
120 PRINT"{CLR}20 ERROR - 1541"
130 PRINT" {DOWN} If\JSERT CLONE IN DRIVE"
140 INPUT"{OOWN}DESTROY TRACK AND SECTOR

(T,S)II;T,S
150 IFT<10RT>35THENEND
160 NS=20+2*(T>17)+(T>24)+(T>30)
170 IF9<OORS>NSTHENEND
180 INPUTII{OOWN}ARE YOU SURE Y{LEFT 3}1I

;Q$
190 I FQS< >II Y..THEf\IEI'JD
2000PEN15,8,15
210 PRINT#15,"IO"
220 INPUT#15,ENS,EM$,ETS,ES$
230 I FEN$= II 00 II GOT028l)
240 PRINT" {DOWN} IIEt"S", II EMSII , nETS", IIESS
250 CLOSE15
260 END
270 REM SEEK
280 IFS=OTHENS=NS:GOT0300
290 9=9-1
300 JOB=176
310 GOSUB570
320 REM READ
330 JOB=128
340 GOSUB570
350 FORJ=OT011
360 FORI=OT07
370 READD
380 D$(J)=D$(J)+CHR$(D)
390 NEXTI
400 NEXTJ
410 1=0
420 FORJ=OT011
430 PRINT#15!'IIM-W IICHR$(!)CHR$(S)CHR$(S)D
$(J)

440 1=1+8
450 NEXTJ
460 REM EXECUTE
470 PRINT#15, "M-W"CHR$ (2) CHR$ co CHR$ (1) C
HR$(224)

141

48() PRINT#15, "M-R"CHRS (2) CHR$ «»
490 GET#15,E$
5()0 IFE$=II IITHEI'JE$=CHR$ «»
510 E=ASC(E$)
520 IFE>127GOT0480
530 CLOSE15
540 PRII'JT" {DOWN}OONE! II

55e) END
560 REM JOB QUEUE
570 TRY=()
5SC) F·Rlt,JT#15, "M-l,lJIICHR$ (8) CHR$ (0) CHR$ (4) C
HR$(T)CHR$(S)CHR$(T)CHR$(S)
590 PRINT#15, JlM-~J"CHR$(1) CHR$ (e) CHR$ (1) C
HR$(JOB)
600 TRY=-fR'(+!
610 F'RII'JT#15~ "M-R"CHR$ (1) CHR$ (0)

620 GET#15,E$
630 I FE$= II .. THENE$=CHR$ co
640 E=ASC(E$)
650 IFTRY=500GOT0680
660 IFE>127GOT0600
670 IFE=1THENRETURN
680 CLOSE15
690 PRINT" {DOl.'JN} {RVS}FAILED{ROFF} II

700 END
710 REM 20 ERROR
720 DATA 32, 16,245, 32, 86,245,160, 20

730 DATA 165, 25,201, 18,144, 12,136,136

740 DATA zo i , 25,144, 6,136,201, 31,144

750 DATA 1,136,230, 24,197, 24,144, 6

76() DATA 240, 4,169, 0,133, 25,169~ 0

770 DATA 69, 22, 69~
,.,..". 69, 24, 69, 25.A:-"':>!II

780 DATA 133~ 26, ..".""" 52,249,
..,.,.,

86~245_"L.- ~ ...>ttt:..

790 DATA 169~255~141~
-:r 28,173, 12~ 28...),

800 DATA 41~ 31, 9, 192, 141, 12, 28,162

810 DATA 0, 181 !II 36, 80,254~184,141, 1

82() DATA 28~232,224, 8, 2()8, 243, BC), 254

830 DATA """1""\ 0,254,169, 1 , 76,105,249---.:.,

142

SINGLE SECTOR 20 ERROR SOURCE LISTING

100 REM 20.PAL
110 REM
120 OPEN2, 8, 2, II @O: 2(). B, P , WII

130 REM
140 SYS40960
150 ;
160 .OPT P,02
170 ;
180 *= $()5()O
190
200 JSR $F510 ; FIND HEADER BLOC
K
210 JSR $F556 FIND DATA BLOCK
220
230 LOY #$14
240 LDA $19
250 CMP #$12
260 BCC ZONE
270 DEY
280 DEY
290 CMP #$19
300 BCC ZONE
31() DEY
320 CMP #$lF
33() sec ZDI'JE
340 DEY
350 ZOI\JE I j\JC $18
360 CMP $18
37() Bee HEADER
380 BEQ HEADER
390 LOA #$O()
400 STA $19
410
420 HEADER LDA #$00
430 EOR $16
440 EOR $17
450 EOR $18
46() EOR $19
470 STA $1A
480
490 JSR $F934 CREATE NEW HEADER
IMAGE
500 JSR $F556 FIND HEADER BLOC
K
510 LOA #$FF WRITE MODE
520 STA $lC03
530 LDA $lCOC
540 AND #SlF

143

550 ORA #$CO
560 STA $lCOC
57() LOX #$00
580 WRITE LDA $OO24~X

590 WAIT1 Bve WAIT1
600 CLV
s i o STA s i co t
620 INX
630 CF'X #$()8

640 BNE WRITE
650 WAIT2 BVC WAIT2
660
67() JSR $FEOO ; READ 1'10DE
680
69() LDA #$01
700 JMP SF969

Single Sector 20 Error Source Annotation

This routine represents a halfbearted attempt to rewrite a header. It is dependent upon
the preceding sector being intact. Lines 200-210 sync up to the preceding header and
data block. Lines 230-400 calculate the next sector in the zone. A header image for the
sector is created in RAM at $0024-$002C. We sync up one more time which positions
us to the start of the header block we want to destroy. We flip to write mode and rewrite
the header. We are coming in just a shade too slow and create enough noise at the end
of the sync mark to destroy the actual header block identifier. (Tweaking the internal
clock reveals that the header was completely rewritten.) If the tail gap was a constant
length our task would be analogous to rewriting a sector where the FDC syncs up to
a header block, reads the header, and counts off eight bytes. We would similarly sync
up to a data block, count off 325 GCR bytes, then count off the tail gap, and flip to write
mode. However, it is virtually impossible to gauge the length of the tail gap, so we're
stuck. Rest assured, though. It still gets the job done.

7.1 2 How to Create 20 Errors on a Full Track

Limitations: None.

Parameters: Track number.

FULL TRACK 20 ERROR

100 REM 20M ERROR - 1541
110 DIMD$(24)
120 PRINT"{CLR}MULTIPLE 20 ERROR - 1541 11

130 PRINT"{DOWN}INSERT CLONE IN DRIVE"
140 INPUT" {DOWN}DESTROY TRACI(II; T
150 IFT<10RT>35THENEND
160 INPUTII{DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$

144

170 IFQ$<>"YIITHENEND
1800PEN15,8,15
190 PRII'JT#15~1110"
200 INPUT#15,ENS,EM$,ET$,ES$
21(} IFEN$=IIOOIIGOT026(}
220 PRINT II{DOWN}IIENS", "EMS","ET$","ES$
230 CLOSEt5
240 END
250 REM SEEK
260 NS=20+2*(T>17)+(T>24)+(T>30)
270 S=NS
280 JOB=176
290 GOSUB580
30(l FOR I =OT023
310 READD
320 D$=D$+CHR$(D)
330 !$=!$+CHR$(O)
340 NEXTI
350 PRINT#15, "M-W"CHR$ (e) CHR$ (6) CHR$ (24)
D$
360 REM EXECUTE
370 PRINTII{DOWN}{RVS}DESTROYING{ROFF} TR
ACK";T
380 JOB=224
390 GOSUB580
400 PRINT#15,"M-W"CHR$(O)CHR$(6)CHR$(24)
1$
410 FORJ=()T024
420 FOR1=OT07
430 READD
440 D$(J)=D$(J)+CHR$(D)
450 NEXTI
460 NEXTJ
470 1=0
480 FORJ=()T024
490 PRINT#15, IIM-~J"CHR$(I) CHR$ (4) CHRS (8) 0
$(J)

500 1=1+8
510 NEXTJ
52() REM EXECUTE
530 PRINT#15~IIM-E"CHR$(O)CHR$(4)

540 CLOSE15
550 PRINT II{DOWN}DONE!II

56() END
570 REM JOB QUEUE
580 TRY=O
590 PRII'JT#15!f IIM-W"CHR$ (12) CHRS (0) CHR$ (2)
CHR$(T)CHR$(S)
600 PRINT#15,IIM-W"CHR$(3)CHR$(O)CHR$(1)C
HR$(JOB)

145

61() TRY=TRY+l
620 PRINT#15,"M-R II CHR$ (3) CHR$ (O)
630 GET#15,E$
640 IFE$= THENE$=CHR$(O)
650 E=ASC(E$)
660 IFTRY=500GOT0690
670 IFE>127GOT0610
680 RETURN
69() CLOSE15
700 PRINTII{DOWN}{RVS}FAILED{ROFF}"
710 END
720 REM 21 ERROR
730 DATA 32,163,253,169, 85~141, 1, 28

740 DATA 162,255,160, 48, 32,201,253,

750 DATA O,254,169~ 1, 76~105,249~234

760 REM 20M ERROR
770 DATA169, O,133~127~166~ 12,134, 81
780 DATA134~128,166, 13,232,134, 67,169
790 DATA 1,141~ 32, 6,169, 8~141, 38
800 DATA 6~169~ 0,141, 40~ 6, 32, 0
810 DATA193,162, 0,169, 9,157, 0, 3
820 DATA232~232,173, 40, 6,157~ 0, 3
830 DATA232~165, 81,157, O~ 3,232~169

840 DATA O~157, 0, 3,232~157, 0, 3
850 DATA232~169, 15~157, 0, 3~232,157

860 DATA 0, 3,232,169, 0, 93,250~ 2
870 DATA 93,251~ 2, 93,252, 2, 93,253
880 DATA 2,157,249, 2,238, 40, 6,173
890 DATA 40, 6,197, 67,208,189,138~ 72
900 DATA169, 75,141, 0, 5,162, 1,138
910 DATA157, O~ 5,232,~08,250,169, 0
920 DATA133, 48,169, 3,133~ 49, 32, 48
93() DA1·A254~104, 168~ 136, 32,229,253, 32
940 DATA245~253,169~ 5,133, 49, 32,233
950 DATA245~133~ 58, 32,143,247,169, 35
960 DATA133, 81,169,169,141, 0, 6,169
97() DATA 5,141, 1~ 6,169,133,141, 2
980 DATA 6,169, 49,141, 3, 6,169, 76
990 DATA141, 4~ 6,169,170,141, 5, 6
1000 DATAI69,252,141, 6, 6,169,224,133

1010 DATA 3,165, 3, 48,252, 76,148,193

146

FULL TRACK 20 ERROR SOURCE LISTING

;
;* CREATE HEADERS *

REM 20M. PAL
REM
OPEN2,B,2,"@O:20M.B,P,W"
REM
SYS40960

INITIALIZATION *

HBID

TAIL GAP

CHECKSUM

SECTOR COUNTER

SECTOR

; IDH

; LED ON

; TRACK

; IDL

$43
#$() 1
$0620
#$()8

$0626
#$()()

$0628

#soo
$7F
$OC
$51
SSC)
$00

$0400

JSR $Cl(H:)

LDA
STA
LOX
STX
STX
LOX
INX
STX
LOA
STA
LOA
STA
LOA
STA

LOX #$()O
HEADER LDA #$09
STA $()300, X
INX
INX
LOA $()628
STA $(l30C), X
INX
LOA $51
STA $03C)(), X
INX
LDA #$()()

STA $0300,X
INX
STA $0300,X
INX
LOA #$()F

520
530
540
55C)
56()
570

100
110
120
130
140
150
16C) • OPT P,02
170 ;
180 *=
190 ;
200 ;*
210
220
230
240
250
26()
270
280
290
300
310
32C)
330
340
350
360 ;
37()
380
39()
400
410
420
430
440
450
460
470
480
490
500
510

147

580 STA $0300, X GAP
590 INX
6()() STA $()300, X GAP
610 INX
620
630 LDA #$O() COMPUTE CHECt<SUM
640 EOR $()2FA~ X
650 EOR $()2FB, X
660 EOR $02FC!'X
670 EOR $02FD,X
680 STA $02F9,X
690 ;
700 INC $0628
710 LOA $()628
720 CMP $43
730 BNE HEADER
740 ;
750 TXA
760 PHA
770
780 ;* CREATE DATA *
790
800 LDA #$4B . 1541 FORMAT~

810 STA $0500
820 LDX #$(Jl 1541 FORMAT
830 TXA
84() DATA STA $()50(), X
850 INX
860 BNE DATA
870
880 ;* CONVERT TO GCR *
890
900 LOA #$00
910 STA $30
920 LDA #$03
930 STA $31
940 JSR $FE30
950 PLA
96() TAY
970 DEY
980 JSR $FDE5
990 JSR $FDF5
1000 LOA #$()5
1010 STA $31
1020 JSR $F5E9
1030 STA $3A
1040 JSR $F78F
1050 ;
roeo ;* JUMP INSTRUCTION *
1070

148

1oao LDA #$23
1090 STA $51
110()
1110 LDA #$A9
112() STA $O60()
1130 LDA #$05
114(J STA $()6()1

1150 LOA #$85
1160 STA $()602
1170 LOA #$31
1180 STA $l)6()3
1190 LDA #S4C
12()() STA $()6()4

1210 LOA #SAA
122l) STA $()605
1230 LDA #SFC
124() STA $()6()6

1250
1260 LOA #$EO
1270 STA $03
1280 ;
1290 WAIT LOA $()3

1300 8MI WAIT
1310
1320 JMP SC194

Full Track 20 Error Source Annotation

This routine has a real surprise in store. Initialization in lines 220-290 sets the drive
number to 0 ($007F) rather than rely on a default. The track is read from the header
table location $OOOC and stored at $0051. (Recall that the driver set up the header table.)
This memory location normally contains an $FF at powerup to let the drive know that
formatting has not yet begun. We must reset it to the active track, or the drive will
do a BUMP to track one to start the format. Similarly, we read the sector range from
$OOOD, incremented this number to obtain a sector total for the track, and stored it at
$0043. Line 300 is our try counter. Normally the drive makes 10 attempts to format
a single track. We either get it right the first time or give up. (The driver erases the
track as a safeguard.) We cannot allow the FDC to reattempt to format the track because
it will bypass our machine language routine and re-enter the standard ROM routine.
Lines 310-330 arbitrarily sets the tail gap to eight bytes in length. This avoids duplicating
245bytes of code from $FB1D to $FC12. RAM is at a dire premium and we have neither
the overhead nor the desire.

Next we turn on the LED for cosmetic purposes (line 370) and build our header table
and a dummy data block (lines 410-860). We incremented the data block identifier in
line 420. Binary to GCR conversion is done in lines 900-1040. Now for the jump instruc­
tion. First we reset the track number to 35 (lines 1080-1090) to let the FDC think that
this is the last track of a normal format. Why? We will be passing control to a standard
ROM routine in a minute and will let the FDC execute it. In other words, we are going
to work the 6502 in both IP and FDC modes. Formatting is done as a single job; one

149

track at a time. When a track is formatted theFDC looks at $0051 to see if 35 tracks
have been done. If not, it increments $0051 and does the next track as another discrete
job. The IP is going to wait for the FDC to reformat the track and then retake control.
We store the indirect buffer pointer to our data block buffer and a jump to $FCAA at
$0600. This ensures that the data block will not be lost in the ensuing shuffle. We then
set up the job queue for an execute of buffer number 3 ($0600) and away we go. The
IP monitors the FDC while it is reformatting the track. (Not only that, but the FDC
will verify the track to ensure that it was reformatted incorrectly!) When bit seven of
the job code ($EO) goes low, the IP wrestles control away from the FDC and jumps
to ENDCMD ($C194) to terminate the routine. DOS ist gut!

7.13 How to Create 27 Errors on a Full Track

Limitations: None.

Parameters: Track number.

FULL TRACK 27 ERROR

100 REM 27M ERROR - 1541
110 DIMD$(25)
120 PRINT" {CLR}MULTIF'LE 27 ERROR - 1541 11

130 PRINTII{DOWN}INSERT CLONE IN DRIVE"
140 INPUT" {DOl.aJN} DESTROY TRACK"; T
150 IFT<10RT>35THENEND
160 INPUT"{DOWN}ARE YOU SURE Y{LEFT 3}"
;(;1$

170 IFQ$<>nyuTHENEND
1800PEN15,8,15
19() PRINT#15," lO"
200 INPUT#15,ENS,EMS,ETS,ES$
210 I FEf\J$= II ()() " GOT026()
220 PRINT"{OOWN}"ENS", "EM$","ET$II,"ES$
23() CLOSE 15
240 END
250 REM SEEK
260 NS=20+2*<T>17)+(T>24)+(T>30)
270 S=NS
280 JOB=176
290 GOSUB580
30() FORI=()T023
310 READD
320 DS=D$+CHR$(D)
330 I$=I$+CHR$(O)
340 NEXTI
350 PRINTD15,IIM-WIICHR$(O)CHR$(6)CHR$(24)
D$

360 REM EXECUTE

150

370 PRINTtI{DOWN}{RVS}DESTROYING{ROFF} TR
ACK";T
380 JOB=224
390 GOSUB580
400 PRINT#15, IIM-WIICHR$ «(J) CHRS (6) CHR$ (24)
IS
410 FORJ=()T025
420 FOR I =()T07
43() READD
440 O$(J)=D$(J)+CHR$(D)
450 NEXTI
46() I'JEXTJ
470 1=0
480 FORJ=()T025
490 PRII'JT#15, "M-W"CHRS (I) CHRS (4) CHR$ (8) 0
$(J)

500 1=1+8
510 I'JEXTJ
520 REM EXECUTE
530 PRINT#15~"M-E"CHR$(O)CHR$(4)

540 CLOSE15
550 PRII\jT" {DOWN}DONE! II

56() END
570 REM JOB QUEUE
580 TRY=(J
59() F'RINT#15~ tlM-W"CHRS (12) CHRS (0) CHR$ (2)
CHR$(T)CHR$(S)
600 PRINT#15,"M-W"CHR$(3)CHR$(O)CHR$(1)C
HR$(JOB)
610 TRY=TRY+l
620 PRINT#15,IIM-R"CHR$(3)CHR$(O)
630 GET#15,ES
640 I FES= II .. THEI'JE$=CHR$ (0)
650 E=ASC(E$)
660 IFTRY=500GOT0690
670 IFE>127GOT0610
680 RETURN
690 CLOSE15
700 PRINT"{DOWN}{RVS}FAILED{ROFF}U
710 END
720 REM 21 ERROR
730 DATA 32,163,253~169~ 85~141, 1, 28

740 DATA 162,255,160, 48, 32,201,253, 32

750 DATA 0,254,169, 1, 76~105,249~234

760 REM 27M ERROR
770 DATA169, 0,133,127,166, 12,134, 81
780 DATA134~128~166, 13~232~134, 67,169

151

790 DATA 1~141, 32~ 6~169, 8~141, 38
800 DATA 6,169, 0,141, 40, 6, 32, 0
810 DATA193,162, 0,169, 8,157, 0, 3
820 DATA232,232,173~ 40, 6,157, 0, 3
83C) DATA232,165, 81, 157 ~ o, 3,232, 169
840 DATA O~157, 0, 3,232,157, 0, 3
850 DATA232~169, 15~157, 0, 3,232,157
860 DATA 0, 3,232~169, 0, 93,250, 2
870 DATA 93~251, 2~ 93,252, 2, 93,253
880 DATA 2,157,249, 2,254,249, 2,238
890 DATA 40, 6,173, 40, 6,197, 67,208
900 DATA186,138, 72,169, 75,141, 0, 5
910 DATA162, 1,138,157, 0, 5,232,208
920 DATA250~169, 0,133, 48,169, 3,133
930 DATA 49, 32, 48,254,104,168,136, 32
940 DATA229,253, 32,245,253,169, 5,133
950 DATA 49, 32,233,245,133, 58, 32,143
960 DATA247,169, 35,133, 81,169,169,141
970 DATA 0, 6,169, 5,141, 1, 6,169
980 DATA133,141, 2, 6,169, 49,141, 3
990 DATA 6,169, 76,141, 4, 6,169,170
1000 DATA141, 5, 6,169,252,141, 6, 6

1010 DATA169,224,133, 3~165, 3, 48~252

1020 DATA 76,148,193,234,234,234,234~234

FULL TRACK 27 SOURCE LISTING

100 REM 27M. F'AL
110 REM
12C) OPEN2, 8, 2, II @(): 27M. B, P , W..
130 REM
140 SYS40960
150
160 .OPT P,02
170 ;
180 *= $0400
190 ;
200 ;* INITIALIZATION *210
22C) LOA #$()O

230 STA S7F
240 LOX SOC
250 STX $51
260 STX S80
270 LDX SOD
280 INX
290 STX $43
300 LOA #$()1

152

310 STA S062()
320 LOA #$()8 · TAIL GAP,
330 STA $0626
340 LDA #$(>0
350 STA $()628 ; SECTOR COUNTER
360
37Cl JSR $C1C)() ; LED ON
380
39() ;* CREATE HEADERS *
400
410 LOX #soc)
420 HEADER # LDA #$08 ; HBID
430 STA $030(1, X
440 INX
450 INX · CHECJ<SUM,
460 LOA $0628
47() STA $030(), X SECTOR
480 II'JX
490 LDA $51
5(J() STA S0300,X · TRACI::•
51C) INX
520 LDA #$(JO

530 STA $0300, X IDL
540 I ".X
550 STA S030()!I X IDH
560 INX
570 LDA #selF
580 STA $0300, X · GAP~

590 INX
600 STA $030(), X , GAP
610 II'JX
620
630 LDA #$()O COMPUTE CHECI<SUM
640 EOR $02FA,X
650 EOR $02FB~X

660 EOR S02FC,X
67C) EOR $02FD!'X
680 STA $02F9,X
690
700 INC $02F9,X ; INCREMENT CHECKSUM

710 ;
720 INC $0628
730 LDA $0628
740 CMP $43
750 BNE HEADER
760 .,
770 TXA
780 PHA
790

153

800 ;* CREATE DATA *
810
820 LDA #$48 1541 FORMAT
830 STA $()500
840 LOX #$01 1541 FORMAT
850 TXA
860 DATA STA $0500~X

870 INX
880 BNE DATA
890
900 ;* CONVERT TO GCR *
910
920 LDA #$00
930 STA $30
940 LDA #$03
950 STA $31
960 JSR $FE3C)
970 PLA
980 TAY
990 DEY
1000 JSR $FDE5
1010 JSR $FDF5
102() LOA #$()5

1030 STA $31
1040 JSR $F5E9
1050 STA $3A
1060 JSR $F78F
1070 ;
1080 ;* JUMP INSTRUCTION *
109()
11 ()() LDA #$23
1110 STA S51
1120 ;
1130 LDA #SA9
1140 STA $()6()()

1150 LDA #$05
1I6() STA $()6()1
1170 LDA #$85
I1Be) STA $()6()2
1190 LDA #$31
12(JO STA S06(J3
1210 LOA #$4C
1220 STA $()604
1230 LOA #SAA
124() STA $()605
1250 LDA #$FC
126() STA $()6(l6

1270
1280 LDA #$EO
1290 STA $03

154

13()0
1310 WAIT LDA $03
1320 BMI WAIT
133()
1340 JMP $C194

Full Track 27 Error Source Annotation

See the annotation for 20M.PAL. The only major difference is in line 700 above. Note
the header block identifier ($08) in line 420 is left alone.

7.14 How to Create a 22 Error on a Single Sector

Limitations: None.

Parameters: Track and sector number.

SINGLE SECTOR 22 ERROR

100 REM 22A ERROR - 1541
110 PRINTII{CLR}22A ERROR - 1541"
120 PRINTII{OOWN}INSERT CLONE IN DRIVE"
130 INPUT"{DOWN}DESTROY TRACK AND SECTOR

(T,S)II;T,S
140 IFT<10RT>35THENEND
150 NS=20+2*(T>17)+(T>24)+(T>30)
160 IFS<OORS>NSTHENEND
170 INPUTII{DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$
180 IFQS<> ..YIITHENEND
190 OPEN15,8~15

200 PRINT#15, II ro-
210 INPUT#15,EN$,EMS,ETS,ES$
220 IFEN$=IIOOIIGOT0270
230 PRINT"{OOWN}IIENSII, IIEM$II,IIET$II,IIES$
240 CLOSE1S
250 END
260 REM SEEK
270 JOB=176
280 GOSUB440
290 IFE<>1GOT0550
300 REM READ
310 JOB=128
320 GOSUB44()
330 IFE<>1ANDE<>4ANDE<>5GOT0550
340 PRINT#15,IIM-W IICHR$(71)CHR$(O)CHR$(1)

CHR$(6)
350 REM WRITE
360 JOB=144

155

370 GOSUB440
380 PRINT#15,IIM-W IICHR$(71)CHR$(O)CHR$(1)
CHR$(7)
390 IFE<>lGOT0550
400 CLOSE15
410 PRINTII{DOWN}DONE!II
420 END
430 REM JOB QUEUE
440 TRY=O
450 PRINT#15,IIM-WIICHR$(8)CHR$(0)CHR$(2)C
HR$(T)CHRS(S)
460 PRINT#15,IIM-W IICHR$(1)CHR$(O)CHR$(1)C
HR$(JOB)
470 TRY=TRY+l
48C) PRINT#15, "M-R"CHR$ (1) CHR$ (0)
490 GET#15,E$
500 I FE$=" ..THENE$=CHR$ co
510 E=ASC(E$)
520 IFTRY=500GOT0540
530 IFE>127GOT0470
540 RETURN
550 CLOSE15
560 PRINTII{OOWN}{RVS}FAILED{ROFF}"
570 END

SINGLE SECTOR 22 ERROR SOURCE LISTING

None. Line 340 in the program creates a single sector 22 error by decrementing the
data block identifier. Line 380 restores the status quo.

7.15 How to Duplicate a 22 Error on a Single Sector

Limitations: None (requires disk swapping).

Parameters: Track and sector number.

DUPLICATE A SINGLE SECTOR 22 ERROR

100
110
41 11

120
130
T,S
140
150
160
170
;Q$

REM DUPLICATE A 22 ERROR - 1541
PRINT"{CLR}DUPLICATE A 22 ERROR - 15

PRINT"{DOWN}INSERT MASTER IN DRIVE"
INPUTII{DOWN}TRACK AND SECTOR (T,S)";

IFT<10RT>35THENEND
NS=20+2*(T>17)+(T>24)+(T>30)
IFS<OORS>NSTHENEND
INPUTII{DOWN}ARE YOU SURE Y{LEFT

156

lac) I FQ$< >II YII THEf\JEI\ID
1900PEN15,8,15
200 PRINT#15,IIIO"
210 INPUT#15,EN$~EM$~ET$,ES$

220 I FENS= II O() II GOT027()
230 PRINT"{DOWN}"ENS II

, IIEM$"~"ET$II,IIES$

240 CLOSEt5
250 END
260 REM SEEK
270 JOB=176
280 GOSUB55()
290 REM READ
300 JOB=128
310 GOSUB550
320 PRlt"T#15, IIM-RIICHR$ (56) CHRS (0)
330 GET#15,D$
340 I FD$=" IITHENDS=CHR$ co
350 CLOSE15
360 PRINT" {DOWI\I} REMOVE MASTER FROM DRIVE
II

37C) PRINTII II~"SERT CLONE II'I DRIVE"
380 PRINTIIPRESS {RVS}RETURN{ROFF} TO CON
TINUE"
390 GETC$:IFC$= .. IITHEN390
400 IFC$<>CHR$(13)GOT0390
410 PR I NT" 01< II

4200PEN15,8,15
430 REM SEE.(
440 JOB=176
450 GOSUB55()
460 PRINT:lt15,IIM-W"CHR$(71)CHR$(O)CHR$(1)
DS
470 REM WRITE
480 JOB=144
49() GOSUB550
500 PRINT#15, "M-l,aJ"CHR$(71) CHR$ (0) CHR$ (1)

CHR$(7)
510 CLOSE15
520 PRINTII{DOWN}DONE!II
530 END
540 REM JOB QUEUE
55() TRY=()
56() PRIN f#15, "M-W"CHR$ (8) CHR$ co CHR$ (2) C
HRS(T)CHR$(S)
570 PRlt.JT#15, "M-W"CHR$ (1) CHR$ co CHRS (1) C
HR$(JOB)
580 TRY=TRY+l
59() PRINT#15, IIM-R IICHR$ (1) CHRS co
600 GET#15,E$
610 IFE$=uIITHENE$=CHR$(O)

157

620 E=ASC(E$)
630 IFTRY=500GOT0660
640 IFE>127GOT0580
650 RETURN
66C) PRINT#15, "M-W"CHR$ (71) CHR$ co CHR$ (1)
CHR$(7)
670 CLOSE15
680 PRINT"{DOWN}{RVS}FAILED{ROFF}"
690 END

DUPLICATE A SINGLE SECTOR 22 ERROR SOURCE LISTING

None. Line 320 in the program reads the data block identifier from the master. Lines
460-490 duplicate the error on the clone. Line 500 puts our house back in order.

7.16 How to Format a Diskette with Multiple IDs

Limitations: None (requires disk swapping).

Parameters: None.

MULTIPLE ID FORMATTING

100 REM FORMAT A DISKETTE - 1541
110 DIMT(35),H$(35)~L$(35)

120 PRINT"{CLR}FORMAT A DISKETTE - 1541 11

130 PRINT"{DOWN}INSERT {RVS}MASTER{ROFF}
IN DRIVE"

140 GOSUB91 o
150 PRINT" {DOWN} {RVS}FETCHII'!G{ROFF} FORM
ATTING lO"
1600PEN15,8,15
170 FORI=lT035
180 T(!)=l
190 NEXTI
20() JOB=176
210 FORT=lT035
220 IFT(T)=OGOT0340
230 GOSUB970
240 IFE=1GOT028()
250 H$(T)=CHR$(O)
260 L$(T)=CHR$(O)
270 GOT0340
280 PR I NT# 15, II M-R" CHR$ (22) CHRS co
290 GET#15,H$(T)
300 IFH$ (T) = .. II THEI'JH$ (T) =CHR$ (o

310 PRINT#15!, "M-R"CHR$(23)CHR$(O)
320 GET#15,L$(T)

158

330 I FL$ (T) =It It -rHENL$ (1") =CHR$ co
34(l NEXTT
350 T=18
360 GOSUB97()
370 CLOSE15
380 PRINT" {CL~:}FORMAT A DISKETTE - 1541"

390 FIRINT II {DOlJ.JN} INSERT {RVS}BLANI<{ROFF}
II'J DRIVE"
400 GOSUB91 o
410 OPEN15,8~15

420 FORJ=()T06
430 FORI=OT07
440 READD
450 D$(J)=D$(J)+CHR$(D)
46(J NEXTI
470 I'JEXTJ
480 I=()
490 FORJ=(JT06
50C) PRINT#15, II M-tIJ" CHR$ (I) CHR$ (4) CHF:$ (8) D
$(J)

510 1=1+8
520 NEXTJ
530 FORI=1T035
540 PRINT#15~ IIM-l,tJ"CHR$ (49+1) CHR$ (4) CHR$ (
1)L$(I)
55(} PRINT#15 .. IIM-vJ II CHR$ (84+1) CHR$ (4) CHR$ (
1) H$ (I)
56(J NEXTI
570 REM EXECUTE
580 PRINT1'{DOWN} {RVS}FORMATTING{ROFF} 01
S~~ETTEII

590 PRINT#15,"M-E"CHR$(O)CHR$(4)
600 INPUT#15,EN$,EM$,ET$,ES$
610 T=18
620 S=()
630 JOB=176
640 GOSUB970
650 JOB=128
660 GOSUB970
670 PRINT#15, IIM-WIICHR$ (f) CHR$ (4) CHR$ (3) C
HR$(18)CHR$(1)CHR$(65)
680 JOB=144
690 GOSUB970
700 5=1
710 JOB=128
720 GOSUB97(l
730 PRINT#15, "M-WIICHR$ «(J) CHR$ (4) CHR$ (2) C
HR$(0)CHR$(255)
740 JOB=144
750 GOSUB970

159

760 CLOSE15
7700PEN15,8,15
780 PRINT#15, III'JO: 1541 FORMAT"
790 INPUT#15,EN$,EM$,ET$~ES$

800 5=0
810 JOB=128
820 GOSUB97(1
83C) PRINT#15, "M-W"CHR$ (162) CHR$ (4) CHR$ (2
)CHR$(50)CHR$(54)
840 JOB=144
850 GOSUB970
860 PRINT#15,uM-W II CHR$ (16 2) CHRS (7) CHR$ (2
)CHR$(50)CHR$(S4)
87Cl CLOSE15
880 PRINT II

{DOWN}DOt~E! ..
890 END
900 REM DELAY
910 PRINT"{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE II

920 GETC$:IFC$= THEN920
930 IFC$<>CHR$(13)GOT0920
940 PRINT"OKu
950 RETURN
960 REM JOB QUEUE
970 TRY=O
980 PRINT#15~"M-~JIICHR$(8) CHR$ (0) CHR$ (2) C
HR$(T)CHR$(S)
990 PRINT#15, II M-lJ.J"CHR$ (1) CHRS (0) CHR$ (1) C
HR$(JOB)
100() TRY=TRY+l
1010 PRINT#15, IIM-R"CHR$ (1) CHRS «»
1(l20 GET#15,E$
1030 IFE$=U "THENE$=CHR$ (0)
1()40 E=ASC (ES)
1050 IFTRY=500GOTOI070
1060 IFE>127GOT01000
1070 RETURN
1080 REM NEW
1090 DATA169~ O~133,127, 32, 0,193,169

1100 DATA 76,141, 0, 6,169,199~141, 1

1110 DATA 6,169,250,141, 2, 6,169,224

1120 DATA133, 3,164, 81,185, 49, 4,133

1130 DATA 19,185, 84, 4,133, 18,192, 35

1140 DATA208,240,165, 3, 48~252, 76,148

1150 DATA193,234,234,234,234,234,234,234

160

MULTIPLE ID FORMATTING SOURCE LISTING

100 REM FAD. PAL
110 REM
120 OPEN2,B,2,"@0:FAD.B,P,W"
130 REM
140 SYS4096()
150 ;
160 .OPT P,02
170 ;
180 *= $0400
190 IDL = $0431
200 IDH = IDL+35
210 ;
220 LDA #$()O
230 STA $7F DRIVE NUMBER
240
250 JSR sel00 LED
260
270 LOA #$4C JUMP TO $FAC7
280 STA $0600
290 LDA #$C7
300 STA S0601
310 LDA #$FA
320 STA $0602
330
340 LOA #$EO
350 STA $03
360 ;
370 TABLE LOY $51 ; TRACK NUMBER
380 ;
390 LDA IDL!'Y 10 LO
400 STA $13
410 ;
420 LDA IDH,Y ; 10 HI
430 STA $12
440 ;
450 Cpy #$23 TRACK 35
460 BNE TABLE
470
480 WAIT LOA $03
490 BMI WAIT
500 ;
510 JMP $C194

Multiple 10 Formatting Source Annotation

This is a modification of the standard formatting routine, NEW ($EEOD). Embedded
IDs are read from each track on the master and tabled in 1541 RAM starting at $0431

161

by the driver. The appropriate ID for each track is stored as the master disk ID ($12/3)
by the IP before control is passed to the FDC to format a track. After a track is format­
ted, the IP retakes control, finds the next ID in the table, stores it at $12/3, and passes
control back to the FDC. Because we do not have a NO:DISK NAME,ID command in
the command buffer, we cannot use the later portions of the standard formatting routine
to create the BAM and directory. Lines 670-780 of the driver clean up afterward.

7.17 How to Backup a DOS Protected Diskette

Limitations: Does not recreate any bad sectors. Requires six passes to backup a diskette
(see the annotation below).

Parameters: A formatted diskette.

1541 BACKUP

100 REM 1541 BACKUP
110 POI-<E56, 33
120 CLR
130 FORI=lT0144
140 READD
150 POKE49151+I,D
160 NEXTI
170 DIMT(3S)
l8C) FORI=1 T035
190 T(I)=1
200 NEXTI
210 READSRW,ERW
220 PRlt~l-" {CLR} 1541 BACKUP"
230 PRINT" {DOWN} Ir"SERT MASTER IN DRIVE"
240 GOSUB111()
2500PEN15,8,15
260 RW=8448
270 FORI=lT0126
280 POKE8447+I,O
290 NEXTI
300 RAM=87C)4
310 POI<E252, 34
320 c-o
330 REM SEEI<
340 FORT=SRWTOERW
350 NS=20+2*<T>17)+(T>24)+(T>30)
360 IFT(T)=OGOT0410
370 JOB=176
380 GOSUB1190
390 IFE=160T0470
400 T(T)=O
410 RW=RW+ (t~S+l)
420 RAM=RAM+(256*<NS+l»

162

430 POKE252, (RAM/256)
440 R=R+(NS+l)
450 GOT0620
460 REM READ
470 FORS=OTONS
48() GOSUB 13t)()

490 PRINT" {HOME} {DOWN 7} {RVS}READING{ROF
F} TRACK IIT$II - SECTOR IIS$

500 JOB=128
510 GOSUB119()
52() I FE= 1GOT0550
530 R=R+1
540 IFE<>4ANDE<>5GOT0580
550 SYS49165
560 C=l
57() POKERW, 1
58() RW=RW+ 1
590 RAM=RAM+256
600 POKE252~ (RAM/256)
610 NEXTS
62() r~EXTT

630 CLOSE15
640 IFC=OGOT01010
650 PRIt~T" {CLR} 1541 BACJ<UP"
66() F'R I I\lT II {DO~JI'J} INSERT CLOl'JE I N DR I ~)E"
670 GOSUBI110
68() OPEN15~8, 15
690 RW=8448
700 RAM=87()4
710 POKE252,34
720 REM SEEK
730 FORT=SRWTOERW
740 NS=20+2*<T>17)+(T>24)+(T>30)
750 JOB=176
760 GOSUB1190
770 IFE=lGOT0820
780 RAM=RAM+(256*<NS+l»
790 W=W+(NS+l)
8()O GOT099()
810 REM WRITE
820 IFT(T)=lGOT0870
830 Rl.JJ=RW+ (NS+ 1)
840 RAM=RAM+(256*<NS+l»
850 POKE252, (RAM/256)
860 GOT099()
870 FORS=OTot~S

880 IFPEEK(RW)=OGOT0950
890 GOSUS 130()
900 PRINT"{HOME}{OOWN 7}{RVS}WRITING{ROF
F} TRACK "T$II - SECTOR "5$

163

910 SYS49228
920 JOB=144
930 GOSUB1190
940 IFE<>1THENW=W+l
950 RW=RW+1
960 RAM=RAM+256
970 POKE252, (RAM/256)
980 NEXTS
990 NEXTT
1000 CLOSE15
1010 IFERW<>35GOT0210
1020 PRINTII{HOME}{DOWN 2}READ ERRORS :IIR.. ..

1030 PRINT" {DOWI'J}WRITE ERRORS: "w"..
1040 PRINT" II

1050 PRINTIIDONE!II
1060 PRINT" II

1070 POKE56,160
1080 CLR
1090 END
110() REM DELAY
1110 F'RINTu {DOl,lJN} PRESS {RVS}RETURN{ROFF}

TO CONTINUE"
1120 IFC=OANDSRW<>1GOT01160
1130 GETC$:IFCS<> THEN1130
114C) GETC$: 1FC$=" II THEN 114()
1150 IFC$<>CHRS(13)GOTOl140
116() F'RINT"OK"
1170 RETURN
1180 REM JOB QUEUE
1190 TRY=O
1200 PRINT#15~"M-WIICHR$(8)CHR$(O)CHR$(2)

CHR$(T)CHR$(S)
1210 PRINT#15,IIM-W II CHR$ (1) CHR$ (O) CHR$ (I)
CHR$(JOB)
1220 TRY=TRY+l
1230 PRINT#15,IIM-RIICHR$(1)CHR$(O)
1240 GET#15,ES
1250 E=ASC(E$+CHR$(O»
1260 IFTRY=500GOT01280
1270 IFE>127GOT01220
1280 RETURN
1290 REM STR$(T,S)
1300 T$=RIGHT$(IIQII+RIGHT$(STR$(T),LEN(ST
R$(T»-1),2)
1310 S$=RIGHT$ (IIC)II+RIGHT$ (STR$ (5) , LEN (ST
R$(S»-1),2)
1320 RETURN
1330 REM $COOO

164

1340 DATA 77, 45, 82, 0, 4,255,128, 77

1350 DATA 45, 87, 0, 4, 32,169, 0,133

1360 DATA2S1,141, 3,192, 32, 34,192,169

1370 DATA128,133,251,141, 3,192, 32, 34

1380 DATA192, 96,162, 15, 32,201,255,162

1390 DATA 0,189, 0,192, 32,210,255,232

1400 DATA224, 7,208,245, 32,204,255,162

1410 DATA 15, 32,198,255,160, 0, 32,207

1420 DATA255,145,251,200,192,129,20B,246

1430 DATA 32,204,255, 96~169, 0,141, 10

1440 DATA192,240, 11,173, 10,192, 24,105

1450 DATA 32,141, 10,192,240, 47,162, 15

1460 DATA 32,201,255,162, 0,189, 7,192

1470 DATA 32,210,255,232,224, 6,208,245

1480 DATA173, 10,192,133,251,160, 0,177

1490 DATA251, 32,210,255,200,192, 32,208

1500 DATA246,169, 13, 32,210,255, 32,204

1510 DATA255,169, 0,240,198, 96~234,234

1520 REM TRACK
1530 DATA1,6,7,12,13,17,18,24,25,30,31~3

5

1541 BACKUP SOURCE LISTING

100 REM BACKUP. PAL
110 REM
120 OPEN 2,8,2,1I@0:M.B,P,W II

130 REM
140 SYS40960
150 ;
160 .OPT P,02
170 ;

165

UT

29() CHROUT
300 CLRCHN
310 CHKIN =

180 ; M-R / M-W ROUTINES
190
200 *= $CO()O
210 ;
220 ; RAM LOCATIONS USED
230 ; ------------------
240 POINT = $OOFB ;POINTER TO READ/WRITE

PAGE
250
260 ; ROM ROUTINES USED
270 -----------------
280 CHKOUT = $FFC9 ;OPEN CHANNEL FOR OUT
PUT

= $FFD2 ; OUTPUT A CHARACTER
= $FFCC ;CLEAR ALL CHANNELS

$FFC6 ;OPEN CHANNEL FOR !NP

---3zC~ C}1Rl-~~ =- - $F-FGF--;-I-NPU-T A CH-AR-ACTER---- - --
330
34() ; D I 51< M-R g(M-W COMMANDS
350
360 I'1R • Ase ..M-R II

370 .BYTE SOO,S04,SFF,$80
380
390 MW • Ase ..M-l.'J II

400 TEMP .BYTE $00,$04,$20
410
420 ;*--------------------------*
430;* READ FROM DISK ROUTINES *
440 ;*--------------------------*
450 ; M-R ENTRY POINT
460 ; ---------------------
470 LDA #$(u)

480 STA POINT ;POINT TO FIRST HALF
490 STA MR+3 ;ASK FOR FIRST HALF
500 JSR READIT ;READ FIRST HALF
510
52() LDA #$8()
530 STA POINT ;POINT TO SECOND HALF
540 STA MR+3 ;ASK FOR SECOND HALF
550 JSR READIT ;READ SECOND HALF
56()

570 RTS ;RETURN TO BASIC
580
590 ; SUBROUTINE TO READ IN HALF PAGE
600 ; -------------------------------
610 READIT LDX #$OF ;PREPARE CHANNEL 15
FOR OUTFaUT
620 J SR C!-U<OUT
630

166

640 LOX #$00
650 LOOP1 LDA MR,X ;SEND M-R COMMAND
660 JSR CHROUT
670 INX
680 CPX #$07
690 BNE LOOP1
700
710 JSR CLRCHN ; CLEAR THE CHANNEL
720
730 LOX #$OF ;PREPARE CHANNEL 15 FOR INP
UT
740 JSR CHKlr"
750
760 LOY #$()()

770 LOOP2 JSR CHRIN
780STA (POINT),Y
790 INY
800 Cpy #$81
810 BNE LOOP2
820
830 JSR CLRCHN ; CLEAR THE CI-4ANNEL
840 RTS ;END OF READ HALF PAGE
850
860 ;*--------------------------*
870;* SEND TO DISK ROUTINES *
880 ;*--------------------------*
890 ; FIRST M-W ENTRY POINT
900 ; ---------------------
910 MRITE LDA #$00 ; INITIALIZE PART PAGE

POINTER
920 STA TEMP
930 BEQ ENTER
940 ;
950 LOOP3 LDA TEMP
960 CLC
970 ADC #$20
980 STA TEMP
990 BEQ DONE
100() ;
1010 ENTER LDX #$OF ;PREPARE CHANNEL 15
FOR OUTPUT
102() J SR CHJ<OUT
1030
1040 LOX #$()O
105() LOOP4 LOA Mt,tJ, X ; SEND IIM-W LO HI $20

10b() JSR CHROUT
1070 INX
1()80 CP X #$()6
1090 BNE LOOP4

167

LDA TEMP ;POINT TO START OF PART PA

CHARAC

;NOT DONE 32 YET

;CARRIAGE RETURN

;BACK TO BASIC

;ALWAYS TO DO NEXT PART

DONE RTS

LDA #$00
BEQ LOOP3

JSR CHROUT
INY
CPY #$20
BNE LOOP5

LDY #$O(}

LOA #$OD
JSR CHROUT
JSR CLRCHN ;CLEAR THE CHANNEL

LOOP5 LDA (POINT),Y ;SEND

STA pOIr"T

1230
124()
1250 ;
1260
1270
1280 ;
1290

11 (JO ;
1110
GE
112C)
1130
1140
115()
1160
TERS
117()
1180
1190
1200
1210 ;
1220

1541 Backup Source Annotation

The BASIC driver reads a sector from the master diskette into 1541 RAM using the
job queue. The contents of the RAMare transferred into the C64with a machinelanguage
memory-read. After a pass is complete, the clone is inserted into the drive. A machine
language memory-write command is then used to transfer the bytes back to 1541 RAM.
The BASIC drive writes the buffer out to the diskette using the job queue. The above
routine illustrates how to do memory-read and memory-write commands in machine
language. It is interesting to note that reading 256 bytes from 1541 RAM appears to
take amost ten times as long as writing 256 bytes to 1541 RAM. However, the C64 in­
ternal clock is not reliable at all while performing I/O to the disk drive. Bypassing a
bad track can be done anywhere between lines 200-340 ifnecessary. Any of the previous
11 routines may be used to recreate any errors that you found on the master diskette
after a backup is made.

7.18 How to Copy a File

Limitations: 125 blocks in length
Will not copy a relative file
Wild cards are not permitted

Parameters: File name and file type.

168

1541 COpy

100 REM 1541 COpy
110 POKE56,16
120 CLR
130 POKE251,O
140 POKE252,16
150 POKE253,0
160 POKE254!'16
170 FORI=1TD72
180 READD
190 POKE49151+I,D
200 NEXTI
210 PRIt.JT II {CLR} 1541 COPY"
220 PRINTII{DOWN}INSERT MASTER IN DRIVE"
230 GOSUB750
240 GOSUB810
250 INF'UTII {DOf,aJN}FILENAME"; F$
260 IFLEN(F$)<>OANDLEN(FS)<17GOT0280
270 GOT01000
280 INPUT"{DOWN}FILE TYPE (OSPU) P{LEFT
3}II;T$

290 IFT$="OIIORT$=IISIIORT$="P"ORT$="U"GOTO
310
300 GOTO 1 (J()l)

310 RW$=IIR II

320 GOSUB89()
330 SYS49152
340 CLOSE2
350 INPUT#15~EN$,EM$,ET$~ES$

360 I FEN$= ..()Q IIGOT0380
370 GOT0850
380 CLOSE15
390 PRINT" {DOl.'JN} INSERT CLONE IN DRIVE"
400 GOSUB750
41l) GOSUB810
420 PRINT#15,"M-R"CHR$(1)CHR$(1)
430 GET#15!,D$
440 D=ASC(D$+CHR$(O»
450 IFD=65GOT0490
460 PRINT" {DOWN}73, CBM DOS V2.6 1541, O()~
00"
470 GOT071 ()
480 PRINT#15, "M-R"CHR$ (25C) CHR$ (2) CHR$ (3
)

490 GET#15~L$

500 L=ASC(L$+CHR$(O»
510 GET#15,B$
520 GET#15,H$
530 H=ASC(H$+CHR$(O»

169

540 C=L+(H*256)
550 S=PEEK(252)+«PEEK(253)-16)*256)
560 B=INT«S/254)+.5)
570 IFC-B)=OGOT0600
580 PRINT"{DOWN}72,DISI-< FULL,(H)~()O"

59(} GOTO?1 o
600 RW$= IIl.tJ"
61 o GOSUB89(l
620 S'{S49182
63() CLOSE2
640 INPUT#15,EN$~EM$,ET$,ES$

650 PRINTII{DOWN}DONE!II
660 CLOSE1S
670 POI<E56, 160
680 CLR
690 Et~D

7()O REM CLOSE
710 CLOSE15
720 PRINT" {DOWN} {R'JS}FAILED{ROFF} II

730 GOT0670
740 REM DELAY
750 PRINT"{OOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
760 GETC$: I FC$= II .. THEN76e)
770 IFC$<>CHR$(13)GOT0760
780 PRINTIIOKII
790 RETURN
800 REM INITIALIZATION
8100PEN15,8,15
820 PRINT#15, II Ie)"
830 INPUT#15,EN$,EM$~ET$,ES$

840 I FEI'J$= ..oo II THENRETURI'I
850 PRINTII{DOWN}IIEN$II, IIEM$II,IIET$II,IIES$
860 CLOSE15
870 GOT0670
880 REM FILE NOT FOUND - FILE EXISTS
890 OF'EN2, 8,2, "(): II+F$+II, "+T$+II ~ II+RW$
900 INPUT#15~EN$~EM$~ET$~ES$

910 I FEN$=" O() II THENRETUF:N
920 CLOSE2
930 PRINTII{DOWN}IIEN$II, IIEM$II,IIETII,UES
940 PRINT" {DOWN} {R'JS}FAILED{ROFF}"
950 INPUT#15,EN$,EM$,ET$,ES$
960 CLOSE15
97() GOT067()
980 REM LOAD - SAVE
990 DATA162, 2, 32,198,255.160, 0, 32
1000 DATA228,255,145,251, 32,183~255, 41

1010 DATA 64,208, 8,200,208,241,230,252

170

1020 DATA 76, 5,192,132,251~ 32,204,255

1030 DATA 96~162, 2, 32,201,255,160, 0

1040 DATA177,253, 32,210,255,196~251,240

1050 DATA 8,200,208,244,230~254, 76, 38

1060 DATA192,165,254,197,252,208,242~132

1070 DATA253, 32,204,255, 96~234~234,234

COpy A FILE SOURCE LISTING

100 REM COPY.PAL
110 REM
120 OPEN2, B, 2, II@(J: COPY. B, P, W"
130 REM
140 SYS4096()
150 ;
160 .OPT P,02
170 ;
180 *= $COOO
190 ;
200 ; LOAD
210 ;
220 LOX #$02
230 JSR $FFC6 ; OPEN2,B,2
240 ;
250 LOAD LDY #$00
260 READ JSR $FFE4 . IN,
270 STA ($FB),Y
280 JSR $FFB7 ; READST
290 AND #64
300 BNE READY
310 INY
320 BNE READ
330 INC $FC
340 JMP LOAD
350 ;
360 READY STY $FB
370 JSR $FFCC ; CLOSE2
380 RTS
390 ;
400 . SAVE,
410 ;
420 LDX #$02
430 JSR $FFC9 OPEN2,8,2
440 ;
450 SAVE LDY #$00

171

460 WRITE LDA ($FD),Y
470 JSR $FFD2 ; OUT
480 CPY $FB
490 BEQ BREAI<
500 CONT INY
510 BNE WRITE
520 INC $FE
530 JMP SAVE
540 ;
550 BREAK LDA $FE
560 CMP $FC
570 BNE CONT
580 ;
590 STY $FD
600 JSR SFFCC CLOSE2
610 RTS

Copy a File Source Annotation

This routine emulates a LOAD and SAVE from machine language.

Conclusion

In conclusion, we hope that this chapter has taken some of the mystery out of DOS pro­
tection schemes. We encourage serious readers to study the program listings carefully.
The programming techniques employed are perhaps the most sophisticated applications
of Commodore's direct-access commands that you will ever see.

172

CHAPTER 8

GETTING OUT OF TROUBLE

The best way to get out of trouble is to stay out of trouble in the first place! It is much
easier to recover a lost file by digging out an archival copy than trying to recover it
from a blown diskette. Need we remind you? BACKUP! BACKUP! BACKUP!

However, since we feel that Murphy was a rash optimist, the likelihood of you always
finding that backup copy is minimal, unless of course, you manage to recover that file
on the diskette. Then, and only then, will the archival copy magically appear right where
you thought you left it.

Since you are reading this chapter, you probably have a problem and are in desperate
need of help. Please read on.

8.1 Unscratching a File

Inadvertently scratching a file is by far the most commonproblem. As long as you have
not written any new information to the diskette since you scratched that file, it can be
recovered. Recall that when a file is scratched, it is not erased from the diskette. Only
two things have happened:

1. The file-type byte in the directory entry is set to $00.
2. The sectors associated with that file are freed in the BAM.

To unscratch a file, all you have to do is change the file-type byte back to its original
value and VALIDATE the diskette to re-allocate the sectors.

The programs VIRTUAL DIRECTORY and EDIT TRACK & SECTOR, which are
listed in Appendix C, help you to do this. Here's how you should use these programs
to recover a scratched file.

STEP 1. Load and run the VIRTUAL DIRECTORY program on the diskette. The direc­
tory will be displayed in groups of eight entries. Scratched files are highlighted
in reverse video. Each group constitutes a different sector on track 18. Count
the groups to determine which group the scratched entry is in. Note not only
which group the scratched entry is in, but also whether it is in the first half
or the last half of the group. (One of the first four file entries or one of the
last four.)

Consult the table below to determine the number of the sector containing the entry.

173

Group - Sector

1 - 18,1
2 - 18,4
3 - 18,7
4 - 18,10
5 - 18,13
6 - 18,16

Group - Sector

7 - 18,2
8 - 18,5
9 - 18,8

10 - 18,11
11 - 18,14
12 - 18,17

Group - Sector

13 - 18,3
14 - 18,6
15 - 18,9
16 - 18,12
17 - 18,15
18 - 18,18

STEP 2. Load and run the EDIT TRACK & SECTOR program on the diskette with
the scratched file. When asked for the track and sector, enter track 18 and
the sector number you read from the table. When prompted for the starting
byte, enter 00 if the scratched file entry was one of the first four files in the
group. Enter an 80 if the scratched file was displayed among the last four in
the group.

STEP 3. When the hex dump of the half-sector is displayed, cursor over to the third
column of hexadecimal numbers on the display. Next locate the name of the
file in the ASCII display on the right-hand side of the screen. Move the cur­
sor down until it is on the same line as the start of the file name. If you have
done things correctly you should be on a row labeled with a $00, $20, $40, $60,
$80, $AO, $CO, or $EO. The byte under the cursor should be a 00. This is the
file-type byte. The 00 indicates a scratched file. Type over the 00 value with
the value that corresponds to the correct file type as indicated below.

File Type Value

PRG 82
SEQ 81
REL 84
USR 83
DEL 80

STEP 4. Hold down the SHIFT key and press the CLR/HOME key. This will terminate
the edit mode. When asked whether to rewrite this track and sector, press
Y and the modified sector will be written to the diskette in a few seconds.

STEP 5. Load and list the directory to see if the file name now appears. If it does not,
you made a mistake and things may have gone from bad to worse. Hopefully,
the file will be listed.

STEP 6. VALIDATE the diskette by entering in direct mode:

OPEN 15,8, 15, IIve)lI: CLOSE15

If the drive stops and the error light is not flashing, everything has gone according to
plan and the file has been recovered successfully. (If the VALIDATE command failed,
see sections 8.2 and 8.3.)

174

NOTE: It is a good idea to practice these steps on a test diskette before you attempt
to recover your lost Accounts Receivable! To do this: SAVE a file to disk, SCRATCH
it, and follow the steps outlined above.

8.2 Recovering a Soft Error

In Chapter 7 we described in detail the read/write DOS errors. We did not, however,
categorize these errors by type. Read/write errors fall into two categories: "hard" er­
rors and "soft" errors. A hard error is one that cannot be recovered, period. Hard er­
rors are errors that occur in a header block. Recall that a header block is never rewrit­
ten after initial formatting. Since a header block cannot be rewritten, the data in a sec­
tor containing a hard error is unrecoverable. (Unfortunately, this also means that the
forward pointer has been lost and, for all intents and purposes, the remainder of the
file as well.) Soft errors are errors that occur in a data block. Since data blocks can be
rewritten, soft errors can sometimes be recovered if the diskette itself is not flawed
or physically damaged. The table below indicates whether a read/write error is a hard
or soft error.

Soft Errors

22 Read Error
23 Read Error

Hard Errors

20 Read Error
21 Read Error
27 Read Error
29 Read Error

Appendix C contains two programs that are useful in trying to recover a sector that
has a soft error. However, recovery cannot be guaranteed in all cases. These two pro­
grams are RECOVER TRACK & SECTOR and LAZARUS. The first program attempts
to rewrite a damaged sector. LAZARUS will attempt to resurrect an entire diskette.
The latter program returns a status report of the number of read errors encountered.
It also reports the number of write errors that occurred. A write error indicates that
a soft error encountered along the way was actually a hard error in disguise. Sorry about
that.

8.3 Recovering a Hard Error

A hard error does not necessarily mean that an entire file is unrecoverable. In all honesty,
though, the technique that we are about to describe is a shot in the dark. Before you
attempt the steps outlined below ask yourself the following question. Are you experien­
cing errors on other diskettes in your library? If you answered yes to this question,
the cause of these errors may be in the disk drive itself. Your 1541may be out of align­
ment and a trip to your nearest Commodore dealer is in order. If the problem occurs
on only one diskette read on.

NOTE: This section does not apply to relative files. Refer to section 8.4 instead.

WARNING: The technique we are about to describe here is not for the faint-hearted.
Consult with your physician before attempting this exercise.

175

STEP 1. Load and run the VALIDATE A DISKETTE program contained in Appen­
dix C. This program emulates the VALIDATE command from BASIC. It will
chain through each active file entry in the directory and highlight a bad file
without aborting.

STEP 2. Load and run FIND A FILE. This program will return the track and sector
locations of where the file resides in the directory as well as where it starts
on the diskette. The directory track and sector is extraneous information for
our present purpose. Note only the starting track and sector.

STEP 3. Load and run DISPLAY A CHAIN. This program requires you to input a
track and sector. Input the starting track and sector obtained in step 2. The
program will chain through all forward track and sectors on the diskette from
this entry point until an error is encountered. (If the error is a soft error, STOP!
Do not pass GO. Go directly to section 8.2.) Ignore the sector where the error
was encountered. The file is virtually lost from that point on. (Recall that the
link has been destroyed.) Make note of the last successful track and sector
displayed.

STEP 4. Load and run EDIT TRACK & SECTOR. You will want to input the track
and sector obtained in step 3. The starting byte is always 00. Change the first
two bytes to 00 and FF, respectively. Rewrite the sector when prompted to
do so. You have in effect severed the forward track and sector link described
in Chapter 4. This allows you to manipulate the front end of the file. It is the
only portion of the file that is clearly intact.

If it is a BASIC PRG file, the internal BASIC links have been destroyed. You can restore
the links on the C64 with a machine language monitor or on the diskette with the EDIT
TRACK & SECTOR program. If you do not restore the BASIC links, the C64 will crash
as soon as you attempt to edit the last line of the program. Using EDIT TRACK &
SECTOR, call up the sector that was just rewritten. You will have to inspect both half­
pages of the block. Look for the last 00 byte in the page. Change the two bytes that
immediately follow it to a 00 00 also. Note the position of the last 00 byte edited in hex­
adecimal. If you are in the second-half of the block, rewrite the sector and then recall
the first-half. Change. the forward sector pointer to the hexadecimal position of the last
00 byte you changed. Rewrite the sector a final time. You will now be able to load, list,
and edit the program. Hopefully, you will remember to save it to a different diskette
this time.

If it was a SEQ file, the recovered data is intact. You will have to read it into C64 RAM
and rewrite it to another file. If you do not know how to manipulate a sequential file
contact someone who does.

8.4 Recovering a Relative File

The only realistic way to recover a REL file is to open it for a read and copy it record
by record into a sequential file. The program to do this should not abort when an error
is encountered. Simply skip over the record and go on. This way only the records that
reside, in whole or in part, on the damaged sector are not recovered. If you do not know
how to do this, take your diskette to an experienced programmer and see if he/she can
assist you.

176

8.5 Recovering an Entire Diskette

NOTE: This section applies only to a diskette that cannot be initialized.

Chapter 7 contains a program called 1541 BACKUP (section 7.15). Run this program
to make a backup of your blown diskette. After you have made a backup, load and list
the directory. If the directory appears normal, you will want to validate the backup.
If the validate command fails, inspect and copy each intact file to a new diskette. Some
files may be lost in the process.

If the directory cannot be displayed in its entirety, a hard error was encountered on
track 18 during the backup operation. The sector containing the hard error could not
be copied. As a result, the directory on the backup is corrupt. Load and run DISPLAY
A CHAIN on the backup. Attempt to follow the chain starting at track 18, sector 1.
The display will indicate the location of the uncopyable sector by aborting. Run EDIT
TRACK & SECTOR on the backup to relink the directory around this sector. Refer
to the table in section 8.1 to determine which sector normally follows the one in ques­
tion. Keep in mind that eight files will be lost by this action. If all goes well you should
be able to list the directory now. Inspect and copy all remaining files to a new diskette.

8.6 Recovering a Physically Damaged Diskette

If your diskette has sustained physical damage all is not lost. The most common forms
of physical damage are a warped jacket or environmental contamination. In either case,
the solution is to don a pair of plastic gloves, carefully slit open the protective jacket,
remove the plastic disk, wash it if necessary, and insert it into another jacket. Obtain­
ing a new jacket may mean destroying a perfectly good diskette, though. NOTE: Some
brands of head cleaners come with a reusable jacket that is just right for this job.

Be sure to keep your fingers off the recording surface at all times! Handle the plastic
disk only by the edges or the central hub ring. Also make a mental note as to which
side faces up. (The reinforcing ring is usually affixed to this side.)

If the plastic disk is gummy, you will want to wash it carefully. Use a small amount
of photographer's wetting agent to keep the water from leaving a residue. Allow the
plastic disk to air dry.

Once you have inserted the plastic disk inside a new jacket, attempt to initialize it. If
you cannot initialize it, try turning the diskette over. You may have the wrong side up.

If the diskette can be initialized, make a backup NOW!

8.7 Recovering an Unclosed File

An unclosed file is one whose file type is preceded by an asterisk in a directory listing
(e.g., *SEQ, *PRG). Such files cannot be read normally. However, there is an un­
documented read mode that will allow you to read an unclosed file. This is the M mode.
The M stands for MODIFY. The way to open a file for a read normally looks like this:

177

SYNTAX:
OF-EN 2!, 8~ 2~ "file name,S,RII
OPEN 2, 8, 2, "file name,P,RII

(SEQ file)
(PRG file)

To read an unclosed file substitute, an M for the R in the OPEN statement like this:

SYNTAX:
OPEN 2, 8, 2, IIfile name,S,M II

OF-EN 2, 8, 2, IIf i 1 e name, P, Mil
(SEQ file)
(PRG file)

The file can now be read into the C64 and stored in RAM. There is one problem, though.
You will have to display the incoming data bytes because an EOI will not be returned
by the disk drive. Note that the last sector written to the diskette will contain an er­
roneous forward track and sector pointer. As a result, there is no realistic way to deter­
mine when you have read beyond the actual contents of the unclosed file itself. Watch
the incoming data bytes carefully. Your read program should have an embedded break­
point. When you think you've captured all of the data bytes, rewrite them to another
diskette.

Once you have the data safely stored on another diskette, use the techniques described
at the end of Section 8.3 to restore the internal BASIC links if it was a PRG file.

Don't forget to VALIDATE the diskette which has the unclosed file in the directory
while you're at it. Recall that scratching an unclosed file poisons the BAM.

8.8 Recovering from a Short New

If you have inadvertently performed a short NEW on a diskette, there is more hope
than you think. Recall that a short NEW only zeros out the BAM and sector 1 from
track 18. Run the EDIT TRACK & SECTOR program on the diskette in question. Call
up track 18, sector 1 and change the forward track and sector pointer from a 00, FF
to a 12,04.

Next, load and list the directory. If your diskette contained more than eight active files,
all but the first eight files will be displayed on the screen. (The first eight files have
been lost for now.) Do not attempt to VALIDATE the diskette because the directory
sectors will not be reallocated. Copy all of the remaining files onto a new diskette.

If the first eight files are very important, you can attempt to recover them as well.
However, it will not be easy! You must find the starting track and sector locations of
these files yourself through a process of elimination. Begin by making a grid with a space
for each sector on the diskette like this:

178

1 2 3

TRACK

4 5 6 7

SECTOR

o

1

2

3

Next, VALIDATE the original diskette and then load and run the program DISPLAY
A BLOCK AVAILABILITY M...~P listed in Appendix C. Working from the display on
the CRT, indicate on your chart which sectors are in use by other files. Once you have
done this, you should see a blank area centered around track 18. This is where you lost
files reside.

Now, load and run the DISPLAY A CHAIN program. The first file probably starts
on track 17, sector o. Record the chain displayed to the screen on your chart. Once you
have recorded the first chain, begin looking for the next one. It probably begins on an
open space on track 17 or, if the first chain was a long one, on track 19, sector O. Work
outward from track 18 until you have located all eight missing files.

Once you have the starting track and sector locations for the files, use the EDIT TRACK
& SECTOR program to reconstruct track 18, sector 1. The tables and hex dumps from
Chapter 4 can be used as a guide. Be sure to substitute the starting track and sector
locations that you found and not the ones in this manual.

Now copy the eight files onto another disk. Once this is done, take a break and meditate
on the virtues of archival backups!

8.9 Recovering from a Full New

If you are reading this section in desperation, relax. It is already too late. However,
if it dawns on you in the future that you are holding a blank diskette in your hand while
the master that you were going to backup is being reformatted, don't PANIC! Attempt
to regain your composure and pop the drive door open. At this point you don't care
what the 1541 User's Manual says about opening the drive door when the red activity
indicator is on. You are losing one full track every time you hear the stepper motor click.

Next attempt to make a backup copy of the diskette using the 1541 BACKUP program
listed on page 162. (Please, try to remember which diskette you want to format this
time.) Recall that formatting works from the outermost track (track 1) to the innermost

179

track (track 35). If you threw the door in time track 18 will still be intact and so will
most of your files. The DOS works outwards from track 18 when writing to a diskette.
The outermost tracks were probably never in use.

Now load and run the VALIDATE A DISKETTE program to assess the damage. Often­
times all files are recovered.

Conclusion

In short, recovering a damaged diskette is more art than science. The utilities that we
have presented here can prove invaluable in time of need. When all is said and done,
however, it is much easier to create errors than to pick up the pieces afterward.

180

CHAPTER 9

OVERVIEW OF THE 1541 DOS

9.1 Introduction to 1541 DOS

Recall that in Chapter 2 we stated that the 1541 is an intelligent peripheral. It contains
its own 6502microprocessor, 2K of RAM, I/O chips, and the DOS program which is per­
manently stored in 15.8K of'ROM. The diagram below illustrates how the RAM, ROM,
and I/O chips are arranged.

$0000

$0100

$0200

$0300

$0400

$0500

$0600

$0700

$0800

2K of RAM

Job queue, constants,
pointers & work area

Stacks, work areas
and overflow buffer

Command buffer & work

Data buffer #0

Data buffer #1

Data buffer #2

Data buffer #3

Buffer for BAM

Input-Output Chips
$1800

6522 VIA CHIP
Main I/O to computer

$180F --------------..

$lCOO------------.
6522 VIA CHIP
Main I/O to disk

$lCOF ~-----------..

DOS in 15.8K of ROM
$C100 ..-------------.

Communications and
file management

$F259 __-----------t
Disk controller

routines
$FFFF-----------.......

9.2 The Hard Working 6502

The 1541 disk drive is a new addition to Commodore's line of disk drives. Commodore's
earlier drives, the 2040, 4040, 8050 and 8250 had three microprocessors: a 6502 to han­
dle communications with the computer, a 6504 to act as a disk controller, and a 6532
to translate between normal 8-bit characters and the 10-bit GCR code that is actually
written on the diskette. The 1541 has only one 6502 to do everything.

181

The 6502 in the 1541alternates between two modes of operation: Interface Processor
(IP) mode and Floppy Disk Controller (FDC) mode. The 6502switches to its FDC mode
approximately every 10 milliseconds. The switch is made in response to an interrupt
(IRQ) generated by one of the 6522 timers. The main IRQ handling routine checks to
see if the IRQ was generated by the timer. If it was, the 6502 begins to execute the
FDC routines. Once in FDC mode the interrupt signal is disabled and the 6502remains
in FDC mode until any jobs it has to do are completed. If the interrupt signal was not
disabled, it might disrupt a read or write job.

9.3 Major IP Routines

One of the difficulties in using the detailed ROM maps in Appendix B is locating the
routine you want. This section summarizes the major IP routines and their entry points
to help you find your way around.

a] Initialization

When the disk drive is first switched on, the RESET line is held low. This causes the
6502 to do an indirect JMP via the vector at $FFFC to the initialization procedure at
$EAAO. The main features of the initialization process are shown below.

OVERVIEW OF INITIALIZATION

$EAAO

$EAC9

$EAFO

$EB22

$EB4B

$EB87

$EBC2

$EBDA

Test zero page RAM

Do checksum test of ROM's

Test remainder of RAM

Initialize I/O chips

Set up buffer tables

Set up buffer pointers

JSR to inititialize FDC

Initialize serial bus

bJ Main IP Idle Loop

Whenever the drive is inactive and the 6502 is in IP mode, the 6502 executes the code
from $EBE7 to $EC9D looking for something to do.

182

OVERVIEW OF IP MODE IDLE LOOP ($EBE7-$EC9D)

Is the command-waiting Yes,. •flag ($0255) set?

I No

Is the attention pending Yes
flag ($0255) set? • •

I No
I .. Yes

Is there a file open? It

I No

1 •
Yes

Is the error flag set? .,

I No

JMP to start of loop

Parse and execute
the waiting command

JSR PARSXQ ($C146)

Service the
attention request

JSR ATNSRV ($E85B)

Turn on the
drive active LED

Flash the
drive active LED

c] Computer-Disk Drive Communications

The routines that handle communication on the serial bus are localized in one small area
of ROM, from $E853 to $EA6E. The entry points for the major routines are summariz­
ed below.

Entry

$E853

$E85B
$E909
$E9C9
$EA2E

Routine

ATNIRQ

ATNSRV
TALK
ACPTR
LISTEN

Function

An IRQ is generated when the computer sets the
ATN line of the serial bus low. Branch to here from
IRQ handler to set attention pending flag.
Service an ATN signal on the serial bus
Send data out on the serial bus
Accept one byte of data from the serial bus
Accept incoming data bytes from the serial bus

dJ Execution of Disk Commands

When the computer sends the 1541 a disk command, such as NEW, VERIFY, or
SCRATCH, the command is stored temporarily in the command buffer ($0200-$0229)
and the command pending flag ($0255) is set. The next time the 6502works its way though
the IP idle loop ($EBE7-$EC9D) it finds that the command pending flag has been set.
It then does a JSR to the PARSXQ routine ($C146) to parse and execute the command.
The parser first checks the command table ($FE89-94) to see if this is a valid command.
Next it checks the syntax of the command. If the command is correct, a JMP is made

183

to the appropriate ROMroutine. The table below summarizes the various disk commands
and their entry points.

Entry Command Effect

$ED84 V VALIDATE Create a new BAM based on the directory.
$DOO5 I INITIALIZE Initialize BAM by reading from disk.
$C8C1 D DUPLICATE Make a backup of a disk (not on 1541).
$CAF8 M MEMORY-OP Perform a memory operation (M-R, M-W,

M-E).
$CCIB B BLOCK-OP Perform a block operation (B-P, B-A, B-F,

etc.).
$CB5C U USER JMP Execute user routines (UO, U1, U2, etc.).
$E207 P POSITION Position to record in relative file.
$E7A3 & UTIL LDR Load routine in disk RAM and execute it.
$C8FO C COpy Copy a file (single disk only on 1541).
$CA88 R RENAME Rename a file in the disk directory.
$C823 S SCRATCH Scratch a file in the directory.
$EEOD N NEW Format a diskette (short and full).

For more details on these routines see Appendix B.

If no errors are encountered during the execution ofa command, the routine is terminated
with a JMP to the ENDCMD ($C194). If errors are encountered, .A is loaded with an
error code, and the routine is aborted with a JMP to the command level error process­
ing routine at $E645.

e] File Management

File management is a major function of the interface processor. As a result, there are
many ROM routines that deal directly or indirectly with the management of files, the
directory and the BAM. A few of the major entry points are summarized below.

Entry

$C5AC
$CBB4
$CEOE
$D156

$D19D
$D50E
$D6E4
$D7B4
$DACO
$DBA5
$DC46

Routine

SRCHST
OPNBLK
FNDREL
RDBYT

WRTBYT
SETJOB
ADDFIL
OPEN
CLOSE
CLSDIR
OPNRCH

Function of File Management Routine

Search directory for valid or deleted entry.
OPEN a direct access buffer.
Find a record in a relative file.
Read byte from a file. Get next sector if
needed.
Write byte to file. Write sector if full.
Set up read or write job for FDC.
Add a file to the directory.
OPEN a channel for read, write, load, or save.
Close the file associated with given channel#.
Close directory entry for a write file.
OPEN a channel to read using double
buffering.

184

$DCDA

$DFDO
$E31F
$E44E
$E4FC
$E645
$EA6E
$EAA8
$EC9E
$EF5C
$EF90
$FIIE

OPNWCH

NXTREC
ADDREL
NEWSS
ERRTAB
CMDER2
PEZRO
DSKINT
STDIR
WFREE
WUSED
NXTTS

OPEN a channel to write using double
buffering.
Set up next record for a relative file.
Add a new sector to a relative file.
Add new side sectors to relative file.
IP mode error message table.
IP mode error handler.
Display error diagnostics by flashing LED.
Initialize IP side of disk.
Convert directory to pseudo program and load.
Mark given sector as free in the BAM.
Mark given sector as in use in the BAM.
Finds next available sector from the BAM.

9.4 Using the IP Routines

The interface processor routines in the 1541's ROM are relatively easy to use. They
can be executed by using the command channel to send the disk drive the appropriate
memory-execute (M-E) command.

Before you try to use one of the IP routines you should:

1. Use the ROM maps in this chapter to locate a routine.
2. Use the tools given in Section 9.13 to make a copy of that area of ROM.
3. Disassemble the routine.
4. Study the disassembly (use the ROM analysis in Appendix B as a guide) to deter­

mine any setup that is necessary.

NOTE: You cannot use the memory-execute (M-E)technique described in this section
when you are using any routine that involves reading from or writing to a diskette.
The reason for this restriction is that memory-execute commands are carried out while
the processor is in the IP mode. In this mode, the processor is interrupted every 10
milliseconds by an IRQ and switches into FDC mode. Any read or write operation will
be interrupted if this occurs. See Section 9.6 for the technique to use if you want to
use a routine that reads from or writes to the diskette.

Once you are sure that the routine performs the operation you want and what setup
is needed, you are ready to design your program. Your program willnormally have three
parts:

1. A Setup Section

This section normally consists of one or more memory-write (M-W) commands to poke
any required setup values into the 1541's RAM memory.

2. A Section to Execute the Routine

This section normally consists of one memory-execute (M-E) command to force the
1541's microprocessor to execute the ROM routine.

185

3. An Information Retrieval Section

This section normally consists of one or more memory-read (M-R) commands to peek
the results of the routine out of the 1541's RAM for use by your program.

Let's take a look at a typical application of this technique.

Suppose we were writing a data base management program. One thing we would like
to build into our program is a check to be sure that we can never produce an unclosed
file (*SEQ). This would happen if the user entered too much data and completely filled
the disk. We can't rely on checking the drive's error channel in this situation because
the DOS sends the disk full error too late; the damage is already done. We are going
to have to have some independent method of finding the number of blocks free on the
diskette before we write out the file.

Since we know that a directory listing shows the number of blocks free, we'll start by
looking for some routines that deal with the directory. The chart of ROM routines that
deal with file management in Section 9.3 (e)has one entry that looks promising: STDIR
($EC9E), convert directory to pseudo program and load. We now turn to Appendix B
and look up this routine. Scanning through this routine doesn't turn up an algorithm
that appears to calculate the number of blocks free and we're back to square one. What
about the initialize routine? From the chart on the execution of disk commands in Sec­
tion 9.3 (d) we find that this routine starts at $D005. Back to Appendix B. Eureka! At
$D075 we find the routine NFCALC. A bit of disassembly indicates that this routine
probably needs very little setup to calculate the number of blocks free and that it stores
the lo-byte of the count in NDBL ($02FA) and the hi-byte in NDBH ($02FC). Before
we set up an elaborate program, let's check out these RAM locations using a test pro­
gram like this:

10 OPEN 15,8~15,IIIII

20 GOSUB 120:REM CHECK DISK STATUS
3() OF-EN 1,8,5, III:!!():TEST FILE,S,W"
40 GOSUB 120:REM CHECK DISK STATUS
50 FOR K=l TO 300
6() F'R I f\Jl-#l , "THIS IS TEST RECORD NUMBER II ;

1<
70 PRINT K;:GOSUB 170:REM CHECK BLOCKS F
REE
8() NEXT
90 CLOSE 1:CLOSE15:END
1oo :
110 REM SUB TO CHECK DISK STATUS
120 INPUT E,ES,T,S
130 PRINT E;E$;T;S
14() RETURN
15()
160 REM SUB TO READ BLOCKS FREE
17() PRINT#15, II M-R II CHR$ (25() CHR$ (2) CHR$ (3

)

180 GET#15,X$:NL=ASC(X$+CHR$(O»

186

190 GET#15~X$:REM JUNK
200 GET#15,X$:NH=ASC(X$+CHR$(O»
21(l FaRINT IIBLOCI<S FREE=fI 256*t"H+t"L
22(l RETURN

After trying our test program, we find our problem is solved. As we write out our records
the DOS automatically updates the count in NDBL and NDBH to reflect the number
of blocks left. We don't really need to execute a ROM routine after all. A memory-read
command is all we need. The moral? A bit of time spent studying and testing can really
simplify your life.

Since the "blocks free" example really didn't illustrate the use of an IP routine, let's
try again. This time we are interested in converting normal bytes into their GCR
equivalents to see what is actually written out to the disk. After snooping through the
IP tables in Section 9.3 without any luck, we try the FDC tables in Section 9.5. We
find what we need in 9.5 (c): PUT4GB ($F6DO), convert four data bytes into five GCR
bytes. In checking Appendix B we find that, although this is nominally an FDC routine,
it does not involve reading from, or writing to, a diskette. This means we can use the
memory-execute technique.

After a bit of disassembly we know what set-up is required:

1. The routine expects to find four normal bytes stored in RAM from $52-$55.

2. The pointer at $30/31 should point to the start of where the five GCR bytes that result
from the conversion are to be stored. We'll use $0300-$0304.

3. The GCR pointer at $34 should be $00.

4. The entry point for the routine is definitely $F6DO.

Now that we know what we have to do, let's set up the program.

First, we'll start by inputting the four bytes we want to convert and storing them in
disk RAM from $52 (82) to $55 (85) using a memory-write command (M-W). Second, we
will use memory-write (M-W) commands to set the pointers at $30 (to 0), $31 (to 3), and
$34 (to 0). Third, we'll execute the routine using a memory-execute (M-E) command.
Finally, we will peek the results from $0300-4 of the disk RAM using a memory-read
(M-R) command and five GET# statements. Here's what the program looks like:

100 REM CONVERT BINARY TO GCR
110 PRINTII{CLRJENTER FOUR BYTES (DECIMAL
><DOWN} II
120 BS (0) = II o II : BS (1) =111": FORK=l)T07: P (K) =2
"K:NEXT
130 FORK=OT07:P(K}=2AK:NEXT

140 OPEN 15,8,15
150 :
160 REM INPUT BYTES & STORE IN DISK RAM
($52/5)
170 FOR K=OT03
180 PRINT"BYTE#IIK II = II ; : I NPUT X

187

190 IF X<O OR X>255 GOTO 180
200 PRINT" {UP} "TAB (18) ; : GOSUB43()
210 PRINT#15,IIM-W IICHR$(82+K)CHR$(O)CHR$(

1)CHR$(X)
220 NEXT
230 :
240 REM SET UP POINTER TO STORAGE AREA (
$30/31)
250 PRINT#15, IIM-W"CHR$ (48) CHR$ t o CHR$ (2)
CHR$(0)CHR$(3)
260 :
270 REM SET UP GCR POINTER ($34)
280 PRINT#15,IIM-W IICHR$(52)CHR$(O)CHR$(1)

CHR$(O)
290 :
300 REM EXECUTE PUT4GB ($F6DO) IPC ROUTI
NE
310 PRINT#15,IIM-E IICHR$(208)CHR$(246)

320
330 REM PEEK OUT AND DISPLAY RESULTS
340 PRINT#15,"M-R"CHR$(OO)CHR$(3)CHR$(5)

350 PRINTII{DOWN}THE FIVE EQUIVALENT GCR
BYTES ARE: {DOWN} II

360 FOR K=1 TO 5
370 GET#15,X$:X=ASC(X$+CHR$(O»
380 PRINT IIBYTE#IIK"=IIX;TAB(18);:GOSUB430

390 NEXT
400 CLOSE 15:END
410
420 SUB TO DISPLAY BINARY EQUIVALENTS
430 PRINTII%";
440 FOR L=7ToOSTEP-l
450 T=INT (X/2'"'L)
460 X=X-T*P(L)
470 PRINTB$(T);
480 NEXT:PRINT:RETURN

Many of the other IP ROMroutines are just as easy to use. However, be careful because
some are tricky. Some expect to find a particular command in the commandbuffer. These
are tough to use because the memory-execute command will wipe out any set-up you
have done in the command buffer area. In these cases you will have to store a short
machine language routine in the disk RAM that sets up the proper command in the buf­
fer before it JMP's to the IP routine. When you execute the routine, it should overwrite
the M-E command in the buffer with the command you want there. Happy sleuthing!

9.5 Major FOC Routines

One of the difficulties in finding an FDC routine to do the job you want is finding your

188

way through the detailed ROMmaps in Appendix B. This section summarizes the ma­
jor FDC routines and their entry points.

aJ Initialization

When the disk drive is first switched on, the reset line is pulsed 10. This causes the 6502
to RESET and it does an indirect JMP via the vector at $FFFC to the initialization
procedure at $EAAO. As part of the set up procedure, the variables and I/O chips for
the FDC are initialized by the CNTINT routine ($F259-AF).

bJ Main FOC Idle Loop

Every 10milliseconds the 6522timer generates an interrupt (IRQ) and the 6502 begins
to execute the main FDC loop looking for something to do. The main features of this
loop are summarized below.

Turn drive motor OFF?

No

Is the head in step mode?

No

RTS to the IRQ routine

Yes.. ..
Yes

Turn OFF motor

JMP to the proper
stepping routine

At the end of this loop, or when the job has been completed, the timer interrupt is re­
enabled and the 6502 leaves FDC mode.

c] Major FOC Entry Points

When in FDC mode the 6502 executes routines that directly control the operation of
the disk drive. These include: turning the drive motor ON or OFF, controlling the step­
per motor that moves the head from track to track, formatting a blank diskette, locating
a specific sector and reading or writing data, and translating information back and forth
between normal 8-bit bytes and the 10-bit GCR code that is actually recorded on a
diskette's surface. The 6502 carries out these tasks in response to job requests placed
in the job queue by the IP processor. The entry points for the major FDC routines are
summarized below.

Entry Routine Function

$F259 CNTINT Initialize important variables and the I/O chips.
$F2BO LCC Main FDC idle loop (IRQ entry every 10

millisec).
$F367 EXE Do execute job.
$F37C BMP Bump head to track #1 (step out 45 tracks).
$F3B1 SEAK Seek any header on a track.
$F4CA REED Read in data block of specified sector.
$F56E WRIGHT Write out data block of specified sector.
$F691 VRFY Read back data block to check for good write.
$F6DO PUT4GB Convert four data bytes into five GCR bytes.
$F78F BINGCR Convert entire data buffer into GCR write

image.
$F7E6 GET4GB Convert five GCR bytes into four data bytes.
$F8EO GCRBIN Convert GCR image of data block into normal

data.
$F934 CONHDR Convert header into a GCR search image.
$F99C END End of idle loop to control drive & stepper

motor.
$FAC7 FORMT Format blank diskette.

190

Since the read, write and format routines are of particular interest, let's look at them
in more detail.

dJ Read Data Block of Specified Sector

Before the read job code ($80) is placed in the job queue, the IP puts the desired track
and sector numbers into the header table as indicated below.

Job queue Use buffer Track # Sector #
location # address address address

$0000 0 $0300-FF $0006 $0007
$0001 1 $0400-FF $0008 $0009
$0002 2 $0500-FF $OOOA $OOOB
$0003 3 $0600-FF $OOOC $OOOD
$0004 4 $0700-FF $OOOE $OOOF
$0005 5 NO RAM $0010 $0011

Once the track and sector values are in place, the IP puts the read job code into the
job queue in the location that corresponds to the data buffer where the data is to be
stored. The next time the 6502 is in FDC mode it finds the job request. If necessary,
it turns on the drive motor, waits for it to get up to speed, and moves the head to the
proper track. It then executes the read routine outlined below:

OVERVIEW OF THE FDC READ ROUTINE

$F4D1

$F4D4

$F4ED

$F4FO

$F4FB

$F505

Find correct sector

Read data: first 256 into the
data buffer and the rest into
the overflow buffer

Convert GCR to normal

Check data block ID

Check data checksum

Exit, read was OK

e] Write Data Block of Specified Sector

Before the write job code ($90) is placed in the job queue, the IP puts the desired track
and sector numbers into the header table as indicated below.

191

Job queue Use buffer Track # Sector #
location # address address address

$0000 0 $0300-FF $0006 $0007
$0001 1 $0400-FF $0008 $0009
$0002 2 $0500-FF $OOOA $OOOB
$0003 3 $0600-FF $OOOC $OOOD
$0004 4 $0700-FF $OOOE $OOOF
$0005 5 NO RAM $0010 $0011

Once the track and sector values are in place, the IP puts the write job code into the
job queue in the location that corresponds to the data buffer containing the data to be
written. The next time the 6502 is in FDC mode it finds the job request. If necessary,
it turns on the drive motor, waits for it to get up to speed, and moves the head to the
proper track. It then executes the write routine outlined below:

OVERVIEW OF THE FDC WRITE ROUTINE

$F575

$F57A

$F586

$F589

$F58C

$F594

$F5Bl

$F5BF

$F5CC

$F5D9

$F5DC

$F5E6

Calculate checksum.

Test if write protect on.

Convert buffer to GCR.

Find correct sector.

Wait out header gap.

Switch to write mode and
write out five $FF's as sync.

Write out overflow buffer.

Write out data buffer.

Switch to read mode.

Convert GCR back to 8-bit.

Change job code to VERIFY.

Go back to verify it.

fJ Format a Blank Diskette

The IP format routine at $C8C6 sets up a JMP $FAC7 instruction at $0600 and then
puts an EXECUTE job code ($EO) into the job queue ($0003). On its next pass through
the idle loop the FDC finds the execute job code, executes the code at $0600,and jumps
to the formatting routine outlined below.

192

OVERVIEW OF THE FDC FORMATTING ROUTINE

$FAC7

$FACB

$FAE3

$FAF5

$FBOO

$FBOC

$FBOF

$FB35

$FB7D

$FC36

$FC86

$FC8E

$FC9E

$FCAA

$FD24

$FD8B

$FD96

Check if this is first entry.
If not, branch to $FAF5.

Do bump to track #1 (CLUNK!)

Initialize error count and
bytes around track. Exit.

Check if on right track.

Check for write protect tab.

Erase track with sync.

Write half of track with sync
and other half with non-sync.

Time sync & non-sync parts.

Compare times and calculate
how long tail gaps should be.

Create images of headers.

Create dummy data block.

Convert headers to GCR.

Convert data block to GCR.

Write out sectors in sequence.

Go to read mode and verify.

All sectors OK; do next track.

All tracks done; exit.

9.6 Using the FOC Routines

Some of the floppy disk controller routines in the 1541's ROM are relatively easy to
use. Others are much more difficult.

The easy ones are those that do not involve reading or writing to a diskette. An exam­
ple of this type of routine would be the GET4GB ($F7E6) routine that converts 5 GCR
bytes into 4 normal 8-bit binary bytes. These routines can be executed by using the
techniques described in Section 9.4.

193

The tough ones are those that involve reading or writing to a diskette. To illustrate
how to do this, we'll try something interesting. How about developing a routine that
allowsus to move the head anywhere on a diskette (say track 5)and read the next header
(or whatever) that passes over the read/write head.

First we have to find out how to move the head around. A quick check of the map of
the I/O chips at the end of Appendix A tells us that the stepper motor that moves the
head is controlled by bits 0 and 1 of DSKCNT ($lCOO). Cycling these two bits causes
the head to move. Hmm ... Cycling the bits must mean: 00-01-10-11-00 versus
11-10-01-00-11. Time out for a bit of testing. Here's our program:

100 REM MOVE THE 1541'S HEAD
110 PRINT"{CLR}{DOWN}COMMANDS: U=UP D=OO
WN Q=QUIT"
120 OPEN 15,8,15,111 11

130 PRINT#15,"M-R"CHR$(O)CHR$(28)
140 GET#15,X$:X=ASC(X$+CHR$(O»
150 BI=X AND 3
160 PRINTII{HOME}{DOWN 3}BI="BI
170 GET A$
180 IF A$="U"THEN BI=BI+l
190 IF A$="D"THEN Bl=BI-l
20(l IF A$=IIQIITHEN CLOSE 15: END
210 Bl=Bl AND 3
220 R=(X AND 252)OR Bl
230 PRINT#15,IIM-WIICHR$(O)CHR$(28)CHR$(1)
CHR$(R)
240 GOTO 130

After much peeking through the drive door with a flashlight we discover that our pro­
gram actually does make the head move. When we press "U" the head moves closer
to the center (higher track numbers) and when we press "D" the head moves outward
(lower track numbers). We've got it! Quick let's write it down before we forget.

To move the head, cycle bits 0 and 1 of $1COO

00'" 01 10~ 11--.... 00 head moves inwards
0 1 2 3 0

11--.... 10~ 01~ 00 -.. 11 head moves outwards
3 2 1 0 3

The only problem that remains is to find out how much the head moves each time.
Hmm ... If we read from a track and then peek at $ICOO ... Time for more testing:

10 REM CHECK PHASE FOR ALL TRACKS
2() OPEN 15, B, 15, II I ..

194

3() OPEI'J 1,8, 5, 11#11
40 FOR TR=l TO 35
so PRINT#15, IIUt: 5 ()IITR; o
be) PRINT#15, IIM-RIICHR$ (0) CHR$ (28)
70 GET#15,X$:X=ASC(X$+CHR$(O»
80 PRINT TR;X AND 3
9(l t"EXT
100 CLOSEl:CLOSE15

When we run this test program, we get a very interesting table:

1 0
8 2

15 0
22 2
29 0

2 2
9 0

16 2
23 0
30 2

3 0
10 2
17 0
24 2
31 0

4 2
11 0
18 2
25 0
32 2

5 0
12 2
19 0
26 2
33 0

6 2
13 0
20 2
27 0
34 2

7 0
14 2
21 0
28 2
35 0

The phase of the stepper motor is always even (0 or 2) when the head is on a track.
Therefore, the head must be moving half a track at a time. Very interesting indeed!

Now that we can move the head around, we want to find out how to read something.
But before we go rummaging through the ROM's, wasn't there something about the
clock rate being different for each zone? Ah, here it is. Bits 5 and 6 of $ICOO set the
recording density. Let's see. Bit 5 represents 32 and bit 6, 64. Let's change one line
of our last test program and try again. Here's the new line:

80 PRINT TR;X AND 96

When we run our revised program, we get another interesting table.

1 96 2 96 3 96 4 96 5 96 6 96 7 96
8 96 9 96 10 96 11 96 12 96 13 96 14 96

15 96 16 96 17 96 18 64 19 64 20 64 21 64
22 64 23 64 24 64 25 32 26 32 27 32 28 32
29 32 30 32 31 0 32 0 33 0 34 0 35 0

By George, we've got it.

$lCOO
Zone Tracks Bit 6 Bit 5 Number

1 1-17 1 1 96
2 18-24 1 0 64
3 25-30 0 1 32
4 31-35 0 0 0

Let's do some digging in those ROM's now. A quick scan through the table of Major
FDC Entry Points in Section 9.5 (c) turns up SEAK ($F3Bl), seek any header on the
track. A check of the detailed analysis in Appendix B looks promising. A careful study
of a disassembly of the routine indicates that this is just what we were looking for. And,
we don't have to do much setup either. Here's all the information we need:

195

1. The entry point is $F3Bl.
2. JOB ($45) should be $30 so the branch at $F3E6 is taken.
3. JOBN ($3F) should contain the correct buffer number so the error handler routine at

$F969 works properly.

Now comes the tricky part. Since the routine involves reading from or writing to a
diskette, we cannot execute the routine using a memory-execute command. We have
to use a two step process:

1. Use a memory-write command to store a machine language routine (it does the set­
up and then a JMP to $F969) into the start of one of the buffers (we'll use buffer
-0 at $0300).

2. Force the 6502, while in FDC mode, to execute our routine by putting a JUMP or
EXECUTE job code in the appropriate spot in the job queue (we'll put a JUMP code
into $0000).

The program listed below puts it all together for us. It may appear a bit intimidating
at first. But, if you are interested in exploring the innards of your drive it is one of the
most powerful tools presented in this manual. It allows you to move the head anywhere
you want and read the next header passing over the read/write head. The screen display
shows you where the head is, what track and sector was read, and describes any read
errors that were encountered.

100 PRINTII{CLR}{DOWN} MOVE THE 1541'S
READ/WRITE HEAD II

110 PRIN,-II {DOWN 2} INSERT TEST 0151(11
120 PRINTII{DOWN 2}PRESS {RVS}RETURN{ROFF
} WHEN READY"
130 :
140 REM MACHINE CODE ROUTINE TO READ A
HEADER
150 REM RESIDES AT $0300 (BUFFER #0)
160 •
170 DATA 169,48: :REM LDA #$30
180 DATA 133,69: :REM STA $45
190 DATA 169,00: :REM LOA #$00
200 DATA 133,63: :REM STA $3F
210 DATA 76~177,243 :REM JMP $F3Bl
220
230 D$ (0) =II ()O .. : D$ (1) =1I()1": D$ (2) =1I1()": D$ (
3)=1111 11

240 DIM FD$(16)
250 FD$(O)=II ..
260 FD$ (1) ="()1 ALL 01< II

270 FD$ (2) == II (J2 HEADER BLOCI< NOT FOUJ\1D II

280 FD$ (3) = II ()3 NO SYI'JC CHARACTER
290 FD$ (9) =.. ()9 HEADER BLOCI< CI-U<SUM ER II

30() T= 18: N 1$= "?" : I'J2$="?" : TR=255
310 GET A$:IF A$<>CHR$(13) GOTO 310
320

196

33() OPEl" 15 ~ 8 ~ 15 ~ II I ..
340
350 REM DIG OUT MASTER DISK ID
360
37() PRINT#15, IIM-RIICHR$ (18) CI-JR$ «» CHR$ (2)

380 GET#15, 11 $: IFI 1$=11 "THEt,JI 1$=CHRS (0)
39() GET#15~12$: IFI2$="IITHENI2$=CHR$ (0)

400
410 F'RINT" {CLR} II
420
430 REM READ THE DISK CONTROLLER PORT
44()
450 PRINT#1S!' IIM-R"CHR$ «» CHR$ (28)
460 GET#15!'A$:IF A$=tlIlTHEN A$=CHR$(O)
470 A=ASC(A$)
480 CV=3 AND A
490 A=(159ANDA)OR(96+32*«T>17)+(T>24)+(
T>3()))
5()O F"Rlt,J"T#15, IIM-WItCHR$ co CHR$ (28) CHR$ (1)

CHR$(A OR 4)
510
520 REM DISPLAY VALUES
530
540 PRINT" {HOt1E} {DOWN} l"lOVE THE 1541:- S

READ/WRITE HEAD"
55() PRlt,JT II {DOWf\J}CURREI'JT PHASE =IIC'J
560 F'RII'JTIIBITS 1 ~(0 OF $lCO() ARE 110$ ccv

57() F"RINTIJ{DOWN}MASTER DISK 1D: 1111$;12$
580 PRINTII {DOllJN} TRACK # FROM STEPF'ER: "TII
{LEFT} ..
590 PRINT"{DOWN}FDC ERROR:"FD$(E)
600 TS=STR$(TR):S$=STR$(SE):IF E<>l THEN

T$=II??II:Nl$=II?":N2$=II?II:S$=U??1I
61() F'Rlt.JT" (DOWN}TRACI< #- AS READ: IIRIGHT
$(T$~2)

620 PRINT"SECTOR # AS READ: nRIGHT$(S$~2

)

63() PR I NT II 1D OF TRACI< READ: III'J1$; I'J2$
640 PRINTII{DOWN 2}COMMANDS:1I
65() PRINT" {DOWN} Fl = MOVE HEAD OUT (LO
WER TRACI,(#)
660 F"R I NT II F3 = MOVE HEAD IN (HIGHER TR
ACK #)
670 PRINT" F5 = ATTEMPT TO READ TRACI< #

& ID II

680 F'R I I'!T .. F 7 = TERM I NATE PROGRAM II

690 PRINT" I = INITIALIZE (TO TRACK 18
) II

70() P=PEEK (197)

197

710 IF P=3 GOTO 910
720 IF P=4 AND T>l THEN C=-l:GOTO 800
730 IF P=5 AND T<35 THEN C=l:GOTO 800
740 IF P=6 GOTO 990
750 IF P=33 THEN PRINT#15~ IIIII:T=18:E=(i:A
=214: GOT048()
760 GOTO 45()
77()
780 REM CHANGE PHASE IN RESPONSE TO COMM
AND
79()
800 CV=(CV + C)AND3
810 T=T+C*.5:IFT<1 THENT=l
820 IFT)36THENT=36
830 B=A AND 252
84() C=B+CV
SSC) PRINT#15~ IIM-W"CHR$ co CHR$ (28) CHR$ (1)

CHR$(C)
860 E=()
870 GOTO 45()
880
890 REM TERMINATE PROGRAM (DRIVE OFF)
9()O :
91() F·Rlt~T#15~ IIM-W IICHR$ (e) CHR$ (28) CHR$ (1)
CHR$ (24()
920 FOR K=lT010:GETA$:NEXT
930 CLOSE 15:END
940 :
950 REM ATTEMPT TO READ ANY HEADER
960
97() REM READ 8! SEI'JD MACH I I'JE CODE ROUT Il'lE

98()
990 F:ESTOF:E: C$=" ..
1000 FOR K=l TO 11:READ X:C$=C$+CHR$(X):
NEXT
i o i o F'F:lf\JT#15, "M-tJ.JIICHR$ co CHF:$ (3) CHR$ (11
)C$
1()20
1030 REM PUT JMP JOB IN THE JOB QUEUE
1 ()40
1()5() PRINT#15, "M-wuCHRS (0) CHRS (0) CHR$ (1)

CHR$(208)
1060 :
1070 REM WAIT FOR JOB TO FINISH
1080 :
1090 PRINT#15, "M-RIICHF:$ (0) CHR$ co
1100 GET#15~E$:E=ASC(E$+CHR$(O»

1110 IF E>127 GOTO 790
1120

198

1130 REM IIE II IS FDe ERROR CODE RETURNED
1140 IF E<>l GOTO 450
1150
1160 REM CLEAN READ SO DIG OUT ID, TRAK
& SECT
117() :
1180 F'RINT#15, IIM-R"CHR$ (22) CHR$ (0) CHR$ (4
)

1190 GET#15, I'Jl $
1200 GET#1S!,N2$
1210 GET#15~X$:TR=ASC(X$+CHR$(O»

1220 GET#15,X$:SE=ASC(X$+CHRS(O»
1230 Goro 450

Although this program allows you to move the head and read data in half-track in­
crements, you can't double the capacity of your drive by using all 70 "tracks." The
magnetic path produced by the read/write head is just too wide. However, it may be
possible to devise a protection scheme in which the "protected information" is recorded
when the head is in an "odd phase" (lor 3). Crosstalk from the two odd-phase tracks,
though, would make the diskette unreadable except by a specialized routine like this.

9.7 The Recording Process
A floppy diskette consists of a circular piece of plastic. It is coated on both sides with
a thin layer of magnetic particles, usually particles of iron oxide. Each particle is made
up of a large number of extremely small atomic magnets called "magnetic domains."
When a floppy diskette is new, these magnetic domains are oriented randomly and the
surface is unmagnetized.

The record/play head consists of a coil of wire wrapped around a ring of iron or other
magnetic material. A small segment of the ring is missing. This is the "gap." The gap
is the part that comes in contact with the surface of the diskette. Magnified many times,
the head looks something like this:

RECORD/PLAY
HEAD

104---- COIL

RING OF
~-- MAGNETIC

MATERIAL

~------ GAP

199

Write Mode:

In write mode an electric current passes through the coil.The current causes the head
to become an electromagnet whose strength and polarity depends on the amount and
direction of the electric current. The gap in the ring interrupts the magnetic field and
causes it to flare outwards. If the gap is in contact with the surface of the floppy diskette,
some of the magnetic domains on the surface shift position and line up with the magnetic
field of the head. Some of these magnetic domains retain their new orientation even
after leaving the vicinity of the gap, i.e., the surface of the diskette has become
magnetized.

WRITE MODE

The amount and direction of the current flowingthrough the coildetermines the strength
and polarity of the electromagnet. The more current, the stronger the electromagnet,
and the greater the magnetization of the surface of the diskette. In audio recording,
the amount of current flowing through the coil fluctuates to match the changing audio
signal. In digital recording, there are only two possible currents, full current in one direc­
tion or full current in the other direction. When data is recorded onto the surface of
a floppy diskette, the track becomes a series of bar magnets laid end to end.

WRITING
DATA

Read mode:

In read mode the moving magnetic areas on the surface of a diskette induce an elec­
trical voltage in the head. Because of the nature of electromagnetic induction, the
maximum induced voltage is NOT produced by the regions where the magnetic field
is greatest. The maximum signal occurs where the magnetic fields change most rapidly.
The signal from the head must, of course, be amplified and shaped before it is usable.

200

Writing data to a diskette:

When data is being recorded onto a floppy diskette, the data is "clocked out" at a fixed
rate. This permits an interesting recording scheme. The direction of the current flow­
ing through the head changes only when a "I" bit is to be recorded. Zeros are represented
by the absence of a transition at a particular location. The diagram below represents
what is actually recorded on a diskette.

oooo
3_N _81......-.8 NI_N 81_._8__NI-..-N_8E

1 1 1 1 1 1

Note that the data recorded onto a diskette is not divided into bytes. There is just one
continuous stream of bits. In order to know where to begin to read or write bits, we
need some special identifying mark. This is the function of the SYNC mark, a string
of 10or more l's in a row. The GCR code (see Chapter 7)is designed so that no combina­
tion of bytes can produce more than eight "I" bits in a row. This guarantees the unique­
ness of the sync mark.

The 1541 records between 4000and 6000magnetic zones (bits) per inch. Since the diskette
rotates at a constant angular velocity (300 rpm), you may wonder how Commodore
manages to get more bits on the outer tracks than the inner ones. The 1541 manages
this bit of magic by clocking out the data at different rates depending on the track. On
the longer outer tracks, the data is clocked out faster than for an inner track (see table
in Chapter 3). However, the increase in clock rate is not really proportional to the in­
crease in track length. This means that the outer tracks have a bit density of only 4300
bits/inch while the inner tracks are recorded at 6000 bits/inch. If the clock were not in­
creased for the outer tracks, the bit density on the outermost track would fall to about
3500 bits/inch.

Reading data from a diskette:

When data is being read from a floppy diskette, the data is "clocked in" at a fixed rate.
A magnetic transition is interpreted as a "I" bit. The lack of a signal when data is ex­
pected is interpreted as a "0" bit. Since the speed of the drive is not absolutely con­
stant, we can run into problems if there are too many "0" (no signal) bits in a row. Com­
modore's GCR code is designed so that no GCR byte, or combination of GCR bytes,
ever contains more than two consecutive "0" bits. As a further precaution, the clock
is zeroed (cleared) every time a "I" bit is read. This re-synchronizes the clock to the
bit stream and prevents small fluctuations in the speed of the drive from causing read
errors.

9.8 Block Diagram of the 1541

This block diagram of the 1541 electronics emphasizes the components involved in reading
and writing data.

201

1541 BLOCK DIAGRAM

TOR-W
HEAD

FROM
R-W
HEAD

The divide-by-N counter determines the actual rate at which bits are read or written.
For tracks 1-17the clock divisor is 13, for tracks 18-24 it is 14, for tracks 25-30it is 15,
and for tracks 31-35 it is 16.

9.9 Writing Data to a Diskette

The diagrams below highlight the important components and waveforms involved in
the writing of a GCR encoded data byte to disk.

WRITE MODE

QB
+16

COUNT
UP

SO ENABLE

BYTE RDY

6522

SO~--""'--------I

6502
MPU

202

CD

0--.J 0 0 0 0

<D--.J

!
DATA

!
BITS ~CLOCKED! OUT

! ! ~ !
1 0 1 0 0 1 1 0

D 3N SiS NIN SiSIs
K

BYTE READY LINE 8th BIT CLOCKED OUTr-

To help clarify the recording process let's follow a byte of data (10100110) as it is writ­
ten to a diskette.

STEP 1. The 6502converts the header block ID ($07), the 256 data bytes, the data block
checksum, and two null bytes into 325 GCR encoded bytes.

STEP 2. The head is positioned to the appropriate track and the clock divisor is set
to the correct value for this track.

STEP 3. The track is read until the correct sector header block is found. Wait out the
header gap.

STEP 4. Switch to write mode by ANDing the contents of the 6522's peripheral con­
trol register (PCR) with $IF, ORing the result with $CO, and storing the final
result back in the peR.

STEP 5. Write out five $FF characters as the data block sync mark.

STEP 6. Transfer the first 8-bit byte of the GCR encoded data to the data lines (DO-D7)
of the 6522 PIA.

STEP 7. Since Port A of the 6522 is configured as an output port, the data appears
on the Port A lines PAO to PA7. This transfers the byte to the 74LS165(UD3)
parallel to serial shift register.

STEP 8. The bits are clocked out of the shift register (2) whenever the QB line (1) of
the 74LS193 hexadecimal counter (UF4) makes a transition from ground to
+5 volts.

203

STEP 9. The bit stream from the shift register (2) is presented to the clock input of
the 74LS74 flip flop (UF6). The output of this flip flop (3) changes state
whenever the bit stream (2) makes a transition from ground to +5 volts.

STEP 10. The output of the flip flop (3) is amplified and sent to the record/play head
of the drive. This causes the magnetic zones to be written onto the surface
of a diskette. Note that the direction of the electric current, and hence the
direction of magnetization, changes only when a "I" is to be written.

STEP 11. Once all 8 bits have been clocked out of the shift register, the byte ready
line goes high. This sets the overflow flag in the 6502 to indicate that it is
time to send the next data byte to the 6522.

STEP 12. Once all the data bytes have been written, switch to read mode by ORing
the contents of the 6522's peripheral control register (PCR) with $EO and
storing the result back in the PCR.

9.10 Reading Data From a Diskette

The diagrams below highlight the important components and waveforms involved in
reading a GCR encoded byte of data.

1541 BLOCK DIAGRAM
READ MODE

FROM
SHAPER ~-­

DISK

65226502
MPU

SO...--+--....-----e

3 N sis NIN sIs
CLR CLK CLR CLK CLR CLK CLR CLK

0----A " " A

204

~ DATA ~ BITS !CLOCKED~ IN ~

0---

0------------

Shift

o

Shift Shift

o

Shift

o

Shift Shift Shift

o

Shift

BYTE RE_A_D_Y,---

To help clarify the reading process let's followa byte of data as it is read from a diskette.

STEP 1. The head is positioned to the appropriate track and the clock divisor is set
to the correct value for this track.

STEP 2. The track is read until the correct sector header block is found.

STEP 3. Wait for the sync mark at the start of the data block.

STEP 4. As the track passes over the record/play head a stream of weak electrical pulses
is induced in the head. A pulse is induced whenever the magnetic field changes
its orientation. The pulse is amplified and shaped (1).

STEP 5. The stream of pulses from the shaper circuitry (1)is fed to the CLEAR input
of the 74LS193hexadecimal counter (UF4) and to the 74LS02(UE5) NOR gate.
Whenever a pulse occurs, the hexadecimal counter (UF4) and the divide by
N counter (UE7) are cleared to a count of zero. This ensures that the clock
is always synchronized with the incoming stream of pulses.

STEP 6. Once the hexadecimal counter has been cleared, it begins to count up the clock
pulses it receives from the divide by 16 counter. QA (not shown) is the l's
bit of the counter. QB (2) is the 2's bit of the counter. QC (3) and QD (4) are
the 4's and 8's bits, respectively.

STEP 7. On each ground to +5 volt transition of QB (2), a bit is shifted into the 74LSI64
serial to parallel shift register (UD2). The bit that is shifted in (5) is found
by NORing the QC (3) and QD (4) lines of the counter. Note that whenever
a pulse clears the divide by 16 counter, the next bit is read as a "I." If the
counter has not been cleared before the next ground to +5 volt transition of
QB (2), the next bit is read as a "0."

STEP 8. Once 8 bits have been clocked into the shift register, the byte ready line goes

205

high. This sets the overflow flag in the 6502 to indicate that it is time to read
the data byte from the 6522.

STEP 9. The 6502 reads the data byte from the 6522 and stores it in RAM.

9.11 Summary of Bugs in DOS 2.6

Over the years, various bugs have been reported in Commodore's disk operating systems.
In some cases, the bugs have been real; in other cases, imaginary. This section sum­
marizes our findings regarding the bugs in DOS 2.6. Please note that this information
applies only to the 1541.

1. Incorrect dummy data block produced during formatting:

During formatting, all the Commodore disk drives (except the old 2040's) write out
a dummy data block for each track and sector. On all the drives, except the 1541,
this dummy data block consists of 256 null bytes ($00). On the 1541the dummy data
block consists of one $4B character followed by 255 $01 bytes. This is caused by an
unnecessary INX instruction at $FC86. If this byte were replaced by a NOP ($EA),
the normal dummy data block would be produced.

The difference in the dummy data blocks does not cause any real problems and pro­
vides an easy way to identify a diskette formatted on the 1541.

2. The save and replace command "@O":

Over the years numerous writers have advised Commodore owners not to use the
save and replace command because it contained a bug. Our study of the ROMroutines
and a lot of testing has convinced us that the bug in the replace command is a myth.
There are, however, two situations in which the use of the @ replacement command
can cause problems:

a) Replacing an unclosed file, *SEQ, *PRG, etc:

When you replace a file, the new file is written to diskette first. Then the DOS pro­
ceeds to trace through the file chain of the old file and marks the sectors it finds
as available-for-use in the BAM. If the old file was unclosed, the track and sector
links may be incorrect and some of the blocks in a different active file on the diskette
may be freed (see a more detailed description of what happens in Section 2.5 on scratch­
ing a file). If this happens, subsequent writing to the diskette will overwrite the data
in this file. This is the most likely cause of user complaints about a bug in the save
and replace command on the 2040 and 4040 drives. The code at $C835 prevents this
from happening on the 1541 drive.

b) Not enough space on disk:

When a file is replaced, the new file is written to diskette before the old file is scratched.
If there is not enough space on the disk for the new copy of the file, the process aborts.
When this occurs, the error light will come on (72,DISK FULL). Usually, this makes

206

people wonder if something went wrong; so they VE RIFY to be sure the file has
been saved correctly. The file verifies as OK. A check of the directory indicates no
unclosed files. However, the file may appear somewhat shorter than before. This did
not occur because your program has been compacted. Rather, it was truncated by
the DOS. It isn't all there! We hope you have a backup handy. If not, you may still
be able to recover your file. A printout of the BAM and some quick work on editing
the directory entry's starting track and sector are in order. (See Chapter 8.) The
sectors shown as unallocated (free) in the BAM hold the only complete copy of your
program, the original version that is. The latter portions of the @ replacement ver­
sion of your program have been stored in disk WOM (Write Only Memory) by the
DOS. Bye, bye.

3. The Block-Read (B-R) command:

This command has been replaced by the U1 command and with good reason. The
B-R command has two serious bugs that make it unusable on the 1541. The use of
this command is NOT RECOMMENDED! See Chapter 5 for the gory details.

4. The Block-Write (B-W) command:

This command has been replaced by the U2 command and with good reason too. The
B-Wcommand is also unusable on the 1541. The use of this command is NOT RECOM­
MENDED either. Chapter 5 again gives the scoop.

5. The Block-Allocate (B-A) command:

Although this command seems to work correctly on other Commodore drives, it does
not work properly on the 1541. This command really has two functions:

a) To allocate a free sector in the BAM:

When the track and sector specified in the block-allocate command is free (not in use)
in the BAM, the block allocate command should allocate the block in the BAM. The
B-A command appears to do this correctly on the 1541.

b) Find the next available track & sector:

If the track and sector specified in the block-allocate command is already allocated
(in use) in the BAM, the block allocate command should not change the BAM in any
way. It should return a 65, NO BLOCK error and report the track and sector of
the next available block in the BAM. This feature of the B-A command was included
to allow the programmer who is creating his own random access files to determine
the next free block that he/she can use.

This feature of the B-A command does not work correctly on the 1541! The command
does return the track and sector of a free block all right, but with a difference!

1. It occasionally returns a sector on track 18. This should not happen because track
18 is reserved for the directory.

207

2. It ALLOCATES ALL THE BLOCKS on the track that it returns in the error
message in the BAM.

Because of these bugs, the use of the B-A command on the 1541 is NOT RECOM­
MENDED. However, the CERTIFY A DISKETTE program listed in Chapter 5
does work. The reason for this is that this program stores a duplicate copy of the
BAM in C64 RAM which is later rewritten to the diskette. This technique repairs
the damage done by the B-A command.

6. UJ: or U: command:

Commodore disk drives have traditionally used one or both of these commands to
enable the user to reset the drive (just as though the drive were turned OFF and
then ON again). Neither command works correctly on the 1541drive. The drive goes
on a trip to never-never land and must be turned OFF and then ON again to recover
from one of these commands. The command "U;" is the one to use to reset the 1541.

7. UI- command:

The 1541 manual indicates that this command is used to set the disk drive to operate
correctly with the VIC-20. Current 1541's work with a VIC-20, period.

Summary

Despite its flaws, the DOS in the 1541 is a remarkably efficient peripheral. The DOS
programs for most other microcomputers are vastly inferior to DOS 2.6; a little faster
maybe, but not as smart. The support of relative file structures, read ahead buffering,
and the underlying principles of asynchronous I/O make the 1541 an outstanding bargain
in the world of microcomputing. These features are normally found only in multiuser
or multiprocess operating systems.

9.12 Write Incompatability with 4040

Programs or data stored on a diskette formatted on a 1541 disk drive can be READ
using a 2040 or 4040 disk drive. Conversely, a 1541 disk drive can READ a diskette
formatted on either a 2040or 4040 disk drive. However, these drives are not completely
write compatible.

This write-incompatibility problem appears to be caused by two things:

1. Differences in the header gap length.
2. Alignment problems (particularly with the 1541).

Let's consider the differences in the header gap length first.

Differences in Header Gap Length

The 2040 and 4040 drives use a header gap that is nine GCR bytes long while the 1541
uses a header gap that is only eight non-GCR bytes long. On this basis we would expect

208

the header gaps to be 90 and 64 bits long respectively. However, when we use a bit­
grabber to view the gap we find that the actual header gaps as recorded on disk are
100 bits for the 4040 and 92 bits for the 1541. In read mode, this makes no difference.
After reading the header bytes to check that this is the correct sector, all the drives
simply wait for the next sync mark. The number of bytes in the header gap does not
matter. Once the sync mark is over, the first character in the data block is read. This
is the data block ID character. If it is not a $07, the DOS reports a 22 READ ERROR
(data block not found).

In write mode, however, the length of the header gap is important. After reading the
header bytes to check that this is the correct sector, all the drives count off the bytes
that make up the header gap. Once the correct number of bytes have been read, the
drive flips to write mode and begins writing out the data block sync character. Since
this is reputed to be an important aspect of the write incompatibility problem, let's ex­
amine what happens in some detail.

The last part of the header gap and the start of the data block sync mark in a sector
of a diskette that has just been formatted on a 1541disk drive looks something like this:

Sync mark
1541 xxxxxxxxxxllllllllllllllllllllllllllllllllll11~ 92 bits

The last part of the header gap and the start of the data block sync mark in a sector
of a diskette that has just been formatted on a 4040 disk drive looks something like this:

Sync mark
4040 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx111111111111-.. 100 bits

When a sector of a diskette that was ORIGINALLY FORMATTED ON A 4040/2040
disk drive is REWRITTEN ON A 1541, the result is as follows:

Original Sync mark
4040 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx111111111111~

Rewrite
1541

Result

Sync mark
xxxxxxxxxx-11111111111111111111111111111111111~

Sync mark
xxxxxxxxxx-111111111111111111111111111111111111~

NOTE: The "-" marks when the drive switches into write mode. A transient current
appears to flow through the record/play head during this time interval.

The original sync mark on the diskette has been completely overwritten by the new
one. This sector can be read cleanly on any drive. It appears that a 1541 drive should
be able to write data onto a diskette that was originally formatted on a 4040drive unihou:
causing any problems.

When a sector of a diskette that was originally formatted on a 1541disk drive is rewrit­
ten on a 4040/2040, the result is as follows:

209

Original
1541
Rewrite
4040

Result

Sync mark
xxxxxxxxxxllllllllllllllllllllllllllllllllllll~

Sync mark
xxxxxxxxxxxxxxxxx-llllllllllllllllllllllllllllll~

Pseudo-sync Sync mark
xxxxxxxxxxlllllll-lllllllllllllllllllllllllllll~

NOTE: The "-" marks when the drive switches into write mode. A transient current
appears to flow through the record/play head during this time interval.

In this case, the original sync mark on the diskette has NOT been completely overwrit­
ten by the new one. The start of the old sync mark is still there. What actually gets
recorded at the start of the "new" sync mark depends on the speed of the drives, the
polarity of the magnetic field used to record the original "I" at that spot on the diskette,
and any transients that flow through the head as it switches into write mode.

Before you read this next section, be sure that you understand Section 9.7 on the Record­
ing Process.

Let's take a look at an "exploded" view of that spot just before the new sync character
is written. Remember, a "I" is not recorded as magnetization in a particular direction.
It is simply a change in the direction. Now that you've got that straight, here is what
that spot might look like.

Original IN sis NIN sis NIN sIs NIN sis N(N sl
1 1 1 1 1 1 1 1 1

Everything appears normal. Now let's write that sync mark.

Original IN sis NIN sis N(N sis NIN sis NIN slby a 1541

Replacement sync mark written ??IN sis NIN sis N·IN slby a 4040

?? = effects of transient currents

sis 111 N Sis NIN sis NIN SlResult IN sis NIN
1 1 1 1 1 1 1 1 1

Everything worked out just fine. We have a clean sync mark and the sector can be read
cleanly by either drive. However, suppose our 74LS74 flip-flop (UF6) had been in the
opposite state or the speed of this drive did not exactly match this new one. What would
happen? Take a look.

210

Original IN sis NIN sis NIN sis NIN sis NIN SI
by a 1541

Replacement sync mark written ?? Is NIN sis NIN sis NI
by a 4040

?? = effects of transient currents

Result IN sis NIN sis ?? NIN siS NIN sis NI
1 1 1 1 ?O 1 1 1 1

Argh! Potential problems. Because the magnetic polarity of the new "I" happened to
match the polarity of the existing zone, we appear to have just created a double-length
magnetic zone. If we have, this will be interpreted as a "0" bit. From a study of the
bits actually recorded on disk, this appears to happen every time! If there are more
than 10 preceeding "I" bits, this single "0" will be interpreted as the end of the sync
mark and the drive will interpret the rest of the sync bits as data. Since this will definitely
NOT be decoded as a $07 byte, the drive errs out with a 22 READ ERROR.

Since the header gaps only differ in length by 8 bits, we should always have only seven
l's in the pseudo-sync. An examination of the bits recorded on the disk seems to sup­
port this conclusion. As a further test we did some testing using recently aligned drives.
We found surprisingly few errors when we use a 4040 disk drive to rewrite all non­
directory sectors on a 1541 formatted disk. On a freshly formatted diskette, we found
no errors at all after rewriting over 2400 sectors. If the sectors of the 1541 diskette
had been rewritten several times using a 1541 before they were rewritten on a 4040,
we did start to find a few errors. However, the error count was low. Usually less than
two errors when rewriting all 640sectors and these tended to occur in two specificareas:
on tracks 25 or 26 or on tracks 31 or 32. These findings lead us to conclude that the
differences in header gap length is NOT the cause of write compatibility problems be­
tween the 1541 and 4040 disk drives.

If for some reason you want to reduce the difference in header gap further when writing
onto a 1541formatted diskette using a 4040 drive, enter the following magic incantation
in either program or immediate mode.

OFaEt" 15, 8, 15
FaRINT#15, II M-1.'J II CHR$ (157) CHR$ (16) CHR$ (1) CHR$ (8)
CLOSE 15

This will change the header gap length of the 4040 drive from 9 to 8 GCR bytes (actual
length = 90 bits). You can now write to the 1541 diskette with little fear of damage.
However, you must remember to reset your 4040 drive (turn it off or issue a UJ com­
mand) before you insert one of your 4040 formatted diskettes. Otherwise, a magnetic
plague will develop among your 4040formatted diskettes. Don't say you weren't warned!

Head Positioning Problems

Since we encountered so few errors using properly aligned drives, we feel that most
of the reported problems of incompatibilities are the result of head positioning errors.

211

If a sector is rewritten on a different drive and the position of the read/write head is
different, the new data will not completely replace the old as indicated below.

Original
on one
drive

Rewritten
on another
drive

I~
s
s
s

1

1

1

o
NN
NN
NN

o

1
S
S
S

Original

Rewritten
by another
drive

N 1 sis 1 0 S

S N N S
S 1 0 N N 1 S
S N N S

When this sector is read on the original drive, the head will pick up both the new signal
and the old signal. The relative strengths of these two signals depend on the amount
of the original signal remaining. If the two drives are sufficiently different, the read
signal will be garbled and produce an abundance of 22 and 23 READ ERROR's.

Summary
In conclusion, although there is a difference in header gap size between the 1541 and
the 4040drives, this does NOT appear to be the cause of write incompatibility problems.
Most complaints about the write incompatibilities of various disk drives are probably
due to problems in head positioning. Further evidence for this is the fact that some schools
are experiencing similar difficulties when students use several different 1541drives for
saving programs on a single diskette.

9.13 TOOLS FOR EXPLORATION
To make your exploration of the 1541easier we have developed two programs to assist
you.

a) Disk peek program

This program allows you to look at a hex dump of any area of the 1541's RAM or
ROM. This is a very useful tool for examining the contents of the 1541's RAM.

b) Create a file program

This program allows you to read out any area of the 1541's RAM or ROM and store
the contents into a program file with any load address you choose. You can then load
the file into your 64's memory and examine it using an extended machine language
monitor such as SUPERMON.

212

NOTE: Line 160 contains a special character #184 repeated 21 times. This character
can be typed by holding down the Commodore logo key in the lower left corner and
pressing the U key.

1541 DISK PEEK

100 REM 1541 DISK PEEK
110 REM BY GERALD NEUFELD
120 CO=O:C2=2:C7=7:CA=10:F=15:CG=16:HO=4
8:HX=127
130 Z$=CHR$(O):N$=""
140 M$=" {RVS} PRESS: P TO PAUSE Q

TO QUIT {ROFF}"
150 PRINT"{CLR}"TAB(9) II PEEK OF 1541"5 ME
MORY"
160 PRINTTAB(9)1I{#184 21}1I
170 PRINTTAB(4) II COPYRIGHT: G. NEUFELD,

1983 11

180 PRINTU{DOWN} ONE MOMENT PLEAS
E •••• II

190 DIM HX$(255),H$(15)
191 FOR K=O TO 9:H$(K)=CHR$(48+K):NEXT:F
ORK=10T015:H$(K)=CHR$(55+K):NEXT
200 FORJ=OTOF:FORK=OTOF:HX$(J*16+K)=H$(J
)+H$(K):NEXT:NEXT
210 PRINTII{HOME}{OOWN 2}"M$
220 PRINTII{DOWNJ- INPUT START ADDRESS IN

HEXADECIMAL"
230 OPEN 15~8~15

240 PRINT"{DOWN} $OOOOIl:PRINTII{UP}";
25C) INPUT H$
260 HL=CO:HH=CO:FORK=lT02:C=ASC(MID$(H$~

K»-HO:IFC>CATHENC=C-C7
270 IF C<CO OR C>F THENPRINT"{UP 2}";:GO
T0240
280 D=ASC(MID$(H$,K+2»-HO:IFD>CATHEND=D
-C7
290 IF O<CO OR D>F THENPRINT II {UFe 2}";: GO
T0240
300 HH=HH+C*CG~(C2-K):HL=HL+D*CG~(C2-K):

NEXTK
310 PRINT"{UP}IITAB(6);
320 PRlr~T#15, IIM-R"CHR$ (HL) CHR$ (HH) CHR$ (8
)

330 O$=III1:FOR K=C()TOC7:GET#15,A$: IF A$=N
$THENA$=Z$
34() A=ASC(A$) : E=AANDHX:E$=II. II: IFE>31ANDE
<97THENE$=CHR$ (E)
35() O$=O$+E$: PRINT" IIHX$ (ASC (A$)) ; : f\JEXT:

213

PRINT" {RVS}"O$
360 FL=O:HL=HL+8:IFHL)255THENHL=HL-256:H
H=HH+l:FL=l:PRINTM$
370 IF HL=128 THEN FL=l:PRINTM$
38() PRINT" $"HX$ (HH) HX$ (HL) ; : IFFL=l THENP
RINT: F'RII'JT II {UP} "; : GOT0250
390 GET A$:IF A$=" I1 GOTO 320
40() IF A$=UPIITHENF'RINT: PRINT II {UP}II; : GOTO
250
410 CLOSE15

CREATE A FILE

10 PRINTII {CLR} {DOWN} II TAB (6) IID151< ROM TO
FILE"
20 INPUT"{DOWN}START AT LOCATION (HEX)
CI00{LEFT 6}II;A$
30 Z$=A$:GOSUB280:S=Z:IF ZF=! GOTO 20
40 PRINT"{UP}"TAB(31)Z
50 INPUT" {DOWN}QUIT AT LOCATIOf\J (HEX) F
FFF{LEFT 6}";A$
60 Z$=A$:GOSUB280:Q=Z:IF ZF=! GOTO 50
70 PRINT" {UF'} "TAB (31) Z
80 INPUT"{DOWN}SAVE IN FILE NAMED ROM 1
541{LEFT 10}";F$
90 INPUTII{DOWN}WITH LOAD ADDRESS OF (HEX
) 1100{LEFT 6}II;A$
100 Z$=A$:GOSUB280:L=Z:IF ZF=! GOTO 90
110 PRINT"{UP}"TAB(31)Z
12() OPEN15, 8, 15, .. I 0 ..
130 OPEN 1,8,5, "@(): II+F$+", P, W"
140 INPUT#15,EN,EM$,ET,ES
150 IF EN>19 THEN PRINT" {DOWN}DISl< ERROR
liEN; EM$; ET; ES: CLOSE1: CLOSE15: STOFf
160 PRINTII{DOWN 2}1I

170 LH=INT(L/256):LL=L-256*LH
180 PRINT#l,CHR$(LL>;CHR$(LH);
190 FOR K=S TO Q

200 KH=INT(K/256):KL=K-256*KH
210 PRINT#15, IIM-F:"CHR$ (KL) CHR$ (KH)
220 GET#15,A$:IF A$=1I11 THEN A$=CHR$(O)
230 PRINT#l~A$;

240 PRINT" {UF'}WORI<ING ON"K
250 "tEXT
260 CLOSEl:CLOSE15:END
270
280 Z=O:ZF=O
29() IF LEN(Z$) >4 THEN ZF=l:PRINTII{DOWN}{
RVS}HEX STRING TOO LONG":RETURN
300 IF LEN(Z$)(4 THEN ZF=l:PRINT II{DOWN}{

214

RVS}HEX STRING TOO SHORTII:RETURN
310 FOR K=1 TO 4
320 ZN=ASC(MID$(Z$,K»-48:IF ZN>9 THEN Z
N=ZN-7
330 IF ZN(Cl OR ZN>15 THEN ZF=1:PRINTII{OO

WN}{RVS}BAD HEX CHARACTERII:RETURN
340 Z = Z + ZN * 16~(4-K)

350 NEXT
360 RETURN

HAVE FUN!

Late News

In early 1984 Commodore began shipping the 1541 disk drives that contained a new
$EOOO-$FFFF ROM. The part numbers of these ROMs are: original 901229-03 revised
901229-05. The changes in the new ROM are:

$E683
$E68B

$E780 to
$E7A1

$E9DC

$EAA4

$EBDB/DD/EO/E2

$FEE6

$FF10

$FF20

Eliminate JSR TO ITTERR($EA4E) to solve stack overflow
problems.

Eliminate power-on boot of the utility loader to solve possible
problems during initialization.

Insert JMP to patch at $FF20.

Insert JMP to patch at $EF10.

Change initialization of the serial bus.

New ROM checksum.

New patch to change the initialization of the serial bus during the
power-up routine DSKINT.

New patch to the serial bus listen routine ACPTR.

The ROM in the SX-64 has an additional change. The header block gap at $F58D has
been changed from $08 to $09 to eliminate the difference in header gap size between
the 4040 and SX-64.

215

APPENDIX A

1541 RAM VARIABLE DEFINITIONS

217

--I
JOB QUEUE: $0000-$0005

The job queue is used to tell the disk controller what
disk operations to perform. A disk command such as LOAD,
SAVE, SCRATCH, etc. is interpreted by the drive's 6502
(while in its normal mode) and broken down into a set of
simple operations (jobs) such as: read track 9 sector 18
into data buffer #2, write the data in buffer #3 out to
track 12 sector 5, etc. The track and sector information
required for the job is placed into the header table and
the JOB CODE corresponding to the job to be done is put
in the job queue. The job code's position in the queue
indicates which data buffer (if any) is to be used and
where the track and sector information is stored in the
header table. When the 6502 is next in its floppy disk
controller mode (it switches every 10 milliseconds), it
scans the job queue looking for jobs to do. If it finds
one, it carries it out making use of the track and sector
information in the header table. Once the job is done,
or aborted, the disk controller replaces the job code
with an error code that indicates the job status.

JOB CODES

$80 READ a sector
$90 WRITE a sector
$AO VERIFY a sector
$BO SEEK any sector
$CO BUMP (move) head

to track #1
$00 JUMP to machine

code in buffer
$EO EXECUTE code in

buffer once up to
speed & head ready

ERROR CODES

$01 job completed successfully!
$02 header block not found
$03 no SYNC character
$04 data block not found
$05 data block checksum error
$07 verify error after write
$08 write protect error
$09 header block checksum error
$OA data block too long
SOB ID mismatch error
$10 byte decoding error

ADDRESS I t'JAME I JOB QUEUE DEFINITIONS
--

$0000 JOBS Use buffer #0 ($0300+) , find T/S in $06/7
$0001 Use buffer #1 ($0400+) , find T/S in $08/9
$0002 Use buffer #2 ($0500+) , find T/S in $OA/B
$0003 Use buffer #3 ($0600+) , find T/S in $OC/D
$0004 Use buffer #4 ($0700+) , find T/S in $OE/F
$0005 Use buffer #5 (no RAM) , find T/S in $10/1

HEADER TABLE: $0006-$0011
This is the area that specifies which tracks and sectors
are to be used for the jobs in the job queue. Tracks and
sectors are not needed for BUMP or JUMP jobs.

ADDRESS I NAME I HEADER TABLE DEFINITIONS
--

$0006/7 HDRS Track/sector for job in $0000 (buffer 0)
$0008/9 Track/sector for job in $0001 (buffer 1)
$OOOA/B Track/sector for job in $0002 (buffer 2)
$OOOC/D Track/sector for job in $0003 (buffer 3)
$OOOE/F Track/sector for job in $0004 (buffer 4)
$0010/1 Track/sector for job in $0005 (buffer 5)

~-- - - -

219

$0012 DSKID

$0014/5

$0016

$OOlB
$OOlC

$0010
$OOlE
$OOlF

$0020

$0021
$0022
$0023

NAME

HEADER

ACTJOB
WPSW

LWPT

DRVST

DRVTRK

1541 RAM VARIABLE DEFINITIONS

Master copy of disk 10. This is the 10
specified when the disk was formatted.
It is updated whenever a SEEK job is
performed (see ROM patch $EF25). The
initialize command performs a seek and
therefore updates the master 10.

$0012 first 10 character
$0013 second 10 character

Unused - Disk 10 for drive #1

Image of the most recent header read.
The characters appear here in the same
sequence that Commodore's manual says
they are recorded onto the disk surface.

$0016 first 10 character
$0017 second 10 character
$0018 track number
$0019 sector number
$OOlA header checksum

NOTE: They are actually recorded onto
disk in the opposite sequence.

Not used
Flag to indicate that there has been a
change in the write protect status.
UNUSED (WPSW for drive #1)
last state of the write protect switch
UNUSED (LWPT for drive #1) Set to $01
on power-up
disk drive status
bit meaning

4 shut down drv motor? l=yes O=no
5 drive motor l=on O=off
6 head stepping l=on O=off
7 drive ready? 1=no O=yes

UNUSED (DRVST for drive #1)
Track currently under R/W head
UNUSED (DRVTRK for drive #1)

$0024- STAB
$0020

Work area for doing interconversions of
binary data and its GCR write images

$002E/F
$0030/1
$0032/3

$0034
$0035
$0036
$0037
$0038
$0039
$003A

SAVPNT
BUFPNT
HDRPNT
GCRPNT
GCRERR
BYTCNT
BITCNT
BID
HBID
CHKSUM

Temporary storage of pointers
Pointer to currently active buffer
Pointer to active values in header table
Pointer to last character converted
Not used
Byte counter for GCR/binary conversions
Not used
Data block 10 character ($07)
Header block 10 character ($08)
Storage of data or header checksum

220

$003B
$003C
$003D
$003E
$003F
$0040
$0041
$0042
$0043
$0044
$0045
$0046
$0047

$0048
$0049
$004A

$004B
$004C
$004D
$004E

$004F

$OOSO

$OOSl

NAME

HINIB
BYTE
DRIVE
CDRIVE
JOBN
TRACC
NXTJOB
NXTRK
SECTR
WORK
JOB
CTRACK
DBID

ACLTIM
SAVSP
STEPS

TMP
CSECT
NEXTS
NXTBF

NXTPNT

GCRFLG

FTNUM

lS41 RAM VARIABLE DEFINITIONS

Unused
Unused
Always $00 on 1541
Currently active drive ($FF if inactive)
position of last job in job queue (O-S)
Byte counter for GCR/binary conversions
Position of next job in job queue (O-S)
Next track to move head to
Sector counter. Used by format routine
Temporary workspace
Temporary storage of job code
Unused
Data block ID code. Set on reset to $07.
This may be changed to write or read
data blocks with different data block
ID codes. However, the first nybble of
the data block ID code should always be
a zero ($0-). Otherwise, the controller
will have difficulty detecting the end
of the sync mark and the start of DBID.
If you try to read a sector whose DBID
is different from the value stored here,
the disk controller will put an error
code of $04 in the job queue and the
drive will report a #22 error (DATA
BLOCK NOT FOUND).
Timer for acceleration of head
Temporary save of the stack pointer
The number of steps to move the head to
get to the desired track. To move the
head over 1 track, requires XX steps.
Values between 0 and 127 move the head
out (to lower track numbers). Values
over 128 move the head (256-value) steps
in (to higher track numbers)
Temporary storage
Last sector read
Next sector to service
Hi byte of a pointer to the next buffer
of GCR bytes to be changed into binary.
The GCR bytes in the overflow buffer are
translated first. This points to the
buffer that holds the rest of them.
Lo byte of a pointer to the next GCR
byte location that is to be translated
Flag to indicate whether the data in the
currently active buffer has been left
in binary (0) or GCR (1) form.
Used by the formatting routine to store
the number of the track currently being
formatted. Set on reset to $FF.

~1

$0052/5

$0056/D

$005E

$005F
$0060

$0061

$0062/3

$0064

$0065/6

$0067
$0068

$0069

$006A

$006B/C

$006D/E

$006F
$0070
$0071
$0072
$0073
$0074

$0075/6

$0077
$0078
$0079
$007A
$007B
$007C
$007D
$007E
$007F
$0080
$0081
$0082

NAME

BTAB

GTAB

AS

AF
ACLSTP

RSTEPS

NXTST

MINSTP

VNMI

NMIFLG
AUTOFG

SECINC

REVCNT

USRJMP

BMPNT

TO=TEMP
T1
T2
T3
T4

IP

LSNADR
TLKADR
LSNACT
TL~ACT

ADRSED
ATNPND
ATNMOD
PRGTRK
DRVNUM
TRACK
SECTOR
LINDX

1541 RAM VARIABLE DEFINITIONS

Staging area for the four binary bytes
being converted to GCR by PUT4BG($F6DO)
or from GCR by GET4GB($F7E6).
Staging area for the five GCR bytes
being converted from binary by PUT4BG
($F6DO) or to binary by GET4GB($F7E6) .
Number of steps to use to accelerate or
decelerate when stepping the head ($04)
Acceleration/deceleration factor ($04)
Number of steps left to accelerate or
decelerate when stepping the head
Number of steps left to step the head
in fast stepping (run) mode.
Pointer to the appropriate head stepping
routine. Normally $FA05 (not stepping)
Minimum number of steps for the head to
move to make the use of fast stepping
mode useful($C8). If fewer steps needed,
use the slow stepping mode.
Pointer to start of NMI routine ($EB2E).
Set on power up or drive reset.
Flag to indicate whether NMI in progress
Flag to enable (0) or disable (1) the
auto initialization of a disk (read BAM)
if ID mismatch detected.
Sector increment for use by SEQ routine.
Set on reset to ($OA).
Counter for error recovery (number of
attempts so far) Set on reset to $05
Pointer to the start of the user jump
table($FFF6). Set on power up or reset.
Pointer to the start of the bit map
($0400). Set when a disk is initialized.
Temporary work area ($6F on reset)
Temporary work area
Temporary work area
Temporary work area ($FF on reset)
Temporary work area
Temporary work area
Indirect pointer variable ($0100)
Set on power up or reset.
Listener address ($28 on reset)
Talker address ($48 on reset)
Active listener flag
Active talker flag
Addressed flag
Attention pending flag
6502 in attention mode
Last program accessed
Current drive number (always 0 in 1541)
Current track number ($00 after use)
Current sector number ($00 after use)
Logical index (current channel#)

222

$0083
$0084
$0085
$0086
$0087
$0088
$0089
$008A

$008B/E
$008F/3
$0094/5

$0096
$0097
$0098

NAME

SA
ORGSA
DATA
RO
R1
R2
R3
R4
RESULT
ACCUM
OIRBUF
ICMO
MYPPl
CONT

1541 RAM VARIABLE DEFINITIONS

Current secondary address
Original secondary address
Temporary data byte
Temporary result
Temporary result
Temporary result
Temporary result
Temporary result
Result area ($008B-$008E)
Accumulator ($008F-0093)
Directory buffer ($0094-0095) $05/$02
IEEE command in (not used on 1541)
MY PA flag $00
Bit counter for serial $00

Buffer byte pointers
These pointers (one for each buffer) are
used to point at the next byte in the
buffer to be used. The B-P command sets
these pointers.

Table of channel#'s assigned to each of
the buffers. $FF is inactive buffer.
Table of channel#'s assigned to each of
the buffers. $FF is inactive buffer.
Table of 10 bytes of record numbers for
each buffer
Table of hi bytes of record numbers for
each buffer
Table of next record numbers for buffers
Table of record size for each buffer
Table of side sectors for each buffer
File stream 1 pointer
Pointer to start of record
Number of side sector
Index to side sector
Relative file pointer to track
Sector of directory entries
Index of directory entries
Default flag, drive # (all 0 on 1541)
Pattern, replace, closed-flags, type
Channel file type
Channel status
Temporary for EOI
Current job number

Points to next byte in buffer #0 ($0300)
Points to next byte in buffer #1 ($0400)
Points to next byte in buffer #2 ($0500)
Points to next byte in buffer #3 ($0600)
Points to next byte in buffer #4 ($0700)
Points to next byte in CMO buffer($0200)
Points to next byte in ERR buffer($0206)

RECH

RECL

BUFO

BUF1

NR
RS
SS
F1PTR
RECPTR
SSNUM
SSINO
RELPTR
ENTSEC
ENTINO
FILORV
PATTYP
FILTYP
CHNROY
EIOFLG
JOBNUM

$OOBB/O

$00C1/6
$00C7/C
$OOCO/2

$0003
$0004
$0005
$0006
$0007

$0008/C
$0000/1
$00E2/6
$00E7/B
$00EC/1
$00F2/7

$00F8
$00F9

$OOB5/A

$00AE/4

$0099/A BUFTAB
$009B/C
$0090/E
$009F/0
$00A1/2
$00A3/4
$OOA5/6

$OOA7/0

223

$OOFA/E
$OOFF/O
$0101/2

$0103

NAME

LRUTBL
NODRV
OSKVER

ZPENO

1541 RAM VARIABLE DEFINITIONS

Least recently used table
No drive flag for drives 0 and 1
DOS version taken from track 18 sector 0
for drives 0 and 1
Unused

STACK AREA $0104-$01FF

$0200- CMOBUF
$0229

$022A Cl40NUM
$022B/0 LINTAB

$022E/3 CHNOAT

$0244/9 LSTCHR

$024A TYPE
$024B STRSIZ
$024C TEMPSA
$0240 CMD
$024E LSTSEC

$024F/0 BUFUSE
$0251/2 MOIRTY

$0253 ENTFNO
$0254 OIRLST
$0255 CMOWAT
$0256 LINUSE
$0257 LBUSEO
$0258 REC
$0259 TRKSS
$025A SECSS

$025B/F LSTJOB
$0260/5 OSEC
$0266/B OIND

$026C ERWORD
$0260 ERLED
$026E PRGDRV
$026F PRGSEC

Command buffer ($0200-$0229)
Disk commands such as: NO:GAMES #1,G1
that are sent to the disk drive from
the computer over the serial bus are
stored here. The command is parsed to
locate special charac~ers such as : ,
Once the command has been interpreted,
ROM routines are executed to do it.

Command code number
SA:LINDX table ($022B-$023D)
This table indicates the current status
of each data channel (secondary address)
Each-position represents one channel,
channel 0=$022B; 1=$022C; 2=$0220; etc.
Possible channel status values are:

$FF - inactive $81 - open for write
$41 - read/write $01 - open for read

Channel data byte ($023E-$0243)
The most recent byte read or written
for each channel

Channel last character pointer
Points to the last character read or
written in the buffer for each channel

Active file type
Length of the string
Temporary secondary address
Temporary job command
Work area for finding best sector to do
Buffer allocation
BAM dirty flag (drives 0/1)
Directory entry found flag
Directory listing flag
Command waiting flag
LINOX use word
Last buffer used
Record size. Used by directory routines
Side sector track. Used by dir routines
Side sector sector. Used by dir routines
Last job by buffer ($025B/C/D/E/F)
Sector of directory entry by buffer
Index of directory entry by buffer
Error word for recovery
Error LED mask for flashing
Last program drive
Last program sector

224

$0270
$0271

$0272/3
$0274
$0275
$0276
$0277
$0278
$0279

NAME

WLINDX
RLINDX
NBTEMP
CMDSIZ
CHAR
LIMIT
F1CNT
F2CNT
F2PTR

1541 RAM VARIABLE DEFINITIONS

Write LINDX
Read LINDX
blocks temp
Command string size
Character under the parser
PTR limit in comparison
File stream 1 count
File stream 2 count
File stream 2 pointer

'PARSER TABLES ($027A-$0289)

$027A/F FILTBL
$0280/4 FILTRK
$0285/9 FILSEC

$028A PATFLG
$028B IMAGE
$028C DRVCNT
$028D DRVFLG
$028E LSTDRV

$028F FOUND
$0290 DIRSEC
$0291 DELSEC
$0292 DELIND
$0293 LSTBUF
$0294 I:NDEX
$0295 FILCNT
$0296 TYPFLG
$0297 MODE
$0298 JOBRTN
$0299 EPTR
$029A TOFF

$029B/C UBAM
$0290/0 TBAM
$02A1/0 BAM

$02B1/4 NAMBUF
$02D5/8 ERRBUF

$02F9 WBAM

$02FA/B NDBL
$02FC/D NDBH
$02FE/F PHASE

I I

Table of filename pointers
First file link (Track)
First file link (Sector)

Pattern presence flag
File stream image
Number of drive searches
Drive search flag
Last drive w/o error. Used as the
default drive number.
Found flag in directory searches
Directory sector
Sector of first available entry
Index of first available entry
=0 if last block
Current index in buffer
Counter of file entries
Match by type of flag
Active file mode (R,W)
Job return flag
Pointer for recovery
Total track offset
Last BAM update pointer
Track # of BAM image (drive 0/1)
BAM images ($02A1-02BO)

OUTPUT BUFFERS ($02B1-$02F8)

Directory buffer ($02B1-$02D4)
Error message buffer ($02D5-$02F8)

Don't write BAM flag. Set to 0 at start
and end of any disk command.
of disk blocks free (10 byte 0/1)
of disk blocks free (hi byte 0/1)
Current phase of head stepper motor

1---1

225

$0300
$0400
$0500
$0600
$0700

NAME

BUFO
BUF1
BUF2
BUF3
BUF4

1541 RAM VARIABLE DEFINITIONS

DATA BUFFERS ($0300-$07FF)

Data buffer #0 ($0300-$03FF)
Data buffer #1 ($0400-$04FF)
Data buffer #2 ($0500-$05FF)
Data buffer #3 ($0600-$06FF)
Data buffer #4 ($0700-$07FF) BAM ONLY!

IADDRESS I NAME 1541 I/O DEFINITIONS

SERIAL I/O 6522 ($1800-$180F)

$1800 PB DATA PORT B - Serial data I/O

BI TS FOR SERIAL HANDSIIAKE
DATIN
DATOUT
CLKIN
CLKOUT
ATNA
ATN

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 7

- $01
$02
$04
$08
$10
$80

Data in line
Dat.a out line
Clock in line
Clock out line
Attention acknowledge line
Attention in line

$1801
$1802
$1803
$1804
$1805
$1806
$1807
$1808
$1809
$180A
$180B
$180C
$180D
$180E

$lCOO

PAl
DDRB1
DDRA1
T1LC1
'r1HC1
T1LL2
T1HL2
T2LC1
T2HC1
SR1
ACR1
PCR1
IFR1
IER1

DSKCNT

DATA PORT A - Unused
DATA DIRECTION FOR PORT B
DATA DIRECTION FOR PORT A - Unused
TIMER 1 LOW COUNTER
TIMER 1 HIGH COUNTER
TIMER 1 LOW LATCH
TIMER 1 HIGH LATCH
TIMER 2 LOW COUNTER
TIMER 2 HIGH COUNTER
SHIFT REGISTER
AUXILIARY CONTROL REGISTER
PERIPHERAL CONTROL REGISTER
INTERRUPT FLAG REGISTER
INTERRUPT ENABLE REGISTER

DISK CONTROLLER 6522 ($lCOO-$lCOF)

DATA PORT B - Disk controller I/O

Bit 0 - $01
Bit 1 - $02
Bit 2 - $04
Bit. 3 - $08
Bit 4 - $10
Bit 5 - $20
Bit 6 - $40
Bit 7 - $80

226

Bits 0 & 1 are cycled to
step the head

Motor on (1) or off (0)
Drive active LED on/off
Write protect sense
Density select (0)
Density select (1)
SYNC det.ect line

IADDREssl

$lC01
$lC02
$lC03
$lC04
$lC05
$lC06
$lC07
$lC08
$lC09
$lCOA
$lCOB
$lCOC
$lCOD
$lCOE

NAME

DATA2
DDRB2
DDRA2
TILC2
TIHC2
TILL2
TlHL2
T2LC2
T2HC2
SR2
ACR2
PCR2
IFR2
IER2

1541 I/O DEFINITIONS

DATA PORT A - GCR data I/O to diskette
DATA DIRECTION FOR PORT B
DATA DIRECTION FOR PORT A
TIMER 1 LOW COUNTER
TIMER 1 HIGH COUNTER
TIMER 1 LOW LATCH
TIMER 1 HIGH LATCH
TIMER 2 LOW COUNTER
TIMER 2 HIGH COUNTER
SHIFT REGISTER
AUXILIARY CONTROL REGISTER
PERIPHERAL CONTROL REGISTER
INTERRUPT FLAG REGISTER
INTERRUPT ENABLE REGISTER

227

APPENDIX B

ANALYSIS OF THE 1541's ROM

Here be dragons and ogres!
Travelers, walk not alone.

229

NAME

SETLDA

LEDSON

ERROFF

ERRON

PARSXQ

PS5

PS10

PS20

$C100

$C118

$C123

$C12C

$C146

$C150

$C153

$C15D

$C160

$C163

$C16A

$C17A

$C181

DESCRIPTION OF WHAT ROM ROUTINE DOES

Turn on drive-active LED:
Set bit 3 of DSKCNT ($lCOO) to turn on
LED for the current drive (DRVNUMi $7F).

Turn on drive-active LED:
Set bit 3 of DSKCNT ($lCOO) to turn on
drive active LED for drive o.

Turn off error LED:
Store $00 in ERWORD ($026C) and in ERLED
($0260) to clear any error status and
turn off drive-active/error LED.

Turn on error LED:
Store $80 in ERWORD ($026C) to ensure
LED will continue to flash and set bit
3 of DSKCNT to turn the LED on using
the LED mask from LEDMSK ($FECA).

Parse string in command buffer:
Clear the "don't wri te BAM" flag, vlBAM
($02F9) and move the drive number of the
last successful job from LSTDRV ($028E)
($028E) to DRVNUM ($7F). This makes the
last used drive the default drive.
JSR to OKERR ($E6BC) to clear any errors
and move the OK error message into the
error buffer.
Check if the command's secondary address
(ORGSAi $84) was $OF (command channel) .
If it was not $OF, exit with a JMP to
OPEN ($D7B4).
If the secondary address was $OF, JSR to
CMDSET ($C2B3) to' int~rpret the command
and set up the necessary variables and
registers (on return .Y=O).
Move first character of command from the
command buffer ($0200) to CHAR ($0275).
Search the command table (CMDTBLi $FE89)
for this character. If not found, exit
by loading .A with a #$31 (BAD COMMAND)
and jumping to the command level error
handler (CMDERR; $C1C8).
If found, store the command's position
in the table (the command number) into
CMDNUM ($022A). Check if this command
must be parsed by comparing the command
number with $09. If parsing is required
(NEW, RENAME, SCRATCH, COPY, & LOAD),
JSR to TAGCMD ($CIEE) to set tables,
pointers and patterns.

231

NAME

PS30

ENDCr-1D

SCREND

SCREN1

CLRCB

CMDERR

SIMPRS

PRSCLN

I $C184 I

$C194

$C1A3

$C1AD

$C1BD

$C1C8

$C1D1

$C1DB

$C1E5

DESCRIPTION OF WHAT ROM ROUTINE DOES

Move the address of the appropriate ROM
routine from the tables, CJUMPL ($FE95)
and CJUMPH ($FEA1) into $6F/$70 (TEMP).
Exit with an indirect JMP to the routine
via the vector at TEMP ($6F).

Terminate command successfully:
Clear the "don't write BAM" flag, WBAM
($02F9). Load .A with the error status
from ERWORD ($026C). If non-zero, an
error has occurred so exit with a JMP
to CMDERR ($C1C8).
If command completed with no errors, set
TRACK ($80), SECTOR ($81), and the
pointer into the command buffer, CB($A3)
to $00. JSR to ERRMSG ($E6C7) and ERROFF
($C123) to clear any error status.
Move current drive number from DRVNUM
($7F) to last used drive number, LSTDRV
($028E). Set the drive-busy flag, NODRV
($FF) to $00 to indicate that the drive
is inactive. JSR to CLRCB ($C1BD) to
zero the command buffer. JMP to FREICH
($D4DA) to clear the internal channel.

Clear the command buffer ($0200-$0228):
Erase any old command information by
overwriting the old command with $00.

Command level error handling:
Set TRACK ($80) and SECTOR ($81) to $00
and JMP to CMDER2 ($E645).

Simple parser:
Initialize .x and the file table pointer
FILTBL ($027A) to $00. Load .A with a
$3A (:) and JSR to PARSE ($C268) to scan
the command string for a colon.
On return 2=1 if ":" found and .Y points
to its position in the cornmand. If not
found, leave FILTAB=$OO and exit. If ":"
was found, set FILTAB=(":" position - 1)
and exit. All exits are with a JMP to
SETANY ($C368) to set the drive number.

Find colon (:) in command string:
Load .x and .Y with $00 and .A with $3A
(:) and JMP to PARSE ($C268).

Tag command string, set up CMD structure
and file stream pointers:

232

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

COMMAND STRUCTURE (Bit mapped)

The disk commands, RENAME, SCRATCH, NEW,
and LOAD, are analyzed by this routine
to determine the command structure. As
the command is parsed, bits in IMAGE
($028B) are set or cleared to indicate
the presence or absence of various parts
of the command. Once the command has
been analyzed, its structure image is
checked against the correct structure
for that command given in STRUCT($FEA5+)

Bit Name

7 P1
6 G1
5 01
4 N1
3 P2
2 G2
1 02
o N2

Meaning

Wild cards present (Y=l)
More than one file implied (Y=l)
Drive # specified (not default)
Filenamel given
Wild cards present (Y=1)
More than one file implied (Y=l)
Drive # specified (not default)
Filename2 given

TAGCMD

TC25

TC30

TC35

TC40

$C1EE

$C1F3

$C1F8

$C1FO

$C1FE

$C200

$C20A

NOTE: Bits 7-4 refer to file #1
Bits 3-0 refer to file #2

JSR to PRSCLN ($C1E5) to locate the
position of the colon (:) that is a
necessary part of all these commands.

e.g. RO:NEWNAME=OLDNAME (Rename)
If no colon was found, load .A with $34
to indicate a bad command and exit with
a JMP to CMOERR ($ClC8).
If a colon was found, set FILTAB to the
colon position - 1.
Check if a comma was found before the
colon (.X > 0 on return from PARSE).
If a comma was found, the syntax is bad
so exit via TC25 ($C1F3).
Load .A with $30 (=) and JSR to PARSE
($C268). On return .X=O indicates that
no wild-card characters (? or *) were
found. If any were found, set bit 6 (G1)
of IMAGE ($028B) to indicate that the
command applies to more than one file.
In all cases, set bit 5 (01) of IMAGE
to indicate that a drive # is present
and set bit 0 (N2) to indicate that a
second file name is given (fixed later)

233

NAME

TC50

TC60

TC70

TC75

TC80

$C20F

$C216

$C223

$C228

$C22B

$C234

$C23E

$C245

$C24A

$C24C

$C254

$C260

DESCRIPTION OF WHAT ROM ROUTINE DOES

Increment .X and use it to set the
lengths of filenames 1 and 2, F1CNT and
F2CNT ($0277/8). Filename 2 will default
to the same length as filename 1.
Check if PARSE found any wild cards by
loading PATFLG ($028A). If any found,
set bit 7 (Pi) of IMAGE ($028B).
Set pattern flag, PATFLG ($028A) to $00
to prepare for parsing the rest of the
command.
Check if there is any command left to
parse by checking the value of .Y set by
PARSE. If .Y=O, nothing left so branch
to TC75 ($C254) to check structure.
Store value from .Y in filetable, FILTBL
($027A) ,X. Set the pointer to the start
of filename #2, F2PNT ($0279) from the
current value of F1CNT ($0277).
Load .A with $8D (shifted CR) and JSR to
PARSE ($C268) to parse the rest of the
command. On return increment .X so it
points to the end of the string and put
the value into F2CNT ($0278). Decrement
the value of .X to restore its former
value.
Check if any wild cards were found by
PARSE in filename 2 by checking the
pattern flag, PATFLG ($028A). If any
were found, set 3 (P2) of IMAGE ($028B).
Check if there was a second filename by
checking if .X = F1CNT. If second file
name is only 1 chr long, branch to TC70.
Set bit 2 to indicate that the command
implies more than one second file name.
Set bit 1 to indicate that a second
drive is specified and bit 0 to indicate
that a second file name is given. EOR
this with IMAGE (clears bit 0) and store
the result back into IMAGE ($028B).
Check IMAGE against the entry for that
command (CMD number from CMDNUM, $022A)
in the structure table, STRUCT ($FEA5+)
If match, syntax is OK~ exit with an RTS
Store IMAGE in ERWORD ($026C). Load .A
with a $30 to indicate a bad syntax and
exit with a JMP to CMDERR ($C1C8).

234

NAME

PARSE

PR10

PR20

PR25

$C268

$C26B

$C270

$C278

$C280

$C283

DESCRIPTION OF WHAT ROM ROUTINE DOES

Parse string:
On entry, .A contains the character to
be found in the string, .Y points to the
the character in the string where the
scan is to start, and .x points into the
file table, FILTAB,X.
The routine scans the string for special
characters n*", n?", and "," as well as
the desired character. In scanning the
string .Y is used as a pointer to the
character in the command string being
examined and .X is a pointer into the
file table, FILTAB ($027B+) for storing
the positions (.Y value) of the start &
end of file names that are found. When a
wild card (* or ?) is found, the pattern
flag PATFLG ($028A) is incremented. When
a comma is found, its position is noted
in the file table, FILTAB and a check is
made to ensure that not too many file
names are present.
When the special character is found or
the end of the command is reached, the
routine ends. If no wild cards have been
found, the pattern type, PATTYP,X is set
to $80. Otherwise it is left unchanged.
On exit, .y=o and the Z flag =0 if the
desired character has not been found. If
it has been found,.Y the position of
the character and the Z flag is set.

Store the desired character in CHAR
($0275) .
Start of loop using .Y as a counter to
scan the command string. If .Y is
greater than or equal to the length of
the command string, CMDSIZE ($0274),
branch to PR30 ($C29E).
Load command string character into .A
and increment .Y counter. Check if it is
the desired character. If it is, branch
to PR35 ($C2AO).
Check if it is a wild card ("*" or "?").
If not, branch to PR25 ($C283).
Increment the pattern flag, PATFLG
($028A) to count the # of wild cards.
Check if it is a comma (","). If not,
branch back to PR10 to get next command
string character.

235

NAME

PR28

PR30

PR35

PR40

CMDSET

CS07

$C287

$C292

$C299

$C29E

$C2AO

$C2AD

$C2Bl

$C2B3

$C2B7

$C2BA

$C2Cl

$C2CA

DESCRIPTION OF WHAT ROM ROUTINE DOES

Transfer character count from .Y to .A
and store in the file table, FILTAB+l,X
($027B,X) to indicate where the file
name ends. Load .A with the pattern flag
PATFLG and AND it with $7F. If the
result is zero (no wild cards found),
branch to PR28.
Wild cards were present, so store $80
in PATTYP,X ($E7,X) to indicate this.
Also store $80 into PATFLG to zero the
count of wild cards but indicate that
there are wild cards in the string.
Increment .X (counts number of files &
points into FILTAB) and compare it to
$04 (the maximum number of file names
allowed in a command string). If the
maximum has not been exceeded, branch
back to PR10 to continue the scan.
Load .Y with $00 to indicate that the
desired character was not found.
Store a copy of the command size, CMDSIZ
($0274) into the file table, FILTAB+l,X
($027B,X). Load the pattern flag, PATFLG
and AND it with $7F. If the result is 0,
no wild cards have been found so branch
to PR40.
Wild cards were present, so store $80
in PATTYP,X ($E7,X) to indicate this.
Transfer character count from .Y to .A.
This sets the Z flag if the desired
character has not been found.

Initialize command tables & pointers
Find length of command string and zero
all variables and pointers.
Load .Y from BUFTAB+CBPTR ($A3). This is
the length of the command that was sent
from the computer. If .Y=O, branch to
CS08 ($C2CB).
Decrement .Y and if .Y=O, branch to CS07
($C2CA)".
Load .A with the character from the
command buffer, CMDBUF,Y ($0200,Y) and
see if it is a carriage return ($00). If
it is, branch to CS08 ($C2CB).
Decrement .Y and load the next character
from the command buffer. If this is a
carriage return ($00), branch to CS08
($C2CB). If not, increment .Y
Increment .Y pointer into command buffer

236

NAME

CS08 $C2CB

$C2D4

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store length of command (.Y) in CMDSIZ
($027B). Compare length (.Y) with the
maximum allowable length ($2A) to set
the carry flag. Load .Y with $FF. If
command length was OK, branch to CMDRST.
Command over-size so set command number
($022A) to $FF, load .A with $32 to
indicate a TOO LONG ERROR and exit with
a JMP to CMDERR ($C1C8).

CMDRST $C2DC Zero all important variables
BUFTAB+CBPTR ($A3) REC
FILTBL ($027A-7F) TYPE
ENTSEC ($00D8-DC) TYPFLG
ENTIND ($00DD-E1) F1PTR
FILDRV ($OOE2-E6) F2PTR
PATTYP ($OOE7-EB) PATFLG
FILTRK ($0280-84) ERWORD
FILSEC ($0285-89)

& pointers:
($0258)
($024A)
($0296)
($00D3)
($0279)
($028A)
($026C)

ONEDRV

ALLDRS

AD10

SETDRV

$C312

$C320

$C325

$C32A

$C32D

$C335

$C33C

Set first drive & table pointers:
Change pointer to end of the first file
name (F1CNTi $0277) to point to the end
of the second file name (use value from
F2CNTi $0278). Store $01 in F2CNT and in
F2PTR ($0279) to clear these variables

Set up all drives from F2CNT:
Load .Y with last drive used from LSTDRV
($028E) and .X with $00.
Save .X into FIPTR ($03). Load .A from
FILTAB,X ($027A,X) so it points to the
start of the Xth file specified in the
command string.
JSR to SETDRV ($C33C) to set drive #.
On return .Y contains the drive number
specified in the command or the default.
NOTE: Bits represent drives (If bit 7
set, use default. Bit 0 = drive #0/1)
Recover .X pointer from F1PTR. Store .A
in FILTAB,X ($027A,X). Move drive # from
.Y to .A and store in FILDRV,X ($027A,X)
Increment .X pointer and compare it to
F2CNT ($0278) to see if any more files
were specified. If more, branch back to
AD10 to do the next one. If not, RTS

Set drive # from text or default to 0
On entry and exit .A is an index into
the command buffer.
On entry .Y is the default drive #. On
exit it is the drive specified or the
default drive.

237

NAME

S020

S022

S024

S040

S050

SETANY

SA05

$~3~C

$C330

$C33F

$C341

$C346

$C34B

$C34C

$C340

$C34F

$C352

$C355

$C357

$C35B

$C361
$C362

$C368
$C360
$C370

DESCRIPTION OF WHAT ROM ROUTINE DOES

Move pointer into command buffer from
.A to .X
Load .Y with $00 to ensure that the
1541's default drive is ALWAYS DRIVE #0
Load .A with $3A (:) to prepare to hunt
for a colon (drive # is just before :).
Check for colon in command string at
CMOBUF+1,X ($0201,X). Picks up syntax:

X#:FILENAME as in SO:JUNK
If found, branch to S040.
Check for colon in command string at
CMDBUF,X ($0200,X). Picks up default
drive syntax as in S:JUNK
If colon NOT found, branch to SD40.
Colon found so increment pointer (.X) so
it points to the first character in the
filename.
Transfer .Y to .A to set up the default
drive
AND .A with $01 to ensure drive number
in ASCII form ($30 or $31) is converted
to $00 or $01.
Transfer .A to .Y to restore drive #.
Transfer .x to .A to restore index into
command string and exit with an RTS.

Set drive # from command string with the
syntax: X#:FILENAME. On entry .X points
to the # in the command string.
Load .A with the drive number (in ASCII)
from CMOBUF,X ($0200,X).
Increment .X twice so it points to the
first character in the file name.
Compare .A (drive number) to $30 (dr#O).
If equal, branch back to S022 ($C340)
Compare .A (drive number) to $31 (dr#l).
If equal, branch back to 8022 ($C340)
If not equal, must be default drive so
branch back to 8020 ($C34C).

Set drive # from command string with the
syntax: X#,FILE or xx=FILE.
Transfer the drive number from .Y to .A.
OR .A with $80 to set the default drive
bit and then AND the result with $81 to
mask off any odd bits. Branch back to
S024 ($C34F) to terminate routine.

Set drive # from any configuration:
Set IMAGE ($028B) to $00.
Load .Y from FILTBL ($027A).
Load .A with the (CB) ,Y character from
the command string and J8R to TSTOV1 to
test for a "0" or "1".

238

NAME

SA10

SA20

TOGDRV

FS1SET

FS10

$C371

$C377

$C37D

$C383

$C388

$C38C

$C38F

$C398

$C39D

$C3A2

$C3AC

$C3BO

DESCRIPTION OF WHAT ROM ROUTINE DOES

On return .A contains $00 or $01 if the
drive was specified. If not specified,
.A is $80 or $81. If the drive number
was given, branch to SA20 ($C388).
Increment the pointer into the command
string (.Y). Compare the pointer value
to the command length (CMDSIZi $0274)
to see if we are at the end. If we are,
branch to SA10 ($C383).
If not "0" or "1", set t.he pointer (.Y)
to the end of the command less one (so
it points to the last character before
the RETURN to pick up things like VOl
and loop back to SA05 ($C370).
Decrement IMAGE (becomes $FF) to flag a
default drive status and load .A with a
$00 to ensure default to 0 on the 1541.
AND the drive number in .A with $01, and
store the result in the current drive
number, DRVNUM ($7F).
Exit with a JMP to SETLDS ($C100) to
turn on the drive active light.

Toggle drive number:
Load .A with current drive number from
DRVNUM ($7F). EOR it with $01 to flip
bit #0, AND it with $01 to mask off the
bits 1-7, and store the result back in
DRVNUM ($7F).

Set pointers to one file stream and
check t.ype:
Zero .Y and load .A with the pointer to
the end of file name 1 (F1CNTi $0277).
Compare .A to the pointer to the end of
file name 2 (F2CNTi $0278). If equal,
there is no second file so branch to
FS15 ($C3B8).
Decrement F2CNT and load .Y with its
value. Load .A with the pointer to the
filetype in the command string from
FILTAB,Y ($027A,Y). Transfer this value
to .Y and use it to load the file type
into .A from the command string (CB) ,Y.
Load .Y with $04 (the number of file
types less 1).
Loop to compare the file type in .A to
the list of possible file types,TYPLST,Y
When a match occurs, branch to FS15
($C3B8). If no match found this time,
decrement .Y and, if there are any file
types left, loop back to FS10. NOTE: if
no match occurs, file assumed to be DEL.

239

NAME

FS15

TSTOVl

TOVI

OPTSCH

OSlO

OS15

OS30

OS35

OS45

$C3B8

$C3BD

I $C3C7

$C3Cl"\

$C3D5

$C3EO

$C3E8

$C3EB

$C3EF

$C3FE

$C400

$C409

$C41B

DESCRIPTION OF WHAT ROM ROUTINE DOES

Transfer file type from .Y to .A and
store in TYPFLG ($0296).

Test if character in .A is ASCII 0 or 1:
Compare .A to ASCII "0" ($30) and then
to ASCII "1" ($31). If a match in either
case, branch to TOVI.
OR .A with $80 to set bit 7 to indicate
no match was found.
AND .A with $81 to convert ASCII to HEX
and preserve bit 7.

Determine optimal search for LOOKUP and
FINFIL:
Zero TEMP ($6F) and DRVFLG ($0280) and
push $00 onto the stack. Load .X with
value from F2CNT ($0278). Note: TEMP is
the drive mask.
Pull .A from the stack and OR it with I
the value in TEMP ($6F). Push the result
back onto the stack. Load .A with $01
and store this value in TEMP. Decrement
.X (pointer into file table). If no
files left (.X=$FF), branch to $OS30.
Load .A with the drive for the file from
FILDRV,X ($E2,X). If this file uses the
default drive (bit 7 set), branch to
OS15. Do two ASL's on TEMP ($6F).
Do one LSR on .A. If drive number in .A
was 1, the carry bit is set so branch
back to OSlO.
Since drive number was 0, do one ASL on
TEMP ($6F) and branch back to OSlO.
Pull .A from the stack and transfer this
value to .X. Use this value as an index
and load .A with a value from the search
table, SCHTBL-l,X ($C43F,X). Push this
value onto the stack, AND it with $03,
and store the result in DRVCNT ($028C).
Pull the original value off the stack
and do an ASL. If bit 7 is not set,
branch to OS40.
If bit 7 was set, load A. with the value
from FILDRV ($E2).
AND .A with $01 and store the result in
DRVNUM ($7F). Load .A with DRVCNT($028C)
and if $00, only one drive is addressed
so branch to OS60.
JSR to AUTOI ($C63D) to check the drive
status and initialize it if necessary.
On return, branch to OS70 if the drive
is ready (.A=O).
Drive is not ready so load .A with $74
to indicate the drive is not ready and
JSR to CMDERR ($C1C8).

240

NAME

OS50

OS60

OS70

OS45

SCHTBL

LOOKUP

LK05

LK10

LK15

LK20

$C420

$C42D

$C434

$C439

$C43C

$C440

$C44F

$C452

$C45A

$C45C

$C461

$C462

$C470

$C473

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to TOGDRV ($C38F) to switch drives
and JSR to AUTOI ($C63D) to check this
drive's status and init it if necessary.
On return, save the processor status on
the stack. JSR to TOGDRV to switch back
to the first drive. On return, pull the
status back off the stack. If the second
drive is active, branch to OS70.
Since second drive is not active, set
ORVCNT ($020C) to $00 to indicate only
one drive addressed and branch to OS70.
JSR to AUTOI ($C63D) to check the drive
status and initialize it if necessary.
On return, branch to OS45 if the drive
is NOT ready (.A<>O).
Teminate routine with a JMP to SETLDS
($C100) to turn on the drive active LEOs
Do a ROL on the value in .A and JMP to
OS35 ($C400).

Search Table
BYTES $00, $80, $41
BYTES $01, $01, $01, $01
BYTES $81, $81, $81, $81
BYTES $42, $42, $42, $42

Look up all files in command string in
the directory and fill tables with info.
JSR to OPTSCH to find optimal search
pattern and turn on drive active LEOs.
Store $00 in DELIND ($0292), to indicate
that we are NOT looking for a deleted or
unused directory entry. But, for one or
more specific file names. JSR to SRCHST
($C5AC) to start the search process.
On return, branch to LK25 if a valid
file name was found (Z flag =0)
Since no file name was found, decrement
DRVCNT ($028C), the number of drive
searches to be made. If any more left
(ORVCNT >= 0), branch to LK15.
Since there are no more drive searches
to be done, exit with an RTS.
Store $01 in DRVFLG ($0280) and JSR to
TOGDRV ($C38F) to switch drives. JSR to
SETLOS ($C100) to turn on the other LED.
Then JMP back to LK05 to begin the
search on the other drive.
JSR to SEARCH ($C617) to read the next
valid file name in the directory.
On return, branch to LK30 to abandon the
search if a valid file name was NOT
found (2 flag = 1).

241

NAME

LK25

LK26

LK30

FFRE

FF15

FFST

FF10

FNDFIL

$C475

$C478

$C47D

$C47E

$C485

$C48A

$C48B

$C48E
$C490

$C492

$C49D

$C4A5

$C4A7
$C4AA

$C4AF

$C4B5

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to COMPAR ($C4D8) to compare the
list of files found with list of those
required. On return, FOUND ($028F) is 0
if all files have NOT been found.
Load .A with the value from FOUND. If
not all the files have been found yet,
branch to LK26 to continue the search.
All files have been found so exit from
the routine with an RTS.
Load .A with the value from ENTFND
($0253) to check if the most recent
compare found a match. If not (.A=$FF),
branch to LK20 to search directory for
another valid file name. If a match was
found, branch back to LK25 to try again.
Load .A with the value from FOUND. If
not all the files have been found yet,
branch to LKIO to continue the search.
All files found so exit with an RTS.

Find next file name matching any file
in stream & return with entry stuffed
into tables:
JSR to SRRE ($C604) to set up and read
in the next block of directory entries.
If no files found, branch to FF10.
If files were found, branch to FF25.

Store $01 in DRVFLG ($028D) and JSR to
TOGDRV ($C38F) to switch to the other
drive. JSR to SETLDS ($C100) to turn on
the new drive active light.

Find starting entry in the directory:
Store $00 in DELIND ($0292), to indicate
that we are NOT looking for a deleted or
unused directory entry. But, for one or
more specific file names. JSR to SRCHST
($C5AC) to start the search process.
On return, branch to FF25 if a valid
file name was found (2 flag =0)
Store .A value in FOUND ($028F).
Load .A from FOUND ($028F). If non-zero,
all files found so branch to FF40 & exit
Since there is nothing more on this
drive, decrement DRVCNT by 1. If any
more drives left, branch to FF15 to try
the other drive. If none left, do an RTS

Continue scan of directory:
JSR to SEARCH ($C617) to retrieve the
next valid file name from the directory.

242

NAME

FF25

FF30

FF40

COMPAR

CP02
CP05

CP10

$C4B8

$C4BA

$C4BD

$C4C7

$C4C9

$C4CE

$C4D7

$C4D8

$C4E6
$C4E7

$C4EC

$C4F3

DESCRIPTION OF WHAT ROM ROUTINE DOES

On return, branch to FF10 if no more
entries available on this drive.
JSR to COMPAR ($C4D8) to see if any of
the names found match the ones needed.
On return, load .X from ENTFND ($0253).
If a match on a name was found (.X<128),
branch to FF30 to check the file type.
If no match found (.X>127), load .A with
the value from FOUND($028F) to check if
all files have been found. If not(.A=O),
branch back to FNDFIL to load another
name from the directory.
If .A<>O, all files have been found so
branch to FF40 and exit with an RTS.
Check the file type flag, TYPFLG($0296).
If it is $00, there is no file type
restriction so branch to FF40 and exit.
Load the file pattern type from PATTYP,X
($E7,X), AND it with the file type mask
#$07, and compare it to the value in
TYPFLG ($0296). If the file types do not
match, branch back to FNDFIL to continue
the search.
Terminate the routine with an RTS.

Compare all file names in command list
with each valid entry in directory.
Any matches are tabulated.
Set the found-entry flag, ENTFND ($0253)
to $FF and zero the pattern flag PATFLG
($028A). JSR to CMPCHK ($C589) to check
the file table for unfound files. If
there are unfound files (2 flag = 1),
branch to CP10 to begin comparing.
Terminate routine with an RTS.
JSR to CC10 ($C594) to set F2PTR ($0279)
to point to the next file needed on this
drive. On return, branch to CP02 to exit
if no more files needed on this drive.
Load .A with the current drive number
from DRVNUM ($7F) and EaR it with the
drive number specified for the file,
FILDRV,X ($E2,X). LSR the result. If the
carry flag is clear, the drive number is
correct for this file so branch to CP20
to find the name in the directory list.
AND the value in .A with $40 to check if
we are to use the default drive (NOTE:
$40 rather than $80 because of the LSR) .
If we can not use the default drive,
branch back to CP05 to set up the next
file name on our list of files needed.

243

NAME

I CP20

CP30

CP32
CP33

CP34

CP40

$C4F7

$C4FE

$CS02

$CSOA

$CS11

$CS1S

$CS1B
$CS1D

$CS22

$C529

$C52B

$C52F

$CS35

$CS3B

DESCRIPTION OF WHAT ROM ROUTINE DOES

Compare DRVCNT ($028C) with $02. If
equal, don't use default drive so branch
back to CPOS.
At this point we have a match on the
drive numbers so check the directory
entries to see if we can match a name.
Load .A with the pointer to the position
of the required file name from FILTBL,X
($027A,X) and transfer this value to .X.
JSR to FNDLMT to find the end of the
command string. On return, load the
pointer into the directory buffer (.Y)
with $03 (so it points past the file
type, track and sector) and JMP to C?33.
Compare the .Xth character in the
command string (the required filename)
with the .Yth character in the directory
buffer (the directory entry). If equal,
branch to CP32 to set up for the next
character.
No exact match so check if the command
buffer character is a "?" which will
match any character. If not, branch to
to CP05 to try the next file name.
Compare the character we just used from
the directory buffer with $AO to see if
we've reached the end of the name. If
we have, branch to CPOS to try the next
file name.
Increment .X and .Y
Compare .X with the length of the
command string, LIMIT ($0276). If we are
at the end, branch to CP34.
Check if the new character in the file
name, CMDBUF,X ($0200,X) is a n*". If it
is, it matches everything so branch to
CP40 to tabulate this match.
If not a n*n, branch to CP30 to keep on
matching.
Compare .Y to $13 to see if we are at
the end of the name in the directory.
If we are, branch to CP40 to tabulate.
If not at the limit, check the character
in the directory entry name. If it isn't
an $AO, we did not get to the end of the
name so branch back to CPOS to try again
The filenames match so keep track of it
by storing the pointer to the entry from
F2PNT ($0279) into ENTFND ($0253).
Get the file type pattern ($80,$81,etc)
from PATTYP,X ($E7,X), AND it with $80,
and store it in PSTFLG.

244

NAME

CP42

CMPCHK

CC10

CC15

$C542

$C547

$C54B

$C55A
$C55C

$C562

$C56A

$C572

$C578

$C57D

$C582

$C589

$C594

$C59A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Get the pointer to the directory entry
from INDEX ($0294) and store it in the
entry index, ENTIND,X ($DD,X).
Get the sector on track 18 on which the
entry is stored from SECTOR ($81) and
store it in, ENTSEC,X ($D8,X).
Zero .Y and load .A with the file type
of this directory entry from (DIRBUF),Y
($94) ,Y. Increment .Y. Save the type on
the stack. AND the type with $40 to see
if this is a locked file type, and store
the result in TEMP ($6F). Pull the file
type off the stack and AND it with $DF
($FF-$20). If the result is > 127 (the
replacement bit not set), branch to CP42.
OR the result with $20.
AND the result with $27 and OR it with
the value stored in TEMP ($6F) and store
the final result back in TEMP.
Load .A with $80, AND .A with the file
pattern type from PATTYP,X ($E7,X), OR
the result with the value in TEMP ($6F),
and store the final result back in
PATTYP,X.
Load .A with the file's drive number
from FILDRV,X ($E2,X). AND it with $80
to preserve the default drive bit, OR it
with the current drive number, DRVNUM
($7F) and store the result back into
FILDRV,X ($E2,X).
Move the file's first track link from

(DIRBUF) ,Y(.Y=l) to FILTRK,X ($0280) and
increment .Y.
Move the file's first sector link from

(DIRBUF) ,Y(.Y=2) to FILSEC,X ($0285).
Check the current record length, REC
($0258). If NOT $00, branch to CMPCHK.
Set .Y to $15 and move the file entry's
record size from (DIRBUF) ,Y to REC.

Check table for unfound files
Set all-files-found flag, FOUND ($028F)
to $FF. Move the number of files to test
from F2CNT ($0278) to F2PTR ($0279).
Decrement the file count, F2PTR ($0279).
If any files left, branch to CCl5.
If none left, exit with an RTS.
Load .X with the number of the file to
test from F2PTR. Load .A with the file's
pattern type from PATTYP,X ($E7,X). If
file has not been found yet (bit 7 is
still set) abort search by branching to
CC20.

245

NAME

CC20

SRCHST

SR10

SR15

SR20

$C5A6

$C5AC

$C5B5

$C5C1

$C5C4

$C5C9
$C5CA

$C5CF

$C507

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the file's first track link
from FILTRK,X ($0280,X). If non-zero,
the file has been found, so branch back
to CC10 to test the next file.
Load .A with $00 and store it in the
all-files-found flag, FOUND ($028F) to
indicate that all files have NOT been
found and exit with an RTS.

Initiate search of directory:
Returns with valid entry (DELIND=O) or
with the first deleted entry (DELIND=l)
Load .Y with $00 and store it in DELSEC.
($0291). Decrement .Y to $FF and store
it in the found-an-entry flag, ENTFND
($0253) .
To start search at the beginning of the
directory, set TRACK ($80) to $12 (#18)
(from $FE79) and SECTOR ($81) to $01.
Also store $01 in last-sector-in-file
flag, LSTBUF ($0293).
JSR to OPNIRD ($0475) to open the
internal channel (SA=16) for a read and
to read in the first one or two sectors
in the file whose T/S link is given in
TRACK ($80) and SECTOR ($81).
Test LSTBUF ($0293) to see if we have
exhausted the last sector in the
directory file. If not (LSTBUF <> $00),
branch to SR15.
Exit with an RTS.
Set the file count, FILCNT ($0295) to
$07 to indicate that there are 8 entries
(0-7) left to examine in the buffer.
Load .A with $00 and JSR to DROBYT to
read the first byte in the sector (the
track link). On return store this value
into LSTBUF ($0293). This sets LSTBUF to
$00 if there are no more blocks left in
in the directory file.
JSR to GETPNT ($D4E8) to set the
directory pointer, OIRBUF ($94/5) to the
data that was just read into the active
buffer, BUFTAB,X ($99/A,X).

NOTE: DIRBUF does NOT point to the start of the data
buffer ($0300, $0400, ...). It points to the first
data byte ($0302, $0402, ...). As the entries are
examined, it is update to point to the start of
the entry ($Ox02, $Ox22, $Ox42, ...).

---1

246

NAME

SR30

SRRE

$C5DA

$C5DF

$C5E3

$C5E8

$C5FO

$C5F8

$C5FA

$C5FB

$C602

$C604

$C60E

$C611

DESCRIPTION OF WHAT ROM ROUTINE DOES

Decrement the entry count, FILCNT and
load .Y with $00 to begin examination of
the first directory entry.
Test the entry's file type in (DIRBUF) ,Y
If non-zero, this is NOT a deleted or
blank entry so branch to SR30.
Process a scratched or blank entry
Test DELSEC ($0291) to see if a deleted
entry has already been found. If it has
(DELSEC <> $00), branch to SEARCH($C617)
This is first deleted entry so JSR to
CURBLK ($DE3B) to set up the current
sector in SECTOR ($81). Save the sector
number in DELSEC ($0291).
Load .A with the low byte of the pointer
to the start of this entry (its position
in the data buffer) from DIRBUF ($94).
Load .X with the current value of DELIND
($0292). This sets the Z flag to 1 if
only valid entries are desired.
Store the pointer in .A into DELIND.
If the Z flag is set, we need valid
entries, not deleted ones, so branch to
SEARCH to continue the search.
We wanted a deleted entry and we found
one so terminate routine with an RTS.
We have found a valid entry. Check if we
are looking for one by comparing DELIND
($0292) to $01. If not equal, we want a
valid entry so branch to SR50.
If DELIND = 1, we want a deleted entry,
not a valid one, so branch to SEARCH to
continue the quest!

Re-enter the directory search:
Set TRACK ($80) to $12 (#18) from $FE85
Set SECTOR ($81) from the last directory
sector used, DIRSEC ($0290).
JSR to OPNIRD ($0475) to open the
internal channel (SA=16) for a read and
to read in the first one or two sectors
in the file whose Tis link is given in
TRACK ($80) and SECTOR ($81).
Load .A with the pointer INDEX ($0294)
that points to the start of the last
entry we were examining and JSR to
SETPNT ($D4C8) to set the DIRPNT ($94/5)
to point to the start of the entry.

247

NAME

SEARCH

SR40

SR50

AUTOI

$C617

$C621

$C629

$C62F

$C634

$C637

$C63C

$C641

$C647

$C64C

$C64F
$C651

$C655

$C659

$C65D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Continue search of entries:
Set found-entry flag, ENTFND ($0253) to
$FF. Load .A with number of entries left
in the buffer from FILCNT ($0295). If
none left, branch to SR40 to get the
next buffer of directory entries.
There is at least one more entry left in
this buffer so load .A with $20 (the #
of characters in each entry) and JSR to
INCPTR ($01C6) to set OIRPTR ($94/5) to
point to the start of the next entry.
JMP to SR20 ($C507) to process it.
Get next buffer of entries:
JSR to NXTBUF ($0440) to read in the
next directory sector and JMP to SR10
to begin processing it.
We have found a valid entry so save
how far we got and return.
Save low byte of the pointer to the
entry, from OIRBUF($94) in INOEX($0294).
JSR to CURBLK ($OE3B) to store the
sector we are checking in SECTOR ($81).
Save the current sector number from
SECTOR ($81) in OIRSEC ($0290) and RTS.

Check drive for active diskette, init
if needed. Return no drive status.
Test auto-initialization flag, AUTOFG
($68). If AUTOFG <> 0, auto-init is
disabled so branch to AUT02 ($C669).
Load .X with the current drive number
from ORVNUM ($7F). Test whether the
diskette has been changed by doing an
LSR on the write-protect-change flag for
the current drive, WPSW,X ($lC/O). If
the carry flag, C, is clear, the disk
has not been changed so branch to AUT02.
Load .A with $FF. Store this value as
the job return code in JOBRTN ($0298).
JSR to ITRIAL ($OOOE) to do a SEEK to
the current drive to determine if a
diskette is present.
Load .Y with $FF (default to true).
Compare the value in return job code in
.A with $02. If equal, NO SYNC was found
so branch to AUT01 to abort.
Compare the value in return job code in
.A with $03. If equal, NO HEADER was
found so branch to AUT01 to abort.
Compare the value in return job code in
.A with $OF. If equal, NO DRIVE was
found so branch to AUT01 to abort.
Seems OK so load .Y with $00.

248

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

AUTOI

AUT02

$C65F

$C666

$C669

Load .X with the current drive number
DRVNUM ($7F). Transfer the value of .Y
into .A ($00 if OK;$FF if BAD) and store
in the current drive status, NODRV,X
($FF,X). If status is bad (not $00),
branch to AUT02 to abort.
JSR to INITDR ($0042) to initialize the
current drive.
Load .A with the current no-drive status
and terminate routine with an RTS.

NOTE: Z flag set if all is OK.

TRNAME $C66E

$C66F

$C672

$C675

$C67A

$C67F

TNIO $C68I

TN20 $C687

Transfer filename from CMD to buffer:
On entry, .A=string size; .X=starting
index in command string; .Y=buffer #
Save .A (string size) on the stack.

JSR to FNDLMT ($C6A6) to find the limit
of the string in the command buffer that
is pointed to by .X.
JSR to TRCMBF ($C688) to transfer the
command buffer contents from .X to LIMIT
to the data buffer whose number is in .Y
Restore the string size into .A from the
stack. Set the carry flag and subtract
the maximum string size, STRSIZ ($024B).
Transfer the result from .A to .X. If
the result is 0 or negative, the string
does not need padding so branch to TN20.
String is short and needs to be padded
so load .A with $AO.
Loop to pad the string in the directory
buffer with .X $AO's.
Terminate routine with an RTS.

TRCMBF

TRIO

TR20

$C688
$C68B

$C697

$C69C

$C69F

$C6A5

Transfer CMD buffer to another buffer:
.X=index to first chr in command buffer
LIMIT=index to last chr+1 in CMD buffer
.Y=buffer#. Uses current buffer pointer.
Multiply .Y by 2 (TYA;ASL;TAY).
Use current buffer pointers, BUFTAB,Y
($99/A,Y) to set the directory buffer
pointers, DIRBUF ($94/5).
Zero .Y (index into directory buffer)
Move character from CMDBUF,X ($0200,X)
to (0 I RB UF) , Y ; ($ 9 4) , Y.
Increment .Y. If .Y equals $00, branch
to TR20 to abort.
Increment .X. If .X < LIMIT ($0276)
branch back to TRIO to do next character

I-:=:~~~~~=_:~~~~~=-~~~~-~~-~:~:_---------

249

NAME

FNDLMT

FL05

I FL10

$C6A6

$C6AO

$C6BO

$C6B4

$C6B8
$C6BC

$C6C3

$C6C8

$C6CB

$C6CO

DESCRIPTION OF WHAT ROM ROUTINE DOES

Find the limit(end) of the string in the
command buffer that is pointed to by X
Zero the string size, STRSIZ ($024B).
Transfer the starting pointer from .X
to .A and save it on the stack.
Load .A with the Xth command string
character, CMOBUF,X ($0200,X).
Compare the character to a ",". If they
match, we're at the end. Branch to FL10.
Compare the character to a "=". If they
match, we're at the end. Branch to FL10.
Increment STRSIZ ($024B) and .X
Check if the string size, STRSIZ, has
reached the maximum size of $OF (#15).
If it has, branch to FL10 to quit.
Compare .x to the pointer to the end of
the command string, CMOSIZ ($0274). If
we're NOT at the end. Branch to FL05.
Store the .X value (the last character
plus 1) into LIMIT ($0276).
Pull the original .X value off the stack
into .A and transfer it to .X
Terminate routine with an RTS.

GETNAM $C6CE

$C601

$C6D4

$C6D7

$C6DO

GNSUB $C60E

$C6E2

$C6E5

$C6E8

$C6EO

Get file entry from directory:
(called by STDIR and GETDIR)
Save secondary address, SA ($83) on the
stack.
Save the current channel#, LINOX ($82)
on the stack.
JSR to GNSUB ($C60E) to get a directory
entry using the internal read channel
SA=$11(#17).
Pull the original SA and LINDX values
from the stack and reset these variables
Terminate the routine with an RTS.

Get file entry subroutine:
Set current secondary address, SA ($83)
to $11 "(internal read secondary address)
JSR to FNORCH ($OOEB) to find an unused
read channel.
JSR to GETPNT ($04E8) to set the
directory buffer pointer, OIRBUF ($94/5)
from the pointer to the currently active
buffer using values from BUFTAB ($30/1).
Test the found entry flag, ENTFLG($0253)
to see if there are more files. If there
are more (ENTFLG > 127), branch to GN05.
No more entries so test ORVFLG ($0280)
to see if we have the other drive to do.
If ORVFLG <> 0, branch to GN050 to do
the other drive.

250

NAME

GNOS

GNOSO

GNOS1

GN10

GN12

$C6F2

$C6FS

$C6F7

$C6FC

$C701
$C704
$C707

$C70A

$C70E

$C716

$C719

$C71B

$C71D

$C71F

$C726

$C728

$C729

$C72E

$C732

$C736

$C737

$C73B

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to MSGFRE ($C806) to send the BLOCKS
FREE message.
Clear carry bit and exit with an RTS.

Test drive flag, DRVFLG ($0280). If $00,
branch to GN10.
Decrement drive flag, DRVFLG ($028D). If
not $00, branch to GN051 to do a new
directory.
Decrement drive flag, DRVFLG ($028D).
JSR to TOGDRV ($C38F) to switch drives.
JSR to MSGFRE ($C806) to send the BLOCKS
FREE message.
Set the carry flag and exit with a JMP
to TOGDRV ($C38F) to switch drives.
Load .A with $00 and zero the hi byte of
the number of blocks counter, NBTEMP+1
($0273) and the drive flag DRVFLG($028D)
JSR to NEWDIR ($C7B7) to begin a new
directory listing.
Set the carry flag and exit with an RTS.

Load .x with $18 (#24), the length of an
entry in a directory listing
e.g. 114 "PROGRAM FILENAME" PRG
Load .Y with $10, the position of the
hi byte of the # of blocks in the file.
Load .A with the hi byte of the # of
blocks in the file. Store this into the
hi byte of the block counter, NBTEMP+1
($0273). If zero, branch to GN12.
Load .x with $16 (#22) the directory
length less 2.
Decrement Y so it points to the position
of the 10 byte of the # of blocks in
the file.
Load .A with the 10 byte of the # of
blocks in the file. Store this into the
10 byte of the block counter, NBTEMP
($0272) .
Compare .x to $16 (#22) the directory
length less 2. If they are equal, branch
to GN14.
Compare .A (the 10 byte of the blocks)
with $OA (#10). If .A<10 branch to GN14
Decrement .X (we will need less padding
since # of blocks is at least 2 digits.
Compare .A (the 10 byte of the blocks)
with $64 (#100). If A<100 branch to GN14
Decrement .X (we will need less padding
since # of blocks is at least 3 digits.

251

NAME

GN14 $C73C

$C73F

$C742

I $C743

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to BLKNB ($C7AC) to clear the name
buffer for the next entry. On return Y=O
Load .A with the file type from the
directory buffer (DIRBUF) ,Y and save the
file type onto the stack.
Do an ASL of the value in .A to set the
carry bit if this is a valid file that
has not been closed. (see BCS $C764)
If .A<128, branch to GN15.

NOTE: The branch at $C742 and the code following is what
produces the PRG<, SEQ<, etc. file types. Note that
these file types are LOCKED and can't be SCRATCHED!
The locking and unlocking of files is NOT supported
by any Commodore DOS. To lock a file, change its
file type in its directory entry from $80, $81, etc
to $CO, $Cl, etc. Reverse the process for unlocking

GN15

GN20

GN22

$C745
$C747

$C74A

$C74E

$C754
$C755

$C75B
$C75C

$C762
$C764

$C766

$C768
$C76B

$C771

$C773

$C77E
$C780

Load .A with a $3C (a n<n).
Store this value into the name buffer
NAMBUF+1,X ($02B1,X).

Pull the file type off the stack and AND
it with $OF to mask off the higher bits.
Transfer it to .Y to use as an index.
Move last character in file type name
from TP2LST,Y ($FEC5,Y) to the name
buffer, NAMBUF,X ($02B1,X).
Decrement .X
Move middle character in file type name
from TP1LST,Y ($FECO,Y) to the name
buffer, NAMBUF,X ($02B1,X).
Decrement .X
Move first character in file type name
from TYPLST,Y ($FEBB,Y) to the name
buffer, NAMBUF,X ($02B1,X).
Decrement .X twice
If carry bit is set (indicates valid
entry; see $C742) branch to GN20.
Load .A with $2A (a n*,,) to indicate an
improperly closed file.
Store the n*n in NAMBUF+1,X ($02B1,X).
Store a shifted space, $AO in the buffer
(between name & type) and decrement .X
Load .Y with $12 (#18) so it points to
the end of the name in the dir buffer.
Loop to transfer the 16 characters in
the file name from the directory buffer
to the name buffer.
Load .A with $22 (a .n,)
Store quotation mark before the name.

252

GN40 $C7A7

GN45 $C7AB

BLKNB $C7AC

BLKNB1 $C7BO

$C7B6

NEWDIR $C7B7

$C7BA

$C7BD

$C7CO
$C7C4

$C7C9
$C7CE

$C7DO

$C7D5

NAME

GN30

NOlO

ND15

ND20

$C783

$C7DA
$C7DC

$C7E2

$C7E4
$C7E5

$C7EB

$C7ED

DESCRIPTION OF WHAT ROM ROUTINE DOES

Loop to scan up the name looking for a
quote mark($22) or a shifted space($AO).
When either character is found or the
end of the name is reached, store a $22
(quote mark) at that location. Then AND
any remaining characters in the name
with $7F to clear bit 7 for each one.
JSR to FNDFIL ($C4B5) to find the next
entry. On return, set the carry bit.
Terminate the routine with an RTS.

Blank the name buffer:
Load .Y with $lB, the length of the name
buffer, and .A with $20, a space.
Loop to store $20's in all locations in
the name buffer, NAMBUF ($02B1-CB)
Terminate the routine with an RTS.

New directory in listing
JSR to BAM2X ($Fl19) to set BAM pointer
in buffer 0/1 tables and leave in .X
JSR to REDBAM ($FODF) to read in the BAM
to $0700-FF if not already present.
JSR to BLKNB ($C7AC) to blank the name
buffer, NAMBUF ($02Bl-CB).
Set TEMP ($6F) to $FF
Set NBTEMP ($0272) to the current drive
number from DRVNUM ($7F)
Set NBTEMP+1 ($0273) to $00
Load .X with the position of the read
BAM job in the queue from JOBNUM ($F9).
Set high byte of the pointer to the
directory buffer, DIRBUF ($94/5) using a
value (3,4,5,6,7,7) from BUFIND,X($FEEO)
Set low byte of the pointer to the
directory buffer, DIRBUF ($94/5) using
the value ($90) from DSKNAM ($FE88).
DIRBUF now points to the start of the
disk name in the BAM buffer ($Ox90)
Load .Y with $16 (#22), the name length.
Load .A with character, (DIRBUF),Y and
test if it is a shifted blank ($AO).
If not, branch to ND20.
Since it is not a shifted blank, load .A
with a $31 (ASCII "1") for version #1.
BYTE $2C here causes branch to ND20.
Load .A with character, (DIRBUF),Y and
test if it is a shifted blank ($AO).
If not, branch to ND20.
Since it is not a shifted blank, load .A
with a $20 (ASCII space).
Store the character in .A into the name I

buffer, NAMBUF+2,Y ($02B3,Y).

253

NAME

$C7F1

$C7F3
$C7F8
$C7FD
$C800
$C805

MSGFRE $C806

$C809
$C80B

$C814

DESCRIPTION OF WHAT ROM ROUTINE DOES

If more characters left (.Y)=O) branch
back to ND15.
Store a $12 (RVS on) in NAMBUF ($02B1)
Store a $22 (quote) in NAMBUF+1 ($02B2)
Store a $22 (quote) in NAMBUF+18 ($02C3)
Store a $20 (space) in NAMBUF+19 ($02C4)
Terminate routine with an RTS.

Set up message "BLOCKS FREE"
JSR to BLKNB ($C7AC) to clear the name
buffer.
Load .Y with SOB (message length -1).
Loop using .Y as index to move message
from FREMSG,Y ($C817,Y) to NAMBUF,Y
($02B1, Y) .
Terminate routine with a JMP to NUMFRE
($EF4D) to calculate the number free.

FREMSG $C817 Message "BLOCKS FREE"

- * - * - SCRATCH ONE OR MORE FILES - * - * -

SCRTCH $C823

$C826

$C829

$C82C
$C830

JSR to FS1SET ($C398) to set up for one
file stream.
JSR to ALLORS ($C320) to all drives
needed based on F2CNT.
JSR to OPTSCH ($C3CA) to determine best
sequence of drives to use.
Zero file counter, RO ($86)
JSR to FFST ($C49D) to find the first
directory entry. If not successful,
branch to SC30.

NOTE: THE FOLLOWING CODE PREVENTS FREEING THE SECTORS
OF AN UNCLOSED FILE.

SC15 $C835

$C838

JSR to TSTCHN ($00B7) to test for active
files from index table.
If file active (carry clear), branch to
SC25.

NOTE: THE FOLLOWING CODE PREVENTS THE SCRATCHING OF
A LOCKED FILE (BIT 6 OF THE FILE TYPE SET).

$C83A
$C83C

$C83E

$C840

$C842

Load .Y with $00.
Load .A with file type from (DIRBUF),Y
($94,Y) .

AND the file type with $40 to test if it
is a locked file (bit 6 of filetype set)
If a locked file, branch to SC25.

JSR to DELDIR ($C8B6) to delete the
directory entry. Stores $00 as the file
type and rewrite the sector on disk.

254

NAME

$C845
$C847

$C849
$C84B
$C84D

$C852

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .Y with $13 (#19).
Test whether this is a relative file by
loading .A with 19th character of the
entry (the track of the side-sector
pointer for a REL file) from (DIRBUF),Y
If $00, not a REL file so branch to SC17
Store track pointer into TRACK ($80).
Increment .Y and move sector pointer
from (DIRBUF),Y into SECTOR ($81).
JSR to DELFIL ($C87D) to free the side
sectors by updating and writing the BAM

NOTE: THE FOLLOWING CODE PREVENTS FREEING THE SECTORS
OF A FILE IF ITS REPLACEMENT WAS INCOMPLETE (BIT 5 SET).

SC17

SC20
SC25

SC30

DELFIL

$C855

$C85A

$C85C

$C85E

$C863

$C868

$C86B
$C86D

$C870

$C872

$C876
$C87A

$C87D

$C880

$C883

$C886

Load .X with the directory entry counter
ENTFND ($0253) and .A with $20.
AND .A with the file pattern type in
PATTYP,X ($E7,X) to check if this is an
opened but unclosed file.
If unclosed file, branch to SC20.

Move initial track link from FILTRK,X
($0280,X) into TRACK ($80).
Move initial sector link from FILSEC,X
($0285,X) into SECTOR ($81).
JSR to DELFIL ($C87D) to free the file
blocks by updating and writing the BAM
Increment the file counter, RO ($86).
JSR to FFRE ($C48B) to match the next
filename in the command string.
If a match found, branch to SC15

All done. Store number of files that
have been scratched, RO ($86) into
TRACK ($80)
Load .A with $01 and .Y with $00
Exit with a JMP to SCREND ($C1A3)

Delete file by links:
JSR to FRETS ($EF5F) to mark the first
file block as free in the BAM.
JSR to OPNIRD ($0475) to open the
internal read channel (SA=17) and read
in the first one or two blocks.
JSR to BAM2X ($Fl19) to set BAM pointers
in the buffer tables.
Load .A from BUFO,X ($A7,X) and compare
it to $FF to see if buffer inactive.
If inactive (.A=$FF), branch to DEL2
Load write BAM flag, WBAM ($02F9), OR it
with $40 to set bit 6 and store it back
in WBAM to indicate both buffers active.

255

NAME

DEL2

DELl

DELDIR

$C894

$C899

$C89C
$C89E

$C8A1
$C8A3

$C8A7
$C8AA

$C8AD

$C8BO

$C8B3

$CSB6

$C8BS

$C8BB

$C8BE

DESCRIPTION OF WHAT ROM ROUTINE DOES

Zero .A and JSR to SETPNT($D4C8) to set
pointers to the currently active buffer.
JSR to RDBYT ($0156) to direct read one
byte (the track link from the buffer)
Store track link into TRACK ($80)
JSR to RDBYT ($0156) to direct read one
byte (the sector link from the buffer)
Store sector 'link into SECTOR ($81)
Test track link. If not $00 (not final
sector in this file), branch to DELl
JSR to MAPOUT ($EEF4) write out the BAM.
Exit with a JMP to FRECHN ($D227) to
free the internal read channel.

JSR to FRETS($EF5F) to de-allocate(free)
specified in TRACK ($80) & SECTOR ($81)
in the BAM.
JSR to NXTBUF ($0440) to read in the
next block in the file (use T/S link).
JMP to DEL2 to de-allocate the new block

Delete the directory entry:
Load .Y with $00 (will point to the Oth
character in the entry: the file type).
Set the file type, (DIRBUF) ,Y: ($94),Y
to $00 to indicate a scratched file.
JSR to WRTOUT ($DE5E) to write cut the
directory block.
Exit with a JMP to WATJOB ($0599) to
wait for the write job to be completed.

* DUPLICATE DISK * NOT AVAILABLE ON THE 1541

I
$C8C1 I Load .A with a $31 to indicate a bad

command and JMP to CMDERR ($C1CS).

- * - * - FORMAT DISKETTE ROUTINE - * - * -

This routine sets up a jump instruction in buffer a
that points to the code used by the disk controller
to do the formatting. It then puts an exectute job
code in the job queue. The routine then waits while
the disk controller actually does the formatting.

FORMAT $CSC6

$C8D5

$CSDA

Store JMP $FABB ($4C,$BB,$FA) at the
start of buffer 0 ($0600/1/2).
Load .A with $03 and JSR to SETH ($0603)
to set up header of active buffer to the
values in TRACK ($SO) and SECTOR ($81).
Load drive number, DRVNUM ($7F), EOR it
with $EO (execute job code) and store
the result in the job queue ($0003).

256

NAME

FMT105

FMT110

$C8EO

$C8E4

$C8E8

$C8EF

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A from the job queue ($0003). If
.A > 127, the job has not been finished
yet so branch back to FMT105.
Compare .A with $02. if .A < 2, the job
was completed OK so branch to FMT110.
Error code returned by disk controller
indicates a problem so load .A with $03
and .X with $00 and exit with a JMP to
ERROR ($E60A).
Job completed satisfactorily so exit
with an RTS.

- * - * - COpy DISK FILES ROUTINE - * - * -

DSKCPY

DXOOOO

DX0005

DX0010

$C8FO

$C8F5

$C8F8

$C8FB

$C8FF

$C904

$C907

$C909

$C90C

$C90F

$C912

$C919

$C91F

$C923

Store $EO in BUFUSE ($024F) to kill the
BAM buffer.
JSR to CLNBAM ($FOD1) to set track and
sector links in BAM to $00.
JSR to BAM2X ($Fl19) to return the BAM
LINDX in .X.
Store $FF in BUFO,X ($A7,X) to mark the
BAM as out-of-memory.
Store $OF in LINUSE ($0256) to free all
LINDXs.
JSR to PRSCLN ($C1E5) to parse the
command string and find the colon.
If colon found (2 flag =0), branch to
DXOOOO.
Colon not found in command string so
command must be CX=Y. This command is
not supported on the 1541 so exit with
a JMP to DUPLCT ($C8C1).

JSR to TC30 ($C1F8) to parse the command
string.
JSR to ALLDRS ($C320) to put the drive
numbers into the file table.
Load .A with the command pattern image
as determined by the parser from IMAGE
($028B). AND the image with %01010101
($55). If the result is not $00, the
command must be a concatenate or normal
copy so branch to DX0020.
Check for pattern matching in the name
(as in c1:game=0:*) by loading .X from
FILTBL ($027A) and then loading .A from
the command string, CMDBUF,X ($0200,X).
The value in .A is compared to $2A ("*")
If there is no match, there is no wild
so branch to DX0020.
Load .A with the $30 to indicate a
syntax error and JMP to CMDERR ($C1C8).

257

NAME

DX0020

PUPS1

COpy

COP01

$C928

$C92F

$C932

$C952

$C955

$C95C

$C962

$C968

$C96E

$C971

$C979

$C97E

$C982

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the command pattern image
as determined by the parser from IMAGE
($028B). AND the image with %11011001
($D9). If the result is not $00, the
syntax is bad so branch to DX0010 and
abort.
JMP to COpy ($C952) to do the file copy.
syntax error and JMP to CMDERR ($C1C8).

Subroutine used to set up for copying
entire disk (C1=0). Not used on 1541.

Copy file(s) to one file:
JSR to LOOKUP ($C44F) to look up the
file(s) listed in the command string in
the directory.
Load .A with the number of filenames in
the command string from F2CNT($0278) and
compare it with $03. If fewer than three
files, this is not a concatenate so
branch to COP10 ($C9A1).
Load .A with the first file drive number
from FILDRV ($E2) and compare it to the
second drive number in FILDRV+1 ($E3).
If not equal, this is not a concatenate
so branch to COP10 ($C9A1).
Load .A with the index to the first file
entry from ENTIND ($DD) and compare it
to the second file's index in ENTIND+1
($DE). If not equal, this is not a
concatenate so branch to COP10 ($C9A1).
Load .A with the first file's sector
link from ENTSEC ($D8) and compare it
to the second file's link in ENTSEC+1
($D9). If not equal, this is not a
concatenate so branch to COP10 ($C9A1).

CONCATENATE FILES

JSR to CHKIN ($CACC) to check if input
file exists.
Set F2PTR ($0279) to $01 and JSR to
OPIRFL ($C9FA) to open the internal read
channel, read in the directory file, andl
locate the named file.
JSR to TYPFIL ($D125) to determine the
file type. If $00, a scratched file so
branch to COP01 (file type mismatch).
Compare the file type to $02. If not
equal, it is not a deleted program file
so branch to COP05 to continue.
Bad file name. Load .A with $64 to
indicate a file type mismatch and JSR
to CMDERR ($C1C8).

258

NAME

COPOS

COP10

CY

CY10

CY10A

CY1S

CY20

$C987

$C98B

$C991

$C996
$C999

$C99E

$C9A1
$C9A3

$C9A7

$C9AA

$C9BO

$C9B3

$C9B6
$C9B9
$C9BC

$C9BF

$C9C3

$C9C6

$C9C9

$C9CB

$C9CE
$C9D2
$C9DS

$C9D8

$C9DB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set secondary address, SA ($83) to $12
(#18, the internal write channel)
Move the active buffer pointer from
LINTAB+IRSA ($023C) to LINTAB+IWSA
($023D) .
Deactivate the internal read channel by
storing $FF in LINTAB+IRSA ($023C).
JSR to APPEND ($DA2A) to copy first file
Load .X with $02 and JSR to CY10 ($C9B9)
to copy second file behind the first.
Exit routine with a JMP to ENDCMD ($C194)

COpy FILE

JSR to CY ($C9A7) to do copy.
Exit routine with a JMP to ENDCMD ($C194)

JSR to CHKIO ($CAE7) to check if file
exists.
Get drive number from FILDRV ($E2), AND
it with $01 (mask off default bit), and
store it in DRVNUM ($7F).
JSR to OPNIWR ($D486) to open internal
write channel.
JSR to ADDFIL ($D6E4) to add the new
file name to the directory and rewrite
the directory.
Load .X with pointer from F1CNT ($0277).
Store .X in F2CNT ($0278).
JSR to OPIRFL ($C9FA) to open internal
read channel and read in one or two
blocks of the directory.
Set secondary address, SA ($83) to $11,
to set up the internal read channel.
JSR to FNDRCH ($DOEB) to find an unused
read channel.
JSR to TYPFIL ($D12S) to determine if
the file is a relative file.
If not a relative file (2 flag not set
on return), branch to CY10A.
JSR to CYEXT ($CAS3) to open copy the
relative file records.
Store $08 (EOI signal) into EOIFLG($F8).
JMP to CY20.
JSR to PIBYTE ($CF9B) to write out last
byte to disk.
JSR to GIBYTE ($CA3S) to get a byte from
the internal read channel.
Load .A with $80 (the last record flag)
and JSR to TSTFLG ($DDA6) to see if this
is the last record.

259

NAME

CY30

OPIRFL

$C9EO

$C9E5

$C9E7

$C9EA

$C9F3

$C9FA

$CA03

$CA08

$CAOC

$CAOF

$CA14

$CA17

$CA21

$CA26

DESCRIPTION OF WHAT ROM ROUTINE DOES

On return if Z flag is set (test failed;
this is not the last record) branch to
CY15 to do some more.
Last record done so JSR to TYPFIL($D125)
to get file type.
On return if Z flag is set branch to
CY30 to do some more.
JSR to PIBYTE ($CF9B) to write out last
byte to disk.
Check if there are more files to copy
by loading .X from F2PTR ($0279),
incrementing it by 1, and comparing it
to F2CNT ($0278). If the carry bit is
clear, there are more files to copy so
branch back to CY10.
Since no more files to copy, set the SA
($83) to $12 (internal write channel)
and JMP to CLSCHN ($DB02) to close the
copy channel and file.

Open internal read channel to read file:
Load .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the drive number of the file to
be read from FILDRV,X ($E2,X). AND this
drive number with $01 to mask off the
default drive bit, and store the value
in DRVNUM ($7F) to set the drive number.
Set the current TRACK ($80) to 18 ($12),
the directory track.
Set the current SECTOR($81) to the
sector containing the directory entry
for this file from ENTSEC,X ($D8,X).
the directory track.
JSR to OPNIRD ($D475) to open the
internal read channel to read the
directory.
Load .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the pointer to the start of the
entry from ENTIND,X ($DD,X).
JSR to SETPNT ($D4C8) to set the track
sector pointers from the entry.
Load .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the file's pattern mask from
PATTYP,X ($E7,X). AND this value with
$07 (the file type mask) and use it to
set the file type in TYPE ($024A).
Set the record length, REC ($0258) to
$00 since this is not a relative file.
JSR to OPREAD ($D9AO) to open a read
channel.

260

$CA40

GIB20 $CA52

CYEXT $CA53
$CA56

$CA59

$CA5F

$CA63

$CA66
$CA69

NAME

OPIR10

GIBYTE

GCBYTE

$CA29

$CA2E

$CA30
$CA31
$CA32

$CA35

$CA39

$CA3C
$CA3E

$CA42

$CA46

$CA48

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .Y with $01 and JSR to TYPFIL
($0125) to get the file type.
If Z flag set on return (indicates that
this is not a relative file) branch to
OPIR10.
Increment .Y by 1.
Transfer the value in .Y into .A
Exit with a JMP to SETPNT ($04C8) to set
the track & sector pointers from the
directory entry.

Get byte from internal read channel:
Set the secondary address, SA ($83) to
$11 (#17) the internal read channel.

Get byte from any channel:
JSR to GBYTE ($039B) to get the next
byte from the read channel.
Store the byte in DATA ($85).
Load .X with the logical file index
LINOX ($82) and use this as an index to
load .A with the channel status flag,
CHNROY,X
EaR .A with $08, the not EOI send code
and store the result in EOIFLG ($F8).
If .A <> $00 (EOI was sent!), branch to
GIB20 and exit.
JSR to TYPFIL ($0125) to get the file
type. If Z flag set on return (indicates
this is not a relative file), branch to
GIB20 and exit.
Load .A with $80 (the last record flag)
and JSR to SETFLG ($0097).
Terminate routine with an RTS.

Copy relative records:
JSR to SETORN ($0103) to set drive #.
JSR to SSENO ($E1CB) to position side
sector and BUFTAB to the end of the
last record.
Save side sector index, SSINO ($06) and
the side sector number, SSNUM ($05) onto
the stack.
Set the secondary address, SA ($83) to
$12, the internal write channel.
JSR to FNOWCH ($0107) to find an unused
write channel.
JSR to SETORN ($0103) to set drive #.
JSR to SSENO ($E1CB) to position side
sector and BUFTAB to the end of the
last record.

261

NAME

$CA6C

$CA6F

$CA73

$CA77

$CA7F

$CA85

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to POSBUF ($E2C9) to position the
proper data blocks into the buffers.
Set Rl ($87) to the current value of
the side sector index, SSIND ($D6).
Set RO ($86) to the current value of
the side sector number, SSNUM ($D5).
Zero R2 ($88) and the low bytes of the
record pointer RECPTR ($D4) and the
relative file pointer ($D7).
Restore the original values of the side
side sector number, SSNUM ($D5) and the
sector index, SSIND ($D6) from the stack
Terminate the routine with a JMP to
ADDRl ($E33B).

RENAME

RN10

$CA88

$CA8B

$CA91

$CA95

$CA97
$CA99

$CA9C

$CA9F

$CAA5

$CAA9

$CAAC

$CAAF

RENAME FILE IN THE DIRECTORY

JSR to ALLDRS ($C320) to set up all the
drives given in the command string.
Load .A with the drive specified for the
second file from FILDRV+1 ($E3), AND it
with $01 to mask off the default drive
bit, and store the result back in
FILDRV+1 ($E3).
Compare the second drive number (in .A)
with the first one in FILDRV ($E2). If
equal, branch to RN10.
OR the drive number in .A with $80 to
set bit 7. This will force a search of
both drives for the named file.
Store the value in .A into FILDRV ($E2)
JSR to LOOKUP ($C44F) to look up both
file names in the directory.
JSR to CHKIO ($CAE7) to check for the
existance of the files named.
Load the value from FILDRV+1 ($E3), AND
it with $01 to mask off the default
drive bit, and use the result to set the
currently active drive, DRVNUM ($7F).
Set the active sector number, SECTOR
($81) using the directory sector in
which the second file name was found
(from ENTSEC+1; $D9).
JSR to RDAB ($DE57) to read the
directory sector specified in TRACK($80)
and SECTOR ($81).
JSR to WATJOB ($D599) to wait for the
job to be completed.
Load .A with the pointer to the entry in
the buffer from ENTIND+1 ($DE), add $03
(so it points to the first character in
the file name), and JSR to SETPNT($D4C8)
to set the pointers to the file name.

262

NAME

CHKIN

CKI0

CK20

CHKIO

CK25

CK30

$CAB7

$CABA

$CAC3

$CAC6

$CAC9

$CACC

$CAD3
$CAD6

$CADA

$CADC

$CAEI

$CAE6

$CAE7

$CAEA

$CAEF

$CAF4

$CAF7 I

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to GETACT ($DF93) to store the
active buffer number in .A.
Transfer the buffer number to .Y, load
.X from the file table FILTBL ($027A),
.A with $10 (the number of characters
in a file name) and JSR to TRNAME($C66E)
to transfer the file name from the
command string to the buffer containing
the file entry.
JSR to WRTOUT ($DE5E) to write out the
revised directory sector.
JSR to WATJOB ($D599) to wait for the
job to be completed.
Terminate the routine with a JMP to
ENDCMD ($CI94).

Check existance of input file:
Load .A with the first file type from
PATTYP+l ($E8), AND it with the file
type mask ($07) and store it in TYPE
($024A) .
Load .X from F2CNT ($0278).
Decrement .X by 1 and compare it with
the value of FICNT ($0277).
If the carry is clear, the file has been
found so branch to CKI0.
Load .A with the file's track link from
FILTRK,X ($0280,X). If link is NOT $00,
branch t.o CKIO.
Since the file has not been found, load
.A with $62 and exit with a JMP to
CMDERR ($CIC8).
Terminate routine with an RTS.

Check existance of I/O file:
JSR to CHKIN ($CACC) to check for the
existance of the input file.
Load .A with the file's track link from
FILTRK,X ($0280,X). If link equals $00,
branch to CK30.
The file already exists so load .A with
$62 and exit with a JMP to CMDERR($CIC8)
Decrement .X (file counter). If more
files exist, branch back to CK25.
CMDERR ($CIC8).
Terminate routine with an RTS.

MEMORY ACCESS COMMANDS (M-R, M-W, AND M-E)

MEM $CAF8 I Check that the second character in the
command is a "_" by: loading .A with
the character from CMDBUF+l ($0201),
and comparing it with $2D ("_"). If not
equal, branch to MEMERR ($CB4B).

263

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$CAFF

$CB09
$CBOB

$CBOE

$CB12

$CB15

$CB19

MEMEX $CB1D

MEMRD $CB20

$CB24

Set up address specified in command by
moving the characters from CMDBUF+3
($0202) and CMDBUF+4 ($0203) to TEMP
($6F) and TEMP+1 ($70).
Set .Y to $00.
Load .A with the third character of the
command (R,W,E) from CMDBUF+2 ($0202).
Compare .A with "R". If equal, branch
to MEMRD ($CB20).
JSR to KILLP ($F258) to kill protection.

NOTE: this does nothing on the 1541!
Compare .A with "W". If equal, branch
to MEMWRT ($CB50).
Compare .A with "E". If NOT equal,
branch to MEMERR ($CB4B).

Do indirect jump using the pointer set
up in TEMP ($006F).

Load .A with the contents of (TEMP) ,Y
($6F) ,Y and store the value in DATA($85)
Compare the command string length,CMDSIZ
($0274), with $06. If it is less than or
equal to 6 (normally 5), branch to M30.

NOTE: PREVIOUSLY UNDOCUMENTED COMMAND!!

PRINT#15,"M-R"iCHR$(LO)iCHR$(HI) iCHR$(HOW MANY)

MRMULT $CB2B

$CB2E

$CB2F

$CB31

$CB33

$CB35

$CB37

$CB3A

$CB3E

Multi-byte memory read:
Load .X with the 6th character in the
command string from CMDBUF+5 ($0205).
Decrement .X (now $00 if only one to
read) .
If the result is $00, all done so branch
to M30.
Transfer the value in .X to .A and clear
the carry flag.
Add the 10 byte of the memory pointer
in TEMP ($6F). This value is the 10
byte of the last character to be sent.
Increment the 10 byte pointer in TEMP
($6F) so it points to the second memory
location to be read.
Store the value in .A into LSTCHR+ERRCHN
($0249) .
Load .A with the current value of TEMP
($6A), the 10 byte of the second memory·
location to be read and store this value
in CB+2 ($A5).
Load .A with the current value of TEMP+1
($70), the hi byte of the second memory
location to be read and store this value
in CB+3 ($A6).

264

NAME

M30

MEMERR

MEMWRT

$CB42

$CB45

$CB48

$CB4B

$CB50

$CB55

$CB59
$CB5B

DESCRIPTION OF WHAT ROM ROUTINE DOES

Continue memory read with a JMP to GE20
($0443) .

JSR to FNDRCH ($DOEB) to find an unused
read channel.
Terminate memory read with a JMP to
GE15 ($D43A).

Load .A with $31 to indicate a bad
command and JMP to CMDERR ($C1C8).

Move byte from CMDBUF+6,Y ($0206,Y) to
memory at TEMP,Y ($BF,Y).
Increment .Y and compare .Y with the
number of bytes to do, CMDBUF+5 ($0205).
If more to do, branch back to M10.
Terminate memory write with an RTS.

USER COMMANDS NOTE: UO restores pointer to JMP table

USER

USRINT

US10

USREXC

OPNBLK

$CB5C

$CB5F

$CB63

$CB6B
$CB6C

$CB6F

$CB72

$CB78

$CB7C
$CB7D

$CB81

$CB84

$CB89

User jump commands:
Load .Y with the second byte of the
command string from CMDBUF+1 ($0201).
Compare .Y to $30. If not equal, this
is NOT a UO command so branch to US10.
Restore normal user jump address ($FFEA)
storing $EA in USRJMP ($6B) and $FF in
USRJMP+1 ($6C).
Terminate routine with an RTS.
JSR to USREXC ($CB72) to execute the
code according to the jump table.
Terminate routine with a JMP to ENDCMD
($C194).
Decrement .Y, transfer the value to .A,
AND it with $OF to convert it to hex,
multiply it by two (ASL), and transfer
the result back into .Y.
Transfer the 10 byte of the user jump
address from the table at (USRJMP),Y
to IP ($75).
Increment .Y by 1.
Transfer the hi byte of the user jump
address from the table at (USRJMP),Y
to IP+1 ($76).
Do an indirect jump to the user code
through the vector at IP ($0076).

Open direct access buffer in response
to an OPEN "#" command:
Use the previous drive number, LSTDRV
($028E) to set the current drive number

DRVNUM ($7F).
Save the current secondary address, SA
($83) on the stack.

265

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to AUTOI ($C63D) to initialize the
disk. This is necessary for proper
channel assignment.
Restore the original secondary address,
SA ($83) by pulling it off the stack.
Load .X with the command string length
CMDSIZ ($0274). Decrement .X by 1.
If .x not equal to zero, a specific
buffer number has been requested(e.g.#l)
so branch to OB10.
No specific buffer requested so get any
available buffer by loading .A with $01
and doing a JSR to GETRCH ($D1E2).
On return, JMP to OB30.
Load .A with $70 to indicate that no
channel is available and JMP to CMDERR
($C1C8) •
Specific buffer requested so load .Y
with $01 and JSR to BP05 ($CC7C) to
check the block parameters.
Load .X with the number of the buffer
requested from FILSEC ($0285) and check
it against $05 (the highest numbered
buffer available). If too large, branch
to OB05 and abort the command.
Set TEMP ($6F) and TEMP+1 ($70) to $00
and set the carry flag.
Loop to shift a 1 into the bit position
in TEMP or TEMP+1 that corresponds to
the buffer requested. For example:
TEMP+1(00000000) TEMP(OOOOOOl)=buffer 0
TEMP+1(OOOOOOOO) TEMP(0000100)=buffer 2
TEMP+1(00000001) TEMP(OOOOOOO)=buffer 8
Load .A with the value in TEMP ($6F)
and AND it with the value in BUFUSE
($024F) which indicates which buffers
are already in use. If the result is
NOT $00, the buffer requested is already
in use so branch to OB05 to abort.
Load .A with the value in TEMP+1 ($70)
and AND it with the value in BUFUS~+l

($0250) which indicates which buffers
are already in use. If the result is
NOT $00, the buffer requested is already
in use so branch to OB05 to abort.
Mark the buffer requested as in use by
ORing the value in TEMP with the value
in BUFUSE and the value in TEMP+1 with
the value in BUFUSE+1.
Set up the channel by loading .A with
$00 and doing a JSR to GETRCH ($D1E2)
to find an unused read channel.
Load .X with the current channel# from
LINDX ($82).

$CBCD

$CBBF

$CBDD

$CBE2

$CBB1

$CBB8

$CBC6

NAME

$CB8C

$CB8F

$CB92

$CB96

$CB98

$CB9D
OB05 $CBAO

OB10 $CBA5

$CBAA

OB15

266

NAME

OB30

$CBE4

$CBE9
$CBEA

$CBFl

$CBF3

$CBFB

$CBFD

$CC02

$CC07

$CCOD

$CCOF

$CCI3

$CCI8

DESCRIPTION OF WHAT ROM ROUTINE DOES

Use .x as an index to move the sector
link from FILSEC($0285) to BUFO,X($A7,X)
Transfer the sector link from .A to .X.
Use .X as an index to move the current
drive number from DRVNUM($7F) to JOBS,X
($OO,X) and to LSTJOB,X ($025B,X).
Load .X with the current secondary
address, SA ($83).
Load .A with the current value from the
logical index table, LINTAB,X ($022B,X).
OR this value with $40 to indicate that
it is read/write mode and store the
result back in LINTAB,X.
Load .Y with the current channel#, LINDX
($82) •
Load .A with $FF and store this value
as the channel's last character pointer
LSTCHR,Y ($0244,Y).
Load .A with $89 and store this value
in CHNRDY,Y ($00F2,Y) to indicate that
the channel is a random access one and
is ready.
Load .A with the channel number from
BUFO,Y ($00A7,Y) and store it in
CHNDAT,Y($023E,Y) as the first character
Multiply the sector value in .A by 2
and transfer the result into .X
Set the buffer table value BUFTAB,X
($ 99 , X) to $ 01 .
Set the file type value FILTYP,Y ($EC,Y)
to $OE to indicate a direct access file
type.
Terminate routine with a JMP to ENDCMD
($C1C4) •

BLOCK COMMANDS (B-AiB-FiB-RiB-WiB-EiB-P)

BLOCK

BLKI0

BLK30

BLK40

$CCIB

$CC24

$CC26

$CC2B

$CC30

$CC33

Block commands:
Zero .X and .Y. Load .A with $20 ("_")
and JSR to PARSE ($C268) to locate the
sub-command (separated from the command
with a "_").
On return branch to BLK40 if Z flag is
not set ("_" was found).
Load .A with $31 to indicate a bad
command and JMP to CMDERR ($C1C8).
Load .A with $30 to indicate a bad
syntax and JMP to CMDERR ($C1C8).
Transfer the value in .X to .A. If not
$00, branch to BLK30.
Load .X with $05 (the number of block
commands - 1).

267

NAME

BLK50

BLK60

$CC35

$CC38

$CC42

$CC48

$CC4B

$CC50

$CC5A

$CC5D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the first character in the
sub-command from CMDBUF,Y ($0200,Y).
Loop to compare the first character in
the sub-command with the characters in
the command table BCTAB,X ($CC5D,X). If
a match is found, branch to BLK60. If NO
MATCH is found, branch to BLKlO.
Transfer the pointer to the command in
the command table from .X to .A. OR this
value with $80 and store it as the
command number in CMDNUM ($022A).
JSR to BLKPAR ($CC6F) to parse the
block parameters.
Load .A with the command number from
CMDNUM ($022A), multiply it by 2 (ASL),
and transfer the result into .X.
Use .X as an index into the jump table
BCJMP,X ($CC63) to set up a jump vector
to the ROM routine at TEMP ($6F/70).
Do an indirect JMP to the appropriate
ROM routine via the vector at TEMP($6F).

Block sub-command table ($CC5D-$CC62)
.BYTE "AFRWEP"

$CC63 Block jump table
$CC63/4 $03,$CD
$CC65/6 $F5,$CC
$CC67/8 $56,$CD
$CC69/A $73,$CD
$CC6B/C $A3,$CD
$CC6D/E $BD,$CD

($CC63-$CC6E)
BLOCK-ALLOCATE $CD03
BLOCK-FREE $CCF5
BLOCK-READ $CD56
BLOCK-WRITE $CD73
BLOCK-EXECUTE $CDA3
BLOCK-POINTER $CDBD

BLKPAR

BP05

BPlO

$CC6F

$CC78

$CC7A
$CC7C

$CC7F

$CC83

$CC87

$CC8B

$CC9l

Parse the block parameters:
Zero .X and .Y. Load .A with $3A (":")
and JSR to PARSE ($C268) to find the
colon, if any.
On return branch to BP05 if Z flag is
not set (":" found; .Y= ":"-position+l)
Load .Y with $03 (start of parameters)
Load .A with the .Yth character from
the command string.
Compare the character in .A with $20,
(a space). If equal, branch to BPlO.
Compare the character in .A with $29,
(a skip chr). If equal, branch to BPlO.
Compare the character in .A with $2C,
(a comma). If NOT equal, branch to BP20.
Increment .Y. Compare .Y to the length
of the command string in CMDSIZ ($0274).
If more left, branch back to BP05.
If no more, exit with an RTS.

268

NAME

BP20

ASCHEX

AH10

AH20

AH30

AH35

$CC92

$CC95

$CC98
$CC9B

$CC9F

$CCA1

$CCA9
$CCAB

$CCAE

$CCB2

$CCB6

$CCB9

$CCC1

$CCC4

$CCCA

$CCDO
$CCD1

$CCD5
$CCD7
$CCDA

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to ASCHEX ($CCA1) to convert ASCII
values into hex and store the results
in tables.
Increment the number of parameters
processed F1CNT ($0277).
Load .Y with the value in F2PTR ($0279)
Compare the value in .X (the original
value of F1CNT ($0277) to $04 (the
maximun number of files - 1). If the
value in .X <= $04, branch to BP10.
If .X was> $04, the syntax is bad so
branch to BLK30 ($CC2B).

Convert ASCII to HEX and store the
converted values in the FILTRK ($0280)
and FILSEC ($0285) tables:
On entry: .Y = pointer into CMD buffer
Zero TEMP($6F), TEMP+1($70), and TEMP+3
($72) as a work area.
Load .X with $FF.
Load .A with the command string byte
from CMDBUF,Y.
Test if the character in .A is numeric
by comparing it to $40. If non-numeric,
branch to AH20.
Test if the character in .A is ASCII
by comparing it to $30. If it is not an
ASCII digit, branch to AH20.
AND the ASCII digit with $OF to mask
off the higher order bits and save this
new value on the stack.
Shift the values already in the table
one position (TEMP+1 goes into TEMP+2;
TEMP goes into TEMP+1).
Pull the new value off the stack and
store it in TEMP.
Increment .Y and compare it to the
command length stored in CMDSIZ ($0274).
If more command left, branch back to
AH10.
Convert the values in the TEMP table
into a single hex byte:
Save the .Y pointer to the command
string into F2PTR ($0279), clear the
the carry flag, and load .A with $00.
Increment .X by 1 (index into TEMP).
Compare .X to $03 to see if we're done
yet. If done, branch to AH40.
Load .Y from TEMP,Y ($6F,Y).
Decrement .Y by 1. If Y<O branch to AH30
Add (with carry) the value from DECTAB,X
($CCF2,X) to .A. This adds 1, 10 or 100.
If there is no carry, branch to AH35.

269

NAME

AH40

DEC TAB

BLKFRE

BLKALC

BA15

$CCDF

$CCE4

$CCE5

$CCE8

$CCED

$CCF1

$CCF2
$CCF3
$CCF4

$CCF5

$CCF8

$CCFB

$CCFE

$CD03

$CD06

$CD09

$CDOC

$CDOE

$CD13

$CD19

DESCRIPTION OF WHAT ROM ROUTINE DOES

Since there is a carry, clear the carry,
increment TEMP+3, and branch back to
AH35.
Save the contents of .A (the hex number)
onto the stack.
Load .X with the command segment counter
from FICNT ($0277).
Load .A with the carry bit (thousands)
from TEMP+3 ($72) and store it in the
table, FILTRK,X ($0280,X).
Pull the hex number off the stack and
store it in the table, FILSEC,X($0285,X)
Terminate routine with an RTS.

The decimal conversion table:
Byte $01 1
Byte $OA 10
Byte $64 100

Free (de-allocate) block in the BAM:
JSR to BLKTST ($CDF5) to test for legal
block and set up track & sector.
JSR to FRETS ($EF5F) to free the block
in the BAM and mark the BAM as changed.
Terminate routine with a JMP to ENDCMD
($C194) .

Unused code: LOA #$01 / STA WBAM($02F9)

Allocate a sector (block) in the BAM:
JSR to BLKTST ($CDF5) to test for legal
block and set up track & sector.
Load .A with the current sector pointer,
SECTOR ($81) and save this on the stack.
JSR to GETSEC ($F1FA) to set the BAM and
find the next available sector on this
track.
If Z flag is set on return to indicate
that the desired sector is in use and
there is no greater sector available on
this track, branch to BA15.
Pull the requested sector from the stack
and compare it to the current contents
of SECTOR ($81). If not equal, the
requested sector is already in use so
branch to BA30.
Requested sector is available so JSR to
WUSEO ($EF90) to allocate the sector in
the BAM and terminate the command with
a JMP to ENOCMO ($C194).
Pull the desired sector off the stack.
It is of no further use since that
sector is already in use.

270

NAME

BA20

BA30

BA40

BLKRD2

$CD1A

$CD27

$CD2A

$CD2C

$CD31

$CD36

$CD39

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set the desired sector, SECTOR ($81) to
$00, increment the desired track, TRACK
($80) by 1, and check if we have reached
the maximum track count of 35 (taken
from MAXTRK $FECB). If we have gone all
the way, branch to BA40.
JSR to GETSEC ($F1FA) to set the BAM and
find the next available sector on this
track.
If Z flag is set on return, no greater
sector is available on this track so
branch back to BA20 to try another track
Requested block is not available so load
.A with $65 to indicate NO BLOCK ERROR
and JMP to CMDER2 ($E645).
No free sectors are available so load
.A with $65 to indicate NO BLOCK ERROR
and JMP to CMOERR ($C1C8).

B-R Sub to test parameters:
JSR to BKOTST ($COF2) to test block
parameters and set track & sector.
JMP to ORTRO ($0460) to read block

GETSIM $CD3C
$CD3F

$CD41

BLKRD3 $CD42
$CD45

$CD4A

$CD4D

$CD50

$CD55

BLKRD $CD56

$CD59

$CD5C

B-R Sub to get byte wlo increment:
JSR to GETPRE ($012F) set parameters.
Load .A with the value in (BUFTAB,X),
($99 ,X) .
Terminate routine with an RTS.

B-R Sub to do read:
JSR to BLKR02 ($C036) to test parameters
Zero .A and JSR to SETPNT ($D4C8) to set
the track and sector pointers.
JSR to GETSIM ($C03C) to read block. On
return .Y is the LINOX.
Store the byte in .A into LSTCHR,Y
($0244,Y) as the last character.
Store $89 in CHNROT,Y($F2,Y) to indicate
that it is a random access channel and
is now ready.
Exit routine with an RTS.

Block read a sector:
JSR to BLKR03 ($C042) to set up to read
the requested sector.
JSR to RNGET1 ($D3EC) to read in the
sector.
Terminate routine with a JMP to ENOCMO
($C194) .

271

NAME

UBLKRD

BLKWT

BWI0

BW20

UBLKWT

$CD5F

$CD62

$CD65

$CD6B

$CD70

$CD73

$CD76

$CD79
$CD7B

$CD7F
$CD81
$CD83

$CD86

$CD8A

$CD8C

$CD8F

$CD91

$CD94

$CD97

$CD9A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Ul: Block read of a sector:

NOTE: The only real difference between
a B-R command and a Ul (preferred) is
that the U1 command move the last byte
into the data buffer and stores $FF as
the last byte read.

JSR to BLKPAR ($CC6F) to parse the block
parameters.
JSR to BLKRD3 ($CD42) to set up to read
the requested sector.
Move the last character read from
LSTCHR,Y ($0244,Y) to CHNDAT,Y ($023E,Y)
Store $FF in LSTCHR,Y ($0244,Y) as the
last character to be read.
Terminate routine with a JMP to ENOCMO
($C194) which ends with an RTS.

Block-write of a sector:
JSR to BKOTST ($CDF2) to test the buffer
and block parameters and set up the
drive, track, and sector pointers.
JSR to GETPNT ($04E8) to read the active
buffer pointers. On exit, .A points into
the buffer.
Transfer .A to .Y and decrement .Y.
If the value in .A is greater than $02,
branch to BW10
Load .Y with $01.
Load .A with $00.
JSR to SETPNT ($04C8) to set the buffer
pointers.
Transfer the value in .Y to .A and JSR
to PUTBYT ($CFF1) to put the byte in .A
into the active buffer of LINOX.
Transfer the value of .x to .A and save
it on the stack.
JSR to ORTWRT ($0464) to write out the
block.
Pop the value off the stack and transfer
it back into .X.
JSR to RNGET2 ($03EE) to set the channel
ready status and last character.
Terminate routine with a JMP to ENOCMD
($C194) which ends with an RTS.

U2: Block write of a sector:
JSR to BLKPAR ($CC6F) to parse the block
parameters.
JSR to BKOTST ($CDF2) to test the buffer
and block parameters and set up the
drive, track, and sector pointers.

272

NAME

BLKEXC

$CD9D

$CDAO

$CDA3

$CDA6
$CDA9

$CDAD

$CDB4

$CDB7

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to ORTWRT ($0464) to write out the
block.
Terminate routine with a JMP to ENOCMO
($C194) which ends with an RTS.

Block execute a sector:
JSR to KILLP ($F258) to kill the disk
protection. Does nothing on the 1541!
JSR to BLKRD2 ($CC6F) to read the sector
Store $00 in TEMP ($6F) as the 10 byte
of the JMP address)
Load .X from JOBNUM ($F9) and use it as
an index to load the hi byte of the JMP
address from BUFINO,X ($FEEO,X) and
store it in TEMP+1 ($70).
JSR to BE10 ($CDBA) to execute the
block.
Terminate routine with a JMP to ENDCMD
($C194) which ends with an RTS.

BE10 $COBA JMP (TEMP) Used by block execute.

BLKPTR

BUFTST

BT15

$CDBO

$COCO

$COC9
$COCC

$COCF

$COD2

$CDD6

$CDD9

$CDEO

Set the buffer pointer:
JSR to BUFTST ($CDD2) to test for
allocated buffer.
Load the buffer number of the channel
requested from JUBNUM ($F9), multiply
it by two (ASL), and transfer the result
into .X. Load .A with the new buffer
pointer value from FILSEC+1 ($0286) and
store it in the buffer table BUFTAB,X
($99 ,X) .
JSR to GETPRE ($012F) to set up pointers
JSR to RNGET2 ($03EE) to ready the
channel for I/O.
Terminate routine with a JMP to ENOCMO
,($C194) which ends with an RTS.

Test whether a buffer has been allocated
for the secondary address given in SA.
Load .x with the file stream 1 pointer,
F1PTR ($03) and then increment the
original pointer F1PTR ($D3).
Load .A with that file's secondary
address from FILSEC,X ($0285,X).
Transfer the secondary address to .Y.
Decrement it by 2 (to eliminate the
reserved secondary addresses 0 and 1)
and compare the result with SOC (#12).
If the original SA was between 2 and 14,
it passes the test so branch to BT20.
Load .A with $70 to indicate no channel
is available and JMP to CMDERR ($CIC8).

273

NAME

BT20

BKOTST

BLKTST

$COE5

$COE7

$COEC

$COF1

$COF2

$COF5

$COF7

$COFE

$CE03

$CE08

$CEOB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store the original secondary address
(in .A) into SA ($83) as the active SA.
JSR to FNDRCH ($OOEB) to find an unused
read channel. If none available, branch
to BT15.
JSR to GETACT ($OF93) to get the active
buffer number. On return, store the
active buffer number in JOBNUM ($F9).
read c~annel. If none available, branch
Terminate routine with an RTS.

Test all block parameters: buffer
allocated and legal block. If OK, set up
drive, track, and sector values.
JSR to BUFTST($C002) to test if buffer
is allocated for this secondary address.

Set the drive number, track, and sector
values requested for a block operation
and test to see that these are valid.
Load .x with the channel number from
F1PTR ($03)
Load .A with the drive number desired
from FILSEC,X($0285,X), AND it with $01
to mask off the default drive bit, and
store the result as the current drive
number, ORVNUM ($7F).
Move the desired sector from FILSEC+2,X
($0287,X) to SECTOR ($81).
Move the desired track from FILSEC+1,X
($0286,X) to TRACK ($80).
JSR to TSCHK ($055F) to test whether the
track and sector values are legal.
JMP to SETLOS to turn on drive active
LED. Do RTS from there.

FIND RELATIVE FILE

INPUTS: (ALL 1 BYTE)
RECL - record # (10 byte)
RECH - record # (hi byte)
RS - record size
RECPTR - pointer into record

OUTPUTS: (ALL 1 BYTE)
SSNUM - side sector #
SSINO - index into SS
RELPTR - pointer into

sector

FNOREL $CEOE

$CE11

$CE14

$CE18

JSR to MULPLY($CE2C) to find total bytes
TOTAL = REC# x RS + RECPTR
JSR to OIV254 to divide by 254. The
result is the record's location (in
sectors) from the start of the file.
Save the remainder (in .A) into RELPTR
($07). This points into the last sector.
JSR to OIV120 to divide by 120. The
result points into the side sector file.

274

NAME

MULPLY

MUL25

MUL50

MUL100

MUL200

MUL400

$CE1B

$CE1F

$CE23

$CE2B

$CE2C

$CE31
$CE33

$CE37

$CE3B

$CE3D

$CE41

$CE4A

$CE4C

$CE50

$CE54

$CE57

$CE5A

$CE5E
$CE6D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Increment the pointer into the sector,
RELPTR ($07) by two to bypass the two
link bytes at the start of the sector.
Move the quotient of the division by 120
from RESULT ($8B) to SSNUM ($05).
Load .A with the remainder of the
division from ACCUM+1 ($90), multiply
it by two (ASL) because each side sector
pointer occupies two bytes (t & s), add
$10 (#16) to skip the initial link table
in the sector, and store the resulting
side sector index (points into the
sector holding the side sectors) into
SSIND ($06).
Terminate routine with an RTS.

Calculate a record's location in bytes.
TOTAL = REC# x RS + RECPTR

JSR to ZERRES ($CED9) to zero the RESULT
area ($8B-$8D).
Zero ACCUM+3 ($92).
Load .X with the LINDX ($82) and use it
to move the 10 byte of the record number
from RECL,X ($B5) to ACCUM+1 ($90).
Move the hi byte of the record number
from RECH,X ($BB) to ACCUM+2 ($91).
If the hi byte of the record number is
not $00, branch to MUL25.
If the 10 byte of the record number is
$00, branch to MUL50 to adjust for
record #0 (the first record).
Load .A with the 10 byte of the record
size from ACCUM+1 ($90), set the carry
flag, subtract $01, and store the result
back in ACCUM+1. If the carry flag is
still set, branch to MULT50.
Decrement the hi byte of the record size
in ACCUM+2 ($91).
Copy the record size from RS,X ($C7,X)
to TEMP ($6F).
Do an LSR on TEMP ($6F). If the carry
flag is clear, branch to MUL200 (no add
this time).
JSR to ADORES ($CEED) to add.

RESULT = RESULT + ACCUM+1,2,3
JSR to ACCX2 ($CEE5) to multiply the
ACCUM+1,2,3 by two.
Test TEMP to see if done, if not branch
back to MUL100.
Add the byte pointer to the result.
Terminate routine with an RTS.

275

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

DIVIDE ROUTINE:
RESULT ($8B) = QUOTIENT ACCUM+1 ($90) = REMAINDER

DIV254

DIV120

DIV150
DIV200

DIV300

DIV400

DIV500

$CE6E
$CE70

$CE71
$CE73
$CE75
$CE84
$CE87
$CE89

$CE8D

$CE92

$CE9A

$CEA3

$CEA6

$CEA9

$CEAD

$CEBO

$CEBF

$CEC5

$CEDO

Divide by 254 entry point:
Load .A with $FE (#254)
Byte $2C (skip over next instruction)
Divide by 120 entry point:
Load .A with $78 (#120)
Store divisor into TEMP ($6F).
Swap ACCUM+1,2,3 with RESULT,1,2
JSR to ZERRES ($CED9) to zero RESULT,1,2
Zero .X
Divide by 256 by moving the value in
ACCUM+1,X ($90,X) to ACCUM,X ($8F,X).
Increment .X. If .X is not 4 yet, branch
back to DIV200.
Zero the hi byte, ACCUM+3 ($92).
Check if this is a divide by 120 by
testing bit 7 of TEMP. If it is a divide
by 254, branch to DIV300.
Do an ASL of ACCUM ($8F) to set the
carry flag if ACCUM > 127. Push the
processor status on the stack to save
the carry flag. Do an LSR on ACCUM to
restore its original value. Pull the
processor status back off the stack and
JSR to ACC200 ($CEE6) to multiply the
value in the ACCUM,1,2 by two so that
we have, in effect, divided by 128.

X/128 = 2 * X/256
JSR to ADORES ($CEED) to add the ACCUM
to the RESULT.
JSR to ACCX2 ($CEE5) to multiply the
ACCUM by two.
Check if this is a divide by 120 by
testing bit 7 of TEMP. If it is a divide
by 254, branch to DIV400.
JSR to ACCX4 ($CEE2) to multiply the
ACCUM by four. A= 4 * (2 * A) = 8 * A
Add in the remainder from ACCUM ($8F)
to ACCUM+1. If a carry is produced,
increment ACCUM+2 and, if necessary,
ACCUM+3.
Test if remainder is less than 256 by
ORing ACCUM+3 and ACCUM+2. If the result
is not zero, the remainder is too large
so branch to DIV to crunch some more.
Test if remainder is less than divisor
subtracting the divisor, TEMP ($6F) from
the remainder in ACCUM+1 ($90). If the
remainder is smaller, branch to DIV600.
Since the remainder is too large, add 1
to the RESULT.

276

NAME

DIV600

ZERRES

ACCX4

ACCX2
ACC200

ADORES
ADDiOO

$CED6

$CED8

$CED9

$CEEi

$CEE2

$CEE5
$CEE6

$CEEC

$CEED
$CEFO

$CEF6

$CEF9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store the new, smaller remainder in
ACCUM+i ($90).
Terminate routine with an RTS.

Zero the RESULT area:
Load .A with $00 and store in RESULT
($8B), RESULT+i($8C), and RESULT+2($8D).
Terminate routine with an RTS.

Multiply ACCUM by 4:
JSR ACCX2 ($CEE5)
Multiply ACCUM by 2:
Clear the carry flag.
Do a ROL on ACCUM+i($90) , ACCUM+2($9i) ,
and ACCUM+2($92).
Terminate routine with an RTS.

Add ACCUM to RESULT:
Load .X with $FD.
Add RESULT+3,X ($8E,X) and ACCUM+4,X
($93) and store the result in RESULT+3.
Increment .X. If not $00 yet, branch
back to ADDiOO.
Terminate routine with an RTS.

LRUINT $CEFA
LRUILP $CEFC

$CEFF

$CF04

$CF08

LRUUPD $CF09

LRULPi $CFOD

$CF12

$CF16

$CF19

LRUEXT $CFiD

Initialize LRU (least recently used)
table:
Load .X with $00.
Transfer .X to .A. Store the value in
.A into LRUTBL,X ($FA,X).
Increment .X and compare it to $04, the
command channel number. If not yet
equal, branch back to LRUILP.
Load .A with $06, the BAM logical index
for the floating BAM, and store this
value into LRUTBL,X ($FA,X).
Terminate routine with an RTS.

Update LRU (least recently used) table:
Load .Y with $04, the command channel
number. Load .X from LINDX ($82) the
current channel number.
Load .A with the value from LRUTBL,Y
($OOFA,Y). Store the current channel
number (from .X) into LRUTBL,Y.
Compare the value in .A with the current
channel number in LINDX ($82). If they
are equal, branch to LRUEXT to exit.
Decrement .Y the channel counter. If no
more channels to do (Y<O) branch to
LRUINT ($CEFA) since no match was found.
Transfer .A to .X and JMP to LRULPl
.A into LRUTBL,X ($FA,X).
Terminate routine with an RTS.

277

NAME

OBLBUF

DBL05

OBL08

DBL10

DBL15

OBL20

$CF1E

$CF21

$CF24

$CF26

$CF29

$CF2E

$CF31

$CF37

$CF3E

$CF45

$CF47

$CF4C

$CF51

$CF57

$CF5A

$CF50

$CF63
$CF66

$CF6C

$CF6F

DESCRIPTION OF WHAT ROM ROUTINE DOES

Double buffer: Switch the active and
inactive buffers.
JSR to LRUUPD ($CF09) to update the LRU
(least recently used) table.
JSR to GETINA ($DFB7) to get the LINDX
channel's inactive buffer number (in .A)
On return, if there is an inactive
buffer, branch to DBL15.
There is no inactive buffer so make one!
JSR to SETORN ($0103) to set the drive
number to the one in LSTJOB.
JSR to GETBUF ($D28E) to get a free
buffer number. If no buffers available,
branch to OBL30 and abort.
JSR to PUTINA ($OFC2) to store the new
buffer number as the inactive buffer.
Save the current values of TRACK ($80)
and SECTOR ($81) on the stack.
Load .A with $01 and JSR to DRDBYT
($D4F6) to direct read .A bytes. Store
the byte read as the current SECTOR($81)
Load .A with $00 and JSR to DRDBYT
($04F6) to direct read .A bytes. Store
the byte read as the current TRACK($80).
If the TRACK byte was $00 (last sector
in the file), branch to DBL10.
JSR to TYPFIL ($0125) to determine the
file type we are working on. If it is a
relative file, branch to DBLOS.
JSR to TSTWRT ($ODAB) to see if we are
writing this file or just reading it.
If just reading, branch to OBL05 to read
ahead.
We are writing so JSR to TGLBUF ($CF8C)
to toggle the buffers. On return, JMP
to OBL08.
JSR to TGLBUF ($CF8C) to toggle the
inactive and inactive buffers.
JSR to ROAB ($OE57) to read in the next
sector of the file (into active buffer).
Pull the old SECTOR($81) and TRACK($80)
values from the stack and restore them.
JMP to OBL20.
Pull the old SECTOR($81) and TRACK($80)
values from the stack and restore them.
JSR to TGLBUF ($CF8C) to toggle the
inactive and active buffers.
JSR to GETACT ($OF93) to get the active
buffer number (in .A). Transfer the
active buffer number into .X and JMP to
WATJOB ($0599) to wait until job is done

278

NAME

DBL30 $CF76

DESCRIPTION OF WHAT ROM ROUTINE DOES

No buffers to steal so load .A with $70
to indicate a NO CHANNEL error and JMP
to CMDERR ($C1C8).

DBSET $CF7B

$CF7E

$CF81

$CF83

$CF88

DBS10 $CF8B

TGLBUF $CF8C

$CF94

$CF9A

Set up double buffering:
JSR to LRUUPD ($CF09) to update the LRU
(least recently used) table.
JSR to GETINA ($DFB7) to get the number
of the inactive buffer (in .A).
If there is an inactive buffer, branch
to DBS10 to exit.
JSR to GETBUF ($DF93) to find an unused
buffer. If no buffers available, branch
to OBL30 ($CF76) to abort.
JSR to PUTINA ($DFC2) to set the buffer
found as the inactive buffer.
Terminate routine with an RTS.

Toggle the inactive & active buffers:
Input: LINOX = current channel #

Load .X with the channel number from
LINOX ($82) and use it as an index to
load .A with the buffer number from
BUFO,X ($A7). EOR this number with $80
to change its active/inactive state and
store the modified value back in BUFO,X.
Load .A with the buffer number from
BUF1,X ($AE). EOR this number with $80
to change its active/inactive state and
store the modified value back in BUF1,X.
Terminate routine with an RTS.

PIBYTE

PBYTE

$CF9B

$CF9F

$CFA2

$CFA5

$CFAA

$CFAF

Write byte to internal write channel:
Load .X with $12 (#18) the secondary
address of the internal write 'channel
and use it to set the current secondary
address SA ($83).
JSR to FNOWCH ($0107) to find an unused
write channel.
JSR to SETLEO ($C100) to turn on the
drive active LED.
JSR to TYPFIL ($0125) to determine the
current file type. If NOT a relative
file, branch to PBYTE ($CFAF).
Load .A with $20 (the overflow flag bit)
and JSR to CLRFLG ($0090) to clear the
overflow flag.
Write byte to any channel:
Load .A with the current secondary
address from SA ($83). Compare the SA
with $OF (#15) to see if we are using
the command channel. If SA=$OF, this is
the command channel so branch to L42
($CF08). If not, branch to L40 ($CFBF).

279

NAME

I PUT

L40

L41

L46

L42

L50

L45

PUTBYT

$CFB7

$CFBF

$CFC4

$CFC9

$CFCB

$CFCE

$CFD3

$CFD8

$CFDC

$CFE3

$CFE8

$CFEC
$CFED

$CFFO

$CFF1

$CFF2

DESCRIPTION OF WHAT ROM ROUTINE DOES

Main routine to write to a channel:
Check if this is the command channel or
a data channel by loading the original
secondary address from ORGSA ($84),
ANDing it with $8F, and comparing the
result with $OF (#15). If less than 15,
this is a data channel so branch to L42.
JSR to TYPFIL ($0125) to determine the
file type. If we are NOT working on a
sequential file, branch to L41.
Since this is a sequential file, load
.A with the data byte from DATA ($85)
and JMP to WRTBYT ($0190) to write the
byte to the channel.
If Z flag not set, we are writing to a
true random access file (USR) so branch
to L46.
We are writing to a relative (REL) file
so JMP to WRTREL ($EOAB).
Since this is a USR file, load .A with
the data byte from DATA ($85) and JSR
to PUTBYT ($CFF1) to write it to the
channel.
To prepare to write the next byte: load
.Y with the channel number from LINDX
($82) and JMP to RNGET2 ($D3EE).
Since this is the command channel, set
LINDX ($82) to $04 (the command channel
number) .
Test if command buffer is full by doing
a JSR to GETPNT ($D4E8) to get the
position of the last byte written and
comparing it to $2A. If they are equal,
the buffer is full so branch to L50.
Since there is space, load .A with the
command message byte from DATA ($85) and
JSR to PUTBYT ($CFF1) to write it to the
command channel.
Test if this is the last byte of the
message by checking the EOIFLG ($F8).
If it is zero, this is the last byte so
branch to L45.
Terminate command with an RTS.
Increment CMDWAT ($0255) to set the
command-waiting flag.
Terminate command with an RTS.

Put byte in .A into the active buffer
of the channel in LINDX:
Save byte in .A onto the stack.
JSR to GETACT ($DF93) to get the active
buffer number (in .A). If there is an
active buffer, branch to PUTB1.

280

NAME

PUTB1

INTORV

1020

ITRIAL

IT20

IT30

$CFF7

$CFFO

$CFFF

$0002

$0004

$D005

$0008

$OOOB

$OOOE

$0011

$0018

$OOlF

$0024

$002C

$0031

DESCRIPTION OF WHAT ROM ROUTINE DOES

No active buffer so pull the data byte
off the stack, load .A with $61 to
indicate a FILE NOT OPEN error, and JMP
to CMOERR ($C1C8).
Multiply the buffer number by 2 (ASL)
and transfer this value to .X
Pull the data byte off the stack and
store it in the buffer at (BUFTAB,X)
($99,X) .
Increment the buffer pointer BUFTAB,X
NOTE: Z flag is set if this data byte

was stored in the last position
in the buffer!

Terminate routine with an RTS.

INITIALIZE ORIVE(S)

Initialize drive(s): (Disk command)
JSR to SIMPRS ($C101) to parse the
disk command.
JSR to INITOR ($0042) to initialize the
drive(s) .
Terminate command with a JMP to ENOCMD
($C194) .

Initialize drive given in DRVNUM:
JSR to BAM2A ($F10F) to get the current
BAM pointer in .A.
Transfer the BAM pointer to .Y and use
it as an index to load the BAM LINDX
from BUFO,Y ($A7,Y) into .X. If there
is a valid buffer number for the BAM
(not $FF), branch to IT30.
No buffer so we had better get one!
Save the BAM pointer in .A on the stack
and JSR to GETBUF ($D28E) to find an
unused buffer. If a buffer is available,
branch to IT20.
No buffer available so load .A with $70
to indicate a NO CHANNEL error and JSR
to CMDER3 ($E648).
Pull the BAM pointer from the stack and
transfer it to .Y. Transfer the new
buffer number from .X to .A, OR it with
$80 (to indicate an inactive status),
and store the result in BUFO,Y ($00A7,Y)
to allocate the buffer.
Transfer the buffer number from .X to
.A, AND it with $OF to mask off the
inactive status bit, and store it in
JOBNUM ($F9).
Set SECTOR ($81) to $00 and TRACK ($80)
to $12 (#18) to prepare to read the BAM.

281

NAME

1N1TDR

NFCALC

NUMF1

NUMF2

$D03A

$D03D

$D042

$D045

$D048

$D04D

$D052

$D05D

$D060

$D06F

$D075

$D078

$D07D

$D082
$D083

$D08B

$D08F

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to SETH ($D6D3) to set up the seek
image of the BAM header.
Load .A with $BO (the job code for a
SEEK) and JMP to DOJOB ($D58C) to do the
seek to track 18. Does an RTS when done.

Initialize drive:
JSR to CLNBAM ($FOD1) to zero the track
numbers for the BAM.
JSR to CLDCHN ($D313) to allocate a
channel for the BAM.
JSR to ITRIAL ($DOOE) to allocate a
buffer for the BAM and seek track 18.
Store $00 in MDIRTY,X ($0251) to
indicate that the BAM for drive .X is
NOT DIRTY (BAM in memory matches BAM on
the diskette).
Set the master 1D for the diskette in
DSKID,X ($12/3 for drive 0) from the
track 18 header values ($16/17) read
during the seek to track 18.
JSR to DOREAD (SD586) to read the BAM
into the buffer.
Load the disk version{#65 for 4040/1541)
from the $OX02 position in the BAM and
store it in DSKVER,X{$0101,drive number)
Zero WPSW,X ($lC,X) to clear the write
protect switch and NODRV,X ($FF,X) to
clear the drive-not-active flag.

Count the number of free blocks in BAM
JSR to SETBPT ($EF3A) to set the bit map
pointer and read in the BAM if necessary
Initialize .Y to $04 and zero .A and .X
(.X will be the hi byte of the count).
Clear carry and add (BMPNT) ,Yi ($6D) ,Y
to the value in .A. If no carry, branch
to NUMF2.
Increment .X (the hi byte of the count).
Increment .Y four times so it points to
the start of the next track byte in the
BAM. Compare .Y to $48 (the directory
track location). If .Y=$48, branch to
NUMF2 to skip the directory track.
Compare .Y to $90 to see if we are done.
If there is more to do, branch to NUMF1.
All done. Save the 10 byte of the count
on the stack and transfer the hi byte
from .x to .A. Load .x with the current
drive number from DRVNUM ($7F) and store
the hi byte of the count (in .A) into
NDBH,X ($02FC,X). Pull the 10 byte of
the count off the stack and save it in
NDBL,X ($02FA,X).

282

$D09E

$DOA1

$DOA4

$DOA9

$DOAE

STRDBL $DOAF

$DOB2

$DOB6
STR1 $DOB7

$DOBA

$DOBD

$DOCO

NAME

STRRD

RDBUF

WRTBUF

STRTIT

$D09A

$D09B

$DOC3

$DOC7

$DOC9

$DOCC

DESCRIPTION OF WHAT ROM ROUTINE DOES

Terminate routine with an RTS.

Start reading ahead:
Use the values in TRACK and SECTOR to
read a data block. Use the track and
sector pointers to set up the next one.
JSR to SETHDR ($D6DO) to set up the
header image using TRACK ($80) and
SECTOR ($81) values.
JSR to RDBUF ($DOC3) to read the first
block into the data buffer.
JSR to WATJOB ($D599) to wait for the
read job to be completed.
JSR to GETBYT ($D137) to get the first
byte from the data buffer (track link)
and store it in TRACK ($80).
JSR to GETBYT ($D137) to get the second
byte from the data buffer (sector link)
and store it in SECTOR ($81).
Terminate routine with an RTS.

Start double buffering: (reading ahead)
JSR to STRRD ($D09B) to read in a data
block and set up the next one.
Check the current TRACK ($80) value. If
not $00, we are not at the end of the
file so branch to STR1.
Terminate routine with an RTS.
JSR to DBLBUF ($CF1E) to set up buffers
and pointers for double buffering and
set TRACK and SECTOR for the next block.
JSR to SETHDR ($D6DO) to set up the
header image using TRACK ($80) and
SECTOR ($81) values.
JSR to RDBUF ($DOC3) to read the next
block into the data buffer.
JMP to DBLBUF ($CF1E) to set up buffers
and pointers for double buffering and
set TRACK and SECTOR for the next block.

Start a read job of TRACK and SECTOR
Load .A with $80, the job code for a
read, and branch to STRTIT ($DOC9).

Start a write job of TRACK and SECTOR
Load .A with $90, the job code for a
write.
Store command desired (in .A) as the
current command in CMD ($024D).
JSR to GETACT ($DF93) to get the active
buffer number (in .A). Transfer the
active buffer number into .X.

NAME

WRTC1

FNDRCH

FNDC20

FNDC25

FNDC30

$DODO

$DOD3

$DODB

$DOE2

$DOE8

$DOEA

$DOEB

$DOF1

$DOF3

$DOF7

$DOF9

$D100

$D106

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to SETLJB ($D506) to set up drive
number (from the last job), check for
legal track & sector, and, if all OK,
do the job. On return .A=job number and
.X=buffer number.
Transfer buffer number from .X to .A and
save it on the stack. Multiply the
buffer number by two (ASL) and transfer
the result into .X and use it as an
index to store $00 in the buffer table
pointer BUFTAB,X ($99,X)
JSR to TYPFIL ($D125) to get the file
type. Compare the file type to $04. If
this is not a sequential file, branch to
WRTC1.
Since this is a sequential file,
increment the 10 byte of the block count
in NBKL,X ($BS,X) and, if necessary, the
hi byte in NBKH,X ($BB,X).
Pull the original buffer number off the
stack and transfer it back into .X.
Terminate routine with an RTS.

Find the assigned read channel:
Compare the current secondary address
from SA ($83) with $13 (#19) the
h i qhe s t allowable secondary address+1.
If too large, branch to FNDC20.
AND the secondary address with $OF
NOTE: This masks off the high order bits

of the internal channel sec adr's:
Internal read $11 (17) -) $01
Internal write $12 (18) -) $02

Compare the sec addr in .A with $OF(lS),
the command channel sec addr. If they
are not equal, branch to FNDC25.
Load .A with $10, the sec addr error
value.
Transfer the sec addr from .A to .X,
set the carry flag, and load the
channel number from LINTAB,X ($022B,X).
If bit 7 is set, no channel has been
assigned for this sec addr, so branch to
FNDC30 to exit (with carry bit set).
AND the current channel number with $OF
and store the result as the current
channel number in LINDX ($82). Transfer
the channel number into .X and clear the
carry bit.
Terminate routine with an RTS.

284

FNOW13 $010F

$D113
$0114
$0115

$0117

FNOW10 $0119

NAME

FNOWCH

FNOW15

FNOW20

TYPFIL

GETPRE

$0107

$0100

$0121

$0123

$D125

$D127

$0129

$012E

$012F

$0132

$D134

$0136

DESCRIPTION OF WHAT ROM ROUTINE DOES

Find the assigned write channel:
Compare the current secondary address
from SA ($83) with $13 (#19) the
highest allowable secondary address+1.
If too large, branch to FNOW13.
AND the secondary address with $OF
NOTE: This masks off the high order bits

of the internal channel sec adr's:
Internal read $11 (17) -) $01
Internal write $12 (18) -) $02

Transfer the sec addr from .A to .X,
and load the channel number assigned to
this sec addr from LINTAB,X ($022B,X).
Transfer this channel number to .Y.
Do an ASL of the channel number in .A.
If a channel has been assigned for this
sec addr (bit 7 of LINTAB,X is not set)
branch to FNDW15.
If no channel assigned has been assigned
for this secondary address (bit 6 also
set), branch to FNOW20 and abort.
Transfer the original sec addr from .Y
to .A, AND it with $OF to mask off any
high order bits, and store it in LINOX
($82) as the currently active channel.
Transfer the channel number to .X, clear
the carry flag, and terminate with RTS.
If bit 6 of LINTAB,X is set (indicates
an inactive channel), branch to FNOW10.
Abort by setting the carry flag and
terminate the routine with an RTS.

Get current file type:
Load .X with the current channel number
from LINOX ($82).
Load .A with the file type from the
file type table, FILTYP,X ($EC,X).
Divide the file type by 2 (LSR) , AND
it with $07 to mask off higher order
bits, and compare the result with $04
~(set the Z flag if it is a REL file!).
Terminate the routine with an RTS.

Set buffer pointers:
JSR to GETACT ($OF93) to get the active
buffer number (in .A).
Multiply the buffer number by 2 (ASL)
and transfer the result into .X.
Load .Y with the current channel number
from LINOX ($82).
Terminate the routine with an RTS.

285

NAME

GETBYT

GETB2

GETB1

ROBYT

R001

R01

$0137

$013A

$0130
$013F

$D142

$0149
$0140

$0150
$0151

$0153
$0155

$0156

$0162

$0164

$0167
$0169
$016A

$0160

$0172

$0175

$0179

$017B

$0180

DESCRIPTION OF WHAT ROM ROUTINE DOES

Read one byte from the active buffer:
If last data byte in buffer, set Z flag.
JSR to GETPRE to set buffer pointers.
Load .A with the pointer to the last
character read from LSTCHR,Y ($0244,Y).
If pointer is zero, branch to GETB1.
Load the data byte from (BUFTAB,X)
($99,X) and save it on the stack.
Load the pointer from BUFTAB,X ($99,X)
and compare it to the pointer to the
last character read in LSTCHR,Y. If the
pointers are not equal, branch to GETB2.
Store $FF in BUFTAB,X ($99,X)
Pull the data byte off the stack and
increment BUFTAB,X ($99,X). This will
set the Z flag if this is the last byte.
Terminate routine with an RTS.
Load the data byte from (BUFTAB,X)
($99,X) .
Increment BUFTAB,X ($99,X).
Terminate routine with an RTS.

Read byte from file:
The next file will be read if necessary
and CHNROY($F2) will be set to EOI if
we have read the last character in file.
JSR to GETBYT to read a byte from the
active buffer. On return, if Z flag is
not set, we did not read the last byte
in the buffer so branch to R03 and RTS.
We read the last byte so load .A with
$80, the EOI flag.
Store the channel status (in .A) into
CHNROY,Y ($00F2,Y).
Load .A with the byte from DATA ($85).
Exit from routine with an RTS.
JSR to OBLBUF ($CF1E) to begin double
buffering.
Load .A with $00 and JSR to SETPNT
($04C8) to set up the buffer pointers
JSR to GETBYT ($0137) to read the first
byte from the active buffer (track link)
Compare the track link to $00. If it is
$00, there is no next block so branch
to R04.
There is another block in this file so
store the track link in TRACK ($80).
JSR to GETBYT ($0137) to read the next
byte from the active buffer(sector link)
and store it in SECTOR ($81).
JSR to OBLBUF ($CFIE) to begin double
buffering.

286

NAME

$D183

$D186

$D189

$D18C

$D18F
RD3 $D191
RD4 $D192

$D195

$D19A
$D19C

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to SETORN ($OlD3) to set up the
drive number.
JSR to SETHDR ($D6DO) to set up the
next header image.
JSR to RDBUF ($DOC3) to read in the next
block in the file.
JSR to OBLBUF ($CF1E) to toggle the
active & inactive buffers & read ahead.
Load .A with the byte from DATA ($85).
Exit from routine with an RTS.
JSR to GETBYTE ($D137) to get the next
byte.
Load .Y with the current channel number
from LINOX ($82) and store the new
character as the pointer to the last
character read from the data buffer
LSTCHR,Y ($0244,Y).
Load .A with the byte from DATA ($85).
Exit from routine with an RTS.

WRTBYT

WRTO

$D19D

$D1AO

$D1A2
$D1A3

$D1A6

$DIA9

$D1AB

$D1B3

$DIB8

$DIBB

$D1BE

$D1C1

Write character to the active channel:
If this fills the buffer, write the
data buffer out to disk.
JSR to PUTBYT ($CFF1) to write the byte
to the active channel.
If Z flag is set on return, the buffer
is full so branch to WRTO.
Exit from routine with an RTS.
JSR to SETORN ($0103) to set the current
drive number from the one in LSTJOB.
JSR to NXTTS ($F11E) to get the next
available track and sector.
Load .A with $00 and JSR to SETPNT
($04C8) to set up the buffer pointers.
Load .A with the next available track
from TRACK ($80) and JSR to PUTBYT
($CFF1) to store the track link.
Load .A with the next available sector
from SECTOR ($81) and JSR to PUTBYT
($CFF1) to store the sector link.
JSR to WRTBUF ($00C7) to write out the
buffer to disk.
JSR to OBLBUF ($CF1E) to toggle the
active and inactive buffers and set up
the next inactive buffer.
JSR to SETHOR ($D600) to set up the
header image for the next block.
Load .A with $02 (to bypass the track
and sector link) and JMP to SETPNT to
set up the pointers to the next buffer.

287

NAME

INCPTR

SETORN

GETWCH

$01C6
$01C8

$OlCB

$0102

$0103

$D106

$010A

$OlDE

$010F

$OlEO

DESCRIPTION OF WHAT ROM ROUTINE DOES

Increment the pointer of the active
buffer by .A
Store the value from .A in TEMP ($6F).
JSR to GETPNT ($04E8) to' get the active
buffer pointer (in .A).
Clear the carry flag and add the value
from TEMP ($6F). Store the result into
BUFTAB,X ($99,X) and into OIRBUF ($94).
Terminate routine with an RTS.

Set drive number:
Sets ORVNUM to the same drive as was
used on the last job for the active
buffer.
JSR to GETACT ($D4E8) to get the active
buffer number (in .A).
Transfer the buffer number to .X and use
it as an index to load the last job
number from LSTJOB,X ($025B) into .A.
AND the job number with $01 to mask off
all but the drive number bit and store
the result as the current drive number
in ORVNUM ($7F).
Terminate routine with an RTS.

Open a new write channel:
.A = number of buffers needed
The routine allocates a buffer number
and sets the logical file index, LINDX.
Set the carry flag to indicate that we
want a write channel.
Branch to GETR2.

Open a new read channe I :
.A = number of buffers needed
The routine allocates a buffer number
and sets the channel#, LINDX.

GETRCH $01E2 Clear the carry flag to indicate that we
want a read channel.

GETR2 $01E3 Save the processor status (the carry
flag) onto t.he stack.

$01E4 Save the number of buffer needed (in . A)
into TEMP ($6F) .

$01E6 JSR to FRECHN ($0227) to free any
channels associated with this secondary
address.

$01E9 JSR to FNOLNX ($D37F) to find the next
free logical index (channel) to use and
allocate it.

$D1EC Store the new channel number in LINOX
as the current channel number.

$OlEE Load .X with the current secondary
address from SA ($ 8 3) .

288

NAME

GETR52

GETR55

GETR3

GETERR

GETR5

GETR4

FRECHN

FRECO

$OlFO

$01F3

$D1F5

$D1F8

$OlFB

$D206

$D20A

$D20F

$D212

$0217

$D21A

$D21E

$0223

$0226

$D227

$022D

$D22E

DESCRIPTION OF WHAT ROM ROUTINE DOES

Pull the processor status off the stack
and if carry flag is clear (read),
branch to GETR55.
OR the channel number in .A with $80 to
set bit 7 to indicate a write file.
Store the channel number (in .A) into
the logical index table, LINTAB,X
($022B,X) •

NOTE: Bit 7 set for a write channel
AND the channel number in .A with $3F
to mask off the write channel bit and
transfer the result to .Y.
De-allocate any buffers associated with
this channel by storing $FF in BUFO,Y
($00A7,Y), in BUF1,Y ($OOAE,Y), and in
SS,Y ($OOCD,Y).
Decrement the value in TEMP ($6F). This
is the number of buffers to allocate.
If there are no more to allocate ($FF),
branch to GETR4 and exit.
JSR to GETBUF ($028E) to allocate a new
buffer. If a buffer was allocated,
branch to GETR5.
No buffers available, so JSR to RELBUF
($D25A) to release any buffers allocated
Load .A with $70 to indicate a NO
CHANNEL error and JMP to CMDERR ($C1C8).
Store the buffer number (in .A) into
BUFO,Y ($00A7,Y).
Decrement the value in TEMP ($6F). This
is the number of buffers to allocate.
If there are no more to allocate ($FF),
branch to GETR4 and exit.
JSR to GETBUF ($D28E) to allocate a new
buffer. If a buffer was NOT allocated,
branch to GETERR and abort.
Store the buffer number (in .A) into
BUF1,Y ($OOAE,Y).
Terminate routine with an RTS.

Free channel associated with SA
Read and write channels are freed. The
command channel is not freed.
Load .A with the secondary address from
SA ($83). Compare it with $OF (#15), the
command channel secondary address. If
the secondary address is not $OF, branch
to FRECO.
Since we are not to free the command
channel, simply exit with an RTS.

Free data channel associated with SA:
Load .x with the secondary address from
SA ($ 8 3) •

289

$023B

$0240

$0246
RELINX $0249

REL15 $0240

$0250

$0251
REL10 $0253

NAME

FRE25

RELBUF

REL1

$0230

$0237

$0259

$025A

$025C

$0262

$0267

$026B

$0260

$0273

$0278

OESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the channel number
associated with this secondary address
from LINTAB,X ($022B,X). If it is $FF,
there is no associated channel so branch
to FRE25 and exit.
ANO the channel number with $3F to mask
off the higher order bits and store the
result as the current channel in LINOX
($ 8 2) •
Free the channel by storing $FF into
LINTAB,X ($022B,X).
Load .X with the channel number from
LINOX ($82) and store $00 as the channel
status (free) in CHNRDY,X ($F2,Y).
JSR to RELBUF ($D25A) to release buffers
Load .X with the channel number from
LINOX ($82) and .A with $01.
Oecrement .X, the channel number. If
it is $FF (no lower channel numbers),
branch to REL10.
Do an ASL on the value in .A. Note that
the bit set shifts left one position
each time through the loop.
If .A <> 0, branch to REL15 (always).
OR the value in the accumulator with
LINUSE ($0256) to free the channel
(bit = 1 for free; bit = 0 for used).
Store the resulting value back in
LINUSE ($0256).
Terminate routine with an RTS.

Release buffers associated with channel:
Load .X with the channel number from
LINOX ($82).
Load .A with the buffer number for this
channel from BUFO,X ($A7,X). Compare the
buffer number with $FF (free). If it is
already free, branch to REL1.
Save the buffer number on the stack and
store $FF into BUFO,X ($A7,X) to free
this buffer.
Pull the buffer number off the stack and
JSR to FREBUF ($02F3) to free the buffer
Load .x with the channel number from
LINOX ($82).
Load .A with the buffer number for this
channel from BUF1,X ($AE,X). Compare the
buffer number with $FF (free). If it is
already free, branch to REL2.
Save the buffer number on the stack and
store $FF into BUF1,X ($AE,X) to free
this buffer.
Pull the buffer number off the stack and
JSR to FREBUF ($D2F3) to free the buffer

290

NAME

REL2

REL3

GETBUF

GBF1

GBF2

$D27C

$D27E

$D284

$0289

$0280

$028E

$028E

$0290

$0297

$0290

$02A3

$02A7

$D2AE

$D2B1

$D2B6

$D2B8

$D2B9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .x with the channel number from
LINDX ($82).
Load .A with the side sector for this
channel from SS,X ($CO,X). Compare the
side sector with $FF (free). If it is
already free, branch to REL3.
Save the side sector on the stack and
store $FF into SS,X ($CD,X) to free the
side sector pointer.
Pull the side sector off the stack and
JSR to FREBUF ($D2F3) to free any buffer
Terminate routine with an RTS.

Get a free buffer number: .Y=channel #
If successful, initialize JOBS & LSTJOB
and return with buffer number in .A.
If not successful, .A = $FF; N flag set.
Save channel number by transferring it
from .Y to .A and pushing it on the
stack.
Load .Y with $01 and JSR to FNOBUF
($D2BA) to find a free buffer (# in .X).
If one is found, branch to GBF1.
Decrement .Y and JSR to FNDBUF ($D2BA)
to find a free buffer (# in .X). If one
found, branch to GBF1.
Can't find a free one so let's try to
steal one! JSR to STLBUF ($0339) to try
to steal an inactive one. On return,
buffer # in .A so transfer it to .X. If
we didn't get one, branch to GBF2.
Wait till any job using JOBS,X (SOO,X)
is completed.
Clear the job queue by setting JOBS,X
($OO,X) and LSTJOB,X ($025B,X) to the
current drive number using the value
from ORVNUM ($7F).
Transfer the buffer number from .X to .A
multiply it by two (ASL), and transfer
the result to .Y.
store a $02 on BUFTAB,Y ($0099,Y) so the
pointer points beyond the track and
sector link.
Restore the original .Y value from the
stack.
Transfer the buffer number from .X to .A
to set the N flag if not successful.
Terminate routine with an RTS.

291

NAME

F~JOBUF

FB1

FB2

FB3
FRI20

FREIAC

FRI10

$02BA
$02BC

$D2C4

$02C7

$02C8

$0201

$0205

$0208
$0209

$020A

$020C

$02EO

$02E5

$02E9

$02ED
$02EE

$02F2

DESCRIPTION OF WHAT ROM ROUTINE DOES

Find a free buffer and set BUFUSE:
On entry: .Y = index into BUFUSE

Y=O buffers 0-7; Y=l buffers 8-15
If successful, .x = buffer number
If not successful, .X = $FF; N flag set
Load .x with $07 (for bit test)
Load .A with BUFUSE,Y ($024F,X). Each
bit indicates whether a buffer is free
(1) or in use (0). AND this value in .A
with the bit mask, BMASK,X ($EFE9,X).
Each of these masks has just one bit
set. If the result of the AND is $00,
we have found a free buffer so branch
to FB2.
Decrement .X to try next buffer. If any
left, branch back to FB1.
No more buffers to try (.X=$FF) so exit
wi t.h an RTS.
Found a free buffer so let's grab it!
Load .A with the value in BUFUSE,Y
($024F,Y), EaR it with the bit map for
the free buffer, BMASK,X ($EFE9,X), and
store the result back in BUFUSE,Y.
Transfer the buffer number from .X to
.A and if .Y is $00, branch to FB3.
Since .Y is $01 (never happens on the
1541), we have to add 8 to the buffer
number. So: Clear the carry flag and add
$08 to the buffer number in .A.
Transfer the buffer number from .A to .X
Terminate routine with an RTS.

Free the inactive buffer:
Load .X with the current channel number
from LINDX ($82).
Load .A with the buffer number from
BUFO,X ($A7,X). If bit 7 is set, branch
to FRI10.
Transfer the channel number from .X to
.A, clear the carry flag, add $07 (the
maximum number of channels +1), and
transfer the result back into .X. This
is the alternate buffer for this channel
Load .A with the buffer number from
BUFO,X ($A7,X). If bit 7 is NOT set,
this buffer is active too so exit to
FRI20 (above).
Compare the buffer number to $FF. If it
is $FF, the buffer is free already so
exit to FRI20 (above).
Save the buffer number on the stack.
Free the buffer by storing $FF into
BUFO,X ($A7,X).
Pull the buffer number off the stack.

292

NAME

FREBUF

FREB1

CLRCHN

CLRC1

CLOCHN

CLSO

$02F3

$02F7
$02F9

$0307

$030B

$030E

$0312

$0313

$0317

$0320

$0324

$0327

$032B

$0331

$0334

$0338

DESCRIPTION OF WHAT ROM ROUTINE DOES

Free buffer in BUFUSE:
AND the buffer number with $OF to mask
off any higher order bits, transfer the
result into .Y and increment .Y by 1.
Load .X with $10 (#16) 2 * 8 bits
Loop to ROR BUFUSE+1 ($0250) and BUFUSE
($024F) 16 times. Use .Y to count down
to O. When .Y is zero, the bit that
corresponds to the buffer we want is
in the carry flag so we clear the carry
bit to free that buffer. We then keep
looping until .X has counted down all
the way from $10 to $FF. When .X reaches
$FF, the bits are all back in the right
places, so exit with an RTS.

Clear all channels except the CMO one:
Set the current secondary address in SA
($83) to $OE (#14)
JSR to FRECHN ($0227) to free the
channel whose secondary address is SA
Decrement the value in SA ($83). If it
is not $00, branch back to CLRC1.
Terminate routine with an RTS.

Close all channels except the CMD one:
Set the current secondary address in SA
($83) to $OE (#14)
Load .X with the secondary address from
SA ($83) and use it as an index to load
.A with the channel number from LINTAB,X
($022B,X). Compare the channel number
with $FFi if equal, no channel has been
assigned so branch to CL02.
AND the channel number with $3F to mask
off the higher order bits and store the
result in LINOX ($82) as the current
channel number.
JSR to GETACT to get the active buffer
number for this channel (returned in .A)
Transfer the buffer number to .X and
use it load .A with the last job number
for this buffer from LSTJOB,X ($025B,X).
AND the last job number with $01 and
compare it with the current drive number
in ORVNUM ($7F). If not equal, branch to
CL02.
JSR to FRECHN ($0227) to free this
channel.
Decrement the secondary address in SA
($83) and if there are more to do (not
$FF yet), branch back to CLSO
Terminate routine with an RTS.

293

NAME

STLBUF

STL05

STL10

STL20

STL30

STL40

$D339

$D33E

$D340

$D344

$D348

$D34D

$0355

$D35A

$D35E

$0360

$0363

$0367

$D36B

$D36F

DESCRIPTION OF WHAT ROM ROUTINE DOES

Steal an inactive buffer:
Scan the least recently used table and
steal the first inactive buffer found.
Returns the stolen _buffer number in .A
Save the value in TO ($6F) on the stack
and zero .Y (the index to LRUTBL).
Load .x (the channel index) with the
value from LRUTBL,Y ($FA,Y).
Load .A with the buffer status for this
channel from BUFO,X ($A7,X). If this
buffer is active (status < 128), branch
to STL10.
Compare the status to $FF (unused). If
not equal, it's inactive so branch to
STL30 to steal it!
Transfer the channel number from .X to
.A, clear the carry flag, add $07 (the
maximum number of channels +1), and
transfer the result back into .X. Note
.X now points to the alternative buffer
for this channel.
Load .A with the buffer status for this
channel from BUFO,X ($A7,X). If this
buffer is active (status < 128), branch
to STL30.
Increment .Y and compare the new value
with #$05 (the maximum number of
channels + 1). If there are still some
channels left to check, branch to STL05
No luck stealing a buffer so load .X
with $FF (indicates failure) and branch
to STL60 to exit.
Store the channel number (in .X) into
TO ($6F) temporarily.
AND the buffer number in .A with $3F to
mask off any higher order bits and
transfer the result to .X.
Check if the buffer is being used for
a job currently underway by loading .A
with the job queue byte for the buffer
from JOBS,X ($OO,X). If bit 7 is set,
a job is in progress so branch back to
STL40 to wait for completion.
Compare the job queue value with $02 to
see if any errors occurred. If there
were no errors (job queue was $01),
branch to STL50 to steal the buffer.
No luck so load .X with the value we
save into TO ($6F) and compare it to
$07 (the maximum number of channels+1).
If .X < $07 we still need to check the
alternative buffer for this channel so
branch to STL10.

294

NAME

STL50

STL60

FNOLOX

FN010

FN030

GBYTE

GET

$0371 I

$0373

$037A

$037F

$0383

$0388

$038E

$D39l

$0399

$D39B

$D39E

$D3Al

$D3A4

$D3A9

$D3AA

DESCRIPTION OF WHAT ROM ROUTINE DOES

If .X >= $07, we were checking the
alternative channel so branch back to
STL20 to check the next channel.
We've found an inactive buffer, now to
steal it!
Load .Y with the channel number from TO
($6F) and store $FF into BUFO,Y ($A7,Y)
to steal it.
Pull the original value of TO off the
stack and restore it. Transfer the
buffer number from .X to .A (sets the
N flag if not successful) and terminate
routine with an RTS.

Find free LINOX and allocate in LINUSE
Load .Y with $00 and .A with $01.
Test whether the same bit is set in
LINUSE ($0256) and the accumulator. If a
bit is set in LINUSE, the corresponding
channel is free. If the test indicates a
free channel, branch to FND30.
Increment .Y (the counter) and do an ASL
on the value in the accumulator to shift
the test bit one place left. If more
tests are needed, branch to FND10.
No channel found so load .A with $70 to
to indicate a NO CHANNEL error and JMP
to CMDERR ($C1C8).
EOR the bit mask (in .A) with $FF to
flip the bits, AND the flipped mask with
LINUSE to clear the appropriate bit, and
store the result back in LINUSE ($0256).
Transfer the channel number (LINOX) from
.Y to .A and exit with an RTS.

Get next byte from a channel:
JSR to FNDRCH ($DOEB) to find an unused
read channel.
JSR to SETLDS ($C100) to turn on the
drive active light.
JSR to GET ($D3AA) to get one byte from
any type of file.
Load .X with the current channel number
from LINDX ($82) and load .A with the
data byte from CHNOAT,X ($023E).
Terminate routine with an RTS.

Get next byte from any type of file:
Load .X with the current channel number
from LINOX ($82) JSR to TYPFIL ($D125)
to determine the file type. If Z flag
not set on return, this is not a
relative file so branch to GETOO.

295

NAME

GETOO

GETO

GET1

GET2

RNDGET

RNGET1

RNGET2

RNGET4

$D3B1

$D3B4

$D3BA

$D3CO

$D3C3

$D3C7

$D3CE

$D3D2
$D3D3

$D3D7

$D3DE

$D3E1

$D3E8

$D3EC

$D3EE

$D3FO
$D3F3

DESCRIPTION OF WHAT ROM ROUTINE DOES

It is a relative file so JMP to RDREL
($E120) to do this type.
Test if the current secondary address
from SA ($83) is $OF (the CMD channel).
If it is, branch to GETERC ($D414).
Test if the last character we sent on
this channel was an EOI by checking if
the channel status in CHNRDY,X ($F2,X)
is $08. If the last character was NOT
an EOI, branch to GET1.
Last character was EOI so JSR to TYPFIL
($D125) to determine the file type.
If the file type is NOT $07, a random
access file, branch to GETO.
This is a direct access file so we will
leave it active. Store an $89 (random
access file ready) as the channel status
in CHNRDY,X ($F2,X) and exit with a
JMP to RNDGET ($D3DE) to get the next
character ready.
Last character sent was EOI so set the
channel status as NOT READY by storing
a $00 in CHNRDY,X ($F2,X).
Terminate routine with an RTS.
Test if this is a LOAD by testing if
the secondary address in SA ($83) is a
$00. If it is a LOAD, branch to GET6.
It's not a LOAD. Maybe it's a random
access file. JSR to TYPFIL ($D125) to
determine the file type. If the file
type is less than $04, it is NOT a
random access file, so branch to SEQGET.
It is a random access file so JSR to
GETPRE ($D12F) to set up the right
pointers in .X and .Y.
Load the pointer to the data byte into
.A from BUFTAB,X ($99,X). Compare this
value to the pointer to the last
character pointer in LSTCHR,Y ($0244,Y)
to see if we are up to the last one yet.
If not, branch to RNGET1.
We're at the last character so wrap the
pointer around to the start again by
storing $00 in BUFTAB,X ($99,X).
Increment BUFTAB,X ($99,X) to point to
the next character.
Load .A with the data byte from
BUFTAB,X ($99,X).
Save the data byte in CHNDAT,Y ($023E,Y)
Load the pointer from EUFTAB,X and
compare it to the value in LSTCHR,Y
($0244,Y) to see if this is the last
character we're supposed to get. If NOT,
branch to RNGET3.

296

NAME

RNGET3
SEQGET

GET3

GET6

GETERC

GE10

GE15

GE20

GE30

$03FA

$03FF
$0400

$0403

$0408
$0409

$040E

$0414

$041B

$0421

$0428

$0420

$0433

$043A

$043F

$0443

$0445

DESCRIPTION OF WHAT ROM ROUTINE DOES

Since this is the last character, set
the channel status in CHNROY,Y to $00
to indicate an EOI (end of information).
Terminate routine with an RTS.
JSR to ROBYT ($0156) to read the next
data byte.
Load .X with the channel number from
LINOX ($82) and store the data byte in
CHNOAT,X ($00F2,X).
Terminate routine with an RTS.
Seems to be a LOAD. Test if it is a
directory listing by seeing if OIRLST
($0254) is a $00. If it. is, this is not
a directory listing so branch to SEQGET.
It is a directory listing so JSR to
GETOIR ($E067) to get a byte from the
directory and then JMP to GET3.

Get byte from the error channel:
JSR to GETPNT ($04E8) to read the active
buffer pointer. If the buffer number is
NOT $04, 10 byte of the pointer to one
byte below error buffer, branch to GE10.
Check if OIRBUF+1 ($95) equals $02, the
hi byte of the pointer to the error
buffer. If not, branch to GE10.
Store a $00 (#13; RETURN) in DATA ($85)
and JSR to ERROFF ($C123) to turn off
the error LED.
Load .A with $00 and JSR to ERRTSO
($E6C1) to transfer the error message
to the error buffer.
Decrement CB+2 ($A5) so this pointer
points to the start of the message,

.. lo-ad --~4. w.it.h__$_8Q. !-,ED.l- ont .s.r a.t n.s.) -e a.nd__
branch (always!) to GE30.
JSR to GETBYT ($0137) to read a byte
of the error message. Store the byte in
DATA ($85) and, if not $00, branch to
GE20.
Load .A with $04, the 10 byte cf the
pointer to one byte below the error
buffer and JSR to SETPNT ($04C8) to set
the pointers to the error buffer.
Store the hi byte of the pointer to the
error buffer ($02) into BUFTAB+1,X
($9A,X) .
Load .A with $88, the channel status
byte for ready-to-talk.
Store the value in .A as the error
channel status in CHNROY+ERRCHN ($F7).

297

NAME

NXTBUF

NXTBI

DRTRD

DRTWRT
DRT

OPNIRD

OPNTYP

$D447

$D44C

$D44D

$D452

$D456

$D45A

$D45F

$D460

$0464
$0466

$D46B

$0470

$0475

$0477
$D47A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the byte from DATA ($85)
and store it as the channel data byte
for the error channel in CHNDAT+ERRCHN
($0243) .
Terminate routine with an RTS.

Read in the next block of a file by
following the track and sector link.
Set an EOF (end of file) indicator if
the track link (first byte) is $00.
JSR to GETACT ($DF93) to get the active
buffer number (in .A). Multiply the
buffer number by 2 (ASL) and transfer it
to . X.
Store a $00 in BUFTAB,X ($99,X) to set
the buffer pointer to the first byte.
Check first byte (track link) in the
buffer, (BUFTAB,X). If it is zero, there
are no more blocks to get so branch to
NXTB1.
Decrement the buffer pointer, BUFTAB,X
($99,X) by 1 so it is $FF and JSR to
RDBYT ($0156). This forces a read of the
next sector because we set the pointer
to the end of the current buffer.
Terminate routine with an RTS.

Direct block read:
Load .A with $80, the job code for read
and branch to DRT.

Direct block write:
Load .A with $90, the job code for write
OR the job code in .A with the current
drive number in DRVNUM ($7F) and store
the result in CMD ($024D).
Load .A with the number of the buffer
to use for the job from JOBNUM ($F9) and
JSR to SETH ($D6D3) to set up the header
image for the job.
Load .X with the number of the buffer
to use for the job from JOBNUM ($F9) and
JMP to DOIT2 ($D593) to do the job.

Open internal read channel: (SA=17)
Use this entry point for PRG files.
Load .A with $01 (program file type)

Open internal read channel (.A=any type)
Use this entry point for any file type.
Store file type (.A) into TYPE ($024A)
Store $11 (#17) as the current secondary
address in SA ($83).

298

$0497

$049B

$D49E

$D4A1

$D4A6

$D4AB

$04BO

$04B3

$D4B6

NXDB1 $D4BB
$D4CO

$D4C3

NAME

OPNIWR

NXORBK

SETPNT

$047E

$0481

$0486

$048A

$0480

$0490

$04C8

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to OPNRCH ($DC46) to open a read
channel.
Set .A to $02 and JMP to SETPNT ($04C8)
to set the buffer pointer to point past
the track and sector link.

Open internal write channel (SA=l8)
Store $12 (#18) as the current secondary
address in SA ($83).
JMP to OPNWCH ($DCDA) to open the write
channel.

Allocate the next directory block:
JSR to CURBLK ($DE3B) set the TRACK($80)
and SECTOR ($81) values from the current
header.
Set TEMP ($6F) to $01 and save the
current value of SECINC ($69), the
sector increment used for sequential
files, on the stack.
Set the sector increment, SECINC ($69)
to $03, the increment used for the
directory track.
JSF to NXTDS ($F12D) to determine the
next available track and sector.
Restore the original sector increment
in SECINC ($69) from the stack.
Set .A to $00 and JSR to SETPNT ($D4C8)
to set the pointer to the first byte in
the active buffer (track byte) .
Load .A with the next track from TRACK
($80) and JSR to PUTBYT ($eFF1) to
store the track link in the buffer.
Load .A with the next sector from SECTOR
($81) and JSR to PUTBYT ($CFFl) to
store the sector link in the buffer.
JSR to WRTBUF ($00C7) to write the
buffer out to disk.
JSR to WATJOB ($D599) to wait until the
write job is complete.
Set .A to $00 and JSR to SETPNT ($D4C8)
to set the pointer to the first byte in
the active buffer (track byte) .
Loop to zero the entire buffer.
JSR to PUTBYT ($CFF1) to store $00 as
the next track link.
Load .A with $FF and JMP to PUTBYT
($CFFl) to store $FF as the sector link.

Set up pointer into active data buffer
On entry: .A contains new pointer value
Save the new pointer (in .A) into TEMP
($6F) and JSR to GETACT ($DF93) to find
the active buffer number (in .A).

299

NAME

$04CO

$04CF

$0403

$0409

FREICH $040A

$04E1

DESCRIPTION OF WHAT ROM ROUTINE DOES

Multiply the buffer number by 2 (ASL)
and transfer the result into .X.
Move the high byte of the buffer pointer
from BUFTAB+1,X ($9A,X) to OIRBUF+1($95)
Load the new buffer pointer value from
TEMP ($6F) into .A. Store this new value
into BUFTAB,X ($99,X) and OIRBUF ($94).
Terminate routine with an RTS.

Free bot-h internal channels: (SA=17&18)
Set SA ($83) to $11 (#17) the internal
read channel and JSR to FRECHN ($0227)
to free the internal read channel.
Set SA ($83) to $12 (#18) the internal
write channel and JMP to FRECHN ($0227)
to free the internal write channel.

GETPNT

SETOIR

OROBYT

SETLJB

$04E8

$04EB

$04EO

$04F1

$04F5

$04F6

$04F8

$04FB

$0501

$0505

$0506

Get the active buffer pointer:
JSR to GETACT ($OF93) to get the active
buffer number (in .A).
Multiply the buffer number by two (ASL)
and transfer the result into .X.
Move the hi byte of the buffer pointer
from BUFTAB+1,X ($9A,X) into the hi
byte of the directory buffer pointer
oI RB UF+ 1 ($ 95) .
Move the 10 byte of the buffer pointer
from BUFTAB,X ($99,X) into the 10 byte
of the directory buffer pointer OIRBUF
($94). (.A = 10 byte of t-he pointer)
Terminate routine with an RTS.

Direct read of a byte: (.A = position)
On entry:.A = position of byte in buffer
On exit:.A = data byte desired
Store 10 byte of pointer to desired byte
(in .A) into TEMP+2 ($71).
JSR to GETACT ($OF93) to get the active
buffer number (in .A).
Transfer buffer number into .X and load
.A with the hi byte of the active buffer
pointer from BUFINO,X ($FEEO,X). Store
this value into TEMP+3 ($72). This
creates a pointer to the byte in $71/72.
Zero .Y and load .A with the desired
byte from (TEMP+2) ,Y; ($71) ,Y.
Terminate routine with an RTS.

Set up job using last job's drive:
NOTE: For this entry, job code is in CMO

and .X is buffer number (job #)
Load .A with previous job number from
LSTJOB,X ($025B,X), AND the job number
with $01 to leave just the drive number

300

NAME

SETJOB

SJB2

SJB3

$050E

$0511

$0514

$0519

$0510

$0522

$0523

$0525

$D52B

$0520

$0530

$0535

$0538

DESCRIPTION OF WHAT ROM ROUTINE DOES

bits, and OR the result with the new
job code on CMO ($0240). The resulting
new job code is in .A.

Set up new job:
NOTE: For this entry, job code is in .A

and .X is buffer number (job #)
Save new job code on the stack and store
the number of the buffer to use (.X) in
JOBNUM ($F9).
Transfer the buffer number from .x to
.A, multiply it by 2 (ASL) and transfer
it back into .x.
Move the desired sector from HDRS+1,X
($07,X) into CMO ($0240).
Load .A with the desired track from
HDRS,X ($06,X). If it is $00, branch to
TSERR ($054A).
Compare the desired track (in .A) with
the maximum track number from MAXTRK
($FED7). If it is too large, branch to
TSERR ($D54A).
Transfer the desired track number from
• A to . X.
Pull the job code off the stack and
immediately push it back onto the stack.
AND the job code in .A with $FO to mask
off the drive bits and compare it to $90
(the job code for a write). If this is
not a write job, branch to SJB1.
Pull the job code off the stack and
immediately push it back onto the stack.
00 an LSR on the job code in .A to
find the drive to use. If it is drive 1,
branch to SJB2.
Use drive 0 so load DOS version from
DSKVER ($0101) and branch to SJB3.
Use drive 1 so load DOS version from
DSKVER+1 ($0102).
If DOS version is $00 (no number), it is
OK, so branch to SJB4.

NOTE: On the 1541 the DOS version code
(normally 65) is stored in ROM,
not in RAM as on the 4040. This
means you can not soft set a
DOS version number on the 1541!
However, a DOS version number of
$00 is OK.

301

NAME

SJB4

TSERR

TSER1

HED2TS

TSCHK

VNERR

SJB1

$D53A

$D53F

$D54A

$D54D

$D552

$F556

$F55A

$F55E

$D55F

$D563

$D568

$D571

$D572

$D575

$D57A

$D57C
$0570

DESCRIPTION OF WHAT ROM ROUTINE DOES

Compare the DOS version number with the
1541 DOS versioh number ($65) from
VERNUM ($FED5). If the version numbers
do not match, branch to VNERR ($0572).
Transfer the desired track number from
.x to .A and JSR to MAXSEX ($F24B) to
calculate the maximum sector number+1
for this track (returned in .A). Compare
this value with the desired sector
number in CMD. If the desired sector
number is legal, branch to SJB].
Track and/or sector number is illegal so
JSR to HED2TS ($D552) to store the
values in TRACK ($80) and SECTOR ($81).
Load .A with $66 to indicate a bad track
and sector and JMP to CMDER2 ($E645).

Set desired track and sector values:
Load .A with the number of the buffer to
use for this job from JOBNUM ($F9).
Multiply the buffer number by 2 (ASL)
and transfer it to .X.
Move the desired track number from
HDRS,X ($06,X) to TRACK ($80).
Move the desired sector number from
HDRS+1,X ($07,X) to SECTOR ($81).
Terminate routine with an RTS.

Check for bad track and sector values:
Load .A from TRACK ($80). If the track
is $00, branch back to TSER1 ($0540).
Compare the track to the maximum track
number allowed, MAXTRK ($FED7). If too
large, branch back to TSER1.
JSR to MAXSEC ($F24B) to calculate the
maximum sector number allowed on this
track. If too large, branch to TSER1.
Terminate routine with an RTS.

Bad DOS version number:
JSR to HED2TS ($0552) to store the
values in TRACK ($80) and SECTOR ($81).
Load .A with $73 to indicate a bad DOS
version number and JMP to CMDER2 ($E645)

Conclude job set up:
Load .X with the number of the buffer to
use for the job from JOBNUM ($F9).
Pull the job code off the stack.
Store the job code as the current
command in CMD ($0240), in the job queue
at JOBS,X ($OO,X) to activate the disk
controller, and in LSTJOB,X.

302

NAME

OOREAO

OOWRIT
OOJOB

DOlT
DOIT2

WATJOB

TSTJOB

TJ10

$D585

$D586

$D58A
$D58C

$058E

$0590
$D593
$0596

$D599

$D59C
$059E
$D59F

$D5A4
$D5A5

$D5A6

$D5A8

$D5AA

$D5AE

$D5B2

$05B6

$05BA

DESCRIPTION OF WHAT ROM ROUTINE DOES

Terminate routine with an RTS.

00 a read job; return when done OK:
Load .A with $80, the read job code and
branch to OOJOB.

Do a write job; return when done OK:
Load .A with $90, the write job cede.
OR the job code ~ith the current drive
number in OPVNUM ($7F).
Load .X with the number of the buffer to
use for the job from JOBNUM ($F9).
Store complete job code in CMO ($024D).
Lead .A with job code from CMO ($024D).
JSR to SETJOB ($050E) to start job.

Wait until job is completed:
JSR to TSTJOB ($D5A6) to check if job
is done yet (error code returned in .A).
If job not done yet, branch to WATJOB.
Save error cede on the stack.
Set job completed flag, JOBRTN ($0298),
to $00.
Recover error code from stack (in .A).
Terminate routine with an RTS.

Test if job done yet:
If not done, return. If done OK, then
return. If not OK, redo the job.
Load .A with value from the job queue,
JOBS, X ($ 00 , X) .
If .A > 127, job not done yet so branch
to NOTYET to exit with carry flag set.
If .A < 2, job was completed with no
errors so branch to OK to exit with the
carry flag clear.
Compare the error code to $08. If it is
$08, a fatal write protect error has
occured so branch to TJ10 and abort.
Compare the error code to SOB. If it is
SOB, a fatal ID mismatch error has
occured so branch to TJ10 and abort.
Compare the error code to $OF. If it is
NOT $OF, a non-fatal error has occured
so branch to RECOV and try again.
NOTE: an error code of $OF means a fatal
drive-not-available error has occured.

Test bit 7 of the job return flag,
JOBRTN ($0298). If it is set, the disk
has been initialized and this is the
first attempt to carry out the job, so
branch to OK to return with the carry
flag clear.

303

NAME

OK

NOTYET

RECOV

REC01

RECO

REC1

$05BF
$05C2

$05C4

$05C6

$05CB

$0502

$0509

$05EO
$05E3

$05E9

$05EO

$05F4

$0600

$0606

$0600

$0613

DESCRIPTION OF WHAT ROM ROUTINE DOES

JMP to QUIT2 ($063F) to try to recover.
Clear the carry flag and terminate the
routine with an RTS.
Set the carry flag and terminate the
routine with an RTS.
Save .Y value and the current drive
number from ORVNUM ($7F) on the stack.
Load the job code for the last job from
LSTJOB,X ($025B,X), AND it with $01 to
mask off the non-drive bits, and store
the result as the current drive number
in ORVNUM ($7F).
Transfer the drive number from .A to .Y
and move the LED error mask from
LEDMSK,Y ($FECA,Y) to ERLED ($0260)
JSR to OOREC ($06A6) to do last job
recovery. On return, if the error code
(in .A) is $01, it worked so branch to
REe01.
Retry didn't work, JMP to REC95 ($0660)
Load .A with the original job code from
LSTJOB,X ($025B,X), AND it with $FO to
mask off the drive number bits, and save
it on the stack.
Check if the job code ~as $90 (a write
job). If not, branch to RECO.
This is a write job. OR the current
drive number from ORVNUM ($7F) with $B8
(the job code for a sector seek) and
store the result in LSTJOB,X ($025B,X).
This replaces the original write job
with a seek job during recovery.
See if the head is on track by checking
bit 6 of REVCNT (6A). If this bit is
set, the head is on track so branch to
REe5.
Head net on track so zero the offset
table pointer, EPTR ($0299) and the
total offset TOFF ($029A).
Load .Y with the offset table pointer
EPTR ($0299) and .A with the total
offset TOFF ($029A).
Set the carry flag and subtract the
offset OFFSET,Y ($FEDB) from the total
offset in .A. Store the result as the
new total offset in TOFF ($029A).
Load .A with the head offset from
OFFSET,Y and JSR to HEOOFF ($0676) to
move the he&d so it is on track.
Increment the cffset table pointer and
JSR to OOREC ($06A6) to attempt to
recover. On return, if the error code
in .A < $02, the recovery worked so
branch to REC3.

304

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$0610 That t.ry at. recovery did not work so
increment the offset t.able pointer by 1
and load .A with the offset from
OFFSET,Y ($FEOB,Y) . If the value loaded
is not $00, branch to REC1 to try again.

REC3 $0625 One more try on the offset. Load .A with
the total offset from TOFF ($029A) and
JSR to HEOOFF' ($0676) . If no error on
return, branch to REC9.

REC5 $0631 Check bit 7 of the error recover count
REVCNT ($6A) . If this bit. is clear,
branch to REC7 t.o do a bump to track 1 .

QUIT $0635 Pull t.he original job code off the
stack. If it is NOT $90 (a write job)
branch to QUIT2.

$063A For write jobs only, OR the job code in
.A with t.he drive number from ORVNUM
and put t.he result in LSTJOB,X ($025B,X)
to restore the original value.

QUIT2 $063F Load .A with t.he error code from JOBS,X
($OO,X) and abort with a JSR to ERROR
($E60A) .

REC7 $0644 Pull the job code off the stack (in . A) .
REC5 $0645 Check bit 7 of the job ret.urn flag

JOBRTN ($0298) . If t.his bit. is set,
branch to REC95 to exit wit.h job error.
Push the job code back ont.o the stack.

$064B Do a bump t.o track 1 by loading .A with
$CO (BUMP job code) , ORing it with the
current. drive number from ORVNUM ($ 7F) ,
and storing the result in the job queue
at. JOBS,X ($OO,X) .

REC8 $0651 Wait for current job t-o be completed.
$0655 JSR to OOREC ($06A6) to try one more

time. On return, if the error code t •A)
is not $01 (no error) , give up in
di.sgust and branch t.o QUIT.

REC9 $065C Pull the original job code off t.he stack
and compare it to $90 (the job code for
a write job) . If this isn't a write job,
branch t.o REC95.

$0661 OR the job code (in . A) with t.he drive
number from ORV:NUM ($7F) and store the
value in LSTJOB,X.

$0666 JSR to OOREC ($06A6) t.o try one last
t.Lrne • On return, if the error code (. A)
is not $01 (no error) , give up in
disgust and branch to QUIT2.

REC95 $0660 Pull the original drive number off the
stack and st.ore it in ORVNUM ($7F) •

$0670 Pull the original .Y value off t.he st.ack
and restore • Y •

305

NAME

HEOOFF

HOFI

HOF2

HOF3

MCVHEO

MH10

OOREC

DORECl

I $0672

$0676

$D67A

$D67C

$0681

$D686

$0688

$0680

$D692

$0693
$0694

$0695

$0697
$D69A

$069F

$D6A4
$06A5

$06A6

$06AB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the error code from JOBS,X
($OO,X), clear the carry flag, and exit
with an RTS.

Adjust head offset:
On entry: .A = OFFSET
If .A=O, no offset required so branch
to HOF3.
If .A > 127, head needs to be stepped
inward so branch to HOF2.
We want to move head outward 1 track so:
load .Y with $01 and JSR to MOVHED
($0693) to move the head.
On return, set the carry flag and
subtract $01 from the value in .A. If
the result is not $00, the head has not
finished so branch back to HOF1.
If the head is finished movins, branch
to HOF3.
We want to move head inward 1 track so:
load .Y with $FF and JSR to MOVHEO
($0693) to move the head.
On return, clear the carry flag and
add $01 to the value in .A. If the
result is not $00, the head has not
finished so branch back to HOF2.
Terminate routine with an RTS.

Step head inward or outward 1 track:
Save the value in .A onto the stack.
Transfer the number of steps to move
(phase) fro~ .Y into .A.
Load .Y with the current drive number
from ORVNUM ($7F).
Store the phase into PHASE,Y ($02FE,Y).
Compare the phase in .A with the value
in PHASE,Y ($02FE,Y). If they are equal,
the controller h2s not yet moved the
head so branch back to MH10.
Store $00 in PHASE,Y ($02FE,Y) so head
won't move any more.
Pull original value of .A off the stack.
Terminate routine with an RTS.

Load .A with the retry counter, REVCNT
($6A), AND it with $3F to mask off the
high order bits, and transfer the result
into .Y.
Load .A with the error LED mask from
ERLEO ($0260), EOR it with the disk
controller pcr t B, DSKCNT ($lCOO) and
store it back in DSKCNT ($lCOO) to turn
the drive light OFF.

306

NAME

OOREC2

OOREC3

SETHOR

AOOFIL

$06B4

$06B9

$06C1

$06C4
$D6C5

$06CE
$06CF

$0600

$0603

$0605

$D60A

$06DF

$06E3

$06E4

$06FO

$06F4

DESCRIPTION OF WHAT ROM ROUTINE DOES

Restart the last job by moving the job
code from LSTJOB,X ($025B,X) to the job
queue at JOBS,X (sOO,X).
Loop to wait until the value in the job
queue at JOBS,X ($OO,X) is less than 127
(indicates job has been completed).
Test to see if the error code returned
is $01 (successful). If everything wcs
OK, branch to OOREC3.
It didn't work. Decrement tr.e error
counter in .Y and, if .Y has not counted
down to $00 yet, branch to OORECl and
keep trying.
Save the error code onto the stack.
Load .A with the error LED mask from
ERLED ($0260), OR it with the disk
controller port B, OSKCNT ($lCOO) and
store it back in OSKCNT ($lCOO) to turn
the drive light back ON.
Pull the error code back off the stack.
Terminate routine with an RTS.

Set up the header for the active buffer:
Uses values in TRACK, SECTOR, & DSKID.
JSR to GETACT ($OF93) to get the number
of the active buffer (returned in .A).
Multiply the number of the active buffer
(in .A) by 2 (ASL) and transfer the
result into .Y.
Move the track number from TRACK ($80)
to HORS, Y ($ 0 006 , Y) .
Move the sector number from SECTOR ($81)
to HORS+1,Y ($0007,Y).
Load .A with the current drive number
from ORVNUM ($7F), multiply it by 2(ASL)
and transfer the result to .X.
NOTE: this last bunch of code really

does nothing. On the 4040 it is
done in preparation for moving
the 10 characters. However, this
is not done here on the 15411

Terminate routine with an RTS.

Add new filename to the directory:
Save the following variables onto the
stack: SA ($83), LINDX ($82), SECTOR
($81), and TRACK ($80).
Set the current secondary address, SA
($83) to $11 (#17), the internal read
channel.
JSR to CURBLK ($OE3B) to find a read
channel and set TRACK ($80) and SECTOR
($81) from the most recently read header

307

NAME

AF08

AF10

AF15

$D6F7

$D6FB

$D701

$D706

$D709

$D715

$D71A

$D71E

$D726

$D72E

$D730

DESCRIPTION OF WHAT ROM ROUTINE DOES

Save the file type, TYPE ($024A) of the
file to be added onto the stack.
Load .A with the drive ~umber for the
new file, and it with $01, and store the
result as the current drive, DRVNUM($7F)
Load .X with the last job number frcm
JOBNUM ($F9).
EOR the drive number in .A with the
last job code from LSTJOB,X ($025B,X),
divide the result by 2 (LSR) , and check
if the carry flag is clear. If it is,
the new file uses the same drive as the
last job sc there is no need to change
the drive and we can branch to AF08.

Store $01 in DELIND ($0292) to indicate
that we are searching for a deleted
entry and JSR to SRCHST ($C5AC). On
return, if .A=O, all directory sectors
are full so branch to AF15 to start a
new sector. If .A<>O, we have found a
spot to put the nEW entry so branch to
AF20.
Since we have used this drive before,
some of the directory information is
in memory. Check if DELSEC ($0291)
is $00. If it is, we didn't locate a
deleted entry the last time we read in
the directory so branch to AF10.
Since DELSEC is not $00, it is the
number of the sector containing the
first available directory entry. See if
this sector is currently in memory by
comparing this sector number with the
one in SECTOR ($81). If they are equal,
the sector is in memory so branch to
AF20.
Since the desired sector is not in
memory, set SECTOR ($81) to the desired
sector number and JSR to ORTRD ($0460)
to read in the sector. Now branch to
AF20.
Store $01 in DELIND ($0292) to indicate
that we are looking for a deleted entry
and JSR to SEARCH ($C617) to find the
first deleted or empty directory entry.
On return, if .A is not equal to $00, a
deleted or empty entry was found so
branch to AF20.
No empty entries so we have to start a
new sector so JSR to NXDRBK ($D48D) to
find us the next available sector.

308

NAME

AF20

AF25

AF50

$0733

$0730

$0743

$0747

$074B

$0740

$0750

$0757

$075E

$0762

$0766

$0760

$0776

$0770
$077F

$0785

$078B

$0790

$0793

$0797

DESCRIPTION OF WHAT ROM ROUTINE DOES

Move the new sector number from SECTOR
($81) to OELSEC ($0291) and set OELINO
($0292) to $02.
Load .A with the pointer that points to
first character in the directory entry,
OELINO($0292), and JSR to SETPNT($04C8)
to set the pointers to this entry.
Pull the file type off the stack and
store it back in TYPE ($024A).
Compare the file type to $04 (REL type).
If this is not a relative file, branch
to AF25.
Since it is a REL file, OR the file type
(in .A) with $80 to set bit 7.
JSR to PUTBYT ($CFF1) to store the file
type (in .A) into the buffer.
Pull the file's track link off the
stack, store it in FILTRK ($0280), and
JSR to PUTBYT ($CFF1) to store the
track link in the buffer.
Pull the file's sector link off the
stack, store it in FILSEC ($0285), and
JSR to PUT3YT ($CFFI) to store the
sector link in the buffer.
JSR to GETACT ($DF93) to get the active
buffer number (in .A) and transfer the
value to .Y
Load .X with the file table pointer
from FILTAB ($027A).
Load .A with $10 (#16) and JSR to TRNAME
($C66E) to transfer the file name to
the buffer.
Loop to fill directory entry with soots
from (OIRBUF) ,16 to (OIRBUF) ,27.
Check the value in TYPE ($024A) to see
if this is a relative file. If not,
branch to AF50.
For REL files only: Load .Y with $10.
Move the side-sector track number from
TRKSS ($0259) to (OIRBUF) ,Y. Increment Y
Move the side-sector sector number from
SECSS ($025A) to (OIRBUF) ,Y. Increment Y
Move the record length from REC ($0258)
to (OIRBUF) ,Y.
JSR to ORTWR'II ($0464) to write out the
directory sector.
Pull the original value of LINOX off the
stack, store it back in LINOX ($82), and
transfer the value into .X.
Pull the original value of SA off the
stack, store it back in SA ($83).

309

NAME

OPEN

OP02

$079A

$D7A5

$07AA

$07AF

$D7B3

$07B4

$07B9

$D7BC

$07C7

$07CB

$D7CF

$D701

$D7D8

$D7DC

$D7E1

$D7E4

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the number of the directory
sector containing the new entry from
DELSEC ($0291) and store it in ENTSEC
($08) and in DSEC,X ($0260,X).
Load .A with the pointer to the start
of the new entry from DELINO ($0292)
and store it in OINO,X ($0266,X).
Load .A with the file type of the new
entry from TYPE ($024A) and store it in
PATTYP ($E7).
Load .A with the current drive number
from DRVNUM ($7F) and store it in
FILORV ($E2).
Terminate routine with an RTS.

Open a channel from serial bus:
The open, load, or save command is
parsed. A channel is allocated and the
directory is searched for the filename
specified in the command.
Move the current secondary address from
SA ($83) to TEMPSA ($024C).
JSR to CMDSET ($C2B3) to set the command
string pointers. On return, store the .X
value in CMONUM ($022A).
Load .X with the first character in the
command string CMDBUF ($0200). Load .A
with the secondary address from TEMPSA
($024C). If the secondary address is not
$00, this is not a load so branch to
OP021.
Compare the value in .X wit.h $2A ("*")
to check if the command is "load the
last referenced program". If not $2A,
branch to OP021.
Appears to be "load last". Check by
loading .A with t.he last program's track
link from PRGTRK ($7E). If .A=O, there
is no last program so branch to OP0415
to initialize drive O.
Seems OK, let's load last program.
Store the program's track link (in .A)
into TRACK ($80).
Move the program's drive number from
PRGORV ($026E) to ORVNUM ($7F).
Store $82 (program) as the file type in
PATTYP ($E7).
Move the program's sector link from
PRGSEC ($026F) into SECTOR ($81).
JSR to SETLOS ($C100) to turn on the
drive active LEO.
JSR to OPNRCH ($OC46) to open a read
channel.

310

NAME

ENORO

OP021

OP04

OP041

OP0415

OP042

$07E7

$07EB

$07EO

$D7FO

$D7F3

$D7F7

$D7FC

$D7FF

$0802

$0807
$D80B

$D80E

$0812

$0815

$0819

$D81C

$0821

$0828

$082B

$D82E
$0830

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with $04 (2 * program type), OR
it with the drive number in DRVNUM ($7F)
Load .X with the number of the active
buffer from LINDX ($82).
Store the value in .A as the file type
in FILTYP,Y ($OOEC,Y).
Terminate routine with a JMP to ENDCMD
($C194) •

Compare the byte in .X (the first in the
command st-ring) with $24 ("$") to check
if we are to load the directory. If it
is NOT "$", branch to OP041.
We want the directory. But, should we
load it or just open it as a SEQ file?
Check the secondary address in TEMPSA
(024C). If it is not $00, branch to

OP04 to open it as a SEQ file.
JMP to LOADIR ($DA55) to load the
directory.

Open the directory as a SEQ file.
JSR to SIMPRS ($C1D1) to parse the
command string.
Move the directory's track link from
OIRTRK ($FE85) into TRACK ($80).
Zero the desired sector, SECTOR ($81)
JSR to OPNRCH ($DC46) to open the read
channel.
Load .A with the current drive number
from DRVNUM ($7F) and OR it with $02
(2 * the SEQ file type).
Terminate routine with a JMP to ENDRD
($D7EB).

Compare the byte in .X (the first in the
command string) with $23 ("#") to check
if this is to be a direct access channel
If it is NOT "#", branch to OP042.
Continue routine with a JMP to OPNBLK
($CB84) .

Set the file type flag TYPFLG ($0296)
to $02 (prcgram file).
Zero the current drive number DRVNUM
($7F) and the last job drive number

LSTDRV ($028E).
JSR to INITDR ($0042) to initialize
drive #0.
JSR to PRSCLN ($C1E5) to parse the
command string to find the colon.
If none found, branch to OP049
Zero .X and branch to OP20 (always).

311

NAME

OP049

OP05

OPIO

OP20

OP40

$0834

$0837

$083C

$083F

$0840

$0843

$0848

$084C

$084F

$0852

$0857

$0861

$0866

$0869

$086F

$0873

$0876

$087B

$087F

$0882

DESCRIPTION OF WHAT ROM ROUTINE DOES

Transfer the byte in .x to .A. If the
byte is $00, branch to OPI0.
Oops, trouble! Load .A with $30 to
indicate a BAD SYNTAX error and JMP to
CMOERR ($CIC8).

Decrement .Y so it points to the "_"
If .Y=O, first character is a "_" so
branch to OP20.
Decrement .Y so it points to the byte
just before t-he "_".
Store the pointer to the file name
(in .Y) into FILTBL ($027A).
Load .A with $80 (shifted return) and
JSR to PARSE ($C268) to parse the rest
of the command string.
Increment .x (file count) and store the
result into F2CNT ($0278).
JSR to ONEORV ($C312) to set up one
drive and the necessary pointers.
JSR to OPTSCH ($C3CA) to determine the
optimal search pattern.
JSR to FFST ($C490) to search the disk
directory for the file entry.
Zero the record length, REC ($0258),
MODE ($0297) (read mode), and the file
type, TYPE ($024A) (deleted file).
Test the value of FICNT ($0277). If it
is $00, there are NO wild cards in the
filename so branch to OP40.
JSR to CKTM ($OA09) to set the file
type and mode.
Test the value of F1CNT ($0277). If it
is $01, there is only one wild card in
the filename so branch to OP40.
Compare .Y to $04. If .Y=$04, this is a
relative file so branch to OP60 to set
the record size.
JSR to CKTM ($OA09) to set the file
type and mode.
Restore the original secondary address
into SA ($83) using the value from
TEMPSA ($024C).
Test the secondary address, if it is
greater or equal to $02, this is not a
load or save so branch to OP45.
This is a load or save. Set MODE ($0297)
(O=read; l=write) using the secondary
address (O=load; l=save).
Set the write BAM flag, WBAM ($02F9) to
$40 to flag that BAM is dirty.

312

NAME

OP45

OP50

OP60

OF75

OP77

OP80

$D887

$D88C

$D891

$D896

$D89D

$D8A2

$D8A7

$08AE

$D8Bl

$D8B4

$D8BA

$D8BF

$D8C6

$D8CD

$D8D3

$08D6

$08D9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the file type, TYPE ($024A)
If it is not $00 (deleted file type),
branch to OP50. NOTE: load & save of
files have TYPE set to $00 in $0857.
Set file type, TYPE ($024A) to $02
(program file type).
Load .A with the file type, TYPE ($024A)
If it is not $00 (scratched file type),
branch to OP50.
Load the file type as given in the
directory from PATTYP ($E7), AND it with
$07 (file type ~ask), and store the
result as the file type in TYFE ($024A)
Test the file's first track link in
FILTRK ($0280). If it is not $00, the
file exists so branch to OP50.
The file doesn't exist, set TYPE ($024A)
to $01 (the default value; a SEQ file).
Check MODE ($0297). If it is $01, it is
write mode so branch to OP75 to write.
JMP to OP90 ($D940) to open to read or
load.

Handle relative file:
Load .Y with the pointer from FILTBL,X.
Load .A with the file's record size as
given in the directory from CMDBUF,Y and
store it in REC ($0258).
Test if the file's track link in FILTRK
($0280) is $00. If it is NOT $00, the
file is present so branch to OP40 to
read it.
Set the MODE ($0297) to $01 (write mode)
and branch to OP40 (always).

Load .A with the file's type as given in
the directory from PATTYP ($E7), AND it
with $80 to determine if it is a deleted
file, and transfer the result to .X. If
it is not a deleted file, branch to OP81
Open to write. Load .A with $20 and test
if any bits in .A and the file type in
PATTYP ($E7) match. If not, branch to
OP80.
JSR to DELDIR ($C8B6) to delete the
directory entry and write out the
revised sector.
JMP to OPWRIT ($D9E3) to open the
channel to write.

Load .A with the entry's track link from
FILTRK ($0280). If it is not $00, there
is an existing file so branch to OP81.

313

NAME

OP81

OP815

OP82

$D8DE

$D8E1

$D8E8

$D8EB

$D8FO

$D8F5

$D8FE

$0902

$0905

$D90A

$D90E

$0911

$0917

$D91F

$0925

$D92A

$0920

DESCRIPTION OF WHAT ROM ROUTINE DOES

File not found but that's OK. JMP to
OPWRIT ($D9E3) to open a write channel.

Load .A with CMDBUF ($0200), the first
byte of the command string. If it equals
$40 ("@"), branch to OP82. NCTE: THIS IS
WHERE REPLACE FILE COMMAND IS DETECTED!
Transfer .X value into .A. If it is not
$00, branch to OP815.
Load .A with $63 to indicate a FILE
EXISTS ERROR and JMP to CMDERR ($C1C8).
Load .A with $33 to indicate a bad
filename and JMP to CMDERR ($C1C8).

REPLACE FILE ROUTINE * MAY HAVE BUGl
Load the file type of the directory
entry from PATTYP ($E7), AND it with
the file type mask $07, and compare the
result with the command string file type
in TYPE ($024A). If the file types do
not match, branch to OPl15 to abort.
Compare the file type (in .A) with $04.
If it is $04, this is a relative file
so branch to OPl15 to abort.

JSR to OPNWCH ($DCDA) to open the write
channel.
Move the active buffer number from
LINDX ($82) to WLINDX ($0270).
Set the secondary address, SA ($83) to
$11 (#17) the internal read channel.
JSR to FNDRCH ($DOEB) to find an unused
read channel.
Load .A with the current value of the
pointer into the directory buffer, INDEX
($0294) and JSR to SETPNT ($D4C8) to set
the buffer pointers to point to the
INDEXth byte. NOTE: at this point INDEX
points to the first byte in the entry,
the file type.
Zero .Y. Then load .A with the file type
from (DIRBUF) .s , ($94) ,Y, OR the file
type with $20 (set the replace bit), and
store the result back in (DIRBUF) ,Y.
Load .Y with $lA (#26) and move the new
track link from TRACK($80) to (DIRBUF) ,Y
Increment .Y and move the new sector
link from SECTOR ($81) to (DIRBUF) ,Y.
Load .X with the active buffer number
from WLINDX ($0270).
Load .A with the sector of the directory
entry ENTSEC ($08) and copy it into
DSEC , X ($ 0 260 , X) .

314

DESCRIPTION OF WHAT ROM ROUTINE DOES

Test the directory entry's track link
in FILTRK ($0280). If it is NOT $00,
the file exists so branch to OPlOO.
Load .A with $62 to indicate a FILE NOT
FOUND error and JMP to CMDERR ($C1C8).

Compare the value in MODE ($0297) to
$03 (open to modify). If MODE=$03 branch
to OP110.
Check bit 5 of the directory entry's
file type. If this bit is set, it flags
a file that is already opened (or not
closed properly). If the bit is NOT SET,
branch to OP110 and carryon.
Load .A with $60 to indicate a FILE OPEN
error and JMP to CMOERR ($CIC8).
Load .A with the directory entry's file
type from PATTYP ($E7), AND it with $07
to mask off higher order bits, and
compare it with the file type specified
in the command string from TYPE ($024A).
If the file types match, branch to OP120
Load .A with $64 to indicate a FILE TYPE
MISMATCH error and JMP to CMOERR ($C1C8)

Load .A with the pointer to the start of
the directory entry ENTINO ($00) and
copy it into OINO,X ($0266,X).
JSR to CURBLK ($DE3B) to set TRACK ($80)
and SECTOR ($81) from header of most
recently read header.
JSR to ORTWRT ($0464) to do direct block
write of directory block to disk.
JMP to OPFIN ($09EF) to finish opening
the file.

$0965

$0957

$095C

NAME

$0932

$0937

$093A

$0930

OP90 $0940 I

OP95 $0945

OP100 $094A

$0951

OP110

OPl15

OP120 $096A

$096F

$0976

$097A

$0980

$0987

Load .Y with $00 and use it to zero
F2PTR ($0279).
Load .X with the mode from MODE ($0297)
If MODE is not $02 (open to append),
branch to OP125.
Compare the file type (in .A) with $04.
If it is $04, this is a relative file
so branch to OPl15.
This applies only to opening to append.
Load .A with the file type from
(OIRBUF) ,Y ; ($94) ,Y, AND it with $4F,
and store it back in (DIRBUF) ,Y.
Save the secondary address from SA ($83)
onto the stack and set SA ($83) to $11
(#17, the internal read channel).
JSR to CURBLK ($OE3B) to set TRACK ($80)
and SECTOR ($81) from header of most
recently read header.

315

NAME

$098A

$0980

OP125 $0990

$0993

$099A

$0990

OPREAO $09AO

$09AE

$09B3
$09B6

$09B9

$09BE

OP130 $09C3
$09C6

$09CB

$0900

$0903

$0905
$0908

$090F

$09E2

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to ORTWRT ($0464) to do direct block
write of directory block to disk.
Pull original secondary address off the
stack and restore it in SA ($83).
JSR to OPREAO ($09AO) to open the file
for a read.
Check if MODE ($0297) is $02 (append).
If it isn't $02, branch to OPFIN ($09EF)
JSR to APPEND ($OA2A) to read to the end
of the file.
JMP to ENOCMO ($C194) to terminate.

Open a file to read:
Copy the relative file values from the
directory entry (OIRBUF) ,Yi ($94) ,Y into
their RAM variable locations:
Track for side sector to TRKSS ($0259)
Sector for side sector to SECSS ($025A)

Load .A with the record size from the
directory entry. Load .X with the size
from the command string, REC ($0258).
Store the value in .A into REC ($0258).
Transfer the value from .X into .A. If
the command string size is $00, branch
to OP130 (defaults to entry size).
Compare the two record lengths. If they
are equal, branch to OP130.
Record lengths do not match, load .A
with $50 to indicate a READ PAST END OF
FILE error and JSR to CMOERR ($C1C8).

Load .X with the pointer F2PTR ($0279).
Copy the track link from FILTRK,X
($0280,X) to TRACK ($80).
Copy the sector link from FILSEC,X
($0285,X) to SECTOR ($81).
JSR to OPNRCH ($OC46) to open a read
channel.
Load .Y with the active buffer number
from LINOX ($82).
Load .X with the pointer F2PTR ($0279).
Copy the directory sector containing the
entry from ENTSEC,X ($08,X) to OSEC,Y
($0260, Y) .
Copy the pointer to the entry in the
directory sector from ENTINO,X ($OO,X)
to 0 I NO ,Y ($0 266 , Y) .
Terminate the routine with an RTS.

316

NAME

OPWRIT

OPFIN

OPF1

CKTM

CKM1

CKM2

CKT2

$D9E3

$D9E9

$D9EC

$D9EF

$D9F5

$D9F8

$D9FC

$DA01

$DA06

$DA09

$DA11

$DA19
$DA1C

$DA26
$DA29

DESCRIPTION OF WHAT ROM ROUTINE DOES

Open a file to write:
Load .A with the drive number for the
file from FILDRV ($E2), AND it with $01
to mask off non-drive bits, and store
the result as the current drive in
DRVNUM ($7F).
JSR to OPNWCH ($DCDA) to open a write
channel.
JSR to ADDFIL ($D6E4) to add the entry
to the directory.
If the secondary address is greater than
$01, it is a not a program file so
branch to OPF1.
JSR to GETHDR ($DE3E) to set up TRACK
and SECTOR values from the last header
read.
Ccpy the track link from TRACK ($80) to
PRGTRK ($7E).
Copy the file drive from DRVNUM ($7F) to
PRGDRV ($026E).
Copy the sector link from SECTOR ($81)
to PRGSEC ($026F).
Terminate routine with a JMP to ENDSAV
($C199).

Check mode or file type:
Load .Y with the pointer from FILTBL,X.
Load .A with the mode or file type from
the command string, CMDBUF,Y.
Load .Y with $04, the number of modes.
Loop to compare mode requested with the
table of modes, MODLST,Y ($FEB2,Y). If
no match is found, branch to CKM2. If a
match is found, fall through.
VALID MODES: 0 R (READ)

1 W (WRITE)
2 A (APPEND)
3 M (MODIFY)

Store .Y counter (0-3) in MODE ($0297)
Loop to compare type requested with the
table of types, TPLST,Y ($FEB6,Y). If
no match is found, branch to CKT2. If a
match is found, fall through.
VALlO TYPES: 0 0 (DELETED)

1 S (SEQUENTIAL)
2 P (PROGRAM)
3 U (USER)
4 R (RELATIVE)

Store .Y counter (0-3) in TYPE ($024A)
Terminate the routine with an RTS.

317

NAME

APPEND

AP30

LOADIR

LDOl

LD02

$DA2A

$DA2D

$DA34

$DA37

$DA3D

$DA45

$DA4B

$DA54

$DA55

$DA5A
$DA5C

$DA62

$DA65

$DA6D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Append information to the end of a file
Reads through old file to end.
JSR to GCBYTE ($CA39) tc get a byte from
the data channel.
Test if we are at the end of file. If
not, loop back to APPEND.
JSR to RDLNK ($DE95) to set TRACK ($80)
and SECTOR (~81) from the track and
sector links in the last block. NOTE:
TRACK will be $00 and SECTOR will be a
pointer to the end of the file.
Load .X with the end of file pointer
from SECTOR ($81), increment it by 1,
and transfer the result to .A. If the
new value of the pointer is not $00,
there is space left at the e~d of this
sector so branch to AP30.
No space left in this sector so JSR to
WRTO ($D1A3) to get the nex t sector.
Load .A with $02 so it points to the
start of the data area for this new
sector.
JSR to SETPNT ($D4C8) to set the active
buffer pointers.
Load .X with the active buffer number
from LINDX ($82) and store $01 (channel
ready at the end of file) in the channel
status flag CHNRDY,X ($F2,X).
Load .X with the sec. address SA ($83).
Load .A with $60, OR it with the active
buffer number in LINDX ($82), and store
the result in LINTAB,X ($022B,X) to
indicate that this is now a write file.
Terminate the routine with an RTS.

Load the directory ($):
Store SOC (load) as the command code in
CMDNUM ($022A).
Load .A with $00 (load only drive #0)
Load .X with the command length from
CMDSIZ ($0274) and decrement the length
in .X by 1. If the result is $00, branch
to LD02 to load complete directory for
drive O.
Decrement the length in .X by 1. If the
result is still not $00, this must be a
selective load by name so branch to LD03
Load .A with the second character in the
command string from CMDBUF+1 ($0201) and
JSR to TSTOVl ($C3BD) to test if the
cbaracter is an ASCII "0" or "1". If
not, branch to LD03 to load by name.
Store the drive number desired (in .A)
into FILDRV ($E2).

318

NAME

LD03

LD05

L010

LD20

CLOSE

$DA6F

$DA78

$DA7C

$DA84

$DA86

$DA8B

$DA8E
$DA90

$DA95

$DA98

$DA9B

$DA9E

$DAA4

$DAA7

$DAAA

$DAAD

$DAAF

$DAB2

$DAB7

$DABB

$DABF

$DACO
$DAC5

DESCRIPTION OF WHAT ROM ROUTINE DOES

Increment F1CNT ($0277), F2CKT ($0278),
and FILTBL ($027A).
Store $80 in PATTYP ($E7) to represent
the file type.
Store $2A ("*") as the first two bj;tes
in the command string CMDBUF ($0200) and
CMDBUF+l ($0201)
Branch always to LD10.

JSR to PRSCLN ($C2DC) to find the colon
in the command string. If no colon is
found, branch to LD05.
Colo~ found so JSR to CMDRST ($C2DC) to
zero all command string variables.
Lead .Y with $03.
Decrement .Y twice and store the result
in FILTBL ($027A).
JSR to TC35 ($C200) to parse and set
up tte tables.
JSF to FS1SET ($C398) to set pointers tol
file name and check type.
JSR to ALLDRS ($C320) to set up all
drives required.
JSR to OPTSCH ($C3CA) to determine the
best drive se~rch pattern.
JSR to NEWDIR ($C7B7) to read in BAM and
set up disk name, ID, etc as first line
in directory.
JSR to FFST ($C49D) to find file start I
entry. I
JSR to STDIR ($EC9E) to start the I
directory loading function. I

JSR to GETBYT ($D137) to read first byte
from the buffer.
Load .X with the active buffer number
from LINDX ($82).
Store the first byte (in .A) into
CHNDAT,X ($023E,X).
Load .A with the current drive number
from DRVNUM ($7F) and use this value to
set the last job drive LSTDRV ($028E).
OR the drive number in .A with $04 and
store the result as the file type in
FILTYP,X ($EC,X).
Zero BUFTAB+CBPTR ($A3). Note: CBPTR is
the command buffer pointer (SOA).
Terminate the routine with an RTS.

Close the file related to the specified
secondary address:
Zero the write BAM flag, WBAM ($02F9).
If secondary address, SA ($83) is not
zero (directory load), branch to CLSIO

319

NAME

CLS05

CLS10

CLS15

$DAC9

$DADl

$DAD4

$DAD8
$DAOB

$DAE1

$OAE6

$OAE9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Close directory: Zero the directory
listing flag OIRLST ($0254) and JSR to
FRECHN ($D227) to free the channel.
JMP to FREICH ($04DA) to free the
internal channel and terminate routine.
If secondary address (in .A) is $OF(#15)
branch to CLSALL to close all files.
JSR to CLSCHN ($OB02) to close channel.
If secondary address in SA ($83) is $01
(save), branch to CLS05 to close the
internal channel and exit.
Check the error status in ERWORO ($026C)
If status is not $00, the last command
produced an error so branch to CLS15.
JMP to ENOCMO ($C194) to end command.

Error so JMP to SCREN1 ($C1AO)

CLSALL $OAEC
CLS20 $OAFO

$OAF3

$OAF7

$OAFC

CLS25 $DAFF

CLSCHN $OB02

$OB04

$OB09

CLSC28 $DBOC

$OB10

$OB13

$OB17

$OB1B

$OB20

$OB23

Close all files: (when CMD closed)
Set secondary address, SA ($83) to $OE.
JSR to CLSCHN ($OB02) to close channel.
Decrement SA ($83). If more secondary
addresses to do (SA)=O) loop to CLS20.
Check the error status in ERWORO ($026C)
If status is net $00, the last command
produced an error so branch to CLS25.
JMP to ENDCMD ($C194) to end command.

Error so JMP to SCREN1 ($C1AD)

Close file with specified sec. address
Load .X with the secondary address from
SA ($83).
Load .A with the channel status from
LINTAB,X ($022B,X). If the status is
not $FF (closed), branch to CLSC28.
Channel already closed so terminate
routine with an RTS.

AND t-he ·channel status (in .A) with $OF
to leave only the cuffer number and
store the result in LINDX ($82).
JSR to TYPFIL ($0125) to determine the
file type (returned in .A).
If file type is $07 (direct channel)
branch to CLSC30.
If file type is $04 (relative file)
branch to CLSREL.
JSR to FNDWCH ($0107) to find an unused
write channel. If none found, branch to
CLSC31
JSR to CLSWRT ($DB62) to close off
sequential write.
JSR to CLSDIR ($DBA5) to close directory

320

NAME

CLSC30
CLSC31

CLSREL

CLSRI

CLSWRT

$DB26
$DB29

$DB2C

$DB2F

$DB32

$DB35

$DB3B
$OB41

$DB48

$DB4B

$DB4D

$OB55

$DB5C

$DB5F

$OB62

$OB64

$DB6A

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to MAPOUT ($EEF4) to write out BAM.
JMP to FRECHN ($0227) to free channel
and terminate the command.

Sub to close relative file~

JSR to SCRUB ($DDF1) to write out BAM
if it is dirty (RAM version modified) .
JSR to DBLBUF ($CF1E) to set up double
buffering and read ahead.
JSR to SSENO ($EICB) to position side
sector & buffer table pointer to the end
of the last record.
Load .X with the side sector number from
SSNUM ($05), store this byte in T4($73),
and increment T4 by 1.
Zero Tl ($70) and T2 ($71).
Load .A with the pointer to the side
sector value in the directory buffer
from SSIND ($06), set the carry flag,
subtract $OE (the side sector offset-2) ,
and store the result in T3 ($72).
JSR to SSCALC ($DF51) to calculate the
number of side sector blocks needed.
Load .X with the active buffer number
from LINOX ($82).
Move the 10 byte of the number of side
sector blocks from Tl ($70) to NBKL,X
($B5,X) and the hi byte from T2 ($71) to
NBKH,X ($BB,X).
Load .A with $40 (the dirty flag for a
relative record flag) and JSR to TSTFLG
($ODA6) to test if relative record must
be written out. If not, branch to CLSR1.
JSR to CLSDIR ($DBA5) to close the
directory file.
JMP to FRECHN ($0227) to clear the
channel and terminate routine.

Close a sequential file write channel:
Lead .X with the active buffer numbEr
from LINDX ($82).
Load .A with the number of bytes written
in this sector from NBKL,X ($B5,X) and
OR .A with the number of data blocks
written from NBKL,X ($B5,X).
If the result is not $00, at least one
block of the file has been written so
branch to CLSWIO.
No blocks have been written so JSF to
GETPNT ($D4E8) to get the pointer into
the data buffer (returned in .A). If
this value is greater than two, at least
one byte has been written so branch to
CLSWIO.

321

NAME

CLSW10

CLSW15

CLSW20

CLSOIR

$OB71

$OB76

$OB7D

$OB80

$DB82

$DB86

$DB88

$DB8A
$DB8C

$DB90

$OB95

$DB98
$DB99

$OB9C

$DB9F

$OBA2

$DBA5

$DBAA

$OBAD

$DBB2

DESCRIPTION OF WHAT ROM ROUTINE DOES

No bytes have been written so load .A
with SOD (carriage return) and JSR to
PUTBYT ($CFF1) to write it out to the
data buffer.
JSR to GETPNT ($D4E8) to get the pointer
into the data buffer (returned in .A).
If the pointer value is not $02, the
buffer is not errpty so branch to CLSW20.
Since we have an empty buffer, JSR to
DBLBUF ($CF1E) to switch buffers.
Load .X with the active buffer number
from LINDX ($82).
Load .A with the number of bytes written
in this sector from NBKL,X ($B5,X). If
this value is not equal to $00, branch
to CLSW15.
Decrement the number of data blocks
written in NBKH,X ($BB,X) by 1.
Decrement the number of bytes written
in this sector, NBKL,X ($B5,X) by 1.
Load .A with $00.
Set the carry flag, subtract $01 from
the number of bytes written in this
sector (.A), and save the result on the
stack.
Load .A with $00 and JSR to SETPNT
($D4C8) to set the buffer pointers to
the first byte in the data buffer (the
track link).
JSR to PUTBYT ($CFF1) to ~rite $00 out
as the track link.
Pull the bytes written from the stack.
JSR to PUTBYT ($CFF1) to write out the
bytes in this sector as the sector link.
JSR to WRTBUF ($DOC7) to write the data
buffer out to disk.
JSR to WATJOB ($0599) to wait for the
write job to be completed.
JMP to DBLBUF ($CF1E) to make sure that
both buffers are OK.

Close directory after writing file:
Load .X with the active buffer number
from LINDX ($82). Save this value into
WLINDX ($0270).
Save the current secondary address from
SA ($83) onto the stack.
Copy the sector of the directory entry
for the file from DSEC,X ($0260,X) into
SECTOR ($81).
Copy the pointer to the directory entry
for the file from OIND,X ($0266,X) into
INDEX ($0294).

322

NAME

$DBB8

$DBBE

$DBC3

$DBC6

$DBC9

$DBCC
$DBCE

$DBD3

$DBD8

$DBDE

$DBE1

$DBES

$DBEB

$DBEC

$DBFO
$DBF2

$DBF4

$DBF7

$DBF8

$DBFC

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the file type from FILTYP,X
($EC,X), AND it with $01 to mask off the
non-drive bits, and store the result as
the current drive ~umber in DRVNUM ($7F)
Ccpy the directory track number (#18)
from DIRTRK ($FE8S) into TRACK ($80).
JSR to GETACT ($OF93) to get the active
buffer number (returned in .A).
Save the active buffer number onto the
stack and into JOBNUM ($F9).
JSR to DIRTRO ($0460) to read in the
directory sector containing the entry.
Load .Y with $00.
Load .A with the hi byte of the pointer
to the active buffer from BUFIND,X
($FEE:O,X) and store it in RO+1 ($87).
Complete the pointer into the directory
buffer by copying the 10 byte of the
pointer from INDEX ($0294) to RO ($86).
Load .A with the file type from the
directory entry (RO) ,Y, AND it with $20,
and checking if the result is $00. If
it is $00, this is NC'T a replace so
branch t-o CLSDS.

NOTE: Here is where We do the directory
entry when a file is replaced.

- * - * - Possible bugs! - * - * -

JSR to TYPFJL ($D12S) to determine the
file type (returned in .A).
If file type is $04 (a relative file)
branch to CLSD6.
Load .A with the file type from RO,Y,
AND it with $8F to mask off the replace
bit, and store the result back in RO,Y.
Increment .Y. The pointer at (RO) ,Y now
points to the old track link.
Copy the old track link from (RO) ,Y to
into TRACK ($80).
Store the .Y value into TEMP+2 ($71).
Load .Y with $lB (#27). The pointer at
(RO) ,Y now points to the replacement
sector link.
Load .A with the replacement sector link
from (RO) ,Y and save it on the stack.
Decreme~t .Y. The pointer at (RO) ,Y now
points to the replacement track link.
Load .A with the replacement track link.
If this link is NOT $00, branch to CLSD4
Trouble! Replacement track link should
never be $00. So put replacement track
link in TRACK ($80).

323

CLSD6 $DC29

$DC2C

$DC2E

$DC32
$DC33

$DC37

$D(39

$DC3D

$DC11

$DC13

$DC14

$DC18

$DC1B

$DC1E
CLSD5 $DC21

NAME

CLSD4

$DBFE

$DC01

$DC06

$DC07

$DCOB
$DCOC
$DCOE

$DCOF

DESCRIPTION OF WHAT ROM ROUTINE DOES

Pull replacement sector link off the
stack and put it in SECTOR ($81).
Load .A with $67 to indicate a SYSTEM
TRACK OR SECTOR error and JMP to CMDER2
($E645) .

Push the replacement track link onto
the stack.
Load .A with $00. Zero the replacement
track link in the entry (RO) ,Y.
Increment .Y.
Zero replacement sector link in (RO) ,Y.
Pull the replacement track link off
the stack.
Load .Y with the original pointer value
from TEMP+2 ($71). Note: pointer at
(RO) ,Y now points to the second byte of
the entry, the track link.
Store the replacement track link as the
final track link in (RO) ,Y.
Increment .Y. Note: the pointer at
(RO) ,Y now points to the third byte of
the entry, the sector link.
Move the old sector link from (RO) ,Y to
SECTOR ($81).
Pull the replacement sector link off the
stack and store it as the final sector
link in (RO) ,Y.
JSR to DEIFIL ($C87D) to delete the old
file from the BAM by following the track
and sector links.
JSR to CLSD6 ($DC29) to finish closing.
Load .A with the file type from (RO) ,Y,
AND it with $OF to mask off any high
order bits, OR it with $80 to set the
closed bit, and store the result back
in (RO), Y.
Load .X with the active buffer number
that was saved into WLINDX ($0270).
Load .Y with $lB (#27). The pointer at
(RO) ,Y now points to the low byte of the
number of blocks in the file.
Copy the 10 byte of the number of blocks
from NBKL,X ($B5,X) to (RO) ,Y.
Increment .Y.
Copy the hi byte of the number of blocks
from NBKH,X ($BH,X) to (RO) ,Y.
Pull the original buffer number off the
stack and transfer it into .x.
Load .A with $90 (write job code) and OR
it with the drive number in DRVNUM($7F).
JSR to COlT ($D590) to write out the
revised directory sector.

324

NAME

OPNRCH

OR10

OR20

$DC40

$DC43

$DC46

$DC4B
$DC4E

$DC52

$DC57

$DC5A

$DC5C

$DC60

$DC65

$DC6A

$DC74

$DC79

$DC7E

$DC81

$DC83

$DC85

DESCRIPTION OF WHAT ROM ROUTINE DOES

Pull the original secondary address off
the stack and transfer it into SA ($83).
JMP to FNDWCH ($D107) to exit.

Open read channel with two buffers:
Sets secondary address in LINTAB and
initializes all pointers, including the
ones for a relative file.
Load .A with $01 and JSR to GETRCH
($D1E2) to set up one read channel
JSF to INITP ($DCB6) to clear pointers.
Load .A with the file type and save this
value on the stack.
Multiply the file type in .A by 2 (ASL),
OR it with the current drive in DRVNUM
($7F) and store it in FILTYP,X to set
the file type.
JSR to STRRD ($D09B) to read the first
one or two blocks in the file.
Load .X with the active buffer number
from LINDX ($82).
Load .A with the c~rrent track number
from TRACK ($80). If the track number
is not $00 (not the last block in the
file), branch to eR10.
Load .A with the current sector number
from SECTOR ($81). Since TRACK=$OO, this
is the pointer to the last character in
the file. Store this value in LSTCHR,X
($0244,X) .
Pull the original file type eff the
stack. If this is not a relative file,
branch to OR30.
Load .Y with the secondary address from
SA ($83). Load the channel type from
LINTAB,Y ($022B,Y), OR it with $40 to
mark it as a READ/WRITE file, and store
the channel type back in LINTAB,Y.
Copy the record size from REC ($0258)
into RS,X ($C7,X).
JSR to GETBUF ($D28E) to set up a buffer
for the side sectors. If a buffer is
available, branch to OR20.
Since no buffer is available for the
side sectors, abort with a JMP to GBERR
($D20F) .

Load .X with the active buffer number
(side sector buffer) from LINDX ($82).
Store the side sector buffer number in
SS,X ($CD,X).
Copy the side sector track link from
TRKSS ($0259) into TRACK ($80).

825

NAME

OROW

OR30

INITP

$DC8A

$DC8F

$DC92

$DC95

$DC98

$DC9A

$DCAO

$DCA3

$DCP.6

$DCA9
$DCAC

$DCAE

$DCB1

$DCB5

$DCB6

$DCB8

$DCBC

$DCC1

$DCC7

$DCC9

$DCCE

$DCD4

$DCD9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Copy the side sector sector link from
SECSS ($025A) into SECTOR ($81).
JSR to SETH ($0603) to set up the side
sector header image.
JSR to ROSS ($DE73) to read in the side
sector block.
JSR to WATJOB ($0599) to wait for the
job to be completed.
Load .X with the active buffer number
(side sector buffer) from LINDX ($82).
Set the next record pointer in the side
sector buffer NR,X ($C1,X) to $02.
Load .A with $00 and JSR to SETPNT
($D4C8) to set the buffer pointers to
the start of the side sector buffer.
JSR to RD4C ($E153) to set up the first
record.
JMP to GETHDR ($DE3E) to restore the
track and sector pointers and exit.

JSR to RDBYT ($0156) to read a byte.
Lo~d .X with the active buffer number
(side sector buffer) from LINDX ($82).
Store the data byte (in .A) into
CHNDAT,X ($023E,X).
Store $88 (ready to talk) as the channel
status in CHNRDY,X ($F2,X).
Terminate routine with an RTS.

Initialize variables for open channel:
Load .X with the active tuffer number
from LINDX ($82).
Load tuffer number from BUFO,X ($A7,X),
multiply it by two (ASL), and transfer
the result into .Y.
Store $02 into the buffer pointer
BUFTAB,Y ($0099,Y) so it points to the
first d~ta byte in the buffer.
Load .A with the alternative-buffer
number from BUF1,X ($AE,X), OR it with
$80 to set the buffer-inactive bit, and
store the result back in BUF1,X.
Multiply the buffer number (in .A) by
two (ASL) and transfer the result to .Y.
Store $02 into the buffer pointer
BUFTAB,Y ($0099,Y) so it points to the
first data byte in the buffer.
Zero the 10 and hi bytes of the number
of blocks written, NBKL,X ($B5,X) and
NBKH,X ($BB,X).
Zero the last data byte LSTCHR,X
($0244) ,X.
Terminate routine ~ith an RTS.

326

$0009

$DDOE

$0013

OW20 $0016

$0018

$DD1A

$0010

$0020

$0025

$D02A

NAME

OPNWCH

OW10

$DCDA

$DCDD

$DCE2

$DCE5
$DCE8

$DCEA

$DCEE

$DCF3

$DCF8

$DCFC

$DCFD

$DCFF

DESCRIPTION OF WHAT ROM ROUTINE DOES

Open write channel with two buffers:
JSR to INTTS ($F1A9) to get the first
track and sector.
Load .A with $01 and JSR to GETWCH
($DIDF) to get one buffer for writing.
JSR to SETHDR ($0600) to set up header
image.
JSR to INITP ($DCB6) to set up pointers.
Load .X with the active buffer number
from LINDX ($82).
Load .A with the file type from TYPE
($024A) and save it onto the stack.
Multiply the file type in .A by two
(ASL), OR it with the drive number from

DRVNUM ($7F), and store the result as
the file type in FILTYP,X ($EC,X).
Pull the original file type off the
stack and if this is a relative file
(type = $04), branch to OW10.
Since this is not a relative file, set
channel status, CHNRDY,X ($F2,X) to $01
(active listener).
Terminate routine with an RTS.

Load .Y with the secondary address from
SA ($ 8 3) .
Load .A with the buffer type from
LINTAB,Y ($022B,Y), AND it with $3F to
mask off higher order bits, OR it with
$40 to flag this as a READ/WRITE file,
and store the result back in LINTAB,Y.
Copy record size from REC ($0258) into
RS,X ($C7,X).
JSR to GETBUF ($D28E) to get a new
buffer for storing the side sectors.
If a buffer is available, branch to OW20
No buffer available so abort with a
JMP to GBERR ($D20F).

Load .X with the active buffer number
from LINOX ($82).
Store the new side sector buffer number
into SS,X ($CD,X).
JSR to CLRBUF ($DEC1) to clear the
side sector buffer.
JSR to NXTTS ($F11E) to find the next
available track and sector.
Copy the new track link from TRACK ($80)
to TRKSS ($0259).
Copy the new sector link from SECTOR
($81) to SECSS ($025A).
Load .X with the active buffer number
from LINDX ($82).

327

NAME

$002C

$002E
$0031

$0036

$003B

$0040

$0045

$004B

$0050

$0055

$005A

$0050

$0062

$0067

$006A

$0060

$0072

$0074

$007B

$OD7E

$DD81

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the side sector buffer
number from SS,X ($CO,X).
JSR to SETH ($D6D3) to set up the header
Load .A with $00 and JSR to SETSSP
($DEE9) to set the buffer pointers
using the current SS pointer (in .A)
Load .A with $00 and JSR to PUTSS
($D08D) to set a null side sector link.
Load .A with $11 (the side sector offset
plus 1) and JSR to PUTSS ($OD8D) to set
the last character.
Load .A with $00 and JSR to PUTSS
($DD80) to set this side sector number.
Load .A with the record size from REC
($0258) and JSR to PUTSS ($008D) to set
the record size.
Load .A with t-he file track link f r cm
TRACK ($80) and JSR to PUTSS ($0080) to
set the track link.
Load .A with the file sector link from
SECTOR ($81) and JSR to PUTSS ($0080) to
set the sector link.
Load .A with the side sector offset
($10) and JSR to PUTSS ($0080) to set
the side sector offset.
JSR to GETHOR ($OE3E) to get the track
and sector of the first side sector.
Load .A with the SS track link from
TRACK ($80) and JSR to PUTSS ($0080) to
set the SS track link.
Load .A with the SS sector link from
SECTOR ($81) and JSR to PUTSS ($0080) to
set the S8 sector link.
JSB to WRTSS ($OE6C) to write out the
side sector block.
JSR to WATJOB ($0599) to wait for the
write job to be completed.
Load .A with $02 and JSR to SETPNT
($04C8) to set the pointer into the
data buffer to the start of the data.
Load .X with the active buffer number
from LINOX ($82).
Set the carry flag, load .A with $00,
subtract the record size from RS,X
($C7,X), and store the result in NR,X
($C1,X) to set NR for a null buffer.
JSR to NULBUF ($E2E2) to set null
records in the active buffer.
JSR to NULLNK ($OE19) to set track link
to $00 and sector link to last non-zero
character.
JSR to WRTOUT ($OE5E) to write out the
null record block.

328

NAME

PUTSS

$DD84

$DD87

$DD8A

$DD8D
$DD8E

$DD90

$DD92

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to WATJOB ($D599) to wait for the
write job to be completed.
JSR to MAPOUT ($EEF4) to write out the
BAM.
JMP to OROW ($DC98) finish opening the
channel.

Put byte into the side sector:
Push byte in .A cnto the stack.
Load .X with the active buffer number
from LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X).
JMP to PUTBl ($CFFD).

Set/Clear flag:
SCFLG $DD95 If carry flag clear, branch to CLRFLG

Set flag:
SETFLG $DD97 Load .X with the active buffer number

from LINDX ($ 82) .
$DD99 OR the byte in .A with the file type in

FILTYP,X ($EC , X) .
$DD9B If result is not $00, branch to CLRFIO.

Clear flag:
CLRFLG $DD9D Load .x with the active buffer number

from LINDX ($82) .
$DD9F EOR the byte in .A with $FF to flip all

the bits.
$DDAl AND the byte in .A with the file type in

FILTYP,X ($EC,X) .

CLRF10 $DDA3 St-ore the result in • A, as the new file
type in FILTYP,X ($EC,X).

$DDA5 Terminate routine with an RTS.

TSTFLG $DDA6

$DDA8

$DDAA

TSTvlRT $DDAB

$DDAE
$DDAF

Test flag:
Load .X with the active buffer number
from LINDX ($82).
AND the byte in .A with the file type
in FILTYP,X ($EC,X).
Terminate routine with an RTS.

Test if this is a write job:
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Transfer the buffer number to .X.
Load .A with the last job code from
LSTJOB,X ($025B), AND the job code with
$FO to mask off the drive bits, and
compare the result with $90 (write job
code). This sets the Z flag if this is
a write job.

329

NAME

TSTCHN
TSTC20

TSTC30

TSTRTS

TSTC40

I SCRUB

$DDB6

$DDB7
$DDB9
$DDBB

$DDC2

$DDC9

$DDCA
$DDCC

$DDCF

$DDD6

$DDD9

$DDE1

$DDE8

$DDEF

$DDFO

I $DDFl I

DESCRIPTION OF WHAT ROM ROUTINE DOES

Terminate routine with an RTS.

Test. for active files in LINC'X tables:
C=O if file active X=ENTFND; Y=LINDX
C=l if file inactive X=18

Load .X with $00 (secondary address)
Save .X value into TEMP+2 ($71).
Load .A with the buffer number for this
secondary address from LINTAB,X (022B,X)
If the buffer number is NOT $FF, branch
to TSTC40 for further testing.
Restore .X value from TEMP+2 ($71) and
increment it by 1. If the resulting .X
value is less than $10 (the maximum
sec. address - 2), loop back to TSTC20.
Terminate routine with an RTS.

Save .X value into TEMP+2 ($71).
AND the buffer number in .A with $3F to
mask off the higher order bits and
transfer the result into .Y.
Load .A with the file type for this
secondary address from FILTYP,Y ($EC,Y),
AND it with $01 to mask off the
non-drive bits, and store the result in
TEMP+1 ($70).
Load .X with the index entry found
from ENTFND ($0253).
Load .A with the drive number for this
secondary address from FILDRV,X ($E2,X),
AND it with $01 to mask off the
non-drive bits, and compare the result
with the drive number in TEMP+1 ($70).
If the drives do not match, branch to
TSTC30.
Drive numbers match, now check if the
directory entries match by comparing
the entry sector in DSEC,Y($026C,Y) with
the one in ENTSEC,X ($D8,X). If they do
not match, bra~ch to TSTC30.
Drive numbers are ~atch, now check if
the directory entries match by comparing
the entry index in DIND,Y ($0266,Y) with
the one in ENTIND,X ($DD,X). If they do
not match, branch to TSTC30.
Clear the carry flag to indicate that
all tests passed and active file found.
Terminate routine with an RTS.

Write out buffer if dirty:
NOTE: a buffer is dirty if the copy in

RAM has been modified so it does
not match the copy on disk.

JSR to GAFLGS ($DF9E) to get active
buffer number and set in LBUSED.

330

NAME

$DOF4

$DDF6

$ODF9

SCR1 $OOFC

SETLNK $OOFD

$OE02

$OE05

$DE 09

DESCRIPTION OF WHAT ROM ROUTINE DOES

If V flag not sEt, buffer is not dirty
so branch to SCRI.
JSR to WRTOUT ($OE5E) to write out the
buffer to disk.
JSR to WATJOB ($0599) to wait for the
job to be completed.
Terminate routine with an RTS.

Put TRACK and SECTOR into header:
JSR to SETOO ($OE2B) to set up pointer
t-o header.
Move desired track from TRACK ($80) to
(DIRBUF) ,Y; ($94) ,Y. Increment- .Y

Move desired sector from SECTOR ($81) to
(0 I RBUF) , Y ; ($ 9 4) , Y •
Terminate routine with a JMP to SDIR1Y
($E105) to flag the buffer as dirty.

GETLNK

NULLNK

SETOO

$DEOC

$OEOF

$DE14

$OE18

$OE19

$DE1C

$DE21

$DE23

$DE2A

$DE2B

$DE2E

$DE30

$DE34

$DE38

Set TRACK & SECTOR from link in buffer:
JSR to SETOO ($DE2B) to set up pointer
to header.
Move track link from (DIREUF) ,Y; ($94) ,Y
to TRACK ($80). Increment .Y.
Move sector link from (D1RBUF),Y
($94),Y to SECTOR ($80).
Terminate routine with an RTS.

Set track link to $00 and sector link to
the last non-zero character in buffer.
JSR to SETOO ($OE2B) to set up pointer
to header.
Store $00 as track lin~ in (OIRBUF),Y
($ 9 4) , Y. Inc r e IT:en t . Y.
Load .X with the active buffer number
fro~ LINDX ($82).
Load .A with the pointer into the data
buffer from NR,X ($Cl,X), decrement it
by 1, and store the result as the sector
link in (DIRBUF) ,Y; ($94) ,Y.
Terminate routine with an RTS.

Set up pointer to active buffer:
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Multiply the buffer number (in .A) by
two (ASL) and transfer the result to .X.
Move the hi byte of the buffer pointer
from BUFTAB+1,X ($9A,X) to DIRBUF+1($95)
Store $00 as the 10 byte of the buffer
pointer in OIRBUF ($94).
Zero .Y and exit routine with an RTS.

331

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set TRACK & SECTOR from header:
JSR to FNDRCH ($DOEB) to find an unused
read channel.
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Store the buffer number in JOBNUM ($F9)
Multiply the buffer number (in .A) by
two (ASL) and transfer the result to .Y.
Move the track number from the header
table, HDRS,X ($0006,Y) to TRACK ($80).
Move the sector number from the header
table, HDRS+l,X($0007,Y) to SECTOR($81).
Terminate routine with an RTS.

Do read and write jobs:
Store $90(write job code) in CMD($024D)
and branch to SJI0 (always).
Store $80(read job code) in CMD($024D)
and branch to SJI0 (always).
Store $90(write job code) in CMD($024D)
and branch to SJ20 (always).
Store $80(read job code) in CMD($024D)
and branch to SJ20 (always).
Store $90(write job code) in CMD($024D)
and branch to RDS5 (always).
Load .A with $80(read job code)
Store job code (in .A) into CMD($024D).
Load .X with the active buffer number
from LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X) and tranfer it
to .X. If the SS buffer number < 127,
branch to SJ30.
JSR to SETHDR ($0600) to set header from
TRACK and SECTOR.
JSR to GETACT to get the active buffer
number (returned in .A).
Transfer the buffer number to .X.
Copy the drive number from DRVNUM ($7F)
to LSTJOB,X ($025B,X).
JSR to CDIRTY ($El15) to clear the
dirty buffer flag.
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Transfer the buffer number to .X.
Continue routine with JMP to SETLJB
($0506) to set last used buffer.

$DE8E

$DE8B

$DE91
$DE92

$DE85
$DE86

$DE7F

$DE82

SJ20

SJI0

NAME

CURBLK $DE3B

GETHDR $DE3E

$DE41
$DE43

$DE45

$DE4A

$DE4F

WRTAB $DE50

RDAB $DE57

WRTOUT $DE5E

RDIN $DE65

WRTSS $DE6C

ROSS $DE73
RDS5 $DE75

$DE78

$DE7A

RDLNK $DE95
Set TRACK & SECTOR from link in buffer:
Load .A with $00 and JSR to SETPNT
($D4C8) to set the buffer pointer to the
first byte in the buffer (track link).

332

BOTOBO $DEA5

$DEA6
$DEAC

$DEB1

$DEB6

B02 $DEB9

$DECO

CLRBUF $DEC1
$DEC2

NAME

CB10

SSSET

SSOIR

$DE9A

$DE9F

$DEA4

$DEC7
$DECC
$DE01

$DED2

$DED7

$OEDB

$DEDC
$OEDE

$DEEO

$DEE2
$OEE3

$DEE8

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to GETBYT ($0137) to read the track
link. Store the link in TRACK ($80).
JSR to GETBYT ($0137) to read the sector
link. Store the link in SECTOR ($81).
Terminate routine with an RTS.

Move bytes from one buffer to another:
On entry: .A = number of bytes to move

.Y = from buffer #

.X = to buffer #
Save number of bytes to move (in .A)
onto the st-ack.
Zero TEMP ($6F) and TEMP+2 ($71).
Move the hi byte of the from buffer
pci.n t.e r from BUFINO,Y ($FEEO,Y) to
TEMP+1 ($70).
Move the hi byte of the to buffer
pointer from BUFIND,X ($FEEO,X) to
TEMP+3 ($72).
Pull the number-of-bytes-to-move from
the stack, transfer it into .Y, and
decrement .Y by 1 (Oth byte is #1).
Loop using .Y as a count-down index to
transfer bytes from (TEMP)Y to (TEMP+2)Y
Terminate routine with an RTS.

Clear buffer: (buffer # in .A)
Transfer buffer number from .A to .Y.
Move the hi byte of the from buffer
pointer from BUFIND,Y ($FEEO,Y) to
TEMP+1 ($70).
Zero TEMP ($6F) and .Y
Loop to fill buffer with soots.
Terminate routine with an RTS.

Set side sector pointer to $00:
Zero .A and JSR to SSDIR ($DEDC) to set
DIRBUF with current SS pointer.
Load .Y with $02. Load .A with the side
sector pointer from (OIRBUF) ,Yi ($94) ,Y.
Terminate routine with an RTS.

Use SS pointer to set DIRBUF:
On entry: .A = 10 byte

Store 10 byte (in .A) into DIRBUF ($94).
Load .X with the active buffer number
from LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X).
Transfer SS buffer number to .X.
Copy hi byte of buffer pointer from
BUFIND ($FEEO) to DIRBUF+1 ($95).
Terminate routine with an RTS.

333

NAME

SET SSP

SSPOS

SSPIO

SSP20

IBRD

$DEE9
$DEEA

$DEED

$DEEE

$DEFI

$DEF4

$DEF7

$DEF8

$DEFB

$DEFD

$DEFF

$DFOI

$DF03
$DF06
$DF09

$DFOB

$DFOE

$DF12

$DF14

$DF17

$DFIB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Use SS pointer to set DIRBUF & BUFTAB:
On entry: .A = 10 byte

Save 10 byte (in .A) onto the stack.
JSR to SSDIR ($DEDC) to set DIRBUF from
current SS pointer.
On return, .A contains the hi byte of
the SS buffer pointer. Save the hi byte
onto the stack.
Transfer the SS buffer number from .x
to .A, multiply it by two (ASL), and
transfer it back into .X.
Pull hi byte of SS buffer pointer off
the stack and store it in BUFTAB+I,X
($9A,X) .
Pull 10 byte of SS buffer pointer off
the stack and store it in BUFTAB,X
($99 ,X).
Terminate routine with an RTS.

Use SSNUM & SSIND to set SS & BUFTAB:
On return V = 0 all OK

V = lout of range
JSR to SSTEST ($DF66) to test if SSNUM &
SSIND are resident and within range.
If N flag set, out of range so branch
to SSPIO.
If V flag clear, it is in residence so
branch to SSP20.
Since V flag set, maybe in range and
maybe not. Do another test:
Load .X with the active buffer number
from LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X).
JSR to IBRD ($DFIB) to read in the SSe
JSR to SSTEST ($DF66) to test again.
If N flag clear, it is in range so
branch to SSP20.
Out of range so JSR to SSEND ($EICB) to
set SS & BUFTAB to end of last record.
BIT with ERI ($FECE) to set flags and
terminate routine with an RTS.
Load .A with the S8 pointer from SSIND
($06) •
JSR to SETSSP ($DEE9) to set DIRBUF and
BUFTAB.
BIT with ERO ($FECD) to set flags and
terminate routine with an RTS.

Indirect block read/write:
On entry: .A = buffer number for R/W

.X = active buffer (LINDX)
(DIRBUF) ,Y points to T&S to be R/W

Store buffer number (.A) in JOBNUM ($F9)

334

NAME

$DF1D

I BvJT $DF21
$DF23

IBOP $DF25
$DF26

$DF2C

$DF32

$DF37

$DF3B

$DF40

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with $80 (read job code) and
branch to IBOP.

Store buffer number (.A) in JOBNUM ($F9)
Load .A wi t.h $90 (wr i te job code)

Push the job code onto the stack.
Load .A with the file's drive number
from FILTYP,X ($EC,X), AND it with $01
to mask off the non-drive bits, and use
it to set the drive, DRVNUM ($7F)
Pull the job code off the stack, OR it
with the drive number in DRVNUM ($7F),
and store the result in CMD ($0240).
Move the track number from (DIRBUF),Y
($94),Y to TRACK ($80). Increment .Y
Move the sector number from (DIRBUF),Y
($94),Y to SECTOR ($81).
Load .A with the buffer number from
JOBNUM ($F9) and JSR to SETH ($0603) to
set up the header.
Load .X with the buffer number from
JOBNUM ($F9) and JMP to DOIT2 ($0593)
to do the job.

GSSPNT

SCAL1

SSCALC

ADDT12

$DF45

$DF47

$DF49

$DF4C

$DF4E

$DF51

$DF54

$DF57
$DF5A

$DF5C
$DF5D

Get side sector pointers:
Load .X with the active buffer number
from LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X)
JMP to SETDIR($D4EB) to set the DIRBUF
pointers.

Calculate side sectors:
Load .A with $78, the number of side
sector pointers in a buffer.
JSR to ADDT12 ($DF5C) to add the number
of side sectors needed * 120.
Decrement .X. If .X >= $00, branch to
SCP~L1 .
Load .A with the number of SS indices
needed from T3 ($72) and multiply it
by 2 (ASL) since two bytes (track & sec)
are needed for each index.
JSR to ADDT12 to add .A to T1 & T2.
Load .A with the number of S8 blocks
needed from T4 ($73)

Clear the carry flag.
Add the contents of T1 ($70) to the
contents of the accumulator and store
the result back in T1 ($70).

335

NAME

ADDRTS

SSTEST

STIO

ST20

ST30

ST40

GETACT

$DF61
$DF63
$DF65

$DF66

$OF69

$OF60

$OF6F

$OF73

$OF77

$DF7B

$OF81

$OF83

$OF87

$OF8B

$DF8F

$DF93

$OF95

DESCRIPTION OF WHAT ROM ROUTINE DOES

If carry is clear, branch to ADDRTS.
Increment the value in T2 ($71).
Terminate routine with an RTS.

Test SSNUM & SSIND for range & residence
Flag meanings on exit:

N Range V Residence
a OK 0 YES ERO
o MAYBE 1 NO ER1
1 BAD 0 YES ER2
1 BAD 1 NO ER3

JSR to SSSET ($OE02) to set the pointer
to $00 and get the SS number (in .A).
Compare the SS number in .A with the
one in SSNUM ($05). If they are not
equal, branch to ST20.
Load .Y with the pointer into the SS
buffer from SSIND ($06)
Load . A fro m (0 I RB UF) , Y; ($9 4) , Y. I f
this value is $00, the proper side
sector is not present so branch to ST10.
BIT ERa ($FECO) to clear the N and V
flags. All OK so exit with an RTS.

Definitely out of range so BIT with E2
($FECF) and exit with an RTS.

Load .A with the 5S number from SSNUM
($05) and compare it with $06, the
number of side sector links. If the
value in SSNUM > $06, branch to ST30.
Multiply the SS number in .A by 2 (ASL)
and transfer the result into .Y.
Load .A with $04, and store this value I
in OIRBUF ($94), 10 byte of the pointer.
Load .A with the value from (OIRBUF),Y
($94) ,Y. If this value is not $00,
branch t.o ST40.

Way out of range so BIT with E3 ($FEOO)
and exit with an RTS.

Not in residence and range is unknown
so BIT with E1 ($FECE) and exit with RTS

Get active buffer number:
On exit:.A active buffer number

.X = LINOX
Flag N = 1 if no active buffer

Load .X with the current buffer number
from LINOX ($82).
Load .A with the buffer number from
BUFO,X ($A7,X). If bit. 7 is not set,
this buffer is active so branch to GAl.

336

NAME

GAl

GAFLGS

GA2

GA3

GETINA

GI10

PUTINA

$DF99

$DF9B

$DF90

$DF9E

$DFAO
$OFA3

$DFA7

$DFAE

$DFBO
$DFB2

$DFB6

$DFB7

$DFB9

$DFBD

$DFBF

$DFC1

$DFC2

$DFC4

$DFC6

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the buffer number from
BUF1 , X ($AE, X) .
AND the buffer number with $BF to strip
the dirty bit.
Terminate routine with an RTS.

Get active buffer & set LBUSED:
On exit:.A active buffer number

. X Llt--IDX
Flag N 1 if no active buffer
Flag V 1 if buffer is dirty

Load .X with the current buffer number
from LINDX ($82).
Save buffer number into LBUSED ($0257).
Load .A with the buffer number from
BUFO,X ($A7,X). If bit 7 is not set,
this buffer is active so branch to GA3.
Transfer the buffer number from .x to
.A, clear the carry flag, add $07 (the
maximum number of channels + 1), and
store the result in LBUSED ($0257).
Load .A with the buffer number from
BUF1,X ($AE,X).
Store the buffer number in Tl ($70).
AND the buffer number with $lF and BIT
the result with Tl ($70) to set the
N and V flags.
Terminate routine with an RTS.

Get a channel's inactive buffer number:
On entry: LINDX = channel number
On exit: .A = buffer # or $FF if none

Load .X with the channel number from
LINDX ($82).
Load .A with the buffer number from
BUFO,X ($A7,X). If bit 7 is set, this
buffer is inactive so branch to GI10.
Load .A with the buffer number from
BUF 1 , X ($ AE, X) .
Compare the buffer number with $FF to
set the Z flag if inactive buffer found.
Terminate routine with an RTS.

Set the inactive buffer's buffer number:
On entry: .A = buffer number

Load .X with the channel number from
LINDX ($82).
OR the buffer number in .A with $80 to
set the inactive buffer bit.
Load .Y with the buffer number from
BUFO,X ($A7,X). If bit 7 is clear, the
other buffer is the inactive one so
branch to PIle

337

$DFDC

$DFDE

$DFE2

NXTR15 $DFE4

$DFE6

$DFE8

$DFEA

$DFED

$DFEF

$DFF3

NXTR20 $DFF6

$DFF8

$DFFA

$DFFD

$DFFF
$E001

$E006

NAME

PII

NXTREC

$DFCA

$DFCC

$DFCD

$DFCF

$DFDO

$DFD5

DESCRIPTION OF WHAT ROM ROUTINE DOES

This buffer is inactive so store new
buffer number in BUFO,X ($A7,X).
Exit with an RTS.

This buffer is inactive so store new
buffer number in BUF1,X ($AE,X).
Exit with an RTS.

Set up next relative record:
Load .A with $20 (overflow flag) and
JSR to CLRFLG ($009D) to clear the
record overflow flag.
Load .A with $80 (last record flag) and
JSR to TSTFLG ($DDA6) to test if we are
out beyond the last record. If not,
branch to NXTR40.
Load .X with the current channel number
from LINDX ($82).
Increment the 10 byte of the record
counter in RECL,X ($B5,X). If the result
is not $00, branch to NXTR15.
Increment the hi byte of the record
counter in RECH,X ($BB,X).
Load .X with the current channel number
from LINDX ($82).
Load .A with the pointer to the next
record from NR,X ($Cl,X).
If the next record pointer is $00, there
is no next record so branch to NXTR45.
JSR to GETPNT ($D4£8) to get the buffer
pointer.
Load .X with the current channel number
from LINDX ($82).
Compare the buffer pointer in .A with
the pointer in NR,X ($Cl,X). If BT<NR
then branch to NXTR20.
Not in this buffer, must be in the next
one so JSR to NRBUF ($E03C) to set up
the next one.
Load .X with the current channel number
from LINDX ($82).
Load .A with the pointer to the next
record from NR,X ($Cl,X).
JSR to SETPNT ($D4C8) to advance to the
next record.
Load .A with the first byte of the
record from (BUFTAB,X) ($99,X).
Save the first data byte into DATA ($85)
Load .A with $20 (overflow flag) and
JSR to CLRFLG ($DD9D) to clear the
record overflow flag.
JSR to ADDNR ($E304) to advance the NR
pointer.

338

NAME

NXOUT

NXTR45

NXTR40

NXTR50

NXTR30

NXTR35

NRBUF

$£009

$EOOC

$E013

$E018

$E010
$E020

$E025
$E029

$E02A
$E020

$E033

$E034

$E035

$E039

$E03C

$E03F

$E042

$E047
$E04A

$E04D

$E052

DESCRIPTION OF WHAT ROM ROUTINE DOES

Save the new value of NR (in .A) onto
the stack. If the carry flag is clear,
we have NOT crossed a block boundary so
branch to NXTR30.
Load .A with $00 and JSR to OROBYT
($04F6) to read the track link of the
data block. If the track link is not
$00, this is not the last block so
branch to NXTR30.
Pull the new NR value off the stack and
compare it to $02. If it equals $02,
branch to NXTR50.
Load .A with $80 (last record flag) and
JSR to SETFLG ($0097) to set this flag.
JSR to GETPRE ($012F) to get pointers.
Move the data byte from BUFTAB,X ($99,X)
to LSTCHR ($0244).
Store $00 (carriage return) in OATA($85)
Terminate routine with an RTS.

JSR to NXTR35 ($E035) to store NR value
Load .X with the channel number from
LINOX ($82). Store $00 in NR,X ($Cl,X).
Terminate routine with an RTS.

Pull the new NR value off the stack.

Load .X with the channel number from
LINOX ($82). Store the byte in .A into
NR,X ($Cl,X).
Terminate routine with a JMP to SETLST
($E16E) to set the pointer to the last
character.

Set up next record in buffer:
JSR to SETORN ($D103) to set drive
number to agree with the last job.
JSR to ROLNK ($OE95) to set TRACK and
SECTOR from the track & sector link.
JSR to GAFLGS ($DF9E) to test if the
current buffer is dirty (changed). If
V flag clear, it is clean; branch to
NRBU50 so we don't write it out.
JSR to WRTOUT ($OE5E) to write it out.
JSR to DBLBUF ($CF1E) to toggle the
active and inactive buffers.
Load .A with $02 and JSR to SETPNT
($04C8) to set the pointer to point to
the first data byte in the new sector.
JSR to TSTWRT ($OOAB) to test if the
last job was a write. If it was not a
write job, branch to NRBU20 ($E07B)
since buffer is OK.

339

$E072

$E075

$E078

NRBU20 $E07B

RELPUT $E07C

$E07F

$E082

$E084

$E088

DESCRIPTION OF WHAT ROM ROUTINE DOES

Put relative record into buffer:
JSR to SOIRTY ($EI05) to flag buffer as
dirty (RAM version changed).
JSR to GETACT ($OF93) to get active
buffer number (returned in .A).
Multiply the buffer number (in .A) by
two (ASL) and transfer the result to .X.
Copy the data byte from DATA ($85) into
the buffer at (BUFTAB,X) ($99,X).
Load .Y with the 10 byte of the pointer
BUFTAB,X and increment the pointer in
.Y by 1. If the new pointer value is NOT
$00, branch to RELP05.
Load .Y with the channel number from
LINOX ($82).
Load .A with the next record pointer
from NR,Y. If this value is $00, branch
to RELP07.
Load .Y with $02.
Transfer the contents of .Y to .A.
Load .Y with the channel number from
LINOX ($82).
Compare the contents of .A to NR,Y
($Cl,Y) to test if NR = pointer. If they
are not equal, NR is not a pointer so
branch to RELPI0 to set new pointer.

JSR to ROAB ($OE57) to read in needed
buffer.
JSR to WATJOB ($0599) to wait for the
read job to be completed.
JSR to OBLBUF ($CFIE) to toggle the
active and inactive buffers.
JSR to TSTWRT ($OOAB) to test if the
last job was a write. If it was not a
write job, branch to NRBU70.
JSR to ROAB ($OE57) to read in needed
buffer.
JSR to WATJOB ($0599) to wait for the
read job to be completed.
JSR to ROLNK ($OE95) to set TRACK and
SECTOR from the track & sector link.
Load .A with the track link from TRACK
($80). If track link is $00, this is the
last block with no double buffering
needed so branch to NRBU20.
JSR to OBLBUF ($CFIE) to toggle the
active and inactive buffers.
JSR to ROAB ($OE5E) to start a read job
for the inactive buffer.
JSR to OBLBUF ($CFIE) to toggle the
active and inactive buffers.
Terminate routine with an RTS.

$E080

$E094
$E096
$E097

$E099

$E08F

RELP06
RELP05

NAME

$E057

$E05A

NRBU50 $E050

$E060

$E065

$E068

NRBU70 $E06B

$E06E

340

NAME

RELP07

RELP10

RELP20

WRTREL

WR10

WR20

WR30

WR40

WR45

WR50

WR51

WR60

$E09E

$EOA3

$EOA7
$EOAA

$EOAB

$EOBO

$EOB2

$EOB7

$EOBB

$EOBC

$EOC1
$EOC3

$EOC8

$EOCB

$EOCE

$EOD3

$EOD6

$EOD9

$EODD

$EOE1

$EOE2

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with $20 (the overflow flag)
and JMP to SETFLG ($0097) to set the
overflow flag and exit.

Increment the 10 byte of the pointer
BUFTAB,X ($99,X). If the result is not
$00, we don't need the next buffer so
branch to RELP20.
JSR to NRBUF($E03C) to get next buffer.
Terminate routine with an RTS.

Write out relative records:
Load .A with $AO (last record flag +
overflow flag) and JSR to TSTFLG ($DDA6)
to check for last record & overflow.
If Z flag clear, some flag is set so
branch to WR50.
Load .A with the byte from DATA ($85)
and JSR to RELPUT ($E07C) to put the
data into the buffer.
Load .A with the EOIFLG ($F8). If it
equals $00, an EOI was NOT sent so
branch to WR40.
Terminate routine with an RTS.

Load .A with $20 (overflow flag) and
JSR to TSTFLG ($DDA6) to test for an
overflow error.
If Z set, no error so branch to WR40.
Overflow error so load .A with $51
(recover flag) and store it in ERWORD
($026C) to flag the error.
JSR to CLREC ($EOF3) to clear the rest
of the record.
JSR to RD40 ($E153) to set up for the
next record.
Load .A from ERWORD ($026C). If it is
$00, no errors so branch to WR45.
Abort with a JMP to CMDERR ($C1C8)

Terminate with a JMP to OKERR ($E6BC).

AND the error flag in .A with $80 (the
last record flag). If the result is not
$00, the last record flag was set so
branch to WR60 to add to file.
Load .A with the EOIFLG ($F8). If this
is $00, an EOI was not sent so branch
to WR30.
Terminate routine with an RTS.

Load .A with the data byte from DATA
($85) and push it onto the stack.

341

NAME

CLREC

CLR10

SDIRTY

CDIRTY

ROREL

R010

$EOE5

$EOE9

$EOEB

$EOFO

$EOF3

$EOF8

$EOFA

$E101

$E104

$E105
$E107
$E10A

$E10D

$E10F

$E112

$E114

$El15

$E118

$E11A

$E110

$E11F

$E120

$E125

$E127

$E12A

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to AOOREL ($E31C) to add to the
relative file.
Pull the data byte off the stack and
put it back in DATA ($85).
Load .A with $80 (last record flag) and I
JSR to CLRFLG ($0090) to clear the flag.
JMP to WR10.

Clear rest of relative record:
Load .A with $20 (overflow flag) and

"-JSR -to· ·'l'~'1'r·LG "($DDA6"") tb--r"-e~s-t t-h"e-- fLaq,
If Z flag not set, overflow has occured
so branch to CLR10 to exit.
Set DATA ($85) to $00 and JSR to RELPUT
($E07C) to put a null byte in the buffer
Loop with a JMP to CLREC ($EOF3).

Terminate routine with an RTS.

Set buffer dirty flag:
Load .A with $40 (dirty flag).
JSR to SETFLG ($0097) to set flag.
JSR to GAFLGS ($OF9E) to get active
buffer number in .A and set flags.
OR the contents of .A with $40 to set
the dirty flag.
Load .x with the number of the last
buffer used from LBUSEO ($0257).
Store the content of .A as the buffer
number in BUFO,X ($A7,X).
Terminate routine with an RTS.

Clear buffer dirty flag:
JSR to GAFLGS ($OF9E) to get active
buffer number and set flags.
AND the contents of .A with $BF to clear
the dirty flag.
Load .X with the number of the last
buffer used from LBUSEO ($0257).
Store the content of .A as the buffer
number in BUFO,X ($A7,X).
Terminate routine with an RTS.

Read relative record:
Load .A with $80 (last record flag) and
JSR to TSTFLG ($DDA6) to test the flag.
If Z flag not set, last record error has
occured so branch to R005.
JSR to GETPRE ($D12F) to set pointers to
existing buffer.
Load .A with the 10 byte of the buffer
pointer from BUFTAB,X ($99,X).

342

NAME

RD15

RD20

RD25

RD30

RD40

RD05

SETLST

$E12C

$E131

$E135

$E138

$E13B

$E13D
$E140

$E145

$E14C

$E14D

$E152

$E153

$E156

$E159
$E15B

$E15E

$E160

$E165

$E169

$E16E

$E170

DESCRIPTION OF WHAT ROM ROUTINE DOES

Compare this value to the contents of
LSTCHR,Y ($0244). If they are equal,
branch to RD40 because we want the next
record not the last one.
Increment the buffer pointer in BUFTAB,X
($99,X). If the result is not equal to
$00, we don't need the next buffer so
branch to RD20.
JSR to NRBUF ($E03C) to read in the
next buffer of relative records.
JSR to GETPRE ($D12F) to set pointers to
existing buffer.
Load .A with the data byte from
(BUFTAB,X); ($99,X).
Store the data byte in CHNDAT,Y($023E,Y)
Load .A with $89 (random access - ready)
and store this as the channel status in
CHNRDY,Y ($F2,Y).
Load the pointer from BUFTAB,X ($99,Y)
and compare it to the pointer to the
last character in the record from
LSTCHR,Y ($0244,Y). If they are equal,
branch to RD30 to send E01.
Terminate routine with an RTS.

Load .A with $81 (random access - EOI)
and store this as the channel status in
CHNRDY,Y ($F2,Y).
Terminate routine with an RTS.

JSR to NXTREC ($DFDO) to get the next
record.
JSR to GETPRE ($D12F) to set pointers to
existing buffer.
Load .A with the byte from DATA ($85).
JMP to RD25 to carryon.

No record error so load .X with the
channel number from LINDX ($82).
Store $00 (carriage return) as the data
byte in CHNDAT,X ($023E,X).
Load .A with $81 (random access - EOI)
and store this as the channel status in
CHNRDY,Y ($F2,Y).
Load .A with $50 (no record error) and
abort with a JMP to CMDERR ($CIC8).

Set pointer to last character in record:
Load .X with the channel number from
LINDX ($82)
Copy the next record pointer from NR,X
($C1,X) into RI ($87).

343

NAME

SETLOl

SETL05

SETLlO

SETL40

FNDLST

FNDLlO

$El74

$El7A

$El7E

$El82

$E18D

$El90

$El95

$El97

$El9A

$El9D

$ElAO

$EIA4

$ElA9

$ElAC

$EIAE

$ElBl

$ElB2

$EIB5

$ElB7

$ElBB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Decrement the pointer in Rl ($87) by 1
and compare the result to $02, the
pointer to the first data byte in the
sector. If the pointer does not equal
$02, branch to SETLOl.
Store $FF into Rl ($87) so it points to
the last byte in a sector.
Copy the record size from RS,X ($C7,X)
into R2 ($88).
JSR to GETPNT ($D4E8) to get the pointer
into the active buffer (returned in .A)
Compare this value with the pointer in
Rl ($87). If Rl)= .A branch to SETLIO.
JSR to DBLBUF ($CFlE) to toggle the
active and inactive buffers.
JSR to FNDLST ($ElB2) to find the last
character. On return, if carry is clear,
branch to SETL05.
Load .X with the channel number from
LINDX ($82).
Store the character in .A into LSTCHR,X
($0244,X) .
JMP to DBLBUF ($CFlE) to toggle the
active and inactive buffers and exit.

JSR to DBLBUF ($CFIE) to toggle the
active and inactive buffers.
Store $FF into Rl ($87) so it points to
the last byte in a sector.
JSR to FNDLST ($ElB2) to find the last
non-zero character in the record. On
return, if carry set, branch to SETL40.
JSR to GETPNT ($D4E8) to get the pointer
into the active buffer (returned in .A)
Load .X with the channel number from
LINDX ($82).
Store the character in .A into LSTCHR,X
($0244,X) .
Terminate routine with an RTS.

Find last non-zero character in record:
JSR to SETOO ($DE2B) to set up pointer
to start of buffer.
Load .Y with the offset to start at
from Rl ($87).
Load .A with the data byte from the
buffer at (DIRBUF) .s , ($94) ,Y. If the
data byte is not $00, branch to FNDL20.
Decrement the pointer in .Y. If the
resulting pointer is less than or equal
to $02, branch to FNDL30 since the
start of the record is not in here.

344

NAME

FNDI30

FNDL20

SSEND

SE10

SE20

SE30

$E1CO

$E1C4

$E1C8

$E1C9

$E1CE

$E1CE

$E1DO

$E1D4

$E1D8

$E1DC

$E1EO
$E1E1

$E1E6

$E1E8

$E1EA

$E1EF

$E1F3

$E1F7
$E1F8

DESCRIPTION OF WHAT ROM ROUTINE DOES

Decrement the record size in R2 ($88).
If R2 has not counted down to $00 yet,
branch FNDL10.
Decrement the record size in R2 ($88).
Clear the carry flag to indicate that
the record was not found here and exit
from the routine with an RTS.

Found the last non-zero character so
transfer the pointer from .Y to .A.
Set the carry flag to indicate it was
found here and terminate with an RTS.

Set SS & BUFTAB to end of last record:
JSR to SSSET ($DED2) to set the SS
pointer to $00.
Store the side sector number returned
in .A into SSNUM ($05).
Set the 10 byte of the pointer in
DIRBUF ($94) to $04.
Load .Y with $AO (the side sector offset
less 6) and branch to SE20 (always).
Decrement pointer in .Y by 2. If the
result is less than $00, branch to BREAK
Look for the last SS number by loading
.A from (DIRBUF) ,Y; ($94) ,Y. If the
byte is $00, we have not found it yet
so branch back to SE10.
Transfer the pointer in .Y into .A.
Multiply the pointer in .A by 2 (ASL)
and compare the result to the side
sector number in SSNUM ($05). If they
are equal, this is the last SS number
so branch to SE30.
Store the SS number in .A into SSNUM
($05) •
Load .X with the channel number from
LINDX ($82).
Load .A with the side sector from
SS,X ($CD,X) and JSR to IBRD ($DF1B)
to do an indirect block read of the
last side sector.
Zero .Y and set the 10 byte of the
pointer in DIRBUF ($94) to $00.
Load .A with track link from (DIRBUF),Y
($94) ,Y. If the link is not $00, branch
to BREAK.
Increment .Y
Load .A with sector link from (DIRBUF) ,Y
($94) ,Y. This points to the last good
byte in the buffer. Transfer the pointer
to .Y, decrement it by 1, store it in
SSIND ($06), and transfer it back to .A.

345

NAME

BREAK

$E1FF

$E202

DESCRIPTION OF WHAT ROM ROUTINE DOES

JMP to SETSSP ($DEE9) to set DIRBUF and
BUFTAB with current SS pointer.

Load .A with $67 to indicate a SYSTEM
TRACK OR SECTOR error and JSR to CMDERR2
($E645) .

RECORD COMMAND Position pointer to given record

RECORD

R20

R30

$E207

$E20A

$E20F

$E212

$E214

$E219

$E21E

$E223

$E228

$E22E

$E233

$E238

$E23A

$E23E

$E243

Note: set to last record if out of range
JSR to CMDSET ($C2B3) to initialize the
pointers and tables.
Load .A with the second character in the
command from CMDBUF+1 ($0201) and use it
to set the secondary address in SA ($83)
JSR to FNDRCH ($DOEB) to find an unused
read channel.
If carry flag clear, channel found so
branch to R20.
Load .A with $70 to indicate a NO
CHANNEL error and JSR to CMDERR ($C1C8).

Load .A with $AO (last record flag plus
overflow flag) and JSR to CLRFLG ($DD9D)
to clear these flags.
JSR to TYPFIL ($D125) to determine the
file type. If the Z flag is set, it is
a relative file so branch to R30.
Load .A with $64 to indicate a FILE TYPE
MISMATCH error and JSR to CMDERR ($C1C8)

Load .A with the file type from FILTYP,X
($EC,X), AND the type with $01 to mask
off the non-drive bits, and store the
result as the drive # in DRVNUM ($7F).
Load .A with the third character in the
command from CMDBUF+2 ($0202) and use it
to set the 10 byte of the record number
in RECL,X ($B5,X).
Load .A with the fourth character in the
command from CMDBUF+3 ($0203) and use it
to set the hi byte of the record number
in RECH,X ($BB,X).
Load .X with the channel number from
LINDX ($82).
Store $89 (random access - ready) as the
channel status in CHNRDY,X ($F2,X).
Load .A with the fifth character in the
command from CMDBUF+4 ($0204). This is
the byte pointer into the record. If the
byte pointer is $00, branch to R40.
Set the carry flag and subtract $01 from
the byte pointer. If the result is $00,
branch to R40.

346

NAME

R40

R50

R60

POSITN

P2

P30

$E248

$E24C

$E253

$E255

$E258

$E250

$E262

$E265

$E268

$E26F

$E272

$E275

$E278

$E270

$E27F

$E282

$E286

$E289

$E28E
$E291

DESCRIPTION OF WHAT ROM ROUTINE DOES

Compare the adjusted byte pointer to the
record size in RS,X ($C7,X). If the byte
pointer is within the record, branch to
R40.
Load .A with $51 (record overflow) and
store it in ERWORD ($026C). Zero .A.
Store the byte pointer (in .A) into
RECPTR ($D4).
JSR to FNOREL ($CEOE) to calculate the
side sector pointers.
JSR to SSPOS ($OEF8) to set the side
sector pointers. If V flag is clear,
we have not attempted to go beyond the
last record so branch to R50.
Load .A with $80 (last record flag) and
JSR to SETFLG ($OD97) to set the flag.
JMP to R005 ($E15E) to set pointers to
t-he last record.

JSR to POSITN ($E275) to position to the
desired record.
Load .A with $80 (last record flag) and
JSR to TSTFLG ($00A6) to test if this
flag has been set. If not, branch to
R60 to exit.
JMP to R005 ($E15E) to set pointers to
the last record.

JMP to ENOCMO ($C194) to terminate.

Position to record:
Moves relative record into active buffer
and the next block into inactive buffer.
JSR to POSBUF ($E29C) to position data
blocks into buffers.
Load .A with the pointer from RELPNT
($07) and JSR to SETPNT ($D4C8) to set
up the buffer pointers.
Load .X with the channel number from
r.mox ($82).
Load .A with the record size from RS,X
(C7,X) and set the carry flag.
Subtract the pointer in RECPNT ($D4)
from the record size in .A to find the
offset. If offset> $00, branch to P2.
Trouble! JMP to BREAK ($E202).

Clear the carry flag and add the pointer
in RELPNT ($07). If there is no carry,
branch to P30.
Add another $01 and set the carry flag.
JSR to NXOUT ($E009) to set up the next
record.

347

NAME

$E294

$E297

DESCRIPTION OF WHAT ROM ROUTINE DOES

JMP to RD15 ($E138) to complete set up.

- * - * - UNUSED CODE - * - * -
Load .A with $51 (record overflow) and
JSR to CMDERR ($C1C8).

POSBUF $E29C

$E2AO

$E2A4

$E2A9

P10 $E2AA
$E2AD

$E2BO

$E2B4

$E2B9

$E2BC

Position proper data blocks into buffers
Save the 10 byte of the DIRBUF ($94/5)
pointer into R3 ($89).
Save the hi byte of the DIRBUF ($94/5)
pointer into R4 ($8A).
JSR to BHERE ($E2DO) to check if desired
block is in the buffer. If not, branch
to P10 to read it in.
Terminate routine with an RTS.

JSR to SCRUB ($DDF1) to clean the buffer
JSR to GETLNK ($DEOC) to set TRACK and
SECTOR from the link.
If TRACK ($80) is $00, there is no next
track so branch to P80.
JSR to BHERE ($E2DO) to check if desired
block is in the buffer. If not, branch
to P75 to read it in.
JSR to DBLBUF ($CF1E) to toggle the
active and inactive buffers.
JMP to FREIAC ($D2DA) to free the
inactive buffer.

P75

P80

BHERE

BHERE2

BH10

$E2BF

$E2C2
$E2C4

$E2C9

$E2CD

$E2DO

$E2D3
$E2D5

$E2D9

$E2DC
$E2DD

$E2E1

JSR to FREIAC ($D2DA) to free the
inactive buffer.
Load .Y with $00.
Move the desired track from (R3) ,Y
($89) ,Y into TRACK ($80). Increment .Y
Move the desired sector from (R3) ,Y
($89) ,Y into SECTOR ($81).
JMP to STRDBL ($DOAF) to read in the
desired block and the next one too.

Check if' desired block is in buffer:
JSR to GETHDR ($DE3E) to set TRACK and
SECTOR from the header.
Load .Y with $00
Compare the desired track from (R3) ,Y
($89) ,Y with the value in TRACK ($80).
If they are equal, branch to BH10 to
compare the sectors.
No match (Z=O) so exit with an RTS

Increment .Y.
Ccmpare the desired sector from (R3) ,Y
($89) ,Y with the value in SECTOR ($81).
This sets Z=l if they are equal.
Terminate routine with an RTS.

348

NAME

NULBUF

NB20

NB30

AOONR

AN05

ANIO

AOOREL

$E2E2

$E2E5

$E2EE

$E2Fl

$E2F3
$E2F4

$E2F8

$E2FB

$E2FO
$E2FF

$E303

$E304

$E306

$E309
$E30B

$E30E
$E310
$E312
$E314
$E317

$E318

$E31B

$E31C
$E31F

$E322

$E325

$E328

$E32C

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set null records jn active buffer:
JSR to SETOO ($OE2B) to set pointers to
start of data buffer.
Loop to fill data buffer with $OO's
from $xx02 to $xxFF.
JSR to AODNR ($E304) to calculate the
position of the next record (in .A).
Store the new pointer value in NR,X
($C 1 ,X) .
Transfer the next record pointer to .Y.
Store $FF as the first character in the
next reccrd at (OIRBUF) ,Yi ($94) ,Y.
JSR to ADONR ($E304) to calculate the
position of the next record (in .A).
If carry flag is clear, we haven't done
all the records in this block yet so
branch to NB20.
If the Z flag is not set, branch to NB30
Store $00 into NR,X ($Cl,X) to flag the
last record.
Terminate routine with an RTS.

Add record size & next record pointer:
On exit: C=l if crossed buffer boundary
Load .X with the channel number from
LINOX ($82).
Load .A with the next record pointer
from NR,X ($C1,X) and set the carry flag
If NR pointer is $00 branch to AN05.
Clear the carry flag and add the record
size from RS,X ($C7,X).
If carry clear, branch to ANIO.
If result is not $00, branch to AN05.
Load .A with $02 (bypass link)
BIT with EROO ($FECC) to set flags.
Terminate routine with an RTS

Add $01 to the contents of .A to adjust
for the link and set the carry flag.
Terminate routine with an RTS

Add blocks to a relative file:
JSR to SETORN ($0103) to set drive #.
JSR to SSENO ($EICB) to set up end of
file.
JSR to POSBUF ($E29C) to position the
proper data blocks into the buffers.
JSR to OBSET ($CF7C) to set up double
buffering.
Copy side sector index from SSINO ($06)
into R1 ($87).
Copy side sector number from SSNUM ($05)
into RO ($86).

349

NAME

AOORl

ARlO

AR20

AR25

AR30

$E330

$E334

$E338

$E33B

$E33E

$E340

$E344

$E347

$E349

$E34F

$E355

$E350

$E363

$E368

$E36B

$E36F

$E372

$E374

$E37A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set R2 ($88) to $00 to clear the flag
fer one block.
Set RECPTR ($04) to $00 to clear this
for calculations.
JSR to FNOREL ($CEOE) to calculate the
side sector pointers.
JSR to NUMFRE ($EF4D) to calculate the
number of blocks free.
Load .Y with the channel number from
LINOX ($82).
Load .X with the record size from RS,Y
($C7,Y), decrement the size by 1, and
transfer the result into .A.
Clear the carry flag and add the record
pointer, RELPTR ($07) to the record size
in . A.
If no carry results, there is no span
to the next block so branch to ARlO.
Increment the SS pointer, SSIND ($D6)
twice. If the result is not zero, branch
t-o ARlO.
Increment the side sector number, SSNUM
(05) by 1 and store $10 (the side sector
offset) into SSINO ($06) since we are
starting a new block.
Load .A with the SS index from R1, clear
the carry flag, add $02, and JSR to
SETSSP ($OEE9) to set DIRBUF & BUFTAB.
Load the side sector number from SSNUM
($05) and compare it with $06, the
number of side sector links. If SSNUM
is less than or equ~l to $06, the range
is valid so branch to AR25.
Load .A with $52 to indicate a TOO BIG
RELATIVE FILE error and JSR to CMOERR
($C1C8) .
Load .A with the side sector index from
SSIND ($D6) and set the carry flag.
Subtract the SS index from R1 ($87). If
the result is positive, branch to AR30.
Subtract $OF (the side sector index
offset less 1) and clear the carry flag.
Store the number of side sector indicies
(in .A) into T3 ($72).
Load .A with the SS number from SSNUM
($05). Subtract the SS number from RO
($86) to find the number of side sectors
needed. Store the number needed into
T4 ($ 73) .
Zero Tl ($70) and T2 ($71) to serve as
a results accumulator.

350

NAME

AR35

AR40

AR45

AR50

$E380

$E384

$E388 I

$E38D
$E38F

$E396

$E39D

$E3A2

$E3A5

$E3A7

$E:A9

$E3AC

$E3AF

$E3B3

$E3B6
$E3B9

$E3BC

$E3BF

$E3C2

$E3C5

$E3C8

DESCRIPTION OF WHAT ROM ROUTINE DOES

Transfer the number of side sectors
needed from .A to .X and JSR to SSCALC
($DF51) to calculate the number of
blocks needed.
Load .A with the hi byte of the number
needed from T2 ($71). If the hi byte is
not $00, branch to AR35.
Load .X with the 10 byte of the number
needed from T1 ($70). Decrement .X by 1.
If the result is not $00, branch to AR35
Increment R2 ($88) by 1.
Check if there are enough blocks left:
Compare the hi byte of the number of
blocks needed (in .A) with the hi byte
of the number of blocks free in NBTEMP+1
($0273). If there are more than enough,
branch to AR40. If there are NOT enough,
branch to AR20. If we have just enough,
we had better check the 10 cyte.
Load .A with the 10 byte of the number
free from NBTEMP ($0272) and compare it
with the 10 byte of the number needed in
T1 ($70). If there are not enough,
branch to AR20 to abort.
Load .A with $01 and JSR to DRDBYT
($D4F6) to read the sector link.
Clear the carry flag and add $01 to .A
to give t-he NR.
Load .X with the channel number from
LINDX ($82).
Store the NR value (in .A) into NR,X
($C 1 , X) .
JSR to NXTTS ($F11E) to get the next
available track and sector.
JSR to SETLNK ($DDFD) to set the track
and sector link in the current block.
Load .A with the add-I-block flag from
R2 ($88). If the flag is set, branch
to AR50.
JSR to WRTOUT ($DE5E) to write the I

current block to disk.
JSR to DBLBUF ($CF1E) to switch cUffers.
JSR to SETHDR ($D6DO) to set header from
TRACK and SECTOR.
JSR to NXTTS ($F11E) to get the next
available track and sector.
JSR to SETLNK ($DDFD) to set the track
and sector link in the current block.
JSR to NULBUF ($E2E2) to clean out the
buffer
JMP to AR55 ($E3D4).

JSR to DBLBUF ($CF1E) to switch buffers.

351

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$E3CB JSR to SETHDR ($0600) to set header from
TRACK and SECTOR.

$E3CE JSR to NULBUF ($E2E2) to clean out the
buffer

$E3Dl JSR to NULIJNK ($DE19) to set link for
the last block.

AR55

AR60

$E3D4

$E3D7

$E3DA

$E3EO

$E3E3

$E3E9

$E3EC

$E3EF

$E3F2

$E3F7

$E3F9

$E3FD

$E401

$E404

$E407

$E409

$E40F

$E412

JSR to WRTOUT ($DE5E) to write the
current block to disk.
JSR to GETLNK ($DEOC) to set TRACK and
SECTOR from the track & sector link.
Save the value of TRACK ($80) and SECTOR
($81) onto the stack.
JSR to GETHDR ($DE3E) to set TRACK and
SECTOR from the last sector read.
Save the value of TRACK ($80) and SECTOR
($81) onto the stack.
JSR to GSSPNT ($DF45) to calculate the
side sector pointer (returned in .A)
Transfer the pointer in .A to .X. If the
pointer value is not $00, we don't need
another side sector so branch to AR60.
JSR to NEWSS ($E44E) to get another side
sector.
Load .A with $10, side sector offset,
and JSR to SETSSP ($OEE9) to set the
side sector pointer.
Increment the side sector count in RO
($86) by 1.
Pull this sector's track off the stack
and JSR to PUTSS ($OD8D) to write it
into the side sector buffer.
Pull this sector's sector off the stack
and JSR to PUTSS ($D08D) to write it
into the side sector buffer.
Pull this sector's sector link off the
stack and store it in SECTOR ($81).
Pull this sector's track link off the
stack and store it in TRACK ($80).
If track link is $00, there are no more
blocks in this file so branch to AR65

Compare the side sector counter in RO
($86) with the end count in SSNUM ($D5).
If they are not equal, we haven't done
enough new blocks yet so branch to AR45.
Almost done so JSR to GSSPNT ($DF45) to
get the side sector pointer.
Compare the pointer in .A with the end
pointer in SSIND($D6). If SSINO>.A, we
are almost done so branch to AR45. If
SSIND=.A there is one more block left so
branch to AR50.

352

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$E41C

$E43F

$E439

$E427

$E421

$E418 I All done. JSR to GSSPNT ($OF45) to get
the side sector pointer. Save it onto
the stack.
Load .A with a $00 and JSR to SSDIR
($DEDC) to set DIRBUF with the current
SS pointer.
Zero .A and .Y. Zero the track link of
the side-sector sector in (DIRBUF) ,Y
($94) IY. Increment .Y.
Pull the pointer into this sector off
the stack, subtract $01, and store the
result as the sector link of the side­
sector sector in (OIRBUF) ,Yi ($94) ,Y.
JSR to WRTSS ($DE6C) to write out the
current block of side sectors to disk.
JSR to WATJOB ($0599) to wait for the
write job to be completed.
JSR to MAPOUT ($EEF4) to write the BAM.
JSR to FNDREL ($CEOE) to find the
relative file and calculate SSNUM and
SSIND for the desired record.
JSR to DBLBUF ($CF1E) to get back to
the leading buffer.
JSR to SSPOS ($OEF8) to position SS and
BUFTAB to SSNUM and SSIND.
On return, if V flag is set, the record
is still beyond the end of the relative
file so branch to AR70.
All OK so exit from routine with a JMP
to POSITN ($E275) to position to the
record.

$E441

$E42D

$E43C

$E430

$E433
$E436

AR65

AR70 $E444 Still beyond end of file so: load .A
with $80 (the last record flag), JSR to
SETFLG ($DD97) to set the flag, load .A
with $50 (no record error) and exit with
a JSR to CMDERR ($C1C8).

NEWSS $E44E

$E451

$E454

$E457

$E45B
$E45E

Create a new side sector and change the
old side sectors to reflect it.
JSR to NXTTS ($F11E) to find the next
available track and sector.
JSR to DBLBUF ($CF1E) to toggle to the
inactive buffer.
JSR to SCRUB ($DOF1) to write out the
buffer if it is dirty (doesn't match
copy on disk) .
JSR to GETACT ($DF93) to determine the
active buffer number (returned in .A).
Save the buffer number onto the stack.
JSR to CLRBUF ($DEC1) to zero the buffer
Load .X with the channel number from
LINDX ($82).

353

NAME

$E460

$E463

$E465
$E467

$E46A

$E46F

$E474

$E479

$E47F

$E485

$E48A

$E490
$E491

$E497

$E49C

$E4A1

$E4A6

$E4A9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the number of the buffer
containing the side sectors from SS,X
($CD,X) and transfer this value into .Y.
Pull the active buffer number off the
stack and transfer it into .X.
Load .A with $10, the side sector offset
JSR to BOTOBO ($DEA5) to move $10 (.A)
bytes from buffer #(.X) to buffer #(.Y).
Load .A with $00 and JSR to SSDIR($DEDC)
to set the pointer at DIRBUF ($94) to
point to the start of the old S5 buffer.
Load .Y with $02, and load .A with the
side sector number from (DIRBUF) ,Y and
save it onto the stack.
Zero .A and JSR to SETPNT ($D4C8) to set
the pointer at DIRBUF ($94) to point to
the start of the new S5 buffer.
Pull the S5 number off the stack, add 1,
and store the result in the new side
sector table at (DIRBUF) ,Y.
Multiply the 5S number in .A by 2 (A5L) ,
add 4, store the result (points to the
new SS value in the buffer) in R3 ($89),
and transfer this value into .Y.
Subtract $02 from the result and store
this pointer in R2 ($88).
Copy the current value of TRACK ($80)
into R1 ($87) for use in S5 update and
into the new SS buffer at (DIRBUF) ,Y
Increment .Y
Copy the current value of SECTOR ($81)
into R2 ($88) for use in 5S update and
into the new 55 buffer at (DIRBUF) ,Y
Set the track link at the start of the
new 5S block to $00.
5et the sector link at the start of the
new SS block to $11 to indicate that the
last non-zero character in the buffer is
the one following the SS offset.
Load .A with $10 (the 5S offset) and JSR
to 5ETPNT ($D4C8) to set the pointer
to the new 55 block.
J5R to WRTAB ($DE50) to write out the
new side sector block to disk.
JSR to WATJOB ($D599) to wait for the
write job to be completed.

Note: Finished creating new block. Now,
revise old SS to reflect the new.

354

NAME

NS20

NS40

NS50

$E4AC

$E4AE

$E4B1

$E4B4

$E4B6

$E4B8

$E4BE

$E4C3

$E4CA

$E4CE

$E4D1

$E4D4

$E4D6

$E4DB

$E4DE
$E4E2

$E4E4

$E4E8
$E4E9

$E4ED

$E4FO

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .X with the channel number from
LINDX ($82).
Load .A with the side sector buffer
number from SS,X ($CD,X) and save this
number onto the stack.
JSR to GAFLGS ($DF9E) to get active
buffer number and set flags.
Load .X with the new channel number from
LINDX ($82).
Store the side sector buffer number from
.A into SS,X ($CD,X). Note: this swaps
the active buffer and the SS buffer.
Pull the old side sector buffer number
off the stack, load .X with the last
buffer used from LBUSED ($0257), and
store the old SS buffer # (in .A) into
BUFO,X ($A7,X).
Zero .A and JSR to SETPNT ($D4C8) to set
the buffer pointer to the start of the
buffer.
Zero .Y and set the track link to point
to the new SS block using the value from
TRACK ($80). Increment .Y.
Set the sector link to point to the new
SS block using the value from SECTOR
($ 81) .
JMP to NS50 ($E4DE).

JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Load .x with the channel number from
LINDX ($82).
JSR to lBRD ($DF1B) to read the next SSe
buffer number (returned in .A).
Zero .A and JSR to SETPNT ($D4C8) to set
the buffer pointer to the start of the
buffer.
Decrement the pointer in R4 ($8A) twice.
Load .Y with the pointer into the buffer
from R3 ($89).
Load .A with the new S8 track pointer
from R1 ($87) and store this value into
the data buffer at (DIRBUF) ,Y.
Increment .Y.
Load .A with the new SS sector pointer
from R2 ($88) and store this value into
the data buffer at (DIRBUF) ,Y.
JSR to WRTOUT ($DE5E) to write out the
revised side sector block.
JSR to WATJOB ($0599) to wait for the
write job to be completed.

355

NAME

$E4F3

$E4F9

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .Y with the pointer from $R4 ($8A)
and compare it to $03. If .Y>$03, there
are more side sectors to update so
branch back to NS40.
Terminate routine with a JMP to DBLBUF
($CF1E) to reset the active buffer.

ERROR MESSAGE TABLE $E4FC - $E5D4

Each entry consists of the applicable error numbers
followed by the message test with the first and last
characters ORled with $80. The key words in the text
are tokenized (values $80 - S8F). The tokenized word
list follows the main error message table.

Address

$E4FC
$E500
$E50B
$E517
$E522
$E52F
$E533
$E540
$E546
$ES52
$E556
$E55F
$E567
$E570
$E589
$E58D
$E592
$E59F
$E5AA
$E5AF
$E5B6
$E5C8

Error numbers

$00
$20,$21,$22,$23,$24,$27
$52
$50
$51
$25,$28
$26
$29
$30,$31,$32,$33,$34
$60
$63
$64
$65
$66,$67
$61
$39
$01
$70
$71
$72
$73
$74

Error Message

OK
READ ERROR
FILE TOO LARGE
RECORD NOT PRESENT
OVERFLOW IN RECORD
WRITE ERROR
WRITE PROTECT ON
DISK 10 MISMATCH
SYNTAX ERROR
WRITE FILE OPEN
FILE EXISTS
FILE TYPE MISMATCH
NO BLOCK
ILLEGAL TRACK OR SECTOR
FILE NOT OPEN
FILE NOT FOUND
FILES SCRATCHED
NO CHANNEL
OIR ERROR
DISK FULL
CBM DOS V2.6 4030
DRIVE NOT READY

TABLE OF TOKENIZED WORDS $E5D5 - $E609

$E5D5
$E5DB
$E5E1
$E5E6
$E5EB

$09
SOA
$03
$04
$05

ERROR
WRITE
FILE
OPEN
MISMATCH

$E5F4
$E5F8
$E5FE
$E603

356

$06
$07
$08
SOB

NOT
FOUND
DISK
RECORD

$E635
$E63A

$E63E

$E641

ERR4 $E644
CMDER2 $E645

CMDER3 $E648

$E64B

$E650

$E653

$E656

$E65A

NAME

ERROR

ERR1
ERR2

ERR3

$E60A
$E60B
$E60D

$E610

$E618

$E619

$E61D

$E621

$E625
$E627

$E62D
$E62E

DESCRIPTION OF WHAT ROM ROUTINE DOES

Handle errors reported by controller:
On entry: .A = error code number

.x = job number
Save the error code onto the stack.
Store the job number into JOBNUM ($F9).
Transfer job number (from .X) to .A,
multiply it by 2 (ASL), and transfer the
result back into .X.
Set TRACK ($80) and SECTOR ($81) using
the values from the last header read in
HDRS,X ($06,X) and HDRS+1,X ($07,X).
Pull the disk controller error code off
the stack and convert it into a DOS
error code by:
AND the error code in .A with $OF. If
the result is $00, branch to ERR1 to
handle error codes $10 - $14.
Compare the result to $OF (no drive) .
If the code is NOT $OF, branch to ERR2.
Load .A with $74 (DOS no drive code)
and branch to ERR3 (always).

Load .A with $06.
OR the code in .A with $20 and subtract
2 from the result.
Save the DOS error code onto the stack.
Compare the command number from CMDNUM
($022A) with $00 to see if this was a

VALIDATE command. If not, branch to ERR4
Set CMDNUM ($022A) to $FF.
Pull the DOS error code off the stack
and JSR to ERRMSG ($E6C7) to transfer
the error message to the error buffer.
JSR to INITDR ($D042) to initialize the
drive and eliminate the bad BAM in FAM.
JMP to CMDER3 ($E648) to complete the
error handling.

Pull the DOS error code off the stack. ­
JSR to ERRMSG ($E6C7) to transfer the
the error message to the error buffer.
JSR to CLRCB ($C1BD) to clear out the
command buffer.
Clear the write-BAM flag, WBAM ($02F9)
so a bad copy of the BAM will not be
written to disk.
JSR to ERRON ($C12C) to start the error
LED flashing.
JSR to FREICH ($D4DA) to free the
internal read or write channel.
Zero BUFTAB+CBPTR ($A3) to clear the
pointers.
Load .X with $45 (#TOPWRT) and transfer
this value to the STACK POINTER to purge
the stack

357

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

I $E65D I Load .A with the original secondary
address from ORGSA ($84), AND it with
$OF, and store the result as the current
secondary address in SA ($83).

$E663 Compare the secondary address (in .A)
with $OF. If it is $OF (the command
channel), branch to ERR10.

$E667 Set the interrupt flag to prevent any
interrupts!

$E668 If the listener active flag in LSNACT
($79) is not $00, we are an active
listener so branch to LSNERR.

$E66C If the talker active flag in TLKACT
($7A) is not $00, we are an active
talker so branch to TLKERR.

$E670 Load.X with the current secondary
address from SA ($83).

$E672 Load.A with the active channel number
from LINTAB,X ($022B,X). If this channel
number is $FF, the channel is inactive
so branch to ERRIO.

$E679 AND the channel number (in .A) with $OF,
store it as the current channel number
in LINDX ($82) and JMP to TLERR ($E68E).

TLKERR

LSNERR

TLERR

ERR10

HEXDEC

HEXO

HEX5

$E680

$E683

$E688

$E68B

$E68E

$E698

$E69B
$E69C
$E69F

$E6A3

$E6AA

Talker error recovery:
Release all bus lines and go idle.
JSR to FNDRCH ($DOEB) to find an unused
read channel.
JSR to ITERR ($EA4E) to release all bus
lines and JMP to IDLE ($EBE7).

Listener error recovery:
Release all bus lines and go idle.
JSR to FNDRCH ($DOEB) to find an unused
read channel.
JSR to ITERR ($EA4E) to release all bus
lines and JMP to IDLE ($EBE7).

Unused on the 1541

Terminate routine with a JMP to IDLE
($EBE7) .

Convert hex to BCD:
On entry: .A contains hex number
On exit: .A contains BCD number
Transfer hex from .A to .X.
Zero .A and set decimal mode (SED).
Compare .X value to $00. If equal,
branch to HEX5 to exit.
Clear carry flag, add 1 to value in .A,
decrement .X, and JMP back to HEXO.
Clear decimal mode (CLD).

358

$E6BA
$E6BB

OKERR $E6BC

$E6BF
ERRTSO $E6C1
ERRr~SG $E6C7

$E6C9

$E6D1

$E6D4

$E6D8
$E6D9

$E6DF

$E6E3

$E6E7
$E6E8

$E6EA

$E6ED

$E6F1
$E6F2

$E6F4

NAME

BCDDEC

BCD2

$E6AB
$E6AC
$E6BO

$E6B3
$E6B4

DESCRIPTION OF WHAT ROM ROUTINE DOES

Convert BCD to ASCII decimal digit.
On exit: .x contains BCD number

(CB+2)Y contains ASCII
Transfer BCD from .A to .x.
Divide BCD value in .X by 16 (4 x LSR)
JSR to BCD2 ($E6B4) to convert the most
significant digit to ASCII.
Transfer original BCD byte from .X to .A
AND the BCD value in .A with $OF to mask
off the higher order nybble, OR the
result with $30 (convert to ASCII), and
store the ASCII value in (CB+2)Y; ($A5)Y
Increment .Y
Terminate routine with an RTS.

Transfer error message to error buffer:
JSR to ERROFF ($C123) to turn off error
LED.
Load .A with $00 (no error) .
Set TRACK ($80) and SECTOR ($81) to $00.
Load .Y with $00.
Set pointer at CB+2/3 ($A5/6) to point
to the error buffer ($0205).
JSR to BCDDEC ($E6AB) to convert the
BCD number in .A to ASCII and store it
at the start of the error buffer.
St-ore $ 2C "," after the error code in
the error buffer (CB+2) ,Yi ($A5) ,Y.
Increment .Y (points into error buffer).
Copy the first character of the error
buffer from ERRBUF ($0205) into the
channel data area CHNDAT+ERRCHN ($0243).
Transfer the error number from .x to .A
and JSR to ERMOVE ($E706) to move the
error message into the error buffer.
Store $2C "," after the error message in
the error buffer (CB+2) ,Y; ($A5) ,Y.
Increment .Y (points into error buffer).
Load .A with the track number from
TRACK ($80).
JSR to BCDDEC ($E6AB) to convert the
track number in .A to ASCII and store
it in the error buffer.
Store $2C "," after the track number in
the error buffer (CB+2) ,Yi ($A5) ,Y.
Increment .Y (points into error buffer).
Load .A with the sector number from
SECTOR ($81).
JSR to BCDDEC ($E6AB) to convert the
sector number in .A to ASCII and store
it in the error buffer.

359

NAME

ERMOVE

E10

E20

E30

E40

$E6F7

$E6FF

$E701

$E705

$E706

$E707

$E70D

$E715
$E716
$E718

$E71C
$E71D

$E720

$E722

$E725

$E727

$E72F

$E735

DESCRIPTION OF WHAT ROM ROUTINE DOES

Decrement the .Y pointer by 1, transfer
the result to .A, clear the carry flag,
add $D5 (the start of the error buffer) ,
and store the final result (points to
the last character) into LSTCHR+ERRCHN
($0249) .
Increment the 10 byte of the pointer
in CB+2 ($A5) by 1 so it points to the
second character of the message (we put
the first character into the channel
data area already.
Set error channel status CHNRDY+ERRCHN
($F7) to $88 to indicate that it is
ready-to-talk.
Terminate routine with an RTS.

Move the error message from the error
table to the error buffer. The tokens
in the table are converted to words.
Transfer the error message number from
. A to . X.
Save the current values of RO ($86) and
RO+l ($87) onto the stack so we can use
this as a temporary pointer.
Set up a pointer in RO/RO+l to point to
the error message table in ROM ($E4FC).
Transfer the error number back into .A.
Zero .x to use as an indirect pointer.
Compare the error number (in .A) with
the error number in the table (RO,X)
($86,X). If a match is found, branch
to E50.
Save error number onto the stack.
JSR to EADV2 ($E775) to advance the
pointer to the error table.
If carry flag is clear, there are more
messages to check so branch to E30
No more messages so JSR to EADV2 ($E775)
to advance the pointer.
If carry flag is clear, we are not done
with the message yet so branch to E20.
Compare the hi byte of the pointer in
RO+l ($87) to $E6. If the pointer is
less than $E6, there is more table left
so branch to E40. If the pointer is
greater than $E6, we are past the end of
the table so branch to E45.
The hi bytes match so compare the 10
bytes of the pointer in RO ($86) with
SOA (the end of the table). If we are
past the end, branch to E45.
Pull the error number off the stack and
JMP to EIO to continue checking.

360

NAME

E45

E50

E55

E90

E60

E70

EADV1

EA10

$E739

$E73D

$E740

$E742

$E745
$E748

$E74A

$E74D

$E753

$E754

$E758
$E759

$E75D
$E75E
$E75F

$E762

$E763

$E765
$E766

$E767

$E76B

$E76D

$E76F

$E770

DESCRIPTION OF WHAT ROM ROUTINE DOES

Canlt fjnd error number in table so
pop the error number off the stack and
JMP to E90 ($E74D) to quit.

The error number has been located so
JSR to EADV1 ($E767) to advance past
the other error numbers.
If carry flag is clear, we have not
advanced far enough so branch to E50.
JSR to E60 ($E754) to check for token
and put character(s) into buffer.
JSR to EADV1 ($E767) to advance pointer.
If carry flag is clear, there is more to
do so branch back to E55.
JSR to E60 ($E754) to check for token
or last word.
All done! Pull original RO and RO+1
values off the stack and replace them.
Terminate routine with an RTS.

Sub to check for token or word and put
it into the buffer.
Compare the character in .A with $20
(the maximum token number +1). If .A is
greater, this is not a token so branch
to E70.
Save token (in .A) into .X.
Store $20 (implied leading space) into
the buffer at (CB+2) ,Yi ($A5) ,Y.
Lnc r erne n t .Y.
Move the token from .X back into .A.
JSR to ERMOVE ($E706) to add the token
word to the message.
Terminate routine with an RTS.

Store character (in .A) into the cuffer
at (CB+2),Yi ($A5),Y.
Increment .Y pointer into error buffer.
Terminate routine with an RTS.

Sub: Advance error pointer before move:
Increment the 10 cyte of the pointer in
RO ($86). If the new value is not $00,
branch to EA10.
Increment the hi byte of the pointer in
RO+1 ($87).
Load .A with the next character from
t.he errcr message table (RO,X) i ($A1,X).
Shift the byt.e in .A left. to set t.he
carry flag if t.his is t.he first. or last
character in t.he message.
Load .A with the next character from
the error message table (RO,X) i ($A1,X).

361

NAME

EADV2

EA20

$E772

$E774

$E775

$E778

$E77C

$E77E

DESCRIPTION OF WHAT ROM ROUTINE DOES

AND the character in .A with $7F to mask
off bit 7.
Terminate routine with an RTS.

Sub: Advance error pointer after move:
JSR to EA10 ($E76D) to get the next
byte from the error message table.
Increment the 10 tyte of the pointer in
RO ($86). If the new value is not $00,
branch to EA20.
Increment the hi byte of the pointer in
RO+1 ($87).
Terminate routine with an RTS.

UTILITY LOADER PROGRAM

This utility is used to load and execute user programs
or system utilities from disk.
This utility may be used in two ways:
a) On power-up:

If the data and clock lines are grounded at power up,
the routine is entered. It waits until the ground clip
is removed and then loads the first fjle found in the
directory into disk RAM using the first two bytes of
the file as the load address. Once the file is loaded,
it is executed starting at the first byte.

b) Normal entry:
The disk command "&:filename" will load and execute
the file whose filename is specified. For example:

PRINT#15,"&0:DISK TASK"

File structure:
The utility or program must be of the following form.
File type: USR
Bytes 1/2: Load address in disk RAM (lo/hi).
Byte 3: La byte of the length of the routine
Bytes 4/N: Disk routine machine code.
Byte N+1: Checksum. Note that the checksum includes

all bytes including the load address.
formula: CHECKSUM = CHECKSUM + BYTE + CARRY

NOTE: Routines may be longer than 256 bytes. However,
there MUST be a valid checksum byte after the
number of bytes specified in byte #3 and after
each subsequent 256 bytes!

BOOT2 I $E77F I Exit routine with an RTS.

BOOT $E780

$E784

Load .A with input port data from PB
($1800). Transfer data from .A to .X.

AND the data byte (in .A) with $04 to
see if clock is grounded. If not, branch
to EOOT2 to exit.

362

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$E788 I Transfer data byte from .x to .A.
$E789 AND the data byte (in .A) with $01 to

see if data line is grounded. If not,
branch to BOOT2 to exit.

$E78D Clear interrupt flag so that background
routines will run.

BOOT3

UTLODR

BOOT4

UTLDOO

UTLD10

$E78F

$E791

$E795

$E798

$E79B

$E7AO

$E7A3

$E7A8

$E7AB

$E7AF
$E7B4
$E7B8

$E7BB

$E7CO

$E7C5

$E7C9

$E7CE

$E7D3

$E7D8

$E7DC

$E7DF

BOOT CLIP MUST BE ON!
Load .A with input port data from PB
($1800) .

AND the data byte (in .A) with $05 to
see if clip has been removed. If not,
branch to BOOT3 to wait until it is.
Set the number of files to $01 by
incrementing F2CNT ($0278).
Set the command string length to $01 by
incrementing CMDSIZ ($0274).
Set the first character in the command
buffer, CMDBUF ($0200), to $2A ("*") to
match any file name.
JMP to BOOT4 ($E7A8) to continue.

NORMAL ENTRY POINT
Load .A with $8D and JSR to PARSE
($C268) to parse the command string.
JSR to KILLP ($F258) to kill protect.
Does nothing on the 1541!
Load .A with the file count from F2CNT
($0278) and save it on the stack.
Set file count in F2CNT ($0278) to $01.
Set first-byte flag in RO ($86) to $FF.
JSR to LOOKUP ($C44F) to locate the file
name on the disk.
Check the track link for tte file found
in FILTRK ($0280). If it is $00, the
file was not found so branch to UTLDOO.
Load .A with $39 to indicate a FILE NOT
FOUND error and JSR to CMDERR ($C1C8) to
exit.

Pull original file count off the stack
and restore it into F2CNT ($0278).
Set TRACK ($80) from the track link
for the file from FILTRK ($0280).
Set SECTOR ($81) from the sector link
for the file from FILSEC ($0285).
Load .A with $03 (USER FILE TYPE) and
JSR to OPNTYP ($D477) to open the file.
Load .A with $00 and store it in R1($87)
to initialize the checksum.
JSR to GTABYT ($E839) to get the first
byte from the file (10 of load address) .
Store the 10 byte of the load address
in R2 ($88).

363

NAME

UTLD20

UTLD30

UTLD35

UTLD50

$E7E1

$E7E4

$E7E7

$E7E9

$E7EC

$E7FO

$E7F3

$E7F6

$E7FA

$E7FD
$E7FF

$E802

$E805

$E809

$E80C

$E813

$E817

$E81B

$E81E

$E824

$E827

$E82C

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to ADDSUM ($E84B) to add the byte
into the checksum.
JSR to GTABYT ($E839) to get the second
byte from the file (hi of load address).
Store the hi byte of the load address
inR3 ($89).
JSR to ADDSUM ($E84B) to add the byte
into the checksum.
Load .A with the flag from RO ($86). If
the flag is $00, this is not the load
address so branch to UTLD20.
Load 10 byte of load address from R2
($88) and save it onto the stack.
Load hi byte of load address from R3
($89) and save it onto the stack.
Set first-byte flag in RO ($86) to $00.

JSR to GTABYT ($E839) to get the data
byte count from the file.
Store the data byte count in R4 ($8A).
JSR to ADDSUM ($E84B) to add the byte
into the checksum.

JSR to GTABYT ($E839) to get a data byte
from the file.
Zero .Y and store the data byte (in .A)
at desired address, (R2) ,Yi ($88) ,Y.
JSR to ADDSUM ($E84B) to add the byte
into the checksum.
Increment the 10 byte of the pointer in
R2 ($88) by $01. If the result is not
$00, branch to UTLD35.
Increment the hi byte of the pointer in
R3 ($89) by $01.
Decrement the byte counter in R4 ($8A).
If the result is not $00, there are more
bytes to get so branch back to UTLD30.

JSR to GIBYTE ($CA35) to get a data byte
from the file without an EOI check.
Load .A with the checksum from DATA($85)
and compare it with the computed check­
sum in R1 ($87), If they match, all is
OK so branch to UTLD50.
Bad checksum so JSR to GETHDR ($DE3E) to
set TRACK and SECTOR from the header.
Load .A with $50 to indicate a NO RECORD
error and JSR to CMDER2 ($E645).
Load .A with the EOI flag from EIOFLG
($F8). If the flag is NOT $00, we are
not done yet so branch back to UTLD10
to do another 256 bytes.

364

NAME

GTABYT

GTABYE

ADDSUM

$E830

$E839

$E83C

$E840

$E843

$E848
$E84A

$E84B
$E84C

$E850
$E852

DESCRIPTION OF WHAT ROM ROUTINE DOES

Routine all loaded so pull load address
off the stack (lo/hi), set up a jump
vector in F2/3 ($88/9), and do an
indirect JMP to the routine via (R2).

Subroutines for UTLODR

Get a byte from the file opened using
the internal read channel. There is an
end-of-file check done. If EOI occurs,
a #51 DOS error is reported.
JSR to GIBYTE ($CA35) to fetch a byte
and store it in DATA ($85).
Test the end of information flag, EOIFLG
($F8). If NOT $00, we have not come to
the end so branch to GTABYE.
We tave an EOI condition. JSR to GETHDR
($DE3E) to set TRACK and SECTOR from
the header.
Load .A with $51 to indicate a RECORD
SIZE error and JSR to CMDER2 ($E645).

Load .A with the byte from DATA ($85)
Terminate routine with an RTS.

Compute the running checksum in R1:
On entry: .A = new byte to add
Clear the carry flag.
Add the byte in R1 ($87) to the byte in
.A and then add $00 to the result to
add in the carry bit.
Store the new checksum into R1.
Terminate routine with an RTS.

SERIAL BUS COMMUNICATION ROUTINES

ENTRY POINT FOR IRQ ROUTINE TO SERVICE
ATTENTION (ATN) SIGNALS FROM THE C-64.

ATNIRQ

ATNSRV

$E853

$E856

SE85A

$E85B

$E85C

$E860

Load .A with the contents of PAl ($1801)
to clear the interrupt (IRQ) flag (CAl).
Store $01 in ATNPND ($7C) to indicate
that an ATN request is pending.
Terminate routine with an RTS.

Service the attention request from the
C-64.
Set the interrupt flag (SEI) to prevent
any interrupts.
Store $00 in ATNPND ($7C) to indicate
that no ATN request is pending.
Zero the listener and talker active
flags LSNACT ($79) and TLKACT ($7A).

365

NAME

ATNS15

ATN35

ATN40

$E864

$E867

$E86B

$E86D

$E870

$E873

$E87B

$E880

$E884

$E887

$E88B

$E891

$E895

$E89B

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .x with $45 and transfer this value
to the stack pointer to reset the stack.
Store $80 in the EOI flag, EOIFLG ($F8)
to indicate a non-EO I state.
Store $80 in the ATN mode flag, ATNMOD
($70) to set ATN mode for ACPT routine
JSR to CLKHI ($E9B7) to wait for the
clock line go high.
JSR to DATLOW ($E9A5) to set the data
line low as a response.
To get hardware control of the data line
acknowledge the attention signal by:
loading .A with the contents of port B,
PB ($1800), OR the byte with $10 to set
the ACK ATN bit, and store the result
back into port B, PB ($1800).
Check to see if the ATN signal is still
present by: loading .A with the contents
of port B, PB ($1800). If bit 7 is not
set, the ATN signal is gone so branch
to ATNS20 ($E8D7).
AND the contents of .A with $04 to see
if the clock line is still low. If bit
2 is set (result of AND is not $00), the
clock line is still low so branch back
to ATNS15 to wait.

Clock line went high so there is a
command byte waiting for us.
JSR to ACPTR ($E9C9) to get the command
byte.
Compare the command byte (in .A) with
$3F (unlisten). If this is not an
unlisten command, branch to ATN35.

General unlisten command received.
Zero the listener active flag, LSNACT
($7A) and branch to ATN122 ($E902).

Compare the command byte (in .A) with
$5F (untalk). If this is not an untalk
command, branch to ATN40.

General untalk command received.
Zero the talker active flag, TLKACT
($7A) and branch to ATN122 ($E902).

Compare the command byte (in .A) with
our talk address in TLKADR ($78). If
this is not our talk address, branch to
ATN45.

NAME

ATN45

ATN50

ATN95

$E89F

$E8A9

$E8AD

$E8B7

$E8B8

$E8BE

$E8BF

$E8C1

$E8C5

$E8CD

$E8CE

$E8D1

$E8D2

DESCRIPTION OF WHAT ROM ROUTINE DOES

Talk command for us.
Set the talker active flag, TLKACT ($7A)
to $01, the listener active flag, LSNACT
($79) to $00, and branch to ATN95.

Compare the command byte (in .A) with
our listen address in LSNADR ($77). If
this is not our listen address, branch
to ATN50.

Listen command for us.
Set the listener active flag, LSNACT
($79) to $01, the talker active flag,
TLKACT ($7A) to $00, and branch to ATN95

Save the command byte by transferring it
from .A to .X.
Test if the command byte is a secondary
address by AND'ing it with $60. If the
result is not $60, this is not a
secondary address so branch to ATN120.

NCTE: SA = $60 + N

A secondary address for the drive.
Transfer the original command byte from
.X back int-o .A.
Store the original secondary address
byte into ORGSA ($84).
ANC the secondary address (in .A) with
$OF to strip off any junk and store the
result as the current secondary address
in SA ($83).

Test if this is a CLOSE command for this
secondary address.
Load .A with the original secondary
address from ORGSA ($84). AND this value
with $FO to mask off the low nybble. If
the result is not $EO, this is not a
CLOSE command so branch to ATN122.

CLOSE the file with this SA.
Clear the interrupt flag (CLI) to enable
interrupts.
JSR to CLOSE ($DACO) to ClOSE the file.

WARNING: CLOSE routine does not return
in time to be handled by ATN122

Set the interrupt flag (SEI) to prevent
any interrupts.
Test if the ATN signal is still present.
If it is, branch back to ATN30.

367

NAME

ATSN20

ATN100

ATN110

ATN120

ATN122

TALK

TALK1

NOTLK

TLK05

$E8D7

$E8DB

$E8E3

$E8E7

$E8EA

$E8ED

$E8F1
$E8F4
$E8F7
$E8FA

$E8FD

$E902

$E909

$E90A

$E90F

$E911

$E905

$E906

DESCRIPTION OF WHAT ROM ROUTINE DOES

ATN SIGNAL GONE - CARRY OUT COMMAND
Store $00 in ATNMOD ($7D) to clear the
attention mode.
Release the ATN ACK line by loading the
byte from port B, PB ($1800), AND'ing
it with $EF ($FF-ATNA), and storing the
result back into port B ($1800).
Test the listener active flag, LSNACT
($79) to se if we are supposed to be a
listener. If flag is $00, branch to
ATN100.

BE AN ACTIVE TALKER.
JSR to DATHI ($E99C) to free data line.
serial bus.
JMP to IDLE ($EBE7).

Test the talker active flag, TLKACT($7A)
to see if we are supposed to talk. If
flag is $00, branch to ATNI10.

BE AN ACTIVE TALKER.
JSR to DATHI ($E99C) to free data line.
JSR to CLKLOW ($E9AE) to pull clock low.
JSR to TALK ($E909) to talk on the bus.
JMP to ILERR ($EA4E) to release all the
lines and shift to idle mode.

FIX SO DEVICE NOT PRESENT IS REPORTED
Store $10 in PB ($1800) to kill all the
lines except ATN ACK (ATN ACKnowledge).
Test if ATN signal is still present (bit
7 of PB set). If gone, branch to ATNS20.
If still present, loop to ATN122.

SERIAL BUS TALK ROUTINES

Set the interrupt flag (SEI) to prevent
any interrupts.
JSR to FNDRCH ($DOEB) to find an unused
read channel. If no channel is available
branch to NOTLK to exit.
Load .X with the current channel number
from LINDX ($82).
Load .A with the channel status from
CHNRDY,X ($F2,X). If bit 7 is set, the
status is OK so branch to TLK05.

Terminate routine with an RTS.

NOTE: CODE ADDED TO FIX VERIFY ERROR
JSR to TSTATN ($EA59) to test for an
ATN signal.

368

NAME

$E909

$E91C

$E91F

$E922

TALK2 $E925

$E928

$E92B

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to DEBNC ($E9CO) to test if the
clock signal is gone. NOTE: this must be
80 microseconds or more from JMP TALK1.
AND the data byte in .A with $01 and
save it on the stack.
JSR to CLKHI ($E9B7) to set the clock
line high.
Pull the test byte off the stack. If it
is $00, this is a VERIFY ERROR so branch
to TLK02 to send an EOI.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
data line has been set low.
AND the test byte (in .A) with $01.
If the result is not $00, the line has
not been set hi (no response) so branch
back to TALK2 to wait for response.

TLK02

TLK03

NOEOI

$E92F

$E931

$E937

$E93A

$E93D

$E941

$E944

$E947

$E94B

$E94E

$E951

$E954

Load .X with the current channel number
from LINDX ($82).
Load .A with the channel status from
CHNRDY,X ($F2,X), and AND it with $08 to
test if we have an EOI condition. If the
result is not $00, we do not have an
EOI so branch to NOEOI ($E94B).
Send an EOI signal to the C-64 by:
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to send an Ear and
test if the data line has been set.
AND the test byte (in .A) with $01.
If the result is not $00, the line has
not been set hi (no response) so branch
back to TLK02 to wait for hi response.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
data line has been set.
AND the test byte (in .A) with $01.
If the result equals $00, the line has
not been set 10 (no response) so branch
back to TLK02 to wait for 10 response.

JSR to CLKLOW ($E9AE) to set the clock
line low.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
data line has been set.
AND the test byte (in .A) with $01.
If the result is not $00, the line has
not been set hi (no response) so branch
back to NOEOI to wait for hi response.

369

NAME

ISR01

ISR02

ISRHI

ISRCLK

ISR03

ISR04

$E958

$E95C

$E95F

$E963

$E965

$E96C

$E96E
$E971

$E973

$E976

$E979

$E97B

$E980

$E983

$E987

$E98A

$E991

$E992

$E995

$E996

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store $08 in CaNT ($98) to set up the
bit counter.
JSR to DEBNC ($E9CO) to let the port
settle.
AND the test byte (in .A) with $01 to
be sure the line is hi before we send.
If the result is not $00, the line has
not been set hi (no response) so branch
to FRMFRX($E999) to wait for hi response
Load .X with the current channel number
from LINDX ($82).
Load .A with the channel data byte from
CHNDAT,X ($F2,X). Rotate the status byte
one bit right (ROR) and store the result
back into CHNDAT,X ($F2,X).
If the carry bit is set, branch to ISRHI
to send a 1.

JSR to DATLOW ($E9A5) to send a O.
Branch to ISRCLK to clock it.

JSR to DATHI ($E99C) to send a 1.

JSR to CLKHI ($E9B7) to set the clock
line hi. (rising edge).
Load .A with the speed flag from
DRVTRK+1 ($23). If the flag is not $00,
no slow down is required so branch to
ISR03.
JSR to SLOWD ($FEF3) to slow down the
data transmission.
JSR to CLKDAT ($FEFB) to pull the clock
low and release the data.
Decrement the bit count in CONT l$98).
If the count is not $00, there are more
bits to send from this byte so branch
back to ISR01.
JSR to DEBNC ($E9CO) to test if the
data line has been set.
AND the test byte (in .A) with $01.
If the result equals $00, the line has
not been set 10 (no response) so branch
back to ISR04 to wait for 10 response.
Clear the interrupt flag (CLI) to
allow interrupts in preparation for
sending the next byte.
JSR to GET ($D3AA) to get the next
data byte to send.
Set the interrupt flag (SEI) to prevent
any interrupts.
JMP to TALK1 to keep on talking.

370

NAME

FRMERX

DATHI

DATLOW

CLKLOW

CLKHI

DEBNC

$E999

$E99C

$E9A4

$E9A5

$E9AD

$E9AE

$E9B6

$E9B7

$E9BF

$E9CO

$E9C8

DESCRIPTION OF WHAT ROM ROUTINE DOES

TALK SUBROUTINES:

JMP to FRMERR ($EA4E) to release all
lines and go to idle mode.

Set data out line high.
Load .A with the byte from port B, PB
($1800), AND it with $FD ($FF-DATOUT),
and store the result back in PB ($1800).
Terminate routine with an RTS.

Set data out line 10.
Load .A with the byte from port B, PB
($1800), OR it with $02 (DATOUT), and
store the result back in PB ($1800).
Terminate routine with an RTS.

Set clock line 10.
Load .A with the byte from port B, PB
($1800), OR it with $08 (CLKOUT), and
store the result back in PB ($1800).
Terminate routine with an RTS.

Set clock line hi.
Load .A with the byte from port B, PB
($1800), AND it with $F7 ($FF-CLKOUT),
and store the result back in PB ($1800).
Terminate routine with an RTS.

Wait for response on bus.
Load .A with the byte from port B, PB
($1800). Compare the old port value (.A)
with the current value of PB ($1800). If
there is no change, branch to DEBNC.
Terminate routine with an RTS.

ACPTR

ACPOOA

ACPOO

$E9C9

$E9CD

$E900

$E9D3

$E9D7

$E9DA

$E9DF

SERIAL BUS LISTEN ROUTINES

Store $08 in CONT ($98) to set up the
bit counter.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
clock line has been set.
AND the test byte (in .A) with $04.
If the result is not $00, the line has
not been set hi (no response) so branch
back to ACPOOA to wait for hi response.
JSR to OATHI ($E99C) to make data line
high.
Store $01 in T1HC1 ($1805) to set up
for a 255 microsecond delay.
JSR to TSTATN ($EA59) to test for an
ATN signal.

371

NAME

$E9E2

$E9E9

$E9EC

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the interrupt flag register
from IFR1 ($180D) and AND the test byte
with $40. If the result is NOT $00, the
time has run out so it MUST be an EOI.
Since it is an EOI, branch to ACPOOB.
JSR to DEBNC ($E9CO) to test if the
clock line has been set.
AND the test byte (in .A) with $04.
If the result is $00, the clock line has
not been set 10 (no response) so branch
back to ACPOO to wait for 10 response.
If the result is not $00, the line has
been set 10 so branch to ACP01 to go on.

ACPOOB $E9F2

$E9F5

$E9FA

ACP02A $E9FD

$EAOO

$EA03

I $EA07

ACP01
ACP03 $EAOB

$EA15

$EA18

ACP03A $EA1A

$EA1D

JSR to DATLOW ($E9A5) to set data line
low as a response.
Load .x with $OA, and loop to count .x
down to $00 to delay for talker turn
around time.
JSR to DATHI ($E99C) to make data line
high.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
clock line has been set.
AND the test byte (in .A) with $04.
If the result is $00, the clock line has
not been set 10 (no response) so branch
back to ACP02A to wait for 10 response.
Store $00 in EOIFLG ($F8) to indicate
that an EOI has been received.

Load .A with the data byte from port B,
PB ($1800), EaR it with $01 to find the
complement of the data bit, shift the
data bit into the carry flag (LSR). AND
the result in .A with $02 to test if the
clock line has been set high to indicate
valid data. If the result is NOT $00,
the clock line has not been set hi yet
so branch back to ACP03 and try again.
Three $EA (Nap) bytes to fill space
left by speed-up to fix VC20 901229-02
ROM's.
We have valid data bit in the carry so
do a rotate right (ROR) on DATA ($85) to
store the bit into the data byte.
JSR to TSTATN ($EA59) to test for an
ATN signal.
JSR to DEBNC ($E9CO) to test if the
clock line has been set.

372

NAME

LISTEN

LSN15

LSN30

FRMERR
ITERR
ILERR

ATNLOW

TSTATN

$EA20

$EA24

$EA28

$EA2B

$EA2D

$EA2E

$EA2F

$EA34

$EA36

$EA39

$EA41

$EA44
$EA47

$EA48

$EA4B

$EA4E

$EA56

$EA59

DESCRIPTION OF WHAT ROM ROUTINE DOES

AND the test byte (in .A) with $04.
If the result is $00, the clock line has
not been set 10 (no response) so branch
back to ACP03A to wait for 10 response.
Decrement the bit counter in CONT ($98).
If the count is not $00, there are more
bits to get so branch back to ACP03.
JSR to DATLOW ($E9A5) to set data line
low as a response.
Load .A with the data byte from DATA
($ 85) .
Terminate routine with an RTS.

MAIN LISTEN ROUTINE

Set interrupt mask (SEI) to prevent any
interrupts.
JSR to FNDWCH ($0107) to find an unused
write channel. If none available, branch
to LSN15.
Load .A with the write channel status
from CHNRDY,X ($F2,X).
Rotate the status byte right (ROR). If
the carry bit is set, the write channel
is inactive so branch to LSN30.
Test if this is an OPEN command by:
loading .A with the original secondary
address from ORGSA ($84) and AND'ing it
with $FO. If the result is $FO, it is
an OPEN command so branch to LSN30.
Not an active channel so JMP to ILERR
($EA4E) to abort.
JSR to ACPTR ($E9C9) to get a data byte.
Clear interrupt mask (CLI) to allow
interrupt-s.
JSR to PUT ($CFB7) to put the data byte
into its proper place (DATA, EOI, SA).
JMP to LISTEN ($EA2E) to keep on
listening.

Release all bus lines and go idle:
Store $00 into port B, PB ($1800) and
JMP to IDLE ($EBE7).

LISTEN SUBROUTINES

JMP to ATNSRV ($E85B) to service ATN
request.

Test if in ATN mode:
Load .A with the attention mode flag
from ATNMOD ($70). If $00, we are not
in attention mode so branch to TSTA50.

373

NAME

TSTRTN

TSTA50

TATN20

PEZRO

PERR

PE20

PE30

REA7D
POlO
PD20

$EA5D 1

$EA62

$EA63

$EA6B

$EA6E
$EA70

$EA71

$EA73

$EA74

$EA75

$EA7D
$EA7E
$EA7F

$EAB3

$EAB6

DESCRIPTION OF WHAT ROM ROUTINE DOES

We are in attention mode. Load .A with
the byte from port B, PB ($1800). If
bit 7 of this byte is clear, the ATN
signal is gone so branch to TATN20 to
do what we were told.
The ATN signal hasn't gone away yet so
exit with an RTS.

We are not in attention mode now. Load
.A with the byte from port B, PB ($1800)
If bit 7 of this byte is clear, there is
no ATN signal present so branch to
TSTRTN to exit.
If bit 7 of this byte is set, there is
an ATN signal present so JMP to ATNSRV
($E85B) to service the ATN request.

JMP to ATNS20 ($EBD7) to carry out the
attention command.

---1
FLASH LED TO SIGNAL ERROR

No-error status:
Load .x with $00.
.BYTE $2C skips next two bytes.

Error status:
Load .X with the error number from TEMP
($ 6F) .
Transfer the error number from .X into
the stack pointer to use the stack as a
storage register.
Transfer the value of the stack pointer
(the error number) into .X
Load .A with $OB (the LED mask), OR it
with the data port controlling the LED's
LEDPRT ($lCOO). and JMP to PEA7A ($FEEA)
to turn on LED. NOTE: this is a patch to
be sure the data direction register for
the LED line is set to output.
Transfer the byte in .Y to .A
Clear the carry flag.
Add $01 to the contents of .A. If the
result is not $00, branch to PD20.
Decrement .Y (the hi byte of the timer).
If value of .Y is not $00, branch to
POlO.

Turn off LED(s).
Load .A with the byte from the data port
controlling the LED, LEDPRT ($lCOO). AND
the byte with $F7 ($FF - LED mask) and
store the result back into LEOPRT($lCOO)
to turn OFF the LED.

374

NAME

PE40
POll
PD21

$EA8E
$EA8F
$EA90

$EA94

$EA97

$EA9A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Transfer the byte in .Y to .A
Clear the carry flag.
Add $01 to the contents of .A. 'If the
result is not $00, branch to PD21.
Decrement .Y (the hi byte of the timer).
If value of .Y is not $00, branch to
PD11.
Decrement the count in .X. If the result
is greater than or equal to $00, branch
to PE30 to flash again.
Compare .X to $FC to see if we have
waited long enough between groups of
flashes. If .X <> $FC branch to PE40 to
wait some more. If .X = $FC, branch to
PE20 to repeat the sequence.

DSKINT

PV10

PV20

PV30

RM10

$EAAO

$EAA1
$EAA2

$EAA7

$EAAC
$EAAD
$EAAF

$EAB2
$EAB3

$EAB7
$EAB9

$EABC

$EACO
$EAC2

$EAC6

$EAC9

INITIALIZATION OF DISK

Set the interrupt flag (SEI) to prevent
interrupts.
Clear the decimal mode flag (CLD).
Store $FF into the data direction
register DDRA1 ($1803).
Load .X and .Y with $00.

Fill zero page with ascending pattern
Transfer the byte from .X into .A.
Store the byte from .A into $OO,X.
Increment .X. If .X is not $00, branch
back to PV10.
Check zero page bits.
Transfer the byte from .X into .A.
Compare the byte in .A with $OO,X.
If no match, branch to PEZRO ($EA6E).
Increment the contents of $OO,X by 1.
Increment .Y. If .Y is not $00, branch
back to PV30.
Check if $OO,X equals byte in .A. If no
match, something is wrong so branch to
PEZRO ($EA6E).

Store the $00 byte from .Y into $OO,X.
Check if $OO,X equals $00. If it does
not, something is wrong so branch to
PEZRO ($EA6E).

Increment the counter in .X. If the
result is not $00, we have more of zero
page to check so branch back to PV20.

Test the two 64K bit ROM's.

Increment TEMP ($6F) to set the next
error number ($01=$E/F;$02=$C/D ROM).

375

NAME

$EACB

$EACF
$EAD1
$EAD4

RT10 $EAD5

RT20 $EAD7

$EADC

$EADF
$EAE1
$EAE2

$EAE6

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store .X value (page number) into IP+1
($76) as the hi byte of the pointer.
Set 10 byte of pointer, IP ($75) to $00.
Set .Y to $00 and .X to $20 (32 pages).
Clear the carry flag.
Decrement the hi byte of the pointer in
IP+l ($76) and we'll do it backwards.
Add the ROM value from (IP) ,Y to the
contents of .A, increment the Y pointer,
and if .Y is not $00, branch back to
RT20 to do another byte from this page.
Decrement .X (page count). If the page
count is not zero, branch to RTIO to do
the next page of the ROM.
Add $00 to .A to add in the last carry.
Transfer the checksum from .A to .X.
Compare the checksum in .A with the
hi byte of the count in IP+1 ($76). If
the bytes do not match, branch to PERR2
($EB1F) . $E/F ROM: checksum = $EO

$C/D ROM: checksum = $CO
Compare checksum in .x with $CO to check
if we are done. If not, branch to RM10.

Test the disk RAM.

CR20
CR30

RAMTST
RA10

RA30

RA40

$EAEA
$EAEC

$EAEE

$EAFO
$EAF2
$EAF4

$EAF8

$EAFB

$EBOO
$EB02

$EB04

$EB07

$EBOD

Load .A with $01 (start of first block) .
Save contents of .A (page number) into
IP+1 ($76) as hi byte of pointer.
Increment TEMP ($6F) to bump the error
number ($03=RAM problem)
Load .x with $07 (number of RAM pages) .
Transfer .Y value to .A and clear carry.
Add the hi byte of the pointer, IP+1
($76) to the accumulator and store the
result in (IP,Y).
Increment .Y and if .Y is not $00,
branch to RAlO to fill RAM page.
Increment the hi byte of the pointer in
IP+1 ($76) and decrement the page count
in .X. If .X is not SOO, we have more
pages to do so branch back to RA10.
Load .X with $07 (number of RAM pages) .
Decrement the hi byte of the pointer in
IP+1 ($76). We'll check backwards.
Decrement .Y, transfer the .Y value into
.A and clear the carry.
Add the hi byte of the pointer, IP+1
($76) to the accumulator and compare the
result with (IP,Y). If they don't match,
branch to PERR2 to report the error.
EOR the contents of .A with $FF to flip
the bits and store the result into the
RAM at (IP) ,Y.

376

NAME

PERR2

DIAGOK

INTTAB
INTT1

$EB11

$EB17

$EB1A

$EB1D

$EB1F

$EB22

$EB25

$EB2D

$EB32

$EB3A

$EB43

$EB43

$EB4B
$EB4F

$EB53

$EB59

$EB5F

DESCRIPTION OF WHAT ROM ROUTINE DOES

EOR the contents of .A with (IP),Y and
store the result (should be $00) back
into (IP) ,Y. If the result is not $00,
branch to PERR2 to report the error.
Transfer the contents of .Y into .A. If
.Y is not $00, we have more to do on
this page so branch back to RA40.
Decrement the page count in .X. If there
are more pages to do, branch to RA30.
Branch to DIAGOK.

JMP to PERR ($EA71) to report error.

Load .X with $45 and transfer this value
to the stack pointer to reset the stack.
Load .A with the byte from the LED
control port, LEDPRT ($lCOO), AND it
with $F7 ($FF-LED mask) and store the
result back in LEDPRT to turn off LED.
Store $01 in PCR1 ($180C) to cause
interrupt on the negative edge of ATN.
Store $82 (10000010) in IFR1 ($180D)
and IER1 ($180E).

COMPUTE DEVICE # FROM BITS 5/6 OF PORT B

Load .A with the data byte from Port B,
PB ($1800). AND the byte with $60
(%01100000). Do one ASL and three ROLls
to convert from bits 6/5 to bits 1/0.
NOTE: OXXOOOOO becomes OOOOOOXX

OR .A with $48 (the talk address) and
store the result in TLKADR ($78).
EOR .A with $60 (the listen address) and
store the result in LSNADR ($77).

Initialize buffer pointer table
Zero .X and .Y
Zero .A and store the $00 byte in .A in
the buffer table at BUFTAB,X ($99,X).
Increment .X and load .A with the hi
byte of the pointer to the buffer from
BUFIND,Y ($FEEO) and store it into the
buffer table at BUFTAB,X ($99,X).
Increment .X and .Y and compare the new
value of .Y with $05 (the number of
buffers). If there are more buffers to
do, branch to INTT1.

Store the 10 byte of the pointer to the
command buffer ($00) into the buffer
table at BUFTAB,X ($99,X). Increment .X.

377

NAME

DSKIN1

DSKIN2

$EB64

$EB69

$EB6E

$EB72

$EB76

$EB7C

$EB7E

$EB87

$EB8B

$EB8F
$EB93
$EB95

$EB9A

$EB9F

$EBA4

$EBA8

$EBAC

$EBB6

$EBBC

$EBBF

$EBC2

$EBC5

$EBCD

$EBD1

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store the hi byte of the pointer to the
command buffer ($02) into the buffer
table at BUFTAB,X ($99,X). Increment .X.
Store the 10 byte of the pointer to the
error buffer ($05) into the buffer table
table at BUFTAB,X ($99,X). Increment .X.
Store the hi byte of the pointer to the
error buffer ($02) into the buffer table
table at BUFTAB,X ($99,X). Increment .X.

Load .A with $FF (inactive SA) and .X
with $12 (the maximum secondary address)
Loop to set all LINTAB,X ($022B,X)
values to $FF to indicate inactive.

Load .X with $05 (the maximum number of
channels - 1).
Loop to set all BUFO,X ($A7,X), BUF1,X
($AE,X) and SS,X (CD,X) values to $FF to
indicate that these buffers are unused.

Store $05 (the buffer count) into
BUFO+CMDCHN ($AB)
Store $05 (the buffer count + 1) into
BUFO+ERRCHN ($AC)
Store $FF into BUFO+BLINDX ($AD)
Store $FF into BUF1+BLINDX ($B4)
Store $05 (the error channel #) into
LINTAB+ERRSA ($023B).
Store $84 ($80 + the command channel #)
into LINTAB+CMDSA ($023A).
Store $OF (LINDX 0 to 5 free) into
LINUSE ($0256).
Store $01 (ready to listen) into
CHNRDY+CMDCHN ($F6).
Store $01 (ready to talk) into
CHNRDY+ERRCHN ($F7).
Store $EO into BUFUSE ($024F) and $FF
into BUFUSE+l ($0250).
Store $01 into WPSW ($lC) and WPSW+1
($lD) to set up the write protect status
JSR to USRINT ($CB63) to initialize the
user jump table.
JSR to LRUINT ($CEFA) to initialize the
least recently used table.
JSR to CNTINT ($F259) to initialize the
disk controller.
Set up the indirect NMI vector at VNMI
($65/6) to point to the diagnostic
routine, DIAGOK ($EB22).
Store $OA into SECINC ($69) as the
normal next sector increment.
Store $05 into REVCNT ($6A) as the
normal recovery counter.

378

NAME

SETERR

IDLE

IDLl

IDL01

IDL02

$EBD5

$EBDA

$EBDF

$EBE4

$EBE7

$EBE8

$EBFO

$EBF5

$EBFA

$EBFC

$EBFF

$ECOO

$EC04

$EC07

$EC08

$ECOC
$EC12

$EC14

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with $73 and JSR to ERRTSO
($E6C1) to set up power-on error message

73 CBM DOS V2.6 1541 0 0
Load .A with $lA (%00011010) and store
it in the data direction register DDRB1
($1802). ATNA,CLKOUT,DATOUT are outputs.
Store $00 in data port B, PB ($1800) to
set DATA, CLOCK, & ATNA lines high.
JSR to BOOT ($E780) to see if we need
to boot a systems routine.

IDLE LOOP. WAIT FOR SOMETHING TO DO.

Clear interrupt mask (CLI) to allow
interrupts.
Release all the bus lines:
Load .A with the byte from port B, PB
($1800), AND it with $E5 to set CLOCK,
DATA, and ATNA lines high, and store the
result back in PB ($1800).
Check the value of CMDWAT ($0255) to see
if there is a command waiting. If it is
$00, there is none waiting so branch to
IDL1.
Store $00 in CMDWAT ($0255) to clear the
command waiting flag.
Store $00 in NMIFLG ($67) to clear the
debounce.
JSR to PARSXQ ($C146) to parse and then
execute the command.
Clear interrupt mask (CLI) to allow
interrupts.
Check the value of ATNPND ($0255) to see
if there is an attention pending. If it
is $00, there is nothing pending (such
as the drive running or an open file)
so branch to IDL01.
JMP to ATNSRV ($E85B) to service the
attention request.
Clear interrupt mask (CLI) to allow
interrupts.
Store $OE (#14), the maximum secondary
address for files in TEMP+3 ($72).
Zero TEMP ($6F) and TEMP+1 ($70).
Load .X with the secondary address
counter from TEMP+3 ($72).
Load .A with the channel number for this
secondary address from LINTAB,X($022B,X)
If it is $FF, there is no active file
for this SA so branch to IDL3.

379

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

IDL3

IDL4

IDLS

IDL6

IDL7

$EC1B

$EC1F

$EC22
$EC23

$EC29

$EC2B

$EC2F

$EC31

$EC36

$EC39

$EC3B

$EC3E

$EC3F

$EC4S

$EC49
$EC4D

$ECS1

$ECSS
$ECS8

$ECSC
$ECSE

$EC62

We've found an active file so AND the
channel number with $3F and store the
result as the current channel number in
LINDX ($82).
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Transfer the buffer number from .A to .X
Determine which drive is to be used by

· loading the old job number from LSTJOB,X
($02SB,X), AND'ing it with $01, and
transferring the result into .X.
Increment the count of the number of
active files on drive X in TEMP,X($6F,X)
Decrement the SA count in TEMP+3 ($72).
If there are more secondary addresses
left to check, branch back to IDL2.
Load .Y with $04 (the number of buffers
less 1).
Load .A with the current job code for
this buffer from the job queue, JOBS,Y
($OO,Y). If bit 7 is not set, no job is
in progress so branch to IDLS.
There is a job in progress so AND the
job code in .A with $01 to mask off the
non-drive bits and transfer the result
to . X.
Increment the count of the number of
active files on drive X in TEMP,X($6F,X)
Decrement the buffer counter in .Y. If
there are more buffers to check, branch
to IDL4.
Set the interrupt mask (SEI) to prevent
interrupts while reading LEDPRT ($lCOO).
Load .A with the data byte from the
port controlling the LED, AND the byte
with $F7 ($FF - LED mask), and save the
result onto the stack.
Load .A with the current drive number
from DRVNUM i($7F) and save it in RO($86)
Zero DRVNUM ($7F).
Test the active file count for drive 0
in TEMP ($6F). If $00, branch to IDL7.
Load the write protect switch byte from
WPSW ($lC). If it is $00 branch to IDL6.
JSR to CLDCHN ($0313) to close all files
Pull the LED data byte off the stack,
OR it with $08 (LED mask) to turn on the
LED since drive 0 is active, and save
the byte back onto the stack.
Increment the DRVNUM ($7F). (to $01)
Test the active file count for drive 1
in TEMP+1 ($70). If $00, branch to IDL9.
Load the write protect switch byte from
WPSW ($lC). If it is $00 branch to IDL8.

380

NAME

IDL8

IOL9

IOL10

IDL11

IDL12

STDIR

$EC66
$EC69

$EC6D

$EC71
$EC72

$EC77

$EC7A

$EC7E

$EC81

$EC86

$EC8B

$EC90

$EC93

$EC98

$EC9B

$EC9E

$ECA2

$ECA7

$ECAC

$ECAE

$ECB3

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to CLDCHN ($D313) to close all filesl
Pull the LED data byte off the stack,
OR it with $00 (LED mask) to turn on the
LED since drive 1 is active, and save
the byte back onto the stack.
Copy the original drive number from
RO ($86) back into ORVNUM ($7F).
Pull the LED data byte off the stack.
Load .X with the error status from
ERWORD ($026C). If it is $00, the LED
is not flashing so branch to IDL12.

Error light is flashing:
Load .A with the LED data byte from
LEDPRT ($lCOO)
Compare the error status in .X with $80.
If it is not $80, this is not the first
time we have seen this error so branch
to IDL 10.
We have just encountered a new error
status so JMP to IDL11.

Load .X with the value of TIMER1 ($1805)
If bit 7 is set, we are still timing so
branch to IDL12.
Store $AO into TIMER1 ($1805) to set the
timer to a new 8 millisecond cycle.
Decrement the count of 8 millisecond
cycles in ERWORD ($026C). If the count
is not $00 yet, branch to IDL12
Time is up. EOR the LED status in .A
with the LED mask in ERLED ($0260) to
toggle the LED.
Store $10 in ERWORD ($026C) to start a
new timing cycle.
Store the current LED status (in .A)
into the LED port, LEOPRT ($lCOO).
JMP to IDL1 ($EBFF) the top of the loop.

Start loading the directory:
Set current secondary address, SA ($83)
to $00.
Load .A with $01 and JSR to GETRCH
($D1E2) to allocate a channel and one
buffer.
Zero .A and JSR to SETPNT ($D4C8) to
set the buffer pointer to the start of
the buffer.
Load .X with the channel number from
LINDX ($82).
Store $00 as the last character for this
channel in LSTCHR,X ($0244).
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).

381

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$ECB6
$ECB7

$ECBC

$ECC1

$ECC6

$ECCE

$ECD4

$ECD9

$ECDC

$ECDF

$ECEI

$ECE5

DIRI $ECEA

$ECF2

$ECF7

$ECFD

$ED03

$ED06

Transfer the buffer number into .X
Load .A with the current drive number
from DRVNUM ($7F) and store this number
as the last job number for this buffer
in LSTJOB,X ($025B).
Load .A with $01 and JSR to PUTBYT
($CFF1) to pqt the 10 byte of the load
address ($0401) into the buffer.
Load .A with $04 and JSR to PUTBYT
($CFF1) to put the hi byte of the load
address ($0401) into the buffer.
Load .A with $01 and JSR to PUTBYT
($CFF1) twice to put a phony program
line link ($0101) into the buffer.
Load .A with the drive number for the
directory from NBTEMP ($0272) and JSR to
PUTBYT ($CFFl) to put this to the buffer
as the 10 byte of the first line number.
Load .A with $00 and JSR to PUTBYT
($CFF1) to store this as the hi byte of
the line number.
JSR to MOVBUF ($ED59) to move the disk
name into the buffer.
JSR to GETACT ($DF93) to get the active
buffer number (returned in .A).
Multiply the buffer number by 2 (ASL)
and transfer it into .X.
Decrement the 10 byte of the pointer in
BUFTAB,X ($$99,X) twice.
Load .A with $00 and JSR to PUTBYT
($CFFl) to store this as the end of
program line null byte.
Load .A with $01 and JSR to PUTBYT
($CFFl) twice to put a phony program
line link ($0101) into the buffer.
JSR to GETNAM ($C6CE) to get the buffer
number and file name. If the carry flag
is clear on return, this is the last
entry so branch to DIR3.
Load .A'with the 10 byte of the block
count from NBTEMP ($0272) and JSR to
PUTBYT ($CFF1) to put this to the buffer
as the 10 byte of the line number.
Load .A with the hi byte of the block
count from NBTEMP+l ($0273) and JSR to
PUTBYT ($CFF1) to put this to the buffer
as the hi byte of the line number.
JSR to MOVBUF ($ED59) to move the file
name and file type into the buffer.
Load .A with $00 and JSR to PUTBYT
($CFF1) to store this as the end of
program line null byte.

382

NAME

I $EOOB

OIRI0 $EOOO

$EDI0

$E012

$E016
$E018

$EOIA

$EDI0

$E020
$E022

DIR3 $E023

$E029

$E02F

$ED32

$E035

$E037

$E03B

$E046

$E049

$ED4B

$E04E

$E050

DESCRIPTION OF WHAT ROM ROUTINE DOES

If the Z flag is not set on return, the
buffer is not full so branch to OIRI to
do the next file entry.
JSR to GETACT ($OF93) to get the active
buffer number (returned in .A).
Multiply the buffer number by 2 (ASL)
and transfer it into .X.
Store $00 as the 10 byte of the pointer
in BUFTAB,X ($$99,X).
Load .A with $88 (ready-to-talk).
Load .Y with the channel number from
LINOX ($82).
Store $88 (in .A) into the directory
list flag DIRLST ($0254) to indicate
that the directory list is full.
Store $88 (in .A) as the channel status
in CHNROY,Y ($00F2,Y).
Load .A with the byte from DATA ($85).
Terminate routine with an RTS.

End directory loading:
Load .A with the 10 byte of the block
count from NBTEMP ($0272) and JSR to
PUTBYT ($CFFl) to put this to the buffer
as the 10 byte of the line number.
Load .A with the hi byte of the block
count from NBTEMP+l ($0273) and JSR to
PUTBYT ($CFFl) to put this to the buffer
as the hi byte of the line number.
JSR to MOVBUF ($E059) to move the file
name and file type into the buffer.
JSR to GETACT ($OF93) to get the active
buffer number (returned in .A).
Multiply the buffer number by 2 (ASL)
and transfer it into .X.
Decrement the 10 byte of the pointer in
BUFTAB,X ($$99,X) twice.
Load .A with $00 and JSR to PUTBYT
($CFFl) three times to store the three
null bytes at the end of a program.
JSR to GETACT ($OF93) to get the active
buffer number (returned in .A).
Multiply the buffer number by 2 (ASL)
and transfer it into .Y.
Load .A with the 10 byte of the pointer
into the buffer from BUFTAB,Y ($0099,Y).
Load .Y with the channel number from
LINOX ($82).
Store the 10 byte of the pointer (in .A)
into the 10 byte of the pointer to the
last non-zero character in the buffer
LSTCHR,X ($0244,X).

383

NAME

MOVBUF
MOVB1

GETDIR

GETD3

G01

$ED53

$E056

$E059
$ED5B

$E061

$ED66

$ED67

$ED6A

$E06C

$ED60
$E06F

$ED71

$ED74

$ED76

$ED7B
$E07D

$ED7E
$ED7F

$ED82
$ED83

DESCRIPTION OF WHAT ROM ROUTINE DOES

Decrement the pointer in LSTCHR,X
($0244,X) by 1 so it does actually point
to the last character in the buffer.
JMP to DIRIO ($EDOO) to set the channel
status and flags and exit.

Transfer file name to listing buffer
Zero .Y
Load .A with the character from NAMBUF,Y
($02B1,Y) and JSR to PUTBYT ($CFF1) to
store it in the listing buffer.
Increment .Y. If .Y is not $lB (#27)
yet, branch to MOVB1.
Terminate routine with an RTS.

Get character for directory load
JSR to GETBYT ($0137) to get a byte from
the data buffer (loads next block if
necessary) .
On return, if the Z flag is set, we are
at the end-of-file so branch to GETD3.
Terminate routine with an RTS.

Store the byte (in .A) into DATA ($85).
Load .Y with the channel number from
LINDX ($82).
Load .A with the 10 byte of the pointer
into the directory buffer from LSTCHR,Y
($0244,Y)
If the 10 byte of the pointer is $00, we
have exhausted the current buffer so
branch to GD1.
We must be at the end-of-file so load
.A with $80 (EOI) and store it as the
channel status in CHNRDY,Y ($00F2,Y).
Load .A with the byte from DATA ($85).
Terminate routine with an RTS.

Save the null byte in .A onto the stack.
JSR to DIR1 ($ECEA) to create pseudo
program listing in the listing buffer.
Pull the null data byte off the stack.
Terminate routine with an RTS.

VALIDATE (COLLECT) DISK COMMAND

VALDAT
VERDIR $ED84

$ED87

$ED8A

Create a new BAM to match the sectors
used by the current directory entries.
JSR to SIMPRS ($C1D1) to parse the
command string and extract the drive #.
JSR to INITDR ($D042) to initialize the
drive specified.
Store $40 in WBAM ($02F9) to mark BAM
as dirty (needs to be written out).

384

NAME

V010

V015

V017

$E08F

$E092

$ED9A

$E09C
$EDAO

$EDA5

$EDA8

$EDAD

$EDBO

$EDB3
$EDB4

$EDB7
$EOB8

$EDBB

$EDBD

$EDC1
$EDC3
$EDC4

$EDC8

$EOCB

$EDCE

$EDDl

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to NEWMAP ($EEB7) to build a new
blank BAM in RAM.
Store $00 in DELIND ($0292) to force
a search for a valid directory entry
and JSR to SRCHST ($C5AC) to search the
directory for the first valid entry.
If an entry is found (Z flag not set),
branch to VD25 to process it.

No more entries so finish up.
Set SECTOR ($81) to $00.
Set TRACK ($80) with the value $12 (#18)
from DIRTRK ($FE85).
JSR to VMKBAM ($EDE5) to trace through
the directory sectors and mark those in
use in the BAM.
Store $00 in WBAM ($02F9) to mark BAM as
clean (BAM in RAM matches BAM on disk) .
JSR to SCRBAM ($EEFF) to write BAM out
to disk.
Terminate command with a JMP to ENDCMD
($C194).

Process directory entry for BAM
Increment .Y (points to entry in buffer)
Load the track link for the entry from
(DIRBUF) ,Y; ($94),Y and save it onto
the stack.
Increment .Y (points to entry in buffer)
Load the sector link for the entry from
(DIRBUF) ,Y; ($94) ,Y and save it onto
the stack.
Load .Y with $13 so it points to the
side sector track link of the entry.
Load the SS track link for the entry
from (DIRBUF) ,Y; ($94) ,Y. If the SS
track link is $00, this isn't a relative
file so branch to VD17.
Store the SS track link in TRACK ($80).
Increment .Y (points to entry in buffer)
Load the SS sector link for the entry
from (DIRBUF) ,Y; ($94) ,Y. Store the SS
sector link in SECTOR ($81).
JSR to VMKBAM ($EDE5) to trace through
the SS file and mark the sectors used
in the BAM.
Pull the main file's sector link off the
stack and store it in SECTOR ($81).
Pull the main file's track link off the
stack and store it in TRACK ($80).
JSR to VMKBAM ($EDE5) to trace through
the main file and mark the sectors used
in the BAM.

385

NAME

VD20

VD25

VMKBAM

MRK2

MRK1

$EDD4

$EDD7

$EDD9

$EDDB

$EDDF

$EDE2

$EDE5

$EDE8

$EDEB

$EDEE

$EDF3

$EDF8

$EDFD

$EE01

$EE04

$EE07

$EEOA

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to SRRE ($C604) to search for the
next valid directory entry.
If another entry is not found (Z flag
is set) branch to VD10 to finish up.

Check if entry found is properly closed
Zero .Y so. it points to the first
character in the entry, the file type.
Load .A with the file type byte from
(DI RBUF) , Y; ($ 9 9) , Y. I fbi t 7 isse t ,
the file has been properly closed so
branch to VD15 to process it.

File was not properly closed so JSR to
DELDIR ($C8B6) to delete it from the
directory.
JMP to VD20 ($EDD4) to find next entry.

Trace file by links and mark BAM
JSR to TSCHK ($D55F) to check that the
TRACK and SECTOR values are legal.
JSR to WUSED ($EF90) to mark the sector
pointed to by TRACK and SECTOR as IN USE
in the BAM.
JSR to OPNIRD ($D475) to open the
internal read channel and read in the
first one or two file blocks.
Load .A with $00 and JSR to SETPNT
($D4C8) to set the pointers to the first
byte in the buffer (the track link).
JSR to GETBYT ($D137) to read the track
link (in .A). Store it into TRACK ($80).
JSR to GETBYT ($D137) to read the sector
link (in .A). Store it into SECTOR ($81)
Load .A with the track link from TRACK
($80). If it is not $00, branch to MRK1.
Track link is $00. This must be the last
block in the file so JMP to FRECHN
($D227) to free the channel and return.
JSR to WUSED ($EF90) to mark the sector
pointed to by TRACK and SECTOR as IN USE
in t-he BAM.
JSR to NXTBUF ($D44D) to read in the
next block of the file.
JMP to MRK2 ($EDEE) to do next block.

NEW (FORMAT) DISK COMMAND

A full, or long NEW marks off the tracks
and sectors on a diskette, writes null
data blocks in all sectors, and creates
a new BAM and directory on track 18.
A short NEW merely creates a new BAM and
directory on track 18.

386

NAME

NEW

N101

N108

$EEOD

$EE10

$EE14

$EE19

$EEID

$EE20

$EE24

$EE27

$EE2C

$EE36

$EE39

$EE3D

$EE40
$EE43

$EE46
$EE49

$EE4B

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to ONEDRV ($C312) to set up drive
and table pointers.
Load the number of the drive that was
set up from FILDRV ($E2). If bit 7 is
not set, a legal drive number was
specified so branch to N101 to continue.

Load .A with $33 to indicate a BAD DRIVE
NUMBER and JMP to CMDERR ($C1C8).

AND the drive number (in .A) with $01 to
mask off the non drive bits and store
the result as the current drive in
DRVNUM ($7F).
JSR to SETLDS ($C100) to turn on the
drive active LED.
Load .A with the drive number from
DRVNUM ($7F), multiply it by 2 (ASL),
and transfer it into .x.
Load .Y with the pointer to the start
of the new disk 1D in the command buffer
from F1LTBL+l ($027B).
Compare the ID pointer in .Y with the
length of the command string in CMDSIZ
($0274). If these values are equal,
there is no new disk ID. Therefore this
must be a short new so branch to N108.

Transfer new disk ID from the command
buffer CMDBUF,Y ($0200,Y) and CMDBUF+l,Y
($0201,Y) to the master disk 1D area
DSKID,X ($12,X) and DSKID+1,X ($13,X).

JSR to CLRCHN ($D307) to clear all
channels while formatting.
Store $01 into TRACK ($80) as first
track to do.
JSR to FORMAT ($C8C6) to set up JMP
command in buffer that points to the
formatting routine to be used by the
disk controller.
JSR to CLRBAM ($F005) to clear the BAM.
JMP to N110 ($EE56) to continue.

Clear directory only.
JSR to INITDR ($D042) to init. the drive
Load .X with the drive number from
DRVNUM ($7F).
Load .A with the DOS version number
as given in the BAM, DSKVER,X ($0101,X)
and compare it with the 1541 DOS version
number ($41) from VERNUM ($FED5). If the
version numbers match, branch to N110.

387

NAME

N110

$EE53

$EE56

$EE59

$EE5C

$EE5E

$EE63

$EE6B
$EE6D

$EE75

$EE78

$EE7D

$EE83

$EE87
$EE88

$EE8D

$EE91

$EE96

$EE99
$EE9D

$EEAO

$EEA3

DESCRIPTION OF WHAT ROM ROUTINE DOES

DOS versions do not match so JMP to
VNERR ($0572) to abort.

JSR to NEWMAP ($EEB7) to create a new
BAM.
Load .A with the current job code from
JOBNUM ($F9) and transfer it to .Y.
Multiply the job code in .A by 2 (ASL)
and transfer the result to .X.
Load .A with $90, the offset of the disk
name in the BAM from DSKNAM ($FE88) and
store this pointer in BUFTAB,X ($99,X).
Load .X with the buffer number from
FILTBL ($027A), load .Y with $27 (the
name length) and JSR to TRNAME ($C66E)
to transfer the new disk name from the
command buffer into the BAM area.
Load .Y with $12 (position of disk 10).
Load .X with the drive number from
DRVNUM ($7F) and copy the DOS version
number ($41) from VERNUM ($FED5) into
DSKVER,X ($0101,X).
Transfer the drive number from .X to .A,
multiply it by 2 (ASL), and transfer the
result back into .X.
Transfer the first disk 10 character
from DSKID,X ($12,X) into (DIRBUF),Y
($94) ,Y. Increment .Y.
Transfer the second disk 10 character
from DSKID+1,X ($13,X) into (DIRBUF),Y
($94) ,Y. Increment .Y twice.
Store the directory DOS version ($32;
ASCII 2) int-o (DIRBUF) ,Y; ($94) ,Y.
Increment .Y.
Transfer the format type ($41; ASCII A)
from VERNUM ($FED5) into (DIRBUF),Y
($94) ,Y.
Load .Y with $02 so it points to the
third byte in the BAM and store the
format type ($41; in .A) into the BAM
a t (BMPNT) , Y; (s60) , Y.
Transfer the directory track number, $12
from DIRTRK ($FE85) into TRACK ($80).
JSR to USEDTS ($EF93) to mark track 18
sector 0 as used in the BAM.
Set SECTOR ($81) to $01.
JSR to USEDTS ($EF93) to mark track 18
sector 1 as used in the BAM.
JSR to SCRBAM ($EEFF) to write out the
new BAM to disk.
JSR to CLRBAM ($F005) to set all of BAM
area to $00.

388

DESCRIPTION OF WHAT ROM ROUTINE DOES

Create a new BAM map:
JSR to CLNBAM ($FOD1) to set entire BAM
area to soots.
Using .Y as a pointer, store $12 (#18)
and $01 as the track and sector link in
(BMPNT) ,Y; ($60) ,Y; as the first two
bytes of the new BAM.
Increment .Y until it is $04.
Zero the area to be used to manipulate
the BAM map bits, TO ($6F), T1 ($70),
and T2 ($71).
Transfer the byte from .Y into .A and
divide it by 4 (2 * LSR) to find the
track number.
JSR to MAXSEC ($F24B) to calculate the
maximum sector number for this track
and store this value as the number of
sectors free on this track in (BMPNT) ,Y
($60) ,Y.
Increment .Y. Transfer the maximum
sector number from .A into .X.
Set the carry flag (this 1 bit will
indicate that this sector is free) and
rotate this bit from the carry into
the bit map area (TO/1/2) using ROL TO,
ROL T1, and ROL T2.

T2 ($71) T1 ($70) TO ($6F) C
before 00000000 11111111 11111111 1
after 00000001<-11111111<-11111111<-0
Decrement the sector count in .X. If the
resulting .X value is not $00, there are
more to do so branch back to NM20.
Transfer the bit map for this track from
TO,X ($6F,X) to the BAM area (BMPNT) ,Yi
($6D,Y). Increment .Y and .X. If the
new .X value is not $03, we have more
to transfer so branch back to NM30.
Compare the .Y value to $90. If it is
less than $90, we have more tracks to
do so branch back to NM10.

Load .Y with $01 and store $FF as the
first directory block's sector link in
(BMPNT) , Yi ($60) , Y.
JSR to DRTWRT ($0464) to write out the
new directory block to disk.
Decrement the sector number (from $01 to
$00) in SECTOR ($81) and JSR to DRTRD
($0460) to read the BAM back into RAM.
Terminate command with a JMP to ENDCMD
($C194).

$EEEO

$EED7

$EEED

$EEE3

$EED9

$EED2

$EECF

$EEC4
$EEC7

NM20

NAME

$EEA6

$EEAC

$EEAF

$EEB4

NEWMPV
NEWMAP $EEB7

$EEBA

NM30

NM10

389

NAME

f'.1APOUT

SCRBAM

SB10

SB20

$EEF1

$EEF4

$EEF7
$EEFS

$EEFF

$EF01

$EF06

$EF07

$EFOC

$EFOF

$EF13

$EF16

$EF1D

$EF20
$EF24

$EF2S·

DESCRIPTION OF WHAT ROM ROUTINE DOES

JMP to NFCALC ($0075) to calculate the
number of blocks free.

Write out BAM to the drive specified in
LSTJOB.
JSR to GETACT ($OF93) to find the active
buffer number (returned in .A).
Transfer the buffer number to .X.
Load .A with the job code for the last
job from LSTJOB,X ($025B,X), AND it with
$01 to mask off the non-drive bits, and
store the result in ORVNUM ($7F).

Write out BAM to the drive specified in
ORVNUM.
Load .Y with the drive number from
DRVNUM ($7F).
Load .A with the BAM-dirty flag from
MDIRTY,Y ($0251,Y). If the flag is not
$00, the BAM is dirty (the copy in RAM
does NOT match the copy on disk) so
branch to SB10 to write it out to disk.
BAM is clean so there is no reason to
write it out. Terminate routine with
an RTS.

Zero the BAM-dirty flag in MDIRTY,Y
($0251, Y) .
JSR to SETBPT ($EF3A) to set up the
pointer to the BAM.
Load .A with the drive number from
DRVNUM ($7F), multiply it by 2 (ASL),
and save the result onto the stack.
JSR to PUTBAM ($FOA5) to put the memory
images to the BAM.
Pull the (drive number x 2) off the
stack, clear the carry flag, add $01,
and JSR to PUTBAM ($FOA5) to put the
memory images to the BAM.

Verify that the block count for the
track matches the bit map for the track.
Load .A from TRACK ($SO) and push the
track number onto the stack.
Load .A with $01 and store it in TRACK.
Multiply the track number in .A by 4
(2 x ASL) and store the result as the
10 byte of the buffer pointer in BMPNT
($60) .
JSR to AVCK ($F220) to check that the
blocks free for the track agrees with
the bit map.

390

NAME

SETBPT

NUMFRE

WFREE

FRETS

FRETS2

$EF2B I

$EF34

$EF37

$EF3A

$EF3E

$EF41

$EF43

$EF48

$EF4C

$EF4D

$EF4F

$EF55

$EF5B

$EF5C

$EF5F

$EF62

$EF63

DESCRIPTION OF WHAT ROM ROUTINE DOES

Increment the track count in TRACK ($80)
If the new count is less than the
the maximum track number (#36), branch
back to SB20 to check the next track.
Pull the original track number off the
stack and restore it into TRACK ($80).
JMP to DOWRIT ($D58A) to write out the
BAM to disk.

Read in the BAM, if not already in RAM,
and set the pointers to the BAM
JSR to BAM2A ($F10F) to get the BAM
channel number in .A (drO = 6). Transfer
the channel number into .X.
JSR to REDBAM ($FOOF) to read in the BAM
if not already in memory.
Load .X with the buffer number used for
the read from JOBNUM ($F9).
Set the hi byte of the pointer to the
BAM in BMPNT+l ($6E) using the hi byte
pointer value for the buffer from
BUFIND,X ($FEEO,X).
Set the 10 byte of the pointer to the
BAM in BMPNT ($60) to $00.
Terminate routine with an RTS.

Get the number of blocks free on the
drive specified in DRVNUM:
Load .X with the drive number from
DRVNUM ($7F).
Transfer the 10 byte of the number of
blocks free from NOBL,X ($02FA,X) into
NBTEMP ($0272).
Transfer the hi byte of the number of
blocks free from NOBH,X ($02FC,X) into
NBTEMP+l ($0273).
Terminate routine with an RTS.

Free the block specified in TRACK and
SECTOR as free in the BAM:
JSR to FIXBAM ($EFF1) to write out the
BAM the value in WBAM indicates that it
is needed.
JSR to FREUSE ($EFCF) to calculate the
index to the BAM entry that contains
the desired TRACK and SECTOR. On return
.Y points to the entry and .X points to
the bit within the entry.
Set the carry flag (the flag for no
action required).
If Z flag is NOT set, the desired TRACK
and SECTOR is already free in the BAM
so branch to FRERTS to exit.

391

NAME

FRERTS

DTYBAM

~vUSED

USEDTS

$EF65

$ED6C

$ED6F

$EF72

$EF78

$EF7F

$EF84

$EF87

$EF88

$EF8A

$EF8F

$EF90

$EF93

$EF96

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with BAM entry from (BMPNT) ,Y
($6D) ,Y, OR it with the bit map mask
from BMASK,X ($EFE9,X) to turn on (free)
the bit that corresponds to the desired
block, and store the result back into
(BMPNT) .s , ($60) ,Y.
JSR to DTYBAM ($EF88) to set the dirty
BAM flag (BAM in RAM and BAM on disk
do not match).
Load .Y with the pointer to the number
of blocks free for the track from TEMP
($6F) and clear the carry flag.
Load .A with the blocks free for the
track from (BMPNT) .s , ($6D) ,Y, add 1,
and store the result back into (BMPNT) ,Y
Load .A with the TRACK ($80) number of
the block we just freed. If it is on the
directory track (#18), branch to USE10
($EFBA) .
Increment the 10 byte of the count of
the total number of blocks free on the
disk, NDBL,X ($02FA,X) by 1. If the
result is NOT $00, branch to FRERTS
Increment the hi byte of the count of
the total number of blocks free on the
disk, NDBH,X ($02FC,X) by 1.
Terminate routine with an RTS.

Set dirty-BAM flag:
Indicates that the copy of the BAM in
disk RAM does not match the disk copy.
Load .X with the current drive number
from DRVNUM ($7F).
Store a $01 into the dirty BAM flag in
MDIRTY,X ($0251).
Terminate routine with an RTS.

Mark the block specified in TRACK and
SECTOR as USED in the BAM:
JSR to FIXBAM ($EFF1) to write out the
BAM the value in WBAM indicates that it
is needed.
JSR to FREUSE ($EFCF) to calculate the
index to the BAM entry that contains
the desired TRACK and SECTOR. On return
.Y points to the entry and .X points to
the bit within the entry.
If Z flag is set, the desired TRACK and
SECTOR is already marked as USED in the
BAM so branch to USERTS to exit.

392

NAME

USE10

USE20

USERTS

FREUSE

FREUS2

$EF98

$ED9F

$EDA2

$EFA4

$EFAB

$EFB2

$EFB7

$EFBA

$EFBD

$EFC2

$EFC9

$EFCE

$EFCF

$EFD2
$EFD3

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with BAM entry from (BMPNT),Y
($60) ,Y, EOR it with the bit map mask
from BMASK,X ($EFE9,X) to zero (in use)
the bit that corresponds to the desired
block, and store the result back into
(BMPNT) , Y; ($ 60) , Y.
JSR to DTYBAM ($EF88) to set the dirty
BAM flag (BAM in RAM and BAM on disk
do not match).
Load .Y with the pointer to the number
of blocks free for the track from TEMP
($ 6F) .
Load .A with the blocks free for the
track from (BMPNT) ,Y; ($60) ,Y, set the
carry flag, subtract $01, and store the
result back into (BMPNT) ,Y.
LOcd .A with the TRACK ($80) number of
the block we just freed. If it is on the
directory track (#18), branch to USE20
($EFBD) .
Load .A with the 10 byte of the count of
the total number of blocks free on the
disk, NDBL,X ($02FA,X). If the 10 byte
is NOT $00, branch to USE10.
Decrement the hi byte of the count of
the total number of blocks free on the
disk, NDBH,X ($02FC,X) by 1.
Decrement the 10 byte of the count of
the total number of blocks free on the
disk, NDBL,X ($02FA,X) by 1.
Load .A with the hi byte of the count of
the total number of blocks free on the
disk, NDBH,X ($02FC,X). If the hi byte
is NOT $00, branch to USERTS.
Load .A with the 10 byte of the count of
the total number of blocks free on the
disk, NDBL,X ($02FA,X). If the 10 byte
is greater than 2, branch to USERTS.
Load .A with $72 to indicate a DISK FULL
error and JSR to ERRMSG ($E6C7).
Terminate routine with an RTS.

Calculate index into the BAM for
FRETS and USEDTS.
On exit: Z flag = 1 if used in BAM

Z flag = 0 if free in BAM
JSR to SETBAM ($FOl1) to set BAM image
in memory. On return .Y contains a
pointer to the start of the bit map for
the desired track.
Transfer the pointer from .Y to .A.
Store the pointer from .A into TEMP
($ 6F) .

393

NAME

FREUS3 $EFD5

$EFDA

$EFDE

$EFE3

$EFE8

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the desired sector number
from SECTOR ($81) and do three LSR's to
divide the sector number by 8 to find
out which of the three bytes for this
track the sector is in.
Set the carry flag, add the pointer to
the start of the track from TEMP ($6F)
to the sector index (0/1/2) in .A, and
transfer the result to .Y.
Load .A with the desired sector number
from SECTOR ($81), AND the sector number
with $07 to find the bit position that
corresponds to that sector, and transfer
the result into .X.
Load .A with the BAM byte that contains
the bit for the desired block from
(BMPNT) ,Yi ($6D) ,Y, and AND it with the
bit map for the appropriate bit from
BMASK,X ($EFE9,X) to set the Z flag.
Terminate routine with an RTS.

BMASK $EFE9
$EFEA
$EFEB
$EFEC
$EFED
$EFEE
$EFEF
$EFFO

Bit mask table
.BYTE $01 1
.BYTE $02 2
.BYTE $04 4
.BYTE $08 8
.BYTE $10 16
.BYTE $20 32
.BYTE $40 64
.BYTE $80 128

$EFE9-EFFO

FIXBAM

FBAMIO

CLRBAM

CLBl

$EFF1

$EFF6

$EFF8

$EFFA

$EFFC

$F004

$F005

$F008
$FOOB

$F010

Write out BAM to disk if value in WBAM
indicates that it is necessary.
Load .A with $FF and BIT this value with
the value in WBAM ($02F9).
If Z flag set (WBAM was $00) branch to
FBAM10 to exit.
If N flag clear (bit 7 of WBAM was 0)
branch to FBAM10 to exit.
If V flag set (bit 6 of WBAM was 0)
branch to FBAM10 to exit.
Set WBAM ($02F9) to $00 and JSR to
DOWRIT ($D58A) to write BAM to disk.
Terminate routine with an RTS.

Zero the BAM area:
JSR to SETBPT ($EF3A) to set the
pointers to the BAM.
Zero .Y and .A.
Loop, using .Y as an index, to store
soots in all 256 locations in the BAM
buffer.
Terminate routine with an RTS.

394

NAME

SETBAM

SBM10

SBM30

$FOll

$F017

$F019

$F022

$F025

$F027

$F02E

$F033

$F036

$F03B

$F03E

$F040

$F042

$F045

DESCRIPTION OF WHAT ROM ROUTINE DOES

Set BAM image in memory:
Save the values of TO ($6F) and Tl ($70)
onto the stack so we can use this as a
work area.
Load .X with the current drive number
from DRVNUM ($7F). Load .A with the
drive status for this drive from NODRV,X
($FF,X). If the drive status is $00, we
have a functioning drive so branch to
SBM10 to continue.

Load .A with $74" to indicate a DRIVE NOT
READY error and JSR to CMDER3 ($E648).

JSR to BAM2A ($F10F) to load .A with the
channel number and .X with the drive #.
Transfer the channel number (in .A) into
TO ($6F).
Transfer the drive number from .X into
.A, multiply it by 2 (ASL) , store the
result in Tl ($70) and in .X.
Load .A with the current track number
from TRACK ($80) and compare it with
the track value given in the BAM track
table, TBAM,X ($029D,X). If the values
match, the BAM is in the correct area
of memory so branch to SBM30.

Increment .X by 1 and store the result
in Tl ($70). Note that .X now points to
the alternate BAM channel.
Compare the current track value (in .A)
with the contents of the BAM track table
TBAM,X ($029D,X) for the alternate BAM
location. If the value match, the BAM
is in an appropriate location so branch
to SBM30.

JSR to SWAP ($F05B)· to read in the BAM
if necessary and move it to the correct
area of the disk RAM.

Load .A with the BAM channel number from
Tl ($70).
Load .X with the current drive number
from DRVNUM ($7F).
Store the channel number (in .A) into
UBAM,X ($029B,X) to set the last channel
used pointer.
Multiply the channel number (in .A) by
four (2 x ASL) , clear the carry, and
add $Al, the 10 byte of the pointer, to
the start of the BAM ($02Al). Store the
result into the 10 byte of the BAM
pointer, BMPNT ($60).

395

NAME

SWAP

SvJAP3

$F04C

$F052
$F054

$F05A

$F05B

$F060

$F063

$F070

$F074

$F07A

$F07F

$F084

$F088

$F08A

$F090

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with $02, the hi byte of the
pointer to the start of the BAM, add $00
to add in the carry (if any) from the
previous addition, and store the result
as the hi byte of the BAM pointer,
BMPNT+1 ($6E).
Zero . Y.
Pull the original values of T1 ($70) and
TO ($6F) off the stack and store them
back in their original locations.
Terminate routine with an RTS.

Swap images of the BAM:
Load .x with the index into the buffer
from TO ($6F) and JSR to REDBAM ($FODF)
to read the BAM if not already in RAM.
Load .A with the current drive number
from DRVNUM ($7F) and transfer the drive
number into. X.
Multiply the drive number in .A by two
(ASL), OR it with the least used BAM
pointer in UBAM,X ($029B,X), EOR it with
$01, and AND it with $03. Store the
result into T1 ($70) and JSR to PUTBAM
($FOA5) to put the memory image into the
BAM.
Load .A with the buffer number from
JOBNUM ($F9), multiply it by two (ASL),
and transfer the result into .x.
Load .A with the track number from TRACK
($80), multiply it by four (2 x ASL) ,
and store the result as the 10 byte of
the pointer in BUFTAB,X ($99,X).
Load .A with the value from T1 ($70),
multiply it by four (2 x ASL), and
transfer the result into .Y.
Transfer one byte of the BAM from its
position in RAM, (BUFTAB,X) ($99,X), to
its proper position BAM,Y ($02A1,Y).
Zero the memory location that held the
BAM byte (BUFTAB,X); ($99,X).
Increment the 10 byte of the pointer to
the original BAM image BUFTAB,X ($99,X).
Increment .Y, the pointer to the new BAM
image. Transfer this value into .A, AND
it with $03 to mask off the high order
bits, and if the result is not $00,
branch back to SWAP3 to move the next
byte.
Load .X with the drive number from T1
($70). Load .A with the current track
number from TRACK ($80) and store the
track number into TBAM,X ($029D,X) to
set the track number for the image.

396

NAME

SWAP4

PUTBAM

SWAPl

SWAP2

CLNBAM

$F097

$F09C

$F09F

$FOA4

$FOA5
$FOA6

$FOAB
$FOAC
$FOBl

$FOB5

$FOBA

$FOBE

$FOC3

$FOC8

$FOCA

$FODO

$FODl

$FOD5

$FODA

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load .A with the write-BAM flag from
WBAM ($02F9). If the flag is non-zero,
branch to SWAP4 so we don't write out
the BAM now.
JMP to DOWRIT ($D58A) to write out the
BAM to disk and terminate the routine.

OR the write-BAM flag (in .A) with $80
to indicate that a write of the BAM is
pending and store the result back into
WBAM ($02F9).
Terminate routine with an RTS.

Transfer memory image of BAM into the
correct position in disk RAM:
Transfer the pointer in .A into .Y.
Load .A with the track number of the BAM
from TBAM,Y ($029D,Y). If the track
number is $00, there is no BAM image
in RAM so branch to SWAP2.
Save the track number onto the stack.
Zero the track flag in TBAM,Y ($029D,Y).
Load .A with the buffer number from
JOBNUM ($F9), multiply it by two (ASL),
and transfer the result into .x.
Pull the track number off the stack,
multiply it by four (2 x ASL), and store
the result as the 10 byte of the pointer
in BUFTAB,X ($99,X).
Transfer the pointer in .Y into .A,
multip"ly it by four (2 x ASL), and
transfer the result back into .Y.
Transfer one byte of the BAM image from
BAM,Y ($02Al) to (BUFTAB,X); ($99,X).
Zero the memory location that held the
BAM byte BAM,X ($02Al,X).
Increment the 10 byte of the pointer to
the original BAM image BUFTAB,X ($99,X).
Increment .Y, the pointer to the new BAM
image. Transfer this value into .A, AND
it with $03 to mask off the high order
bits, and if the result is not $00,
branch back to SWAPl to move the next
byte.
Terminate the routine with an RTS.

Zero the track number for BAM images:
Load .A with the drive number from TRACK
($80), multiply it by two (ASL), and
transfer the result into .X.
Zero .A and store $00 as the track #
for the BAM image in TBAM,X ($029D,X).
Increment .X and store $00 as the track
for the BAM image in TBAM,X ($029D,X).

397

NAME

$FODE

DESCRIPTION OF WHAT ROM ROUTINE DOES

Terminate the routine with an RTS.

REDBAM $FODF

$FOE5

$FOE7

$FOEB

$FOED

RBM10 $FOF2

$FOF4

$FOF6

$FOFC

$FOFE

$F103

$F107

Read BAM from disk if not already in RAM
Load .A with the value from BUFO,X and
compare it with $FF. If it is not $FF,
the BAM is in memory so branch to RBM20.
Transfer the channel number from .X into
.A and save it onto the stack.
JSR to GETBUF ($D28E) to find a free
buffer. On return transfer the buffer
number from .A into .X.
If a buffer was found (bit 7 of buffer
number not set), branch to RBM10.
Load .A with $70 to indicate a NO
CHANNEL ERROR and JSR to CMDERR ($C1C8).

Store the buffer number assigned (in .X)
into JOBNUM ($F9).
Pull the channel number off the stack
and transfer it into .Y.
Transfer the buffer number from .X to
.A, OR it with $80 to set it as inactive
for stealing, and store the result into
BUFO,Y ($00A7,Y).
Multiply the buffer number (in .A) by
two (ASL) and transfer the result into
• X.
Load .A with the directory track number
(#18) from DIRTRK ($FE85) and store it
in the header table at HDRS,X ($06,X).
Store $00 as the BAM sector number in
the header table at HDRS+1,X ($07,X).
JMP to DOREAD ($D586) to read in the
BAM and terminate routine.

RBM20

BAM2A

B2X10

BAA~12X

$FIOA

$F10E

$F10F
$F111

$Fl15

$Fl18

$Fl19

$FI1C

AND the channel number (in .A) with $OF
and store the result in JOBNUM ($F9) to
set the BAM's job number.
Terminate routine with an RTS.

Load .A with the channel # for the BAM
Load .A with $06, the BAM's channel #
Load .X with the current drive number
from DRVNUM ($7F). If the drive number
is not $00, branch to B2X10.
Clear the carry flag and add $07 to find
the BAM channel number for drive #1.
Terminate routine with an RTS.

Load .X with the channel # for the BAM
JSR TO BAM2A ($F10F) to load .A with the
BAM's channel number.
Transfer the channel # from .A to .X.

398

NAME

NXTTS

NXTDS
NXTl

NXTERR

NXT2

$Fl1D

$FllE

$F121
$F125

$F12D

$F130

$F133

$F136

$F13A

$F141

$F143
$F145

$F14C

$F14F
$F150

$F152

$F156
$F158

$F15A

$F15F
$F161

$F163

$F166

DESCRIPTION OF WHAT ROM ROUTINE DOES

Terminate routine with an RTS.

Next available track and sector:
Given current track and sector, this
routine returns the next available track
and sect.or.
JSR to GETHDR ($DE3E) to set TRACK and
SECTOR from the most recent header.
Store $03 into TEMP ($6F).
Load .A with $01, OR it with the value
of the write-BAM flag, WBAM ($02F9), and
store the result back into WBAM to
prevent a write of the BAM.
Load .A with the value from TEMP ($6F)
and save it onto the stack.
JSR to SETBAM ($F011) to set the BAM
image into memory.
Pull the original value of TEMP off the
stack and store it back in TEMP ($6F).
Load .A with the BAM value from
(BMPNT) ,Yi ($6D,Y). If the value is not
$00 (no sectors free), branch to FNDNXT
($F173) .
Load .A with the current track number
from TRACK ($80). If the track number
is #18 (directory track), branch to
NXTERR to abort.
If the current track is less than #18,
branch to NXT2.
Increment the track number in TRACK($80)
Compare the value of TRACK to $24 (#36),
the maximum track value. If they are not
equal, branch to NXT1 to check out this
track.
Load .X with $12 (#18), the directory
track number from DIRTRK ($FE85).
Decrement the track number in .X.
Store the track number (in .X) into
TRACK ($80).
Store $00 as the sector number into
SECTOR ($81).
Decrement the counter in TEMP ($6F).
If the count is not $00 yet, branch to
NXT1.
Load .A with $72 to indicate a DISK FULL
error and JSR to CMDERR ($C1C8).

Decrement the track number in TRACK($80)
If the value in TRACK is not $00, branch
to NXT1 to check out this track.
Load .X with $12 (#18), the directory
track number from DIRTRK ($FE85).
Increment the track number in .X.

399

NAME

FNDNXT

FNDNO

FNDNI

FNDN2

$F167

$F169

$FI6D
$FI6F

$F171

$F173

$F175

$F178
$FI7A

$F17F

$F185

$F189
$FI8A

$FI8C

$F191

$F193

$F195

$F198

$F19A

$F19D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store the track number (in .X) into
TRACK ($80).
Store $00 as the sector number into
SECTOR ($81).
Decrement the counter in TEMP ($6F).
If the count is not $00 yet, branch to
NXTI.
If the count is $00, branch to NXTERR.

Find the optimum next sector on this
track. Next sector=Current+change (#10)
Load .A with the sector number from
SECTOR ($81).
Clear the carry flag and add the sector
increment from SECINC ($69). The normal
increment is $OA (#10). It is $03 for
the directory track.
Store the new sector number into SECTOR.
Load .A with the current track number
from TRACK ($80) and JSR to MAXSEC
($F24B) to find the maximum sector
number on this track (returned in .A).
Store the maximum sector number into
LSTSEC ($024E) and CMD ($024D).
Compare the maximum sector number (in
.A) with the new sector value in SECTOR
($81). If the new sector value is less
than the maximum, branch to FNDNO.

New sector number too big so subtract
away the maximum sector number on track.
Set the carry flag.
Load .A with the new sector number from
SECTOR ($80).
Subtract the maximum sector number on
this track from LSTSEC ($024E) and store
the result into SECTOR ($81).
If the revised sector number is $00,
branch to FNDNO.

Decrement the revised sector number in
SECTOR ($81) by 1.

JSR to GETSEC ($F1FA) to set the BAM
into memory and find the first available
sector following the revised sector #.
If no sector is available on this track
(2 flag = 1), branch to FNDN2.

Exit with a JMP to WUSED ($EF90) to set
this new sector as in use.
Set the sector number in SECTOR ($81)
to $00.

400

NAME

INTTS

ITS2

ITS3

$FIA1

$F198

$F1A6

$FIA9

$FIB1

$F1B4

$F1B8

$F1BB

$FICO

$F1C4

$FIC7

$F1C9

$FICB

$F1CE

$FID3
$F1D5

$FIDA

$F1DF

$F1E2

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to GETSEC ($FIFA) to set the BAM
into memory and find the first available
sector following the revised sector #.
If a sector is available on this track
(Z flag = 0), branch to FNDN1.
JMP to DERR ($F1F5) to abort.

Find optimum initial track and sector:
Load .A with $01, OR it with the write­
BAM flag, WBAM ($02F9), and store the
result back in WBAM to indicate a write
of BAM is pending.
Load .A with the value from RO ($86) and
save it onto the stack.
Store $01 into RO ($86).
NOTE: TRACK = DIRECTORY TRACK - RO
Load .A with the directory track number
($12) from DIRTRK ($FE85).
Set the carry flag, subtract the counter
in RO and store the result into TRACK
($ 80) .
If the value in TRACK is less than or
equal to 0, branch to ITS2.

Do tracks 17 -) 1
JSR to SETBAM ($F011) to set the pointer
to the BAM.
Load .A with the number of blocks free
on this track from (BMPNT) ,Y; ($6D,Y).
If some sectors are free on this track
(Z flag not set), branch to FNDSEC
($F1E6).
None free on lower track so try a higher
one:
Load .A with the directory track number
($12) from DIRTRK ($FE85).
Clear the carry flag, add the counter in
RO and store the result into TRACK ($80)
Increment the track counter in RO ($86).
If the value in TRACK is greater than or
equal to the maximum track number (#36),
branch to ITS3.

Load .A with $67 to indicate a SYSTEM
TRACK & SECTOR error and JSR to CMDER2
($E645) .

Do tracks 19 -) 35
JSR to SETBAM ($F011) to set the pointer
to the BAM.
Load .A with the number of blocks free
on this track from (BMPNT) ,Y; ($6D,Y).

401

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$F1E4

FNDSEC $F1E6

$F1E9

$F1ED

$F1FO
$F1F2

I DERR $F1F5

If no sectors are free on this track
(2 flag is set), branch to ITSl to try
a lower numbered track.

Pull the original value of RO off the
stack and store it back in RO ($86).
Store $00 as the sector number in
SECTOR ($81).
JSR to GETSEC ($F1FA) to set the BAM and
find first available sector.
If no sector available, branch to DERR.
Terminate routine with a JMP to WUSED
($EF90) to mark sector as used in BAM.

I-~~~~~-~~-;~~~---------------------------I
I Load .A with $71 to indicate an error

in the BAM and JSR to CMDER2 ($E645).

GETSEC

GS10

GS20

GS30

AVCK

$F1FA

$F1FD

$F1FF

$F202

$F20A

$F20D

$F214

$F219

$F21D

$F21F

$F220

Set the BAM and find the first available
sector starting at SECTOR:
JSR to SETBAM ($F011) to set the pointer
to the BAM.
Transfer the .Y value into .A and save
it onto the stack.
JSR to AVCK ($F220) to check the bit map
validity.
Load .A with the current track number
from TRACK ($80) and JSR to MAXSEC
($F24B) to find the maximum sector
number allowed on this track. On return,
store the maximum sector number (in .A)
into LSTSEC ($024E).
Pull the original .Y value off the stack
and store it in TEMP ($6F).
Compare the current sector number from
SECTOR ($81) with the maximum sector
count in LSTSEC ($024E). If the current
sector number is too large, branch to
GS20.
JSR to FREUS3 ($EFD5) to calculate index
into the BAM. On return, if the 2 flag
is not set, the sector is free so branch
to GS30.
Sector was not free:
Increment the sector number in SECTOR
($81) and branch (always) to GS10.
Load .A with $00. Note that this sets
the 2 flag to indicate that a free
sector was not found.
Terminate routine with an RTS.

Check the validity of the bit map:
Load .A with the value of TEMP ($6F) and
save it onto the stack.

402

NAME

ACIO
AC20

AC30

AC40

$F223
$F227

$F22A

$F22B
$F22D

$F234

$F236

$F239

$F23C

$F242

$F245

$F246

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store $00 into TEMP ($6F).
Load .Y with $04, the number of bytes
per track in the BAM from BAMSIZ ($FE86)
Decrement .Y by 1 (now $03).

Load .X with $07 (bit counter).
Load .A with the BAM byte for this track
from (BMPNT) ,Yi ($6D,Y), and AND the BAM
byte with the bit mask from BMASK,X
($EFE9,X) to isolate the bit for this
sector. If the result is $00, the sector
is allocated so branch to AC30.

Since the sector is free, increment the
count of free sectors in TEMP ($6F).

Decrement the bit counter (1 bit/sector)
in .X. If the count is greater than or
equal to $00, branch to AC20.
Decrement the byte counter (8 sectors/
byte) in .Y. If the count is not $00,
branch to ACID.

Compare the number of bytes free on the
track as given in the BAM at (BMPNT) ,Y
($6D,Y) with the count we did in TEMP
($6F). If the counts DO NOT MATCH,
branch to AC40 to abort.

Pull the original value of TEMP off the
stack and restore it into TEMP ($6F).
Terminate routine with an RTS.

Error in BAM:
Load .A with $71 to indicate an error
in the BAM and JSR to CMDER2 ($E645).

MAXSEC $F24B

MAXI $F24E

$F251
$F252

$F254

$F257

KILLP I $F258

Returns the number of sectors allowed
on this track. Track number in .A.
Load .X with the number of zones ($04)
from NZONES ($FED6).
Compare the track number (in .A) with
the zone boundary value from TRKNUM-l,X
($FED6,X) .
Decrement the zone count in .X.
If the track number in .A is less than
the boundary value, branch to MAXI.
Load .A with the number of sectors/track
for this zone from NUMSEC,X ($FEDl,X).
Terminate routine with an RTS.

I

Kill protection: Does NOTHING on 1541!
Terminate routine with an RTS.

403

$F27B

$F281

$F286

$F28E

$F294
$F298
$F29C

$F2A4

$F2P~8

$F2AC

LCC

$F2BO
$F2B3
$F2B6

TOP $F2BE

CONT10 $F2C3

$F2C5

$F2CA

CONT30 $F2CD

$F2D1

NAME

CNTINT $F259
$F25B

$F25E

$F26C

DESCRIPTION OF WHAT ROM ROUTINE DOES

DISK CONTOLLER ROUTINES

Controller initialization
Store %01101111 in DDRB2 ($lC02) to set
the data direction for Port B.
Store %01100000 in DSKCNT ($lCOO) to
turn off the motor & LED and set phase A
Set the peripheral control register
($lCOC) for neg edge latch mode, CA2 hi
to disable the SO line to the 6502, CB1
is input, and CB2 is R/W mode control.
set T1HL2($lC07) to $3A and T1LL2($lC06)
to $00 so there is 20ms between IRQ's
store $7F in IER2 ($lCOE) to clear all
IRQ sources.
store $CO in IFR2 ($lCOD) to clear the
bit and then into IER2 ($lCOE) to enable
the timer IRQ.
store $FF as the current drive, CDRIVE
($3E) and as init flag, FTNUM ($51).
set header block ID, HBID ($39) to $08
set data block 10, DBID ($47) to $07
set NXTST ($62/3) to point to INACT
($FA05).
set MINSTP ($64) to 200 to indicate the
minimum number of steps required to
invoke the fast stepping mode.
store 4 into AS ($5E) to indicate the
number of steps needed to accelerate
and decelerate the head.
store 4 into AF ($5F) as the
acceleration/deceleration factor.

Main controller loop:
Scans the job queue for job requests
Finds job on current track if it exists

Save stack pointer in SAVSP ($49).
reset IRQ flag
set bits 3,2,& 1 of PCR2 ($lCOC) to
enable s.o. to 6502, hi output
top of loop to scan job queue. Load .Y
with #$05 as pointer to top of queue.
Load .A with byte from queue, JOBS,Y
($OOOO,Y). Test if bit 7 is set. If not,
branch to CONT20 since no job here.
Check if job is a jump code ($DO).
If not, branch to CONT30.
Transfer queue position from .Y to .A
and JMP to EX2 ($F370) to do jump job.
AND job code with $01. If result is 0,
the drive # is valid so branch to CONT35
Load .A with $OF to indicate a bad drive
number and JMP to ERRR ($F969)

404

NAME

CONT35

CONT40

CONT20

QUE

QUE05

QUE20

GOTU

EXE

EX

$F2D8
$F2DB

$F2DF
$F2E2

$F2E9

$F2ED

$F2F3

$F2F9

$F2FD

$F306

$F315

$F320

$F32A
$F32D

$F32F

$F339

$F33C

$F34D

$F35F

$F363

$F367

$F36B

$F367
$F379

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store job drive # in DRIVE ($30).
Compare job drive # with current drive
number in CDRIVE ($3E). (CDRIVE is $FF
if the drive is not turned on.) If they
are equal, branch to CONT40
JSR to TURNON ($F97E) to turn on drive.
Set CDRIVE to job drive # and exit for
now with a JMP to END ($F99C).
Check the value in DRVST ($20) to see if
the drive is up to speed. If bit 7 is
set, it isn't so JMP to END ($F99C).
Check if the head is stepping. If it is,
exit with a JMP to END ($F99C). If it is
not stepping, branch to QUE.
Decrement .Y pointer into queue. If more
locations in queue, branch back to
CONT10. If none left JMP to END ($F99C).
Store $20 in DRVST ($20) to set drive
status to running.
Check if head needs to be stepped for
this job. If not, branch to QUE20.
Check other jobs to see if one for this
track. If not, calculate steps needed.
Store $60 in DRVST ($20) to set drive
status to stepping, store destination
track in DRVTRK ($22) and exit for now
with a JMP to END ($F99C).
check if job is on current drive. If
not, branch back to QUE05.
calculate distance to track
are we on track already? if so, branch
to GOTU.
store number of steps to the desired
track in NXTRK ($42)
JMP back to QUE05 to check if another
job is closer.
Calculate zone (1-4) of the desired
track and store the number of sectors
on the track in SECTR ($43).
Calculate recording density and set the
divide by N counter by storing a value
in DSKCNT ($lCOO).
Load .x with drive number and .A with
the job code.
Compare job code with $40. If equal,
branch to BMP to do bump job.
Compare job code with $60. If equal,
branch to EX to do execute job.
Not Bump or Execute, JMP to SEAK ($F3B1)

Do an execute job
set pointer to buffer in BUFPNT ($30/1)
do indirect JMP via BUFPNT to the code
that starts at the start of the buffer.

405

NAME

BMP
$F37C

$F380
$F388

$F38C
$F390

SETJB $F393

DESCRIPTION OF WHAT ROM ROUTINE DOES

Do a bump to track #1
Store $60 as the drive status, ORVST
(20) to indicate head is stepping.
Set track phase to phase A
Store -45 ($A4) as the number of tracks
to move head in STEPS ($4A).
Set ORVTRK ($22) to 1 as new track#
Job done so JMP to ERRR ($F969).
Sub to set pointer to buffer, BUFPNT
($30/31) and into header table, HORPNT
($32) for this position in job queue.

SEAK

SEAK

SEEK15

SEEK30

$F3B1

$F3B1

$F3B7

$F3BB
$F3BE
$F3C4
$F3C6

$F3C8

$F305

$F308

$F3E2

$F3E6
$F3EC

Search for a valid header block on this
track. Up to 90 header and data blocks
are scanned while looking for a valid
header block before this routine gives
up. A valid header block must have:

1) a SYNC mark
2) a header block 10 ($08)
3) a valid checksum (EOR of sector,

track, 101, and ID2)
4) the sector number
5) the track number
6) the second disk 10 character given

when the disk was formatted
7) the first disk 10 character given

when the disk was formatted
NOTE: The actual order of these bytes

is as given above. Not as listed
in the 1541 manual!

Store $5A (90) in TMP ($4B) as the sync
mark counter (quit if counts down to 0)
Store $52 into STAB ($24) as the header
block 10 code to wait for (GCR for $08).
JSR to SYNC ($F556) to wait for sync
Read first character after sync
Compare it to character in STAB ($24)
If no match, this is not a header block
so branch to SEEK20.
Loop to read in the next 7 characters
and store in STAB+1,X ($25,X).
JSR to CNVBIN ($F497) to convert the
header bytes from GCR form to normal.
Loop to compute checksum of header read
EOR checksum, sector, track, 101 & 102.
If computed checksum is not 0, branch
to CSERR ($F41E) to report error.
Update current track from header data
Compare job code in JOB ($45) with $30
to see if it is a seek job. If it is,
branch to ESEEK ($F410) to do it.

400

$F404

I SEEK20 I $F407

I $F3F2

$F423
$F427

$F429
$F42C

L460 $F432

L480 $F43A
$F443

$F447

$F44F

$F455

NAME

ESEEK

DONE

BA01D

CSERR

WSECT

L465

$F410

$F418

$F41B

$F41E

$F45E
$F461

$F465

DESCRIPTION OF WHAT ROM ROUTINE DOES

Compare master disk 10 in $12/13 to the
disk 1D from the header in $16/17. If
they don't match, branch to BAOIO($F41B)
to report a disk 10 mismatch error.
JMP to WSWCT ($F423) to find the best
sector on this track to service (usually
the current sector + 2)
Decrement SYNC counter in TMP($4B) by 1
to see if we should check more syncs. If
not 0 yet, branch back to SEEK10. If 0,
load .A with a $02 (to indicate header
block not found) and JMP to ERRR ($F969)
Change master disk 10 in $12/$13 to
match the 10 read in from $16/17
Load .A with a $01 (to indicate job

completed OK) and exit to error handler

Load .A with a SOB (to indicate disk 10
mismatch) and exit to error handler

Load .A with a $09 (to indicate a bad
checksum) and exit to error handler

Determine best sector on this track to
service (optimum is current sector + 2)

Store $7F as the current sector in $4C
Load .A with the sector number from the
header just read from HEAOER+3 ($19).
Add 2
Compare sum to the number of sectors on
this track in SECTR ($43). If sum is too
big, subtract the number of sectors.
Store sum as next sector to be serviced
in NEXTS ($40).
JSR to SETJB ($F393) to set pointers.
Check to be sure job is for this drive.
If not, branch to L470 ($F483).
Check to be sure job is for this track.
If not, branch to L470 ($F483).
Compare job code in JOB ($45) with $60
to see if it is an execute job. If it
is, branch to L465.
Load .A with job's sector, (HORPNT) ,Y
and subtract the upcoming sector from
NEXTS ($40). If result is positive,
branch to L465 since sector coming up.
Add value from NEXTS ($40) back in.
Compare to distance to other sector
request. If further away, branch to L470
since other job is closer.
Save distance to sector on the stack.
Check job code in JOB ($45). If a read
job, branch to TSTRDJ.

407

NAME

DOITT

TSTRDJ

L470

$F46A

$F473

$F47E

$F483

$F487

DESCRIPTION OF WHAT ROM ROUTINE DOES

This is a write job. Pull distance to
sector off the stack. Since a write job
requires set up time, if sector is less
than 9 ahead or more than 12 ahead, we
are better off doing another job so
branch to L470.
This job is closer than others so set up
by storing distance in CSECT ($4C) and
setting BUFPNT to point to the buffer.
Branch always to L470

This is a read job. Pull distance to
sector off the stack. Since a read job
doesn't need much set up time, if sector
is less than 6 ahead, we better do it
so branch to DOITT.
Decrement queue position in JOBN ($3F)
by 1. If more to check branch to L480.
No more to check. Test if any jobs were
found. If none, JMP to END ($F99C). If
yes, set up job and JMP to REED ($F4CA)

.C'NV.BI.N. $F4.9 7. ~-CO-R~z-er.t -G-CR- .i.mag.e--.-of-- ·hea-de-Y ·int.-o t.he _.-'
normal 8 bit binary and move the values
into $16/7/8/9/A. The characters
decoded include:
-Header block ID code (usually $08)
-Hdr block checksum (EaR of T/S/ID1/ID2)
-Sector number
-Track number
-ID2 (2nd ID chr given when formatted)
-IDl (1st ID chr given when formatted)
-The remaining characters are junk!

REED

$F4CA

READOl $F4Dl

READll $F4D4

READ20 $F4DF

$F4ED

$F4FO

$F4F4

Read in the t.rac k and sector that is
specified in the header table
Check if this is a read job. If not,
JMP to WRIGHT ($F4CE)
JSR to DSTRT ($F50A) find header and set
up to the start of the data block
Loop to read first 256 data bytes and
store them in the data buffer.
Loop to read the last 70 data bytes and
store them in the overflow buffer from
$OlBA to $OlFF.
JSR to GCRBIN ($F8EO) to convert the 326
GCR data bytes into 256 normal bytes
Compare the first byte in the data block
from BID ($38) with the header block ID
character (normally $07) in HDIB ($47)
to check if this is a legal data block.
If they match, branch to READ28.

408

NAME

$F5F6

REA028 $F4FB

$F4FE

$F502

$F504
$F5F6
$F507

DSTRT $F50A

SRCH

$F510

$F529

$F533

$F536

SRCH20 $F538

SRCH25 $F530

$F54D

DESCRIPTION OF WHAT ROM ROUTINE DOES

No match, so load .A with a 4 to flag a
DATA BLOCK NOT FOUND error and JMP to
ERRR ($F969).
JSR to CHKBLK ($F5E9) to compute the
checksum for the data block by EORing
all the 256 data bytes.
Compare the computed checksum in .A with
with the checksum read from the disk in
CHKSUM ($3A). If equal, branch to READ40
No match, so load .A with a 5 to flag a
DATA BLOCK CHECKSUM error
Byte $2C to skip over next LOA
Load .A with a 1 to indicate a good read
JMP to ERRR ($F969).
JSR to SRCH ($F510) to find the desired
header block.
JMP to SYNC ($F556) to wait for the
data block sync character.

Find a specific header. The track and
sector desired must be stored in the
header table
Use values from the header table and
the master disk 10 ($12/3) to set up an
image of the desired header $16-$19
EaR the track, sector, and 10 characters
to calculate the header checksum and
store it in $lA.
JSR to CONHDR ($F934) to convert the
header image into its GCR image.
Load .x with $5A as a counter of the
number of sync marks checked.
JSR to SYNC ($F556) to wait for the
next sync mark.
Loop to scan the 8 bytes following the
sync mark to attempt to find a match to
the GCR image of the desired header. If
any character does not match the image,
branch to SRCH30.
All characters match so exit with an RTS

SRCH30

ERR

SYNC

$F54E

$F551

$F553

$F556

Decrement the sync mark counter in .x
If counter is not 0 yet, branch back to
SRCH20 to wait for next sync.
No match, so load .A with a 2 to flag a
BLOCK HEADER NOT FOUND error.
JMP to ERRR ($F969).

Wait for SYNC mark
A SYNC mark is 10 or more consecutive
l's bits written onto the disk. It is
used to identify the start of a block
of information recorded on disk. The

409

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$F556

$F55B

SYNC10 $F55D

$F562

$F567

WP.IGHT
$F56E

$F575

$F5 itA

first character following a SYNC mark
is used to determine whether this is
a header block ($08) or a data block
($07) .

Store $DO in TIMERl ($1805) to allow a
maximum wait of 20 milliseconds for a
sync before timing out.
Load .A with '$03 (the error code for a
NO SYNC FOUND error)
Test bit 7 of TIMERl ($1805) to check
for a time-out. If time is up, branch
to ERR ($F553) to exit.
Test bit 7 of DSKCNT ($lCOO) to check
for a sync. If no sync, branch back to
SY~C10 to wait some more.
Load .A from DATA2 to reset the PA latch
clear the 6502's cverflow flag, and RTS

Write contents of data buffer to disk
Compare job code in .A with $10 to check
if this is write job. If not, JMP to
VERIFY ($F69l).
JSR to CHKBLK ($F5E9) to compute the
checksum for the data block. Store the
checksum in CHKSUM ($3A).
Load .A from DSKCNT and AND it with $10
to check for write protect tab. If the
result is not $00, OK to write so branch
to WRT10.
Load .A with $08 to flag a WRITE PROTECT
error and JMP to ERRR ($F969)

WRT10

WRTSNC

$F586

$F589

$F58C

$F599

$F5A~

$F5AP

JSR to BINGCR ($F78F) to convert data
in the buffer into GCR form.
JSR to SRCH ($F5l0) to find the correct
header block
Weit for 8 more bytes to go by. This is
the header gap.

NOTE: The header gap on the 1541 is 8
bytes long. The gap on the 4040 is 9
bytes long. This is the main reason why
the drives are write incompatible!

Store $FF in DDRA2 ($lC03) to make Pert
A an output port
Load .A from PCR2 ($lCOC), AND the value
with $lF, OR it with $CO, and store the
result in PCR2 to turn on write mode.
Store $FF in DATA2 ($lC01) as the SYNC
mark character
Loop to write out 5 consecutive $FF
bytes (5x8 = 40 l's).

410

NAME

WRT30

WRT40

CHKBLK

WTOBIN

$F5Bl

$F5B3

$F5BF

$F5CA
$F5CC

$F5D4

$F5D9

$F5DC

$F5E6

$F5E9

$F5F2

$F5F2
$F5FE
$F604

$F608

$F'60A

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load . Y wi th $BB to po i n t. into the
overflow buffer ($OlBB-OIFF).
Load .A with byte from overflow buffer,
weit till last byte is out, store new
byte into DATA2 ($lCOl), increment .Y
pointer, and if more characters to do,
branch back to WRT30.
Load .A with byte from data buffer,
wait till last byte is out, store new
byte into CATA2 ($lCOl), increment .Y
pointer, and if more characters to do,
branch back to ~RT40.

Wait for final byte to clear
Load .A from PCR2 ($lCOC), OR the value
with $EO, and store the result back in
PCR2 to shift to read mode.
Store $00 in data direction register
DDRA2 to make port A an input port.
JSR to WTOBIN ($F5F2) to convert GCR
data in buffer back into its normal 8
bit form to prepare to verify it.
Convert the write job number in the job
queue into a verify job.
JMP to SEAK ($F3Bl) to scan the queue
for the next job.

Calculate data block checksum
EOR the 256 data bytes. Return with the
checksum in .A

Convert the 10 bit image of t.he data to
normal 8 bit binary. Since 5 encoded
bytes (40 bits) are converted into 4
normal bytes (32 bits), the encoded
form of 256 data bytes takes up 320
bytes. At the start of this routine
the first 64 encoded bytes that were
read are stored in the overflow buffer
($OlBA-FF) and the remaining 256 bytes
are in the normal data buffer. At the
end of the routine the decoded bytes
are stored in the normal data bLffer.

Set up pointers to the buffers
Do the overflow buffer ($OlBA-FF) first.
Store $BB in GCRPNT ($34) so it points
to the first byte in the overflow buffer
($OlBB) that is to be processed by the
routine GET4GB.
Store $BB in BYTCNT ($52) so it points
to the location where the first decoded
data byte is to be stored.
JSR to GET4GB ($F7E6) to convert the

411

NAME

~~TOB14

WTOB5(j
WTOB53

WTOB52

WTOB57

VRFY

$F60D
$F611

$F624

$F629

$F641
$F643
$F64F

$F629

$F66E

$F683

$F68E

$F690

$F691

DESCRIPTION OF WHAT ROM ROUTINE DOES

first. five GCR bytes into 4 normal bytes
(t.he data block 10 + 3 data bytes). The
decoded bytes appear in $52-5
Store data block 10 chr in BID ($38).
Move decoded data b}tes from $53-$55 to
the buffer ($OlBB-D). Note that the
decoded cytes are put back int.o the
overf 10\\1 buffer.
JSR to GET4BG ($F7E6) to ccnvert the
next 5 GCR bytes to 4 normal bytes and
store them in $52-5.
Move decoded data bytes from $53-$55 to
the buffer ($OlBB-D). Note that. the
decoded bytes are put be.ck into the
overflow buffer.
If more in overflow, branch to WTOB14
Move last two data bytes into buffer
Loop to convert the 256 bytes in data
bLffer. JSR to GET4BG ($F7E6) to convert
the next 5 GCR bytes to 4 normal bytes
and store them in $52-5.
Move decoded data bytes from $53-$55 tc
the data buffer. Note that the decoded
bytes are put back in the data buffer.

At this point the data bytes have all
been decoded. Some bytes are in the
overflow buffer and some are in the
lower part of the data buffer. The
following routines shift the bytes in
the buffer up and then fill tte lower
part of the buffer with the bytes from
the overflow buffer.

Move decoded byt.es in lower part of the
data buffer up into their proper places
in the buffer.
Move decoded bytes from the overflow
buffer to the bottom of the data buffer.
Set GCRFLG ($50) to 0 to indicate that
the data in buffer is in normal form.
E~it with an RTS.

Verify a data block
This routine converts the data in the
data buffer into its 10 bit encoded
form (GCR). It then compares the GCR
image with what is recorded on the
disk. The encoded data is then changed
back into normal 8 bit binary form.

Compare job code in .A with $20 to check
that this is a verify job. If not, JMP
to SECTSK (F6CA) to do a sector seek.

412

NAME

VRF15

VRF30

VRF20

SECTSK

PUT4GB

$F698

$F69D

$F6AO

$F6A3

$F6B3

$F6C2

$F6C5

$F6CA

$F6DO

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to CHKBLK ($F5E9) to compute the
checksum for the data block. Store the
checksum in CHKSUM ($3A).
JSR to BINGCR ($F78F) to convert the
data to its GCR image.
JSR to DSTRT ($F50A) to find the right
sector and wait for data.
Loop to read 64 data bytes from disk and
compare them to those in the overflow
buffer. If any bytes do not match,
branch to VRF20 to report error.
Loop to read 254 data bytes from disk
and compare them to those in the data
buffer. If any bytes do not match,
branch to VRF20 to report .error.
All bytes match so JMP to DONE ($F418)

Bad byte, so load .A with $07 to flag a
WRITE-VERIFY error & JMP to ERRR ($F969)

JSR to SRCH to do a sector search
JMP to DONE ($F418)

Convert binary to GCR
This routine is used to convert 4 normal
8 bit bytes into the 10 bit encoded form
used for recording onto disk. Encoding
involves breaking up each 8 bit normal
byte into two 4-bit nybbles. The 5-bit
equivalent for each nybble is found by
looking in a table. The 10 bits that
result are stored in two consecutive
memory locations. When four 8-bit bytes
are encoded, the resulting 40 bits are
stored like this:

Four normal 8 bit bytes stored in $52/3/4/5
AAAABBBB CCCCDDDD EEEEFFFF GGGGHHHH

Four 10 bit encoded bytes stored in buffer
aaaaabbb bbcccccd ddddeeee efffffgg ggghhhhh

$F6DO

$F6D8

Clear critical areas of the buffer where
the encoded bytes are to be stored.
GTAB to GTAB+4 ($56-5A)
Load first 8-bit byte ($52), AND it with
$FO (11110000) to mask off the low
nybble (AAAAOOOO), do four LSR's to
convert the hi nybble to a low nybble
(OOOOAAAA), look up the corresponding
five bit GCR value (OOOaaaaa) in BGTAB
BGTAB ($F77F+), do three ASL's on it
(aaaaaOOO), and store it in the first
position' in the encoded data area ($56)

413

NAME

$F6E9

$F6FE

$F70F

$F725

$F73D

$F74D

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load first 8-bit byte ($52), AND it with
$OF (00001111) to mask off the high
nybble (OOOOBBBB), find the five bit GCR
e~uivalent (OOObbbbb) in BGTAB ($F77F+),
do twc ROR's on it alternated with ROR's
on $57 .A=(OOOOCbbb) $57=bbOOOOOO, AND
the value in .A with $07 (00000111), OR
the value in .A with the value in $52
(aaaaaOOO), and store the result
(aaaaabbb) in the first position of the
GCR data buffer (BUFPNT) ,Y ($30,Y).
Load second 8-bit byte ($53), AND it
with $FO (11110000) to mask off the low
nybble (CCCCOOOO), do four LSR's to
co~vert the hi nybble to a low nybble
(OOOOCCCC), look up the five bit GCR
equivalent (OOOccccc) in BGTAB ($F77F+),
do one ASL on it (OOcccccO), OR it with
the contents of $57 (bbOOOOOO), and put
the result (bbcccccO) in $57.
Load second 8-bit byte ($53), AND it
with $OF (00001111) to mask off the high
nybble (OOOODODD), find the five tit GCR
equivalent (OOOddddd) in BGTAB ($F77F+),
do four ROL's on it (ddddOOOO C=d),
store it in $58(ddddOOOO), do one more
ROL (dddOOOOd C=d), AND it with $01, OR
it with the value in $57(bbcccccO) and
store the result (bbcccccd) into the
second byte of the GCR buffer
Load third 8-bit byte ($54), AND it with
$FO (11110000) to mask off the low
nybble (EEEEOOOO), do four LSR's to
convert the hi nybble to a low nybble
(OOOOEEEE), look up the five bit GCR
equivalent (OOOeeeee) in BG1AB ($F77F+),
do one FOR on it (OOOOeeee C=e), OR it
with the contents of $58 (ddddOOOO),
store the result (ddddeeee) in tte third
byte of the GCR buffer, do another ROR
(eCOOOeee)C=e, AND it with $80(10000000)
and store the result (eOOOOOOO) in $59.
Load third 8-bit byte ($54), AND it with
$OF (00001111) to mask off the high
nybble (OOOOFFFF), find the five bit GCR
equivalent (OOOfffff) in BGTAB ($F77F+),
do two ASL's on it (OfffffOO), AND it
with $7C (01111100), OR it with the
value in $59 (eOOOOOOO), and store the
result (efffffOO) in $59
Load the fourth 8-bit byte ($55), AND it
with $FO (11110000) to mask off the low
nybble (GGGGOOOO), do four LSR's to

414

NAME

$F76F

DESCRIPTION OF WHAT ROM ROUTINE DOES

convert the hi nybble to a low uybble
(OOOOGGGG), look up the five bit GCR
equivalent (OOOggggg) in BGTAB ($F77F+),
do three ROR's on .A alternated with
ROR's on $5A .A=(OOOOOgg) $5A=(gggOOOOO)
AND .A with $03 (00000011), OR .A with
the contents of $59 (efffffOO), & store
result (efffffgg) in the fourth byte of
t-he GCR buffer.
Le-ad the fourth 8-bit byte ($55), AND it
with $OF (00001111) to mask off the high
nybble (OOOOHHHH), find the five bit GCR
equivalent (OOOhhhhh) in BGTAB ($F77F+),
OR it with the value in $59 (gggOOOOO),
and store the result (ggghhhhh) in the
fifth position of the GCR buffer.

BGTAB $F77F Table of 5 bit GCR equivalents
------------------------~-----

4 bit nybble 5 bi t GCR code
------------ --------------

$00 0000 $OA 01010
$01 0001 SOB 01011
$02 0010 $12 10010
$03 0011 $13 10011
$04 0100 $(iE 01110
$05 0101 $OF 01111
$OE 0110 $16 10110
$07 0111 $17 10111
$08 1000 $09 01001
$09 1001 $19 11001
$OA 1010 $lA 11010
SOB 1011 $lB 11011
SOC 1100 $00 01101
$00 1101 $10 11101
SOE 1110 $1E 11110
$OF 111] $15 10101

Ncte: 5 bits are usee: t.o ensure that
not more than 2 consecutive O's
are recorded on disk.

BINGCR Create write image of data
This routine converts 260 normal 8-bit
bytes into their 10-bit equivalents to
produce an image for writing to disk. A
total of 325 GCR bytes are produced.

415

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

The original 8-bit bytes are:
1 data block 10 character ($07)

256 data bytes (stored in buffer X)
1 dat.a checksum
2 off byt.es ($00)

260 8-bi t bi na r y byt.es

The first 69 GCR bytes are stored in the
overflow buffer ($lOBB-FF). The rest of
the GCR bytes are stored in buffer X and
replace the original dat.a byt.es

BING07

GET4GB

$F78F
$F797
$F7A5

$F7BA

$F7BC

$F7BF

$F7D7

$F7D9

$F7E3

Initialize pointers to buffers
Set. pointer to start of overflow $Olbb
Move data block 10 code from DBID ($47)
and first 3 data charact.ers into a work
area ($52/3/4/5) for input by the PUT4GB
routine ($F6DO)
Store point.er to next byte t.o convert
(in .Y) into BYTCNT ($36).
JSR to PUT4GB ($F6DO) to convert the
four bytes in $52/3/4/5 into their five
GCR equivalents and store in buffer. Use
the overflow buffer first and then use
the data buffer.
Move next four bytes into the work area
($52/3/4/5) .
If more bytes to convert (.Y is count)
branch back to BING07.
Move data block checksum from DBID ($3A)
and two off bytes ($00) into the work
area ($53/4/5) NOTE: THE LAST DATA BYTE
IS IN $52.
JSR to PUT4GB ($F6DO) to convert the
four bytes in $52/3/4/5 into their five
GCR equivalents and store in buffer.

Convert GCR to binary
This routine is used to decode 5 GCR
bytes (used for recording on disk) into
4 normal 8-bit binary bytes. Decoding
involves extracting 5 bit.s from one or
two GCR bytes. The 4-bit nybble that is
equivalent to it is found by looking in
a table. The pattern of 5-bit segment.s
in the 5 GCR bytes and the equivalent
4-bit nybbles in the four binary bytes
are indicated below:

Four 10 bit encoded bytes stored in buffer
aaaaabbb bbcccccd ddddeeee efffffgg ggghhhhh

416

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

Four normal 8 bit bytes stored in $56/7/8/9
AAAABBBB CCCCDDDD EEEEFFFF GGGGHHHH

$F7E6

$F7F1

$F7F9

$F802

$F80D

$F814

$F81F

$F82B

$F833

$F840

Load the first GCR byte (aaaaabbb) from
(BUFPNT) ,Y, AND it with $F8 (11111000)
to mask off the low bits (aaaaOOO), do
three LSR's and store the result
(OOOaaaaa) in GTAB ($56)
Load the first GCR byte (aaaaabbb) from
(BUFPNT) ,Y, AND it with $07 (00000111)
to mask off the high bits (OOOOObbb), do
two ASL's and store the result(OOObbbOO)
in $57.
Increment Y and check if Y=O. If so,
change BUFPNT so it points to the data
buffer rather than the overflow buffer.
Load the second GCR byte (bbcccccd) from
(BUFPNT) ,Y, AND it with $CO (11000000)
to mask off the low bits (bbOOOOOO), do
three ROL's (OOOOOObb), OR it with the
value in $57 (OOObbbOO), and store the
result (OOObbbbb) back in $57.
Load the second GCR byte (bbcccccd) from
(BUFPNT) ,Y, AND it with $3E (00111110)
to mask off unwanted bits (OOcccccO), do
one LSR and store the result (OOOccccc)
in $58.
Load the second GCR byte (bbcccccd) from
(BUFPNT) ,Y, AND it with $01 (00000001)
to mask off unwanted bits (OOOOOOOd),
do four ASL's and store the result
(OOOdOOOO) in $58.
Load the third GCR byte (ddddeeee) from
(BUFPNT) ,Y, AND it with $FO (11110000)
to mask off the low bits (ddddOOOO), do
four LSR's (OOOOdddd), OR it with the
value in $59 (OOOdOOOO), and store the
result (OOOddddd) back in $59.
Load the third GCR byte (ddddeeee) from
(BUFPNT) ,Y, AND it with $OF(00001111) to
mask off hi bits (OOOOeeee), do one ASL
and store the result (OOOeeeeO) in $5A.
Load the fourth GCR byte (efffffgg) from
(BUFPNT) ,Y, AND it with $80 (10000000)
to mask off the low bits (eOOOOOOO), do
two ROL's (OOOeOOOO), OR it with the
value in $5A (OOOOeeee), and store the
result (OOOeeeee) back in $5A.
Load the fourth GCR byte (efffffgg) from
(BUFPNT) ,Y, AND it with $7C (01111100)
to mask off unwanted bits (OfffffOO), do
two LSR's and store the result(OOOfffff)
in $5B.

417

NAME

$F848

$F854

$F85A

$F866

$F86D

$F87B

$F887

$F893

DESCRIPTION OF WHAT ROM ROUTINE DOES

Load the fourth GCR byte (efffffgg) from
(BUFPNT) ,Y, AND it with $03 (00000011)
to mask off unwanted bits (OOOOOOgg),
do three LSRls and store the result
(OOOggOOO) in $5C.
Increment Y. If Y=O change BUFPNT to
point to the next buffer.
Load the fifth GCR byte (ggghhhhh) from
(BUFPNT) ,Y, AND it with $EO (11100000)
to mask off the low bits (gggOOOOO), do
four ROLls (OOOOOggg), OR it with the
value in $5C (OOOggOOO), and store the
result (OOOggggg) back in $5C.
Load the fifth GCR byte (ggghhhhh) from
(BUFPNT) ,Y, AND it with $lF (00011111)
to mask off the high bits (OOOhhhhh),
and store in $5D

At this point the 40 bits that made up
the 5 GCR bytes have been separated into
eight 5-bit values that correspond to
the eight 4-bit nybbles that will make
up the four normal binary bytes. The 8
5-bit values are stored in $56-D. The
following routines look up the 4-bit
hi nybbles in GCRHI ($F8AO) and the low
nybbles in GCRLO (starts at $F8CO)

Load .x with the first 5-bit value from
$56, load .A with 4-bit high nybble
from GCRHI,X, load X with a second five
bit value from $57, OR .A with the four
bit low nybble from GCRLO,X, and store
the result in $52.
Load X with the third 5-bit value from
$58, load .A with 4-bit high nybble from
GCRHI,X, load X with the fourth 5-bit
value from $59, OR .A with the 4-bit low
nybble from GCRLO,X and store the result
in $53.
Load X with the fifth 5-bit value from
$5A, load .A with 4-bit high nybble from
from GCRHI,X, load X with the second
five bit value from $5B, OR .A with the
four bit low nybble from GCRLO,X, and
store the result in $54.
Load .x with the seventh 5 value from
$5C, load .A with 4-bit high nybble from
GCRHI,X, load X with the second 5-bit
value from $5D, OR .A with the four bit
low nybble from GCRLO,X, and store the
result in $55.

418

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES I
NOTE: The five bit to four bit tables below have many $FF
entries. These are the five bit codes that are not used.
If one of these is found, it causes a byte decoding error

GCRHI($F8AO) & GCRLO($F8CO) Tables of 5 bit GCR to binary

5 bit GCR code High nybble ($F8AO+) Low nybble ($F8CO+)

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$OA
SOB
SOC
$00
$OE
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$lA
$lB
$lC
$10
$lE
$lF

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

$FF
$FF
$FF
$FF
$FF
$FF
$FF
$FF
$FF
$80
$00
$10
$FF
$CO
$40
$50
$FF
$FF
$20
$30
$FF
$FO
$60
$70
$FF
$90
$AO
$BO
$FF
$00
$EO
$FF

11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
11111111 ERROR $FF
1000---- $08
-------- $00
0001---- $01
11111111 ERROR $FF
1100---- SOC
0100---- $04
0101---- $05
11111111 ERROR $FF
11111111 ERROR $FF
0010---- $02
0011---- $03
11111111 ERROR $FF
1111---- $OF
0110---- $06
0111---- $07
11111111 ERROR $FF
1001---- $09
1010---- $OA
1011---- SOB
11111111 ERROR $FF
1101---- $00
1110---- $OE
11111111 ERROR $FF

11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
11111111 ERROR
----1000
----0000
----0001
11111111 ERROR
----1100
----0100
----0101
11111111 ERROR
11111111 ERROR
----0010
----0011
11111111 ERROR
----1111
----0110
----0111
11111111 ERROR
----1001
----1010
----1011
11111111 ERROR
----1101
----1110
11111111 ERROR

GCRBIN I

$F8EO
$F8E8

Decode GCR data image
This routine decoded the 69 GCR bytes
stored in the overflow buffer ($10BB-FF)
into normal 8-bit bytes. The decoded
bytes are stored in a data buffer.

Zero byte counter & 10 bit of pointers
Set 10 byte of pointer, NXTBF ($4E) to
$BA and set the hi byte NXTPNT ($4F) to
$01 so they point to the first byte of
the GCR image in the overflow buffer.

419

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

$F8FO

$F8F4

$F8F7
$F8FB

GCRB10 $F90C

$F90E

$F913

$F918

$F91A

$F929

GCRB20 $F92B

$F92F

CONHDR

$F934

$F938
$F93C
$F940
$F944
$F9 4 8·
$F94C
$F950

Set SAVPNT+1 ($2F) to point to the data
buffer where the 8-bit bytes are to be
stored.
JSR to GET4GB ($F7E6) to convert the
first five GCR bytes into binary, the
header block ID, the header checksum,
the sector #, and the track #. The
decoded bytes appear in $52-5.
Store header block ID code in BID ($38)
Move the three decoded bytes from $53-55
into the buffer. Note that these bytes
are NOT stored in the overflow buffer
where the GCR image is stored.
Transfer byte pointer from .Y into
BYTCNT ($36).
JSR to GET4GB ($F7E6) to convert the
next five GCR bytes to normal and store
them in $52-5.
Move decoded data byte from $52 into the
data buffer.
Test .Y to see if entire overflow buffer
has been done. If done, branch to GCRB20
Move decoded data bytes from $53-5 into
the data buffer.
If .Y is not $00, there is more to do
so branch back to GCRB10.
Move header block checksum from $53
t.o CHKSUM t s3A)
Restore buffer pointer and RTS.

Convert header to write image
This routine creates a GCR image of a
header block. It uses the header block
ID code from HBID ($39) and the header
information stored in $lA (checksum),
$19 (sector), $18 (track), $17 (ID2),
and $16 (ID1). A final $00 byte is used
as a final off byte. Four of the binary
bytes are moved into a staging area and
the subroutine PUT4GB ($F6DO) is used to
convert these bytes to their GCR image
and store them in the STAB buffer($24-D)

Save current value of the buffer pointer
BUFPNT+1 ($31) in SAVPNT+1 ($2F).
Make BUFPNT+1 ($31) point to >STAB ($00)
Make GCRPNT ($34) point to <STAB ($24)
Move hdr blk ID from HBID ($39) to $52
Move checksum from $lA to $53
Move sector from $19 to $54
Move track from $18 to $55
JSR to PUT4GB ($F6DO) to convert the
four bytes in $52-5 to 5 GCR bytes and
store them at the start of STAB ($24-8).

420

NAME

$F953
$F957
$F95B
$F961

$F964

DESCRIPTION OF WHAT ROM ROUTINE DOES

Move 2nd 10 chr from $17 to $52
Move 1st 10 chr from $16 to $53
Store $00 off bytes into $54 & $55
JSR to PUT4GB ($F6DO) to convert the
four bytes in $52-5 to 5 GCR bytes and
store them in STAB ($29-0).
Restore the buffer pointer BUFPNT+1($31)
to its previous value and RTS.

UTILITY ROUTINES

ERRR

$F969
$F96E

$F972

ERRR10 $F96E

$F978

$F97B

TURNON
$F97E

$F982

$F98A

Disk controller error handling
This routine is used to terminate all
of the major disk controller routines.
The inputs to this routine are: the
error code (see table) in .A, the job
buffer number in JOBN ($3F), and the
GCRFLG ($50) (tells if the data in the
buffer has been left in write image (1)
or binary (0) form). The routine stuffs
the error code into the job queue,
converts the data back to binary (if
necessary), starts time-out to turn off
the drive motor, resets the stack
pointer, and exits to $F2BE to begin
scanning the job queue again.

Store error code in .A into job queue
Check GCRFLG ($50) to see if data left
in GCR format. If not, branch to ERRR10.
JSR to WTOBIN ($F5F2) to convert data
from GCR to normal.
JSR to TRNOFF ($F98F) to start the time­
out to turn off the drive motor.
Use value from SAVSP ($49) to reset the
stack pointer.
JMP to TOP ($F2BE) to scan job queue.

Turn on disk drive motor
Store $AO into drive status, DRVST ($20)
to indicate that the drive is ON but
not yet up to speed (accelerating).
Set bit 2 (00000100) of DSKCNT ($lCOO)
to turn ON the drive motor.
Store $3C into acceleration timer,ACLTIM
($48) to cause drive status to be set
to up-to-speed after 1.5 seconds.
(60 interrupts at .025 seconds each)

TRNOFF
$F98F
$F991

Turn off disk drive motor
Load .x with current drive # (0)
Set bit 4 (00010000) of the drive status
DRVST ($20) to indicate DRIVE IS OFF!

421

NAME

END

END33X

END10

END20

$F997

$F99C

$F9A5

$F9B1

$F9CB

$F9CF

$F9D6

$F9D9

$F9E4

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store $FF into acceleration timer to
cause the drive to be turned OFF after
6.4 seconds. (255 interrupts x .025 sec)

Drive motor and head stepper control
This routine is the last part of the
main IRQ routine. As a result, it is
executed every 10 milliseconds. Control
is transferred to the routine by JMP
instructions at the conclusion of the
main disk controller routines. The RTS
at the end of the routine transfers
control to master IRQ routine at $FE7C.

Move value in the 6522's timer #1 high
latch ($lC07) into timer #l's high bit
counter ($lC05)
Test if write protect status has changed
by loading the value from the 6522's
data PORT B($lCOO), ANDing it with $10
and comparing it to the value in LWPT
($lE). If not equal, set flag for change
in status, WPSW ($lC) to $01.
Test whether the head stepper is in
(0 or 2) or out (1) of phase. The head's
stepper motor moves half a track at a
time. If the head is halfway between two
tracks, the value stored in PHASE($02FE)
is 1. If the value in PHASE is 0, branch
to END40 ($F9CB). If PHASE is 2, set it
to $00 and branch to END40. If it is $01
set it to $02 & branch to DOSTEP ($FA2E)
to move head half a track.
Check CDRIVE ($3E) to see if the drive
is active. If not active, branch to
END33X to end the IRQ routine.
Load DRVST ($20) to see if the motor is
ON and compare value with $20. If there
is anything to do (result not equal) ,
then branch to END10.
JMP to END33 ($FABE) to end IRQ.

Something doing, so decrement the
acceleration timer, ACLTIM ($48), and if
drive is not yet up to speed, branch to
END30.
Since drive is up to speed, clear the
not-up-to-speed bit (bit 7) of the drive
status, DRVST ($20).
AND the value of DRVST ($20) with $10 to
test whether a time-out has occurred and
it is time to turn off the drive motor.
If not, branch to END30 ($F9FA).

422

NAME

END30

INACT

INAC10

INAC20

DOSTEP

STPOUT

$F9E8

$F9FO

$F9F4

$F9FA

$FAOS

$FAOE

$FA12

$FA1C

$FA2E

$FA32

DESCRIPTION OF WHAT ROM ROUTINE DOES

Turn off drive motor by loading .A with
the value of DRVCNT($lCOO), ANDing it
with $FB (to clear bit 2) and storing
the result back in DRVCNT.
Store $FF in CDRIVE ($3E) to indicate
there is no currently active drive.
Set DRVST ($20) to $0 to indicate that
the drive is switched OFF. Then branch
to END33X ($F9D6) to end IRQ routine.
AND .A (contains drive status) with $40
to test if head must be moved. If the
result is 0 (no stepping needed) JMP to
END33 ($FABE) to end the IRQ routine.
If stepping is required, do an indirect
JMP via NXTST ($0062) to the proper
head stepping routine:

SHORT - $FA3B - short step mode
SETLE - $FA4E - settle head mode
SSACL - $FA7B - accelerate mode
SSRUN - $FA97 - fast stepping mode
SSDEC - $FAAS - decelerate mode

Set up to step the head:
Load .A with the number of steps to move
the head from STEPS ($4A). If negative
(>127), find the absolute value using
the 2's complement.
Compare the number of steps to the value
(usually $C8)in MINSTP ($64) to see if
the distance is big enough to use the
fast stepping mode. If the distance is
large enough, branch to INA20 ($FA1C).
Not big enough so set up the pointer in
NXTST ($62/3) to point to the short step
routine, SHORT ($FA3B) and branch to
DOSTEP ($FA2E).
Calculate the number of steps to do in
fast stepping mode by subtracting the
value in AS ($SE) from .A twice (for
acceleration and deceleration). Store
the result in RSTEPS ($61). Then move
the number of steps needed for the head
to accelerate from AS ($SE) to ACLSTP
($60). Finally set pointer in NXTST
($62/3) to point to the acceleration
mode routine SSACL ($FA7B)
Load value from STEPS ($4A). If positive
«127), branch to STPIN ($FA63) to step
the head inwards.
Increment STEPS ($4A) to reduce number
left to do by 1, load .X with the value
from DSKCNT ($lCOO) decrement it by 1,
and branch to STP ($FA69).

423

NAME

SHORT

SETLE

STPIN

STP

SSACL

SSA10

SSRUN

$FA3B

$FA4E

$FA63

$FA69

$FA7B

$FA88

$FA94

$FA97

DESCRIPTION OF WHAT ROM ROUTINE DOES

Short distance head stepping.
Load the number of steps left to do from
STEPS ($4A). If any left, branch to
DOSTEP ($FA2E). If not, set NXTST
pointer($62/3) to point to the settle
head routine SETLE ($FA4E) and store $05
in ACLSTP ($60) to set the settle time.
Branch to END33 ($FABE) to end IRQ.
Settle head routine. Decrement ACLSTP
($60) and if non-zero, brach to END33
($FABE) to end IRQ. If zero, set drive
status, DRVST ($20), to indicate that
the drive is available for use by
clearing bit 6. Set NXTST pointer($62/3)
to point to the head inactive routine
($FA05) and branch to END33 ($FABE).
Decrement STEPS ($4A) to reduce number
left to do by 1, load .X with the value
from DSKCNT($lCOO) and increment it by 1
Transfer the value in .X to .A (this is
DSKCNT+1 for a step in and DSKCNT-1 for
a step out), AND the value with $03, and
store it in TMP ($4B). Load DSKCNT, AND
it with $FC to mask off bits 0 & 1, OR
it with TMP to set the new values for
these bits, and store the result back in
DSKCNT. JMP to END33 ($FABE) to end IRQ.

NOTE: cycling bits 0 & 1 of DSKCNT
($lCOO) will move the head.
00/01/10/11/00 will move head in
00/11/10/01/00 will move head out

Accelerate head routine.
Set carry flag, load the 6522 Timer1 hi
latch T1HL2 ($lC07), subtract the value
in AF ($5F; acceleration factor), and
store the result in T1HC2 ($lC05; timer1
hi counter). Decrement the number of
acceleration steps left in ACLSTP ($60)
and if any steps left, branch to SSA10.
No steps left, so reset the number of
acceleration steps left ACLSTP ($60)
using the value in AS ($5E) and set the
NXTST pointer ($62/3) to point to the
fast stepping routine, SSRUN ($FA97).
JMP to DOSTEP ($FA2E)

Fast stepping mode routine.
Decrement number of steps left to do in
RSTEPS ($61). If any left, branch to
DOSTEP ($FA2E). Since none left, set the
NXTST pointer ($62/3) to point to the

424

NAME

SSDEC

END33

FORMT

FORMT

$FAA5

$FABE

$FAC7

$FAC7

$FAD7

$FAE3

$FAE8

DESCRIPTION OF WHAT ROM ROUTINE DOES

decelerate routine SSDEC ($FAA5) and
branch to DOSTEP ($FA2E).

Decelerate head routine.
Load .A from the 6522 Timerl hi latch
TlHL2 ($lC07), clear the carry flag,
add the acceleration factor AF ($5F),
and store the result in TIHC2 ($lC05i
timerl hi counter). Decrement the number
of deceleration steps left ACLSTP ($60)
and if any steps left, branch to SSAlO.
Since no steps left, set the NXTST
pointer ($62/3) to point to the settle
routine, SETLE ($FA4E). Set the number
of acceleration steps left to $03 to
allow settling time.
Terminate the motor and stepper control
routine by clearing bit 1 of the 6522's
peripheral control register, PCR2($lCOC)
This force CA2 low which disables the
SO line to the 6502. Finally, do an RTS
to transfer control back to the main
IRQ routine at $FE7C.

This routine is used to format (NEW) a
diskette. The code is executed in place
(rather than moved into RAM and then
executed as in the 4040). The IP FORMAT
routine ($C8C6) sets up a JMP $FAC7 at
the start of buffer #0, puts an EXECUTE
($EO) job into the job queue at $03, and
then waits for the job to be completed.

Load .A from FTNUM ($51) to check if
formatting has begun. If FTNUM>O, the
formatting has begun so branch to L213
($FAF5). If not, begin formatting by:
Setting DRVST($20) to $60 (head is now
stepping), storing $01 into DRVTRK ($22)
to set the current track and into FTNUM
($51; format begun flag).
Do BUMP to track 1 by stepping head out
46 tracks. Store -92 (256-2*46) into
STEPS ($4A) and clear bits 0 & 1 of
DSKCNT ($lCOO) to set head phase to 00.
Set CNT ($0620) to $OA to allow up to
10 errors before abort.
Set NUM($0621/2) to 4000 ($OFAO) as a
first guess at number of bytes that can
be recorded on half a track.
Exit with a JMP to END ($F99C)

425

NAME

L213

L214

TOPP

FWAIT
FWAIT2
FOOO
FOOl

$FAF5

$FBOO

$FBOC

$FBOF

$FB12

$FB1A
$FB1D

$FB20

$FB35

$FB39
$FB3E
$FB43
$FB46

DESCRIPTION OF WHAT ROM ROUTINE DOES

On re-entry .A holds the track number
(loaded from FTNUM). Compare it to the
track in HDRPNT($32). If they match, we
are on the correct track so branch to
L214 ($FBOO). If different, put the .A
value (track we want) into HDRPNT ($32)
and exit with a JMP to END ($F99C).
Test bit 4 of DSKCNT ($lCOO) to see if
write protect is on. If 1, protect is
not on so branch to TOPP ($FBOC). If 0,
load .A with $08 to indicate a WRITE
PROTECT error & JMP to FMTERR ($FDD3).
JSR to SYNCLR ($FDA3) to erase the track
by writing 28*256 SYNC marks.
JSR to WRTNUM ($FDC3) to write out NUM
($0621/22; value = 4000) SYNC marks.
Store a non-sync character ($55) into
the output port DATA2 ($lC01) and JSR to
WRTNUM ($FDC3) to write NUM ($0621/2;
value = 4000) non-sync bytes.

At this point the track will have one
area that contains SYNC and another area
that has non-sync characters like this:

1111111100110011001100110011001111111
SYNC 4000 non-sync bytes SYNC

The following routines time the SYNC and
non-sync segments to determine how many
characters can be written on the track.
This is used to calculate the length of
the gap between sectors (inter-sector).

JSR to KILL ($FEOO) to kill write mode.
JSR to SYNC ($F556) to wait for the
start of the SYNC section.
Set bit 6 of the 6522's ACR1 ($180B) to
set it up as a free running 100 micro­
second timer.
Set .X and .Y to $00. They will hold the
timer count ..X=least significant byte
.Y=most significant bit
Loop to wait for SYNC area
Loop to wait for not-sync area
Reset interrupt flags to start the timer
Loop to time the non-sync area.
Check if SYNC here yet. If here, branch
to F005 ($FB5C). If no SYNC yet, check
IFR1 ($1804) to see if timer has timed
out. If time not up yet, branch back to
FOOl ($FB46). If time is up, increment
.x by 1 (and .Y if .X=O) and branch back
to FOOO ($FB43) to reset the timer. If
.Y is 0, we have a count of 65535 which

426

NAME

F005

F006
F007

F009

COUNT

CNT10

CNT20

OS08

MAK10

$FB5C

$FB64
$FB67

$FB7D

$FBB6

$FBBB

$FBCE

$FBEO

$FC36
$FC3F

DESCRIPTION OF WHAT ROM ROUTINE DOES

means we can't find a sync mark so abortl
by loading .A with $02 and JMP to FMTERR
Found a SYNC so store the non-sync times
in T2 ($71/2). Reset .X and .Y to $00
and begin timing the SYNC area.
Reset interrupt flags to start the timer
Loop to time the SYNC area:
Check if not-sync here yet. If here, go
to F009 ($FB7D). If still have a SYNC,
check IFRl ($1804) to see if timer has
timed out. If not time yet, branch back
to FOC7 ($FB67). If time up, increment
.X by 1 (and .Y if .X=O) and loop back
to F006 ($FB64) to reset the timer. If
.Y is 0, we have a count of 65535 which
means we can't find no-SYNC. So abort:
load .A with a $02 and JMP to FMTERR
Found non-sync. Calculate the difference
between the SYNC and non-sync times. If
the difference is less than 4, branch to
COUNT ($FBB6). If the difference is more
than 4, make NUM ($0261/2) the average
of the two times and branch to TOPP
($FBOC) to try again.
Set .X and .Y to $00 to prepare to count
the number of characters in the non-sync
area.
Test bit 7 of DSKCNT ($lCOO) to see if
SYNC is here yet. If SYNC here, branch
to CNT20 ($FBCE). If not, test the timer
If not time, branch back to CNT10. If
time for one character is up, increment
.X (and .Y if needed), clear the timer
flag (.V) and branch back to CNT10. If
.Y=O we have a count of 65535 so abort:
load .A with $03 & JMP to FMTERR ($FDD3)
Store the byte count (count*2) in TRAL
($0624/5) and turn off the 6522's timer
Calculate the total number of bytes we
need to record on this track:

(282 chr/sect x 5/4 x #sect)
Subtract this from the total we found
and divide by the number of sectors to
get the size of the gap between sectors.
If the calculated gap is less than 4, it
is too small so load .A with $05 and JMP
to FMTERR ($FDD3). If it is big enough,
store inter-sector gap in DTRCK ($0626).
Set sector counter SECT ($0628) to $00.
Loop to create sector header images in
buffer 0 ($0300+) .Y is the pointer
into the buffer (0 for sect #1).

427

NAME

$FC3F

$FC44

$FC4C

$FC52

$FC58

$FC5E

$FC64

$FC68

$FC7A

$FC84

DESCRIPTION OF WHAT ROM ROUTINE DOES

Move sector ID code from HBID ($39) to
$0300+Y ($0300 for #1).
Increment .Y twice to skip the checksum
and move sector number from SECT ($0628)
to $0300+Y ($0302 for sector #1).
Increment .Y and move the track number
from FTNUM ($51) to $0300+Y ($0303 for
sector #1)
Increment .Y and move ID2 from DSKID+1
($13) to $0300+Y ($0304 for sector #1).
Increment .Y and move ID1 from DSKID
($12) to $0300+Y ($0305 for sector #1).
Increment .Y and store $OF in $0300+Y
($0306 for #1) as off byte.
Increment .Y and store $OF in $0300+Y
($0307 for #1) as off byte.
Increment .Y, calculate the header blk
checksum and store it in $02F9+Y
($0302 for sector #1)
Increment SECT ($0628) and compare it to
number of sectors on track SECTR ($43)
If done all images, save the number of
sectors on this track onto the stack.
Increment .X (becomes $01) and transfer
it to .A (dummy data character) .

NOTE: .X should really be $00. Since it
is $01, all the data blocks on a
diskette formatted on a 1541 drive
have 1 garbage character followed
by 255 $Ol's rather than 256 soots

CRTDAT $FC86

$FC8E

$FC95

$FC9E

Loop to put 255 dummy data bytes ($Ol's)
into data buffer #2 ($0500+)
Set the buffer pointer BUFPNT ($30/1) to
point to the header block images ($0300)
and JSR to FBTOG($FE30) to convert the
header images to a GCR write image with
no header block ID code.
Pull # of sectors from stack, transfer
the value to .Y, and JSR to MOVUP($FDE5)
to move the GCR header image stored in
in buffer #0 69 bytes up in memory. Then
JSR to MOVOVR ($FDF5) to move the 69
header image bytes from the overflow
buffer into the low end of buffer #0.
Set the buffer pointer BUFPNT ($30/1) to
point to the dummy data block, JSR to
CHKBLK($F5E9) to calculate the data blk
checksum, store it in CHKSUM, and JSR to
BINGCR($F78F) to convert the dummy data
block into its GCR write image.

428

WRTS20 $FCC2
$FCCF

WRTS30 $FCD1

$FCDC

DBSYNC $FCEO
$FCE9

NAME

WRTSYN

WRTS10

WRTS40

WRTS50

WGP2

COMP

$FCAA

$FCAE
$FCB1

$FCB8
$FCBE

$FCEB

$FCF9

$FD04

$FD09

$FD12

$FD19

$FD27

$FD2C

DESCRIPTION OF WHAT ROM ROUTINE DOES

Begin formatting the track now!

Set the pointer to the header GCR image
HDRPNT ($32) to $00 so it points to the
start of the first header image.
JSR to CLEAR ($FEOE) to wipe the track.
Store $FF in PORT2 ($lC01) to be ready
to write a sync character. Load .x with
$05 (5 SYNC's coming up!)
Write out 5 sync marks
Initialize .x to $OA (output 10 bytes)
and set .Y with the value from HDRPNT
($32) so it points to the start of the
header GCR image.
Write out the 10 header characters
Load .x with $08 (HARD SET VALUE!)

NOTE: This means you can not easily
change the header gap size!

Loop to output eight $55 bytes to form
the header gap (gap1).
Store $FF in PORT2 ($lC01) to be ready
to write a sync mark. Load .x with $05
(5 SYNC's corning up!)
Write out 5 sync marks
Initialize .x to $BB to point to the
first byte of the overflow buffer (the
start of the dummy data block)
Loop to write out the 69 GCR bytes in
the overflow buffer
Loop to write out the 256 GCR bytes in
data buffer #2 ($0500+)
Load .A with $55 and .x with the tail
(inter-sector) gap from DTRCK ($0626)
Loop to write .x $55 characters to
form the tail (inter-sector) gap.
Advance the header pointer HDRPNT($32/3)
by 10 so it points to the start of the
next header image.
Decrement the sector counter SECT($0628)
by 1 and test to see if any more sectors
to do. If more, branch back to WRTSYN
to do the next sector. If no more, wait
for the last byte to be written out and
then JSR to KILL ($FEOO) to switch to
read mode.

Formatting done. Verify it!

Set TRYS ($0623) to $C8 to limit the
number of attempts to verify to 200.
Set BUFPNT ($30/1) to point to the start
of the headers in buffer #0 ($0300) and
set SECT ($0628) with the # of sectors
on this track from SECTR ($43).

429

NAME

CMPR10

CMPR15

CMPR20

TSTDAT

TST05

TST10

FMTEND

SYNCLR

$FD39

$FD40

$FD4E

$FD55

$FD58

$FD62

$FD67

$FD75

$FD77

$FD86

$FD96

$FDA3

DESCRIPTION OF WHAT ROM ROUTINE DOES

JSR to SYNC($F556) to wait for a SYNC
mark. Once found, set .x to $OA (there
are 9 header characters to read) and .Y
$00 (point to character in header image)
Loop to read header bytes and compare
them to the image in the buffer. If any
byte doesn't match, branch to CMPR20.
Header reads back OK so add 10 to BUFPNT
($30) so it points to next header image.
JMP to TSTDAT ($FD62)

Bad verify. Decrement TRYS ($0623). If
more attempts left, branch back to COMP
($FD2C) to try again. If we have tried
200 times, abort: load .A with $06 and
JMP to FMTERR ($FDD3)

Header OK so check the data block.
JSR to SYNC ($F556) to wait for the data
block SYNC mark. Once found, set .Y to
$BB to point to the start of the data
block image in the overflow buffer
Loop to read and verify the 69 GCR bytes
in the overflow buffer. If no match,
branch to CMPR20 ($FD58) and try again.
Overflow buffer OK so set .x to $FC
(255-3; don't bother checking the OFF
bytes at the end).
Loop to read and verify the 253 GCR
bytes in data buffer #3. If no match,
branch to CMPR20 ($FD58) and try again.
Decrement the sector counter in SECT
($0628) by 1 and test to see if any more
to do. If more, branch back to CMPR10 to
do next sector. If no more, increment
the track counter FTNUM ($51) and test
if there are any more tracks to do. If
all done, branch to FMTEND ($FD96). If
more to do, JMP to END ($F99C) to step
the head to the next track.

Set the track counter, FTNUM ($51) to
$FF and the GCRFLG ($50) to O. To flag
a successful completion load .A with $01
and JMP to ERRR ($F969).

Formatting and Verification Completed!

Formatting Subroutines

Wipe track by writing 40*256 SYNC marks
Set bits 6 & 7 of the 6522's peripheral
control register PCR2 ($lCOC). This
latches the signal on the CB2 line.

430

$FDB5

SYC10 $FDB9

$FDC2

WRTNUM
$FDC3

WRTN10 $FDC9

$FDD2

FMTERR
$FDD3

NAME

FMTE10

$FDAD

$FDDB

DESCRIPTION OF WHAT ROM ROUTINE DOES

Store $FF in the data direction register
DDRA2 ($lC03) to make PORT A an output
port and put $FF in the data port DATA2
($lC01) to produce SYNC characters.
Initialize .x to $28 (hi counter) and
.Y to $00 (10 counter).
Loop to write out 40*256 SYNC marks
using .x & .Y as counters
RTS -*- WARNING WRITE MODE LEFT ON -*-

Write out NUM ($0621/2) bytes
Load .x with the LSB and .Y with the
MSB of NUM ($0621/2).
Loop to write out what ever is in the
data port DATA2 ($lC03) NUM times using
.x and .Y as counters
RTS

Handles format errors
Decrement the retry counter CNT ($0620)
and, if no tries left, branch to FMTE10.
If any left, JMP to END($F99C) to do any
stepping required and try again.
Set the track counter FTNUM ($51) to $FF
and the GCRFLG ($50) to 0 and JMP to
ERRR ($F969).

MOVUP
$FDE5

$FDEE

MOVOVR

$FDF5
$FDF7

KILL
$FEOO

Move .Y bytes in buffer #0 up 69 bytes
Loop to move .Y characters in buffer #0
($0300+) up 69 memory locations in RAM.
Move byte from $0300 to $0345. RTS

Move 69 bytes from overflow buffer into
the bottom of the data buffer pointed
to by BUFPNT ($30/1)
Load .Y with $44 (68)
Loop to move 69 bytes from $OlBB+ into
the data buffer. RTS

Disable write mode
Set bits 5, 6 and 7 of the 6522's PCR2
($lCOC) to set CB2 high. Store 0 in the
data direction register DDRA2 ($lC03)
to make PORT A an input port. RTS

CLEAR
$FEOE

$FE18

$FE22

Wipe track with non-sync characters
Clear (zero) bit 5 of the 6522's PCR2
($lCOC). This forces CB2 low.
Store $FF in the data direction register
DDRA2 ($lC03) to set output mode and put
$55 in the data port DATA2 ($lC01) to
write non-sync characters.
Initialize .x to $28 (hi counter) and
.Y to $00 (10 counter).

431

NAME DESCRIPTION OF WHAT ROM ROUTINE DOES

CLER10 $FE26

$FE2F

Loop to write out 40*256 non-sync
characters using .X & .Y as counters.
RTS -*- WARNING WRITE MODE LEFT ON -*-

FBTOG

FBG10

$FE30

$FE30

$FE38

$FE3C

$FE44

Convert header images in buffer #0 into
GCR form without the header 10 code.
Zero the low byte of the buffer pointers
pointers BUFPNT($31) and SAVPNT ($2E)
and the byte counter BYTCNT ($36).
Set the GCR pointer GCRPNT ($34) to $BB
so it points to the first character in
the overflow buffer ($OlBB+).
Save the hi byte of the buffer pointer
BUFPNT ($31) into SAVPNT ($2F) and then
set BUFPNT to $01 to point to the over­
flow buffer.
Loop to move 4 bytes at a time into the
staging area $52-55 and then do a JSR
to PUT4BG ($F6DO) to convert them into
five GCR bytes and store them in the
overflow or data buffer. Terminate the
routine with a JMP to PUT4BG to convert
and store the last four.

MAIN SYSTEM IRQ ROUTINE (IRQ VECTOR POINTS HERE)

SYSIRQ $FE67 IRQ's are generated in two ways:
1) by an ATN signal from the VIC-20

or the C-64 on the serial bus, or
2) by a time out of the 6522's timer

This happens every 10 milliseconds
This routine tests for the source of the
IRQ signal and branches to the correct
ROM routine.

$FE76

$FE67
$FE6C

IRQ10

Save .A, .X, and .Y on the stack
Test if IRQ caused by an ATN signal on
the serial bus by checking bit 1 of the
interrupt flag register of the 6522 that
handles the bus IFR1 ($1800). If this
bit is not set (1), there was no ATN
signal so branch to IRQ10 ($FE76). If it
is set, JMP to the bus handling routine
ATNIRQ ($E85F).
Test if the 6522 timer has timed out by
testing bit 7 of the interrupt flag
register of the 6522 that serves as a
disk controller IFR2 ($lCOD). If the bit
is not set, branch to IRQ20 ($FE7F). If
it is set, do a JSR to the floppy disk
controller routines, LCC($F2BO).

I
IRQ20 $FE7F I Pull .A, .X, and .Y from the stack and

do an RTI.
--

432

ADDRESS

$FE85
$FE86
$FE87
$FE88

$12
$04
$04
$90

MISCELLANEOUS CONSTANTS & TABLES IN ROM

Directory track number (18)
Number of bytes/track in BAM
Offset of BAM in the sector
Offset of disk name in BAM sector

Command Search Table

$FE89
$FE8A
$FE8B
$FE8C
$FE8D
$FE8E
$FE8F
$FE90
$FE91
$FE92
$FE93
$FE94

$56
$49
$44
$40
$42
$55
$50
$26
$43
$52
$53
$4E

V
I
o
M
B
U
P
&

C
R
S
N

Validate or collect disk
Initialize BAM & directory
Duplicate or backup disk (N.A.)
Memory operation (M-R,M-W,M-E)
Block operation (B-R,B-A,B-W,etc)
User jump commands (except U+ & U-)
Position (for REL files)
Utility loader
Copy file (copy disk N.A. on 1541)
Rename file
Scratch file
New or format a diskette

(Lo Byte) (Hi Byt.e) Command Jump Table

$FE95
$FE96
$FE97
$FE98
$FE99
$FE9A
$FE9B
$FE9C
$FE9D
$FE9E
$FE9F
$FEAO

$84
$05
$C1
$F8
$1B
$5C
$07
$A3
$FO
$88
$23
$00

$FEA1
$FEA2
$FEA3
$FEA4
$FEA5
$FEA6
$FEA7
$FEA8
$FEA9
$FEAA
$ FE)l~B

$FEAC

$ED
$00
$C8
$CA
$CC
$CB
$E2
$E7
$C8
$CA
$C8
$EE

V
I
o
M
B
U
P
&

C
R
S
N

Validate
Initialize BAM
Duplicate (N.A.)
Memory operation
Block operation
User jump commands
Position (for REL)
Utility loader
Copy file
Rename file
Scratch file
New a diskette

STRUCTURE IMAGES FOR COMMANDS

$FEAD
$FEAE
$FEAF
$FEBO
$FEB1

$51
$00
$1C
$9E
$1C

%01010001
%11011101
%00011100
%10011110
%00011100

PGDRPGDR
FS1 FS2

disk copy
rename a file (not parsed)
scratch a file (not parsed)
new a diskette (not parsed)
load a file

Not greater than one file
Not default drive(s)
Required filename

$FEB2
$FEB3
$FEB4
$FEB5

$52
$57
$41
$40

R
W
A
M

MODE TABLE (R/W/A/M)

Read mode
Write mode
Append
Modify (read improperly closed file)

433

ADDRESS MISCELLANEOUS CONSTANTS & TP~BLES IN ROM

(1st Byte) (Hi Byte) File type table
------------------------~------------------------------ - - -

$FEB6 $44 0 $FEBB $44 0 $FECO $45 E $FEC5 $4C L DEL
$FEB7 $53 S $FEBC $53 S $FEC1 $45 E $FEC6 $51 Q SEQ
$FEB8 $50 P $FEBD $50 P $FEC2 $52 R $FEC7 $47 G PRG
$FEB9 $55 U $FEBE $55 U $FEC3 $53 S $FEC8 $52 R USR
$FEBA $4C L $FEBF $52 R $FEC4 $45 E $FEC9 $4C L REL

$FECA I

$FECB
$08
$00

LED mask for drive 0
LED mask for drive 1 (N.A. on 1541)

ERROR FLAG VARIABLES FOR USE BY BIT

$FECC
$FECD
$FECE
$FECF
$FEDO

$00
$3F
$7F
$BF
$FF

EROO
ERO
ERI
ER2
ER3

NUMBER OF SECTORS/TRACK IN EACH ZONE

$FED1
$FED2
$FED3
$FED4

$FED5 I

$FED6

$11
$12
$13
$15

$41
$04

17 sectors/track in zone 4
18 sectors/track in zone 3
19 sectors/track in zone 2
21 sectors/track in zone 1

DOS version number (65)
Number of different zones

(31-35)
(25-30)
(18-24)
(01-17)

ZONE BOUNDARIES (HIGHEST TRACK # + 1)

$FED7
$FED8
$FED9
$FEDA

$24
$lF
$19
$12

Track #36 - end of zone 4 (31-35)
Track #31 - end of zone 3 (25-30)
Track #25 - end of zone 2 (18-24)
Track #18 - end of zone 1 (01-17)

OFFSETS FOR ERROR RECOVERY

$FEDB $01
$FEDC $FF
$FEDD $FF
$FEDE $01
$FEDF $00

HI BYTE OF POINTERS TO DATA BUFFERS

$FEEO $03 Data buffer #0 ($0300-03FF)
$FEE1 $04 Data buffer #1 ($0400-04FF)
$FEE2 $05 Data buffer #2 ($0500-05FF)
$FEE3 $06 Data buffer #3 ($0600-06FF)
$FEE4 $07 Data buffer #4 ($0700-07FF)
$FEE5 $07 Data buffer #5 ($0700-07FF)

$FEE6 I $FD I Checksum for $E and $F ROMs

434

ADDRESS

$FEE7

$FEEA

NMI

PEA7A

MISCELLANEOUS CONSTANTS & TABLES IN ROM

NMI VECTOR POINTS HERE

Do indirect jump to the address stored
in VNMI ($0065). This vector points to
XXXXXX ($XXXX)

PATCH FOR POWER-ON ERRORS

Store the value that is in .A on entry
into the 6522's data port 2, LEDPRT
($lCOO; also called DSKCNT) and in the
data direction register, LEDOUT ($lC02i
also called DDRB2). Exit with a JMP to
REA7D ($EA7D) to return to the LED blink
routine.

PATCH FOR 1541 DISK WITH SLOW SERIAL RECEIVE

$FEF3 SLOWD Produce a 40 microseconds delay with a
loop that counts .X down from 5 to 1.
Exit with an RTS.

$FEFB I
$FEFE

JSR $E9AE
J~1P $E99C

unused junk
unused junk

PATCH TO NMI ROUTINE TO CHECK FOR U+ AND U- COMMANDS

$FFOl

$FFOD

NNMI

NNMI10

Load .A with the second character in the
command buffer CMDBUF+2 ($0202). Compare
it with "_" and, if equal, branch to
NNMl10 ($FFOD). If not a "_", subtract
a "+" from it. If not zero, command must
be a real ur command so branch back to
NMI ($FEE7) to do normal NMI.
Store .A (contains zero or a "_") into
DRVTRK+1 ($23) and do an RTS to continue

$FF10 - $FFE6 UNUSED GARBAGE

TABLE OF JUMP VECTORS TO ROUTINES (LO BYTE/HI BYTE)

$FFE6
$FFE8
$FFEA
$FFEC
$FFEE
$FFFO
$FFF2
$FFF4
$FFF6
$FFF8
$FFFA
$FFFC
$FFFE

$C6/$C8
$8F/$F9
$5F/$CD
$97/$CD
$00/$05
$03/$05
$06/$05
$09/$05
$OC/$05
$OF/$05
$Ol/$FF
$AO/$EA
$67/$FE

FORMAT ROM routine
TRNOFF ROM routine
UBLKRD ROM routine
UBLKWT ROM routine
Link to buffer #2
Link to buffer #2
Link to buffer #2
Link to buffer #2
Link to buffer #2
Link to buffer #2
NNMI ROM routine
DSKINT ROM routine
SYSIRQ ROM routine

435

$C8C6
$F98F
$CD5F
$CD97
$0500
$0503
$0506
$0509
$050C
$050F
$FF01
$EAAO
$FE67

APPENDIX C

PROGRAM LISTINGS

437

NOTE: Lines 830 and 930 contain a special character #166. This character can be typed
by holding down the Commodore logo key in the lower left corner and pressing the + key.

100 REM DISPLAY A BLOCK AVAILABILITY MAP
- 1541

110 DIMNS (16)
120 DEFFNS(I)=2A(S-INT(S/B>*B)AND(B(INT(

S/8»)
13() PRII'JTII {CLR}DISPLAY A BAM - 1541 11

140 PRINTII{DOWN}INSERT DISKETTE IN DRIVE
II

IS() PRINT" {DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
160 GETC$:IFC$=IIIITHENI60
170 IFCS<>CHR$(13)GOT0160
180 PR I rrr II OK"
190 OF·EN15, 8, 15
20() PRINT#15, 1110"
210 INPUT#15,EN$,EMS,ET$,ES$
220 I FEN$="oo II OREN$=II 22 II OREN$= II 23 II GOT026
o
230 PRINTII{DOWN}ItENSII, IIEM$II,IIET$II,IIESS
240 CLOSElS
250 END
26() OF·EN2, 8,2, 11#11

270 PRII'JT#15, IIUI"; 2; 0; 18; o
280 INPUT#15,EN$,EM$,ET$,ESS
29() REM GET DOS
300 PRINT#15,"B-PIl;2;2
31() GET#2, B$
32() I FB$= II IITHENB$=CHRS co
330 DOS=ASC(B$)
34(} I FDOS=65THENDOS$= II V2. 6 II : GOT0380
350 IFDOS=lTHENDOS$=IIV1.2 11 : GOT 0 3 8 0
360 DOS$=IIV??1t
370 REM GET BLOCKS FREE
380 BF=()
39() B=4
4()() FOR I = 1T035
410 IFI=18THENI=I+1:B=B+4
42() F'Rlf\JT#15,IIB-P";2;B
43() GET#2, B$
440 IFB$= THENB$=CHR$(O)
450 A=ASC(BS)
46() BF=BF+A
47() B=B+4
48() NEXTI
490 REM GET DISK NAME

489

5()0 Fa~:INT#15, IIB-F'II; 2; 144
510 FORI=1T016
520 GOSUBl140
530 N$(I)=CHR$(A)
54() I'JEXTI
550 REM GET COSMETIC ID
560 ID$=II ..
57() PRINT.i5, "B-P"; 2; 162
5SC) FOR I =1T02
590 GOSUB1140
600 ID$=ID$+CHR$(A)
e r o f'.JEXTI
620 PR I NT" {CLR} {R\JS} TRACI< {ROFF} 11
111111112222222222333333 11

63C) PR I NT II 123456789012345678901234567
89012345 11

64() PRINT" {RVS}S{ROFF}O
"N$(1);

650 PRINT"{RVS}E{ROFF}l
IIN$(2);

660 PRINT II{RVS}C{ROFF}2

IIN$(3);
670 PRINTII{RVS}T{ROFF}3

IIN$(4);

68C) PRINT" {RVS}O{ROFF}4
IIN$(S);

690 F'RINT II {RVS}R{ROFF}5
II f\J$ (6) ;

700 FaRINTIl 6
IIN$(7);

710 PRINT II 7
IIN$(B);

720 PRINT" 8
"N$(9);

730 PRINT II 9
IIN$ (1(1) ;

740 F'RINTII10
"N$(11);

75C) F'RINTII 11
IIN$ (12) ;

760 PRINT II 1 2
"N$ (13) ;

770 FaRINT 13
N$ (14) ;

78() FaRINT 14
N$ (15) ;

790 FaRINT 15
N$ (16) ;

800 PRINT II16"

8lC) PRINT"17 11

440

II.,

820 PRINT"18
II;D05$;1I II;LEFT$(IDS!ll);

830 PRINT II 19 {R
VS} {ROFF}OR{#166}=EMPTY II;RIGHT$(ID$!I1)

840 PRINT II20

850 BF$=RIGHT$(II II+RIGHT$(STR$(BF),LEN(
STR$(BF»-I),3)
860 IFBF=lTHENPRINT II II;BF$;II BLOCK FREE II
: GOTOBBO
87() PR I NTBFS; II BLOCKS FREE II
BBC) AS=II."
890 CR$=II{RIGHT 35}1I
900 PRINT#15,IIB-PIl;2;4
91() FORT=1 T03S
92() 1FT /2< >INT (T /2) THENF$=II {RVS} {ROFF} II

: GOT0940
930 F$=II{#166}1I
940 GET#2,B$
950 FORI=()T02
96() GET#2, BS
97(1 IFBS=II IITHENB$=CHR$ co
980 B(I)=ASC(B$)
99() NEXTI
1000 PRINTII{HOME}{DOWN 2}{RIGHT 2}II;LEFT
$(CRS,T);
1010 NS=20+2*(T>17)+(T>24)+(T>30)
1020 FORS=OTONS
1030 IFFNS(S)=OTHENPRINTAS;:GOTOI050
1()40 PR I NTF$;
10S() PRINT II {DOWN} {LEFT}";
1060 NEXTS
107() NEXTT
1080 PRINTII{HOME}{DOWN 22}1I;
1090 CLOSE2
1100 INPUT#15,EN$,EM$,ET$,ES$
1110 CLOSE1S
1120 END
1130 REM GET A BYTE
1140 GET#2,BS
1150 IFB$="IITHENB$=CHR$(O)
1160 A=ASC(B$)
1170 IFA)127THENA=A-128
1180 IFA<320RA>95THENA=63
1190 IFA=34THENA=63
120(1 RETURN

441

100 REM VIRTUAL DIRECTORY - 1541
110 CLR
120 HS= II (t 123456789ABCDEF II

130 FORI=()T05
14() READFT$ (I)
150 NEXTI
160 F'RINTII {CLR}VIRTUAL DIRECTORY - 1541 11

170 F'RINTII {DOWN} INSERT DISKETTE IN DRIVE
II

180 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
19(1 GETC$: I FC$= II II THE!'.19()

200 IFC$<>CHR$(13)SOT0190
210 PRINTIIOI<II
220 OF'EN15~8~ 15
230 F·RINT:l15, II ro-
240 INPUT#15~EN$,EM$,ET$,ES$

250 I FENS=II ()(l II GOT03(1()
260 PRINTII{DOWN}IIENS", IIEMSII,IIET$",IIESS
270 CLOSE15
280 END
290 REM FORMATTING ID
3 oo PRlt~T#15, IIM-RIICHR$ (22) CHR$ (0) CHR$ (2)

31(l GET#15~B$
320 GOSUB1370
330 FI$=FI$+CHR$(A)
34C) GET#15, B$
350 GOSUB137(l
360 FI$=FI$+CHR$(A)
370 REM BLOCKS FREE
380 PRINT#15,IIM-R IICHR$(250)CHR$(2)CHR$(3
)

39Cl GET#15, BS
400 L=ASC(B$+CHR$(O»
41C) GET#15, B$
420 GET#15,B$
430 H=ASC(B$+CHRS(O»
440 BF=L+(H*256)
450 BA=664-BF
460 OF·EN4, 3
470 OPEN2,8~2,"#"

48(l OF'EN3, 8~ 3, 11$0, P, RII
49() GET#3, B$
SOO DOS=ASC(BS+CHR$(O»
S1C) FORI=3T0143
520 GET#3,B$
53(} NEXTI
540 FORI=144T0159

443

550 GOSUB 136()
560 DN$=DN$+CHR$(A)
57() I'JEXTI
5SC) GET#3~ BS
59() GET#3, B$
600 FORI=162T0163
61 o GOSUB136()
620 IDS=ID$+CHR$(A)
63() NEXTI
640 FORI=164T0255
65() GET#3~BS
660 NEXTI
670 FORI=lT06
sao FaRINT#4
69() NEXTI
7()O PRINT#4, "DI81< NAME: liONS
710 PRINT#4,IIDISK ID: II IDS
720 PRINT#4,IIFORMATTING ID: IIFI$
730 PRINT#4,IIDOS TYPE: liDOS
740 PRINT#4, "BLOCJc~S ALLOCATED: IIBA
750 PRINT#4, IIBLOCJc~S FREE: IIBF
760 PRINT#4
77() F·RI NT#4, II BLOCIc"~S FILE NAME TYP
E T-S LOAD II
780 IFF/8=INT(F/8)THENPRINT#4
790 GET#3~B$

800 FT=ASC(B$+CHRS(O»
810 FTS=FT$(7ANDFT)
820 GET#3~B$

830 T=ASC(BS+CHRS(O»
84() T$=RIGHT$ ("OIl+RIGHT$ (STRS (T) , LEI'J(STR
$(T»-1),2)
850 GET#3,BS
860 S=ASC(BS+CHRS(O»
87C) S$=RIGHTS (UC)II+RIGHTS (STRS (8) , LEI'J (STR
$(S»-1),2)
SBC) LAS=" II
890 IF(7ANDFT><>OAND(7ANDFT)<>2GOTOI020
900 PRINT#15, IIUl II; 2; (); T; S
91() PRINT.15~ IIB-P"; 2; 2
92() GET#2, B$
930 A=ASC(B$+CHR$(O»
940 H=INT(A/16)
95() L=A-16*H
960 LAS=MID$(HS,H+l,l>+MID$(H$,L+l,l)
970 GET#2,BS
980 A=ASC(B$+CHR$(O»
990 H=INT(A/16)
1()(IO L=A-16*H
1010 LA$=MID$(H$,H+l,1)+MID$(H$.L+1.1)+L

444

AS
1020 F$="II
1030 NULL=(J
104(J FORI=1 T016
1()50 BOSUB1360
1060 IFB$=CHRS(O)THENNULL=NULL+l
1070 FS=F$+CHR$(A)
10Bel NEXTI
1090 IFNULL=16GOT01270
11()O FORI=1 T09
1110 BET#3,B$
112C) I\JEXT I
1130 GET#3,B$
1140 B=ASC(B$+CHR$(O»
1150 GET#3,BS
1160 B=B+256*ASC(B$+CHRS(O»
1170 BS=RIGHT$(" II+RIGHTS(STRS(B),LEN(S
T~:$(B))-1) .. 3)
1180 IFST=64THENEOI=1
1190 IFFT<128THENPRINT#4,II{RVS}II;
12(JO PRINT#4, II IIBS" "F$" liFTS II "T$II_"
SSII IILAS
1210 F=F+1
1220 IFF/8(>INT(F/B)THENGET#3,BS:GET#3,B
S
1230 GETC$: I FCS=" ..GOTO12S(J
1240 BETCS:IFC$=IIIITHEN1240
1250 IFEOI=lGOT01270
1260 GOT0780
1270 CLOSE4
128() CLOSE3
1290 CLOSE2
1300 INPUT#15,ENS,EMS,ET$,ES$
1310 CLOSE15
1320 END
1330 REM FILE TYPES
1340 DATA DEL,SEQ,PRS,USR,REL,???
1350 REM GET A BYTE
1360 GET#3,B$
1370 I FB$= II II THENBS=CHR$ (0)
1380 A=ASC(B$)
1390 IFA)127THENA=A-128
1400 IFA<320RA>95THENA=63
1410 IFA=34THENA=63
142() RETURN

445

100 REM FIND A FILE
110 PRINT"{CLR}FIND A FILE - 1541 H

12C) PRINT" {DOWN} INSERT DISKETTE IN DRIVE
II

130 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE II

14C) GETC$: I FC$= II II THEN140
150 IFC$<>CHR$(13)GOT0140
160 PRINT"OK"
170 OPEN15~8,15

180 PRINT#15, II IC)"
190 INPUT#15,ENS,EM$,ET$,ESS
2()O I FEN$= II O() II GOT0240
210 PRIt"T" {DOWN} II EN$ II , "EMS", "ETS", "ES~
220 CLOSE15
230 END
240 INPUTII{DOWN}FILENAMEII;F$
250 IFLEN(F$)<>OANDLEN(F$)(17GOT0280
260 CLOSE1S
270 END
28() OPEN2, 8, 2~ 110: "+F$+II,?, R II

290 INPUT#15,EN$,EM$,ET$,ES$
300 I FENS= II O() II GOT0320
310 GOT0530
320 PRINT#15,IIM-R II CHR$ (9 7) GHR$ (2)
330 GET#15,D$
340 D=ASC(D$+CHRS(O»
350 PRINT#15,IIM-R II CHR$ (2 4) CHR$ (O) CHR$ (2)

36() GET#15, T$
370 T=ASC(T$+CHR$(O»
3BC) GET#15, S$
390 S=ASC(S$+CHR$(O»
400 D$=RIGHT$(STR$(D),LEN(STR$(D»-1)
410 IFD<10THEND$=1I0"+D$
420 TS=RIGHT$(STR$(T),LEN(STR$(T»-1)
430 IFT< 10THEf\JT$=IIOIl+T$
440 SS=RIGHT$(STR$(S),LEN(STR$(S»-l)
450 IFS<10THENS$=1I0"+S$
460 PRINTII{DOWN}TRACK 18 - SECTOR 110$

470 PRINT" (DO~JN}TRACK "T$" - SECTOR "S$
48() CLOSE2
490 INPUT#15,EN$,EM$,ET$,ES$
500 CLOSE15
510 PRINT II{DOWN}DONE!II
520 END
53() PRINT" {DOWN} liENS II , II EMS II , nETSII, nESS
540 CLOSE2
550 INPUT#15,ENS,EM$,ET$,ES$
560 CLOSE15
570 PRIt..aTII {DOWN} {RVS}FAILED{ROFF}··
5BO END

447

100 REM DISPLAY TRACK & SECTOR - 1541
110 CLR
12() HDS= II 0 123456789ABCDEF ..
130 PRINTII{CLR}DISPLAY TRACK & SECTOR ­
1541 11

14() PRINT" {DOWN} INSERT DISKETTE IN DRIVE
II

15() INPUT" {DOWN}DISPLAV TRACK & SECTOR <
T,S)II;T,S
160 IFT<10RT>35THENEND
170 NS=20+2*<T>17)+(T>24)+(T>30)
180 IFS<OORS>NSTHENEND
190 INPUTII {DOWN}OUTF'UT TO SCREEN OR PRIN
TER <SIP) S{LEFT 3}II;O$
200 IFO$<>"SIIANDO$<>UPIITHENEND
210 I NF'UT II {DOWN}ARE YOU SURE Y{LEFT 3} II

;(;1$

22() I FQ$(>IIYIITHEI'JEND
230 OF'EN15, 8, 15
240 TS=RIGHT$(STR$(T),LEN(STR$(T»-l)
250 IFT< 10THENT$=II()II+T$
260 SS=RIGHT$(STR$(S),LEN(STR$(S»-l)
270 IFS< 1()THENS$= 11011 +S$
280 REM SEEI<
29() JOB=176
3(J() GOSUBBS()
310 IFE<>lGOT0360
320 REM READ
330 JOB=128
340 GOSUB8S()
350 IFE=160T0470
360 IFE)lANDE<12THENEN$=RISHT$(STR$(E+18
) ,2) : GOT0380
37() EN$= II ()2 II : EM$=II?TIMEOtJTII: GOT0390
38() EM$= II READ ERROR"
39() ET$=T$
400 ES$=S$
410 F'RINTII {DOWN} "EN$.II, IIEM$II ~ IIET$II, IIES$
420 IFE<>4ANDE<>SGOT0450
430 GOSUB1()20
440 GOT047()
450 CLOSE15
460 END
47() I FO$= II S II GOT055()
480 OPEN4,4
49() FORI=! TOb
5 oo PR I NT#4
510 NEXTI
520 PRINT#4, II DISPLAY TRACie:: & SE
CTORII

448

530 PR I NT#4, II TRACI< II T$ II - SECT
OR 115$

540 F·RIf\JT#4
550 FORK=()TOl
56() PR I t.JT II {CLR} {RVS} DISPLAY TRA
CK & SECTOR {ROFF}II
57() PRINT II {HOME} {DOWN} {RVS} TRA
CK "TS" - SECTOR IISSII {ROFF}II
580 PRINTII{HOME}{DOWN 2}"
59() FORJ=()T015
60() D=K* 128+J*8
610 GOSUB970
62() BF·$= .. • n +DH$+" : II

630 H$= .. ••
64(J A$=II II

650 FORI=OT07
660 PRINT#15, "M-RIICHRS (1<*128+J*8+I) CHRS (
4)
670 GET#15,B$
680 D=ASC(B$+CHR$(O»
690 GOSUB970
70() H$=H$+DH$+ II II

710 IFD)127THEND=D-128
720 IFD<320RD>90THEND=46
730 A$=A$+CHR$(D)
740 NEXTI
750 PRINTBPS;HS;A$
760 IFO$=IIPIITHENPRINT#4,BP$;H$;AS
770 NEXTJ
780 IFO$=lIp u GOT0 8 0 0
790 GOSUB1()2()

800 NEXT.<
810 IFO$=uPIiTHENCLOSE4
820 CLOSE15
83() GOTO 11 o
840 REM JOB QUEUE
8SC) TRY=()
aso PRINT#15, IIM-WIICHRS (8) CHR$ (0) CHR$ (2) C
HR$(T)CHR$(S)
87() PRINT#15, IIM-WII CHRS (1) CHR$ co CHR$ (1) C
HR$(JOB)
880 TRY=TRY+l
89(1 F'RINT#15, IIM-RII CHR$ (1) CHR$ co
900 GET#15~E$

910 IFE$=II "THEt"E$=CHR$ «(J)

920 E=ASC(E$)
930 IFTRY=500GOT0950
940 IFE>127GOT0880
950 RETURN
960 REM DECIMAL TO HEXADECIMAL

449

970 H=INT(D/16)+1
980 L=D-(H-l>*16+1
990 DH$=MID$(HD$,H,l>+MID$(HDS,L,l>
1ooo RETURN
101C) REM DELAY
1()2() F'Rlt~T" {DOWN}F"RESS {RVS}RETURt"{ROFF}

TO CONTINUE"
1()3() GETC$: IFC$=II II THEN1(}3()

1040 IFC$<>CHR$(13)GOT01030
1050 F"RINTIIOKII
1060 RETURN

450

100 REM DISPLAY A CHAIN - 1541
110 CLR
120 FaRINTIl {CLR}DISF-LAY A CHAIN - 1541 11

130 FaR I I'JTII {DOWN} INSERT DISIc~ETTE It" DRIVE
II

140 I NFaUTII {DOWN} TRACK ~(SECTOR (T, S) II ; T ,
S
150 IFT<10RT>35THENEND
160 NS=20+2*<T>17)+(T>24)+(T>30)
170 IFS<OORS>NSTHENEND
18t) INPUT" {DOWN} OUTPUT TO SCREEN OR FaRIN
TER (SIP) S{LEFT 3}";O$
190 I FO$< >.. S II ANDO$< >II p" THEI\JEND
2 ()() INPUT II {DOWttJ} ARE YOU SURE Y{LEFT 3} II

;Q$
21 () I FQ$(:> II Y II THENEI'JD
220 OPEN15~B,15

23() FaRINT#15, II I e) II

240 INPUT#15,ENS,EM$,ET$,ES$
250 I FEN$= II oo II GOT029()
260 PRINTII{DOWN}IIENS", "EMS","ET$II,IIES$
27() CLOSE 15
28() END
29() I FO$= II S II GOT039()
300 FIRINTII {DOWN} {RVS}FaRINTlt~JG{ROFF} A CH
AINu
31() OPEN4,4
320 FORI=lT06
33() PR I NT#4
34() NEXTI
35() FIRINT#4," DISFILAY A CHAI
Nil

36() PR I NT#4, II BLOCK TRACI< - SE
CTORII
37(} PRINT#4
380 GOT042()
390 PRINT II {CLR} {RVS} DISF·LAY

A CHAIN {ROFF}11
4()O PRINT" {HOME} {DOWN} {RVS} BLOC
K TF:ACI< - SECTOR {ROFF} ..
41() F'Rlt'JTII {HOME} {DOWN 2}"
420 B=B+1
43(J GOSUB 1()30
440 REM SEEJ<
45() JOB=176
46() GOSUB910
470 IFE<>lGOT0520
480 REM READ
49() JOB=128
5 oo GOSUB9 1()

451

510 IFE=lGOT0630
520 IFE>lANDE<12THENEN$=RIGHT$(STR$(E+18
) !I 2) : GOT0540
530 EN$= II ()2" : EM$="?T I MEOUT II : GOT055()
54() EM$= II F:EAD ER~:OR II

55() ET$=T$
560 ES$=S$
570 IFO$=IIF·IITHEI'!PF:INT#4," II Ef\J$ II

, IIEMS II , II ET$ II , II ES$: GOT0 59 0
58(l PR I t~T II ..Ef\J$1I ~ IIEM$II ~ ..ET$" , ..
ES$
590 IFE=40RE=5GOT0630
600 IFO$=IIPIIGOT0810
610 GOSUB1(19(J

620 GOT082C)
630 B$=RIGHT$(STR$(B),LEN(STR$(B»-l)
640 IFB<10THENB$=" II+B$
650 IFB< 10()THENB$='· "+B$
660 IFO$=lIp u T HENPR l t-4T # 4 , II IIB$II

IIT$II - 115S: GOT068()
670 PRINT" IIB$II IIT$II - liS
$

68() PRINT#15, "M-RIICHR$ «» CHR$ (4) CHR$ (2)
690 GET#15,TS
700 T=ASC(T$+CHR$(O»
710 IFT=()GOT0760
72e) GETtt15, S$
730 S=ASC(S$+CHR$(O»
740 IFT)350RS>20+2*<T>17)+(T>24)+(T>30)G
OTOB50
75(J I FO$=" S II ANDB/16< >- I NT (B/ 16) GOT042()
760 IFO$=IIPIIGOT0780
770 GOSUBIC)9(1
780 I FT=()GOT081 o
790 I FO$= II S" GOT039()
8()() GOT042(J
SiC) IFO$=IIPIITHENCLOSE4
82e) CLOSE15
830 GOTO 11o
840 REM ILLEGAL TRACK OR SECTOR
S5C) GOSUB1030
860 IFO$=IIPIITHEI\JPRII\JT#4," 66, IL
LEGAL TRACK OR SECTOR,IIT$II,IISS:GOT0810
87() PRINT" {DOWI\J}66, ILLEGAL TF:ACI< OR SEC
TOR,IITII,IIS
BBC) BOSUB 1(J9(J
890 GOTOB20
900 REM JOB QUEUE
910 TRY=()
920 PRINT#15, IIM-~JIICHR$(8) CHR$ co CHR$ (2) C

452

HR$(T)CHR$(S)
930 PRINT#15, IIM-W U CHR$ (1) CHRS (o CHRS (1) C
HRS(JOB)
94() TRY=TRY+1
950 F'RINT#15, IIM-RII CHR$ (1) CHR$ «»
960 GET#15,E$
97(} I FE$= it II THEI'JE$=CHR$ co
9B() E=ASC (E$)

990 IFTRY=500GOTOI010
1000 IFE>127GOT0940
101o RETURI'J
1020 REM STR$(T,S)
1030 TS=RIGHT$(STR$(T),LEN(STR$(T»-l)
1()4() IFT< l()THENT$=II()II+T$
1050 S$=RIGHT$(STR$(S),LEN(STR$(S»-!)
1()6() IFS< l(lTHENS$="()II+S$
1 ()7() RETURf\J
1(lSC) F:EM DELAY
1090 PRINT"{DOWN}PRESS {RVS}RETURN{ROFF}

TO CONTINUE"
11 CIQ GETC$: I FC$=" II THEN 11 (10

1110 IFC$<>CHR$(13)GOTOII00
112(l RETURN

453

100 REM EDIT TRACK & SECTOR - 1541
110 F"OI<E56, 159
12() CLR
13(J HD$= II o123456789ABCDEF II

140 CD$=II {HOME} {DOWf\J 20} II

150 PRINT"{CLR}EDIT A SECTOR - 1541 11

160 FaRINT" {DOWN}REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}U
17() PRINT" {DOWN} INSERT DISKETTE IN DRIVE

18() INPUT" {DOWN}EDIT TRACt< & SECTOR (T, S
)II;T,S
190 IFT<10RT>35GOT01580
200 NS=20+2*(T>17)+(T>24)+(T>30)
210 IFS<OORS>NSGOT01580
220 It~F"UT" {DOl.JN}STARTING BYTE (OO/8()"; S
B$
230 IFLEN(SBS)=OGOT01580
24() SB=VAL (5B$)

250 IFSB<>OANDSB<>SOGOT01580
260 IFSB=OTHENBP=O:GOT0280
270 BP=128
28() I I'JPUT II {DOWf\J} ARE YOU SURE Y {LEFT 3} II

;Q$
29() IFQ$< }uyIlGOT0158()
300 OF"EN15, 8, 15
310 T$=RIGHT$(STR$(T)~LEN(STR$(T»-l)

32() IFT< l(lTHEt"T$=IIQII+T$
330 S$=RIGHT$(STR$(S),LEN(STR$(S»-I)
340 IFS< 1()THENSS=II()II+S$
35() REM SEEI<
36() JOB=176
37() GOSUB 1620
380 IFE<>lGOT0430
39(} REM READ
4 oo J OB= 128
41 o GOSUB162()
42() IFE=lGOT0520
430 IFE)lANDE<12THENEN$=RIGHT$(STR$(E+18
) ,2) : GOT0450
44() EN$=II()2 IJ : EM$=II?TIMEOUTIJ: GOT047()
45() IFE=70RE=8THEt,JEM$=IIWRITE ERROR": GOTO
47(}

46() EM$=IJF:EAD ERROR II

470 ET$=T$
48() ES$=S$
49() FeRINT Il {DOl~N} IIEf\J$IJ, II EM$ II , IIETS", HESS
500 CLOSE15
51C) GOT01580
520 F"RINT" {CLR} {R\)S} EDIT TRAC~<

455

S< SECTOR {F:OFF} II

53() PRINT" {HOME} {DOWN} {RVS} TM~A

CJ< IITSII
- SECTOR "9$11 {F:OFF} II

54() PF:I I'JT II {HOME} {DO!,lJt.J 2}"
550 FORJ=OT015
56() D=J *8+BFa
57() GOSUB174()
580 BP$=II • JI+DH$+II: II

590 H$=1I11
bO() A$=""
610 FORI=()T07
62() PRIt~T#15, IIM-RII CHR$ (J*8+I+BP) CHR$ (4)
630 GET#lS,B$
640 D=ASC(B$+CHR$(O»
650 POKE(40704+J*8+!),D
6b() GOSUB 174()
67() H$=H$+DH$+ II II

680 IFD)127THEND=D-128
690 IFD<320RD>95THEND=46
700 IFD=34THEND=46
710 A$=A$+CHR$(D)
720 NEXTI
73() PRINTBPHII {RVS} IIA$" {ROFF} II

740 NEXTJ
7S() PRINT II {DOWN} {RVS}EDIT{ROFF} TRAC.(liT

." - SECTOR 115$11 (Y/N)?II
760 GOSUB1790
770 I FQ$()-.. Y II GOTO 139(J
7B() FaRINTCD$IIPRESS {RVS}CLR{ROFF} TO EX I
T
79() PRINT" {HOME}{DOWN 3} (RIGHT 7}";
8 oo 5=1151
8It) C=l
820 A=PEEK(S):IFA>127THENA=A-128
830 M=S
84() F'OI<EM, A+ 128
850 GETI$:IFI$=JlIITHEN850
86C) I=ASC (1$)

870 IFI=147THENPOKEM,A:GOT01360
880 IFI=19THENPOKEM~A:GOT0790

890 IFI=141THENI=13
900 IFI<>13GOT0930
91(} I FC=23ANDS(>1773THENF'RINTII {RIGHT} Ii; :
GOTOI230
920 IFS<1751THENPOKEM,A:FORI=CT023:PRINT
II{RIGHT}II;:S=S+I:NEXTI:S=S-1:C=23:GOT012
30
930 IFI=32THENI=29:I$=CHR$(29)
940 IFI<>29GOT0970
950 IFC<>23THENC=C+l:S=S+1:GOT01290

456

96C) IFS< >1773THEt~JF·~~INT"{RIGHT}"; : GOT0123
o
970 IFI<>157GOTOI000
980 IFC<>lTHENC=C-l:S=S-1:GOT01290
990 IFC=lAI'~DS<>1151 THENFORI=l TOIS: F'Rlr"TIl
{LEFT}"; : NEXTI: C=23: 5=5-18: GOT013()()
1000 IFI<>17GOTOI020
1010 IFS+40<1774THENS=S+40:GOT01290
102(t IFI< >145GOTOI04()
1030 IFS-40>1150THENS=S-40:GOT01290
1040 IFA=320RA=160GOT0850
1050 IFI<480RI>57ANDI<650RI>70GOT0820
1 ()6() F"R I f\JT I $;
1070 A=I:IFI)64THENA=A-64
1080 IFA<7THENL=A+9
1090 IFA>47THENL=A-48
1100IFINT«C+l)/3)=(C+l)/3THENR=PEEK(S­
1):GOT01I20
111e) R=PEEI< (9+1)
1120 IFR>127THENR=R-128
1130 IFR<7THENR=R+9
1140 IFR)47THENR=R-48
1150IFINT«C+l)/3><><C+l)/3THENI=L*16+R
:GOT01170
1160 I=R*16+L
1170 POKE40704+8*INT«M-1151)/40)+INT(CI
3>,1
1180 IFI)127THENI=I-128
1190 IFI<320RI>95THENI=46
1200 IFI=34THENI=46
1210 IFI>64THENPOKEM+25-C+INT(C/3>,I-64+
128: GDTO 123()
1220 POKEM+25-C+INT(C/3),I+128
1230 IFC=23ANDS<>1773THENFORI=lT017:PRIN
Til {RIGHT} II; : NEXTI: C=l: 8=5+18: GOT0130()
124() IFS=1773THENF·RII'JT" {LEFT}"; : GOT01300

125() 5=5+1
1260 C=C+l
127() POI<EM~A
1280 GOT082()
129() F"RINTI$;
1300 A=PEEK(M>:IFA>127THENA=A-128
131() F·OI<EM, A
132() GOT082()
1330 F'RINTCD$"EX IT (-Y IN)?II
134() GOSUB 1790
1350 IFQ$=IIN II GOT0 7 8 ()
136() PRINTCD$II {RVS}REWRITE{ROFF} TRACI< ..
T$II - SECTOR 115$11 <YIN>?"
137() GOSUB179()

457

138() I FQ$= II y' II GOTO 145()
139() CLOSE 15
14()() PRlt,JTCD$IIATTEMPT TO EDIT A SECTOR {
RVS}FAILED{ROFF} ..
141() F'Rlt"T" {DO....Jf\J} PRESS {RVS}RETURN{ROFF}

TO CONTINUE II

142() GETC$: IFC$=" "THEf\J142()
1430 IFC$<>CHR$(13)GOT01420
144() GOTO 12(>
I45() PRlt,JTCD$1I {RVS}REWRITIt.JG{ROFF} TRACI<

IIT$II - SECTOR "5$" ..
146() FORI=(JT0127
I47(} PRINT#15, IIM-WIICHR$ (I +BF·) CHR$ (4) CHR$
(1)CHR$(PEEK(40704+I»
148() NEXTI
149() REM WRITE
15()() T=VAL(T$)
I5IC) S=VAL (5$)

152() JOB=144
1530 GOSUB 162(l
I 54() CLOSE 15
1550 IFE<>IGOT01400
156(J F'RIt~TCD$"ATTEMF·T TO EDIT A SECTOR C
OMPLETEII
157() GOT0141(l
1580 F·OJ<E56, 16()
159() CLR
16CH) END
1610 REM JOB QUEUE
1620 TRY=O
163(} PRINT#15, IIM-WIICHR$ (8) CHR$ «» CHR$ (2)
CHR$(T)CHR$(S)
l64() PRINT#15, IIM-W"CHR$ (1) CHR$ co CHR$ (1)
CHR$(JOB)
165() TRY=TF:~(+l

166() PRINT#15, "M-RIICHR$ (1) CHR$ ro
167() GET#15, E$
16B() IFE$=II IITHENE$=CHR$ ro
1690 E=ASC(E$)
1700 IFTRY=500GOT01720
1710 IFE>127GOTOI650
1720 RETU~=N

1730 REM DECIMAL TO HEXADECIMAL
1740 H=INT(D/16)+1
1750 L=D-(H-l)*16+1
1760DHS=MID$(HD$,H,I)+MID$(HD$,L,1>
177() RETURN
17BC) REM QUERY
179() GETQ$: I FQ$=" ..THEf\.ll 79()
1800 I FQ$< >II Y..ANDQ$< >.. NII GOTO 179(l
181C) RETURN

458

100 REM EDIT DOS VERSION
i io PRINT" {CLR}EDIT DOS VERSION - 1541"
12() PRINT II {DOWN} REMOVE {RVS}WRITE PROTEC
T TAB{ROFF}II
130 F'RINTII {DOWN} INSERT DISJ<ETTE IN DRIVE..
140 PRINT"{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
150 GETC$:IFC$=uIITHEN150
160 IFC$<>CHR$(13)GOT0150
17() PRINTIIOK"
180 OF'EN15, 8, 15
19() Pr=;:INTD15, u 10"
200 INPUT#15,ENS,EMS,ETS,ES$
21 o I FEN$=" O() ..GOT025()
220 PRINTII{DOWN}IIEN$II, IIEM$II,IIET$II,IIES$
23() CLOSE 15
24() END
25() F'RINT#15, JlM-RIICHR$ (1) CHR$ (1)
260 GET#15,DOS$
2-7() I FDOS$=" ..THENDOS$=CHR$ co
280 ODV=ASC(DOS$)
29() P~:INTII {DOWN}OLD DOS \JEF:SIOf\J:"; ODV
3(u) NDV=-l
31() INFaUT Il {DOWN}I'JEW DOS VERSIONII; NDV
320 IFNDV<OORNDV>255GOT0500
33() It,JF'UTII{DOWN}ARE YOU SURE (YIN) Y{LE
FT 3}fI;Q$
34() I FQ$<)-II Y II GOTOS(l()
350 T=18
36() S=()

370 REM SEEI<
38() JOB=176
39() GOSUB530
4()O REM READ
410 JOB=128
42() GOSUB53()
43() PRINT#15, IIM-WIICHR$ (2) CHR$ (4) CHR$ (1) C
HR$ (I'JDV)
440 REM l.'JR I TE
450 JOB=144
460 GOSUB53()
47() CLOSE15
48() F·RI NT" {DOt&JN} DOt~E ~ II

49() END
5(H) CLOSE15
510 END
520 REM JOB QUEUE
53() TRY=()
54() PRINT#15, "M-~JIICHR$(8) CHR$ co CHR$ (2) C

459

HR$(T)CHR$(S)
sse) PRINT#15, IIM-W"CHR$ (1) CHR$ co CHR$ (1) C
HR$(JOB)
560 TRY=TRY+l
57() F·F:lt~T#15, IIM-RIICHR$ (1) CHR$ (0)
SSC) GET#15, E$
59(1 I FE$=" II THEI'JES=CHR$ «()

6(H) E=ASC (E$)
610 IFTRY=500GOT0630
620 IFE>127GOT0560
630 IFE=1THENRETURN
64() CLOSE 15
65() PRII'JT " {DOWN} {RVSJ-FAILED{ROFF} II

660 END

460

100 REM VALIDATE A DISKETTE - 1541
110 CLR
12() CDS=·· {DOWN 21} II

130 DIMF$(143),T%(143),S~(143)

14() F'RINTII{CLR}VALIDATE A DISI<ETTE - 154
1"
i so PRINT" {DOWN} INSERT DISKETTE IN DRIVE..
160 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
17(> GETC$: IFC$=II II THEI'J17()
180 IFCS<>CHR$(13)GOT0170
190 PRINTIIOKII
2()O OF'EN15, 8, 15
210 PRINT#15,"IO"
220 INPUT#15,EN$,EMS,ETS,ES$
23() I FEN$= II O() II GOT027()
240 PRINTII{DOWN}"ENS", IIEMSII,IIETSII,IIESS
250 CLOSE1S
260 END
270 PRINT"{DOWN}{RVS}FETCHING{ROFF} DIRE
CTORY"
28() OPEN2, B, 2, 1I$(l, S, R'•
290 INPUT#15,EN$,EMS,ETS,ES$
30() I FEI'J$= II oo II GOT032()
310 GOT024()
32() FO~:I=()T0253

330 GET#2,B$
34() NEXTI
350 t~=o

36() FORJ=OT07
370 GET#2,B$
38() I FB$=" II THEI\JB$=CHRS co
390 A=ASC(B$)
400 IFA>127ANDA<133GOT0510
410 FORI=OT02
420 GET#2~B$

43() NEXTI
44() IFB$=u IITHEI\JB$=CHRS co
450 A=ASC(B$)
460 IFA=OTHENJ=7:NEXTJ:GOT0820
470 FORI=OT025
480 GET#2,BS
49() NEXTI
5 oo GOT0750
S1C) GET#2, B$
52() I FBS= II II THEI\JB$=CHR$ (O)
530 T%(N)=ASC(B$)
54() GET#2, B$
55e) I FB$= II .. THENB$=CHRS co

461

560 SZ(N)=ASC(B$)
570 F$=1I1t
5SC) r~ULL=()

590 FORI=OT015
soo GET#2 ~ B$
61 0 I FBS= II .. THEf\JBS=CHR$ ((I)

62() A=ASC (B$)
630 IFA=OTHENNULL=NULL+l
640 IFA)127THENA=A-128
650 IFA<320RA>95THENA=63
660 IFA=34THENA=63
670 F$=FS+CHR$(A)
680 NEXTI
690 IFNULL=16THENJ=7:NEXTJ:GOT0820
700 F$(N)=F$
710 N=I'J+l
720 FORI=OTOI0
73() GET#2, B$
740 NEXTI
750 IFJ=7GOT079()
760 FORI=OTOl
770 GETD2,B$
780 NEXTI
79() t~JEXTJ
800 IFST=64GOT0820
81 o GOT036C)
820 CLOSE2
830 INPUT#15,EN$,EM$,ET$~ES$

840 I FN)C)GOT0880
850 PRINT" (DO(,iJN}NO CLOSED FILES A~=E IN T
HE DIRECTORY"
860 CLOSE15
870 END
BBC) 1=0
890 F·RINT II {CLR} II

90() N$=r:;: I GHT$ (..oo II +R I GHT$ (STR$ (N) , LEN (ST
R$(N»-1)~3)

910 FORJ=OTOI'J-l
920 J$=RIGHT$ (1I()OIl+RIGHT$ (STRS (J+l) ~ LEI'J (
STR$(J+l»-1),3)
930 PRINT"{HOME}{RVS}VALIDATING{ROFF} BII
J$II/"N$II: IIF$(J)

94() FaRINTII{HOME}";LEFT$(CD$~1+2) ;F$(J); II

II.
~

950 NB=l
96() T=T% (J)

97() 5=5% (J)
980 GOSUB 164()
99() FaRINTIi {HOME} IILEFT$ (CD$~ 1+2) F$ (J) f\JB
1 ()O() JOB=176

462

1o1() GOSUB 152()
1020 IFE=lGOTOI040
1()3() GOT01170
104t) JOB=128
105() GOSUB 152()
1060 IFE=lGOT01080
1 ()7() GOT0117()
1()8() F·~:INT#15, IIM-RIICHR$ co CHR$ (4) CHR$ (2)

109() GET#15, B$
1100 T=ASC(B$+CHR$(O»
1110 IFT=OGOT01170
112() GET#15, B$
1130S=ASC(B$+CHR$(O»
1140 IFT>350RS>20+2*<T>17)+(T>24)+(T>30)
THEr~I=I+2:R$=II {R\JS} II: GOT01230
115(} NB=f\JB+ 1
116() GOT098()
117() 1=1+2
11S() R$=II {ROFF}"
1190 IFE=lGOT01240
12()() R$= II {RVS} II

121o GOSUB 17()()
122() GOTO1250
123(J E$=II ILLEGAL TRACJc~ OR SECTOR{LEFT} II:
GOT0125t.)

124() E$=IICH), 01<, oo , ()O ..
1250 PRlf\JT II {HOME} "R$; LEFT$ (CO$, I) ; F$ (J) II

IIE$II{ROFF}II
1260 F$(J)=II{HOME}{RVS}II+J$+II{ROFF}II+R$+
LEFT$(CD$,I)+II{LEFT 3}II+F$(J')+" II+E$+II{R
OFF} II
1270 IFI=20ANDJ<>N-ITHENFORD=lT01000:NEX
TD: PRINT" {CLR} ": I=()
128() NEXTJ
1290 CLOSE15
1300 IFN<11THENS=N:GOT01500
1310 INPUTII{DOWN}SUMMARY INFORMATION (VI
N) Y{LEFT 3}II;Q$
132() IFQ$()IIY"GOT011()
133() 51$=11 {CLR} {RVS} /"+N$+II SUMMAR
Y INFORMATION {ROFF}II
134() s=()

1350 PRINTSI$
136() FOR I =()T09
137() PRINTF$(S)
138() 5=5+1
1390 IFS=NTHENI=9
14()() NEXT I
1410 IFS<>NGOT01460

463

142e) IFS=NTHENPRlf\JT II {DOWN} {RVS}
TYPE :- C" TO COt~TIf\JUE {ROFF} II

143() GETC$: IFC$=II II THEN 143()
144() I FC$(>.. C IIGOTO143()
145() GOTOll()
146() PRINT" {DO~JN} {RVS} TYPE:a C" TO CONT
INUE OR ~ 5" TO STOP {F:OFF} II

147() GETC$: IFC$=II IITHE!'J147()
148() I FC$(>.. C IIANDC$(>.. S" GOTO1470
149() IFC$=IIC II GOT 0 13 5 ()
1500 GOT0110
1510 REM JOB QUEUE
152'.) TRY=()
153() PRII'JT#15, filM-W IICHR$ (8) CH~~$ (0) CHR$ (2)

CHR$(T)CHR$(S)
154() Fa~:INT#15, II M-l.lJIICHR$ (1) CHR$ (0) CHR$ (1)
CHRS(JOB)
155() TRY=TRY+!
156() FaRINT#15, IIM-R"CHRS (1) CHR$ «»
1570 GET#15,E$
158() I FE$= II II THEI'JE$=CHR$ ro
1590 E=ASC(E$)
1600 IFTRY=500GOT01620
1610 IFE>127GOT01550
162() RETURN
1630 REM STR$(T,S)
1640 T$=RIGHT$(STR$(T),LEN(STR$(T»-l)
165(l 1FT<1OTHEt~T$=" () II + T$
1660 SS=RIGHT$(STR$(S),LEN(STR$(S»-l)
167() IFS< 10THENS$=IIOII+S$
168() RETURN
1690 REM EN$,EM$,ET$,ES$
1700 IFE>lANDE<12THENENS=RIGHT$(STR$(E+l
8) ,2) : GOT0172()
171 () EN$=" ()2 II : EM$="?T I ME OUT": BOTO 173()
1720 EM$=IIREAD ERROR"
1730 ET$=T$
1740 ES$=S$
175() E$=EN$+ II, II +EM$+ II , .. +ET$+" , II +ES$
17 eo RETURN

464

100 REM DUF·LICATE TRACK &: SECTOR - 1541
IIC) PRINT" {CLR}DUPLICATE TRACt< & SECTOR
- 1541"
120 PR I NT" {DOWN} INSERT D I SIc~ETTE I N 1m I VE
II

13(t INPUT" {DOWN} SOURCE TRACJ< AND SECTOR
(T,S)II;T,S
14() GOSUB58()
15() TR=T: T=()
16() SR=S: S=()
17() INF·UT U {DOWN} TARGET TRACK AI'JD SECTOR
<T,S)";T,S
180 GOSUB58()
190 TW=T
2()() SW=S
21() INPUT" {DOWN} ARE YOU SURE Y{LEFT 3} II
;Q$
220 IFQ$<>uyuTHENEND
2300PEN15,B,15
240 PRINT#15,IIIO"
250 INPUT#15,EN$,EMS,ETs,ES$
26() I FEN$= ..oo" GOT031 o
270 PRINT"{DOWN}flENS", IIEM$","ETS","ESS
28() CLOSE 15
290 END
3()() REM SEEK
31() T=TR
32() S=SR
33(> JOB=176
34() GOSUB630
350 I FE= 1GOT038()
36() GOT075()
370 REM READ
38() JOB=128
390 GOSUB63()
4 oo I FE= 1GOT043()
410 GOT0750
42() ~:EM SEEK
43() T=TW
440 s=sw
450 JOB=176
46() GOSUB63()
470 I FE= 1GOT05()()
48() GOT075()
490 REM WRITE
5()() JOB=144
510 GOSUB63()
52() I FE= 1GOT054()
530 GOT0750
540 CLOSE1S

465

55t) F-RINTII {DOWNJDONE! II
56(} Ef\JD
570 REM ILLEGAL TRACK OR SECTOR
580 IFT<10RT>35THENEND
590 NS=20+2*(T>17)+(T>24)+(T>30)
600 IFS<OORS>NSTHENEND
6i() RETURI'J
620 REM JOB QUEUE
63(} TRY=()
64l) PRINT#15, "M-WIICHR$ (8) CHR$ «» CHR$ (2) C
HR$(T)CHR$(S)
65() PRINT#15, IIM-WIICHR$ (1) CHR$ co CHR$ (1) C
HR$(JOB)
bb() TRY=TRY+l
670 F-RINT#15, IIM-RIICHR$ (1) CHR$ «»
68() GET#15, E$
69() IFE$=IIIITHEI'JE$=CHR$ «»
7(lO E=ASC (E$)
710 IFTRY=500GOT0750
720 IFE>127GOT0660
73() RETURN
740 REM ERROR HANDLER
750 ET$=RIGHT$(STR$(T),LEN(STR$(T»-l)
7 so 1FT-< 1OTHENET$= II o II+ET$
770 ES$=RIGHT$(STR$(S),LEN(STR$(S»-l)
780 I FS< 1(}THENES$=" 0 II +ES$
790 IFE>1ANDE<12THENEN$=RIGHT$(STR$(E+18
) , 2) : GOT081()
B(lO ENS= II02 II : EMS=" ?T I ME OUT II : GOT083()
810 I FE=70RE=8THENEM$= II taJR I TE ERROR II : GOTO
83()
820 EM$=IIREAD ERRORII
830 F-RINT II {DOWN} II EN$ II , "EM$" ~ II ET$ II , "ES$
84() F'RINT" {DOl,lJN} {F:~JS}FAILED{~~OFF}II

850 CLOSE15
8bC) EI'JD

466

100 REM COpy TRACK & SECTOR - 1541
110 PRINTII{CLR}COPY TRACK & SECTOR - 154
111
12() F-RINT II {DOWf\J} INSERT MASTER IN DRIVEII
130 INPUTII{DOWN}TRACK AND SECTOR (T,S)II;
T,S
140 IFT<10RT)35THENEND
150 NS=20+2*<T>17)+(T>24)+(T>30)
160 IFS<OORS>NSTHENEND
17() INPUT" {DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$
180 IFQ$<>uYIlTHENEND
19() OF-EN15, 8, 15
2()O PRINT#15, II ro-
210 INPUT#15,EN$,EM$,ET$,ESS
22() I FENS= II oo II GOT027()
230 PRINT II {DOWN} IIEt~$", IIEM$", IIET$", "ESS
240 CLOSE15
25() END
260 REM SEEK
27() JOB=176
280 GOSUB57()
290 I FE= 160T032()
3()() GOT069()
310 REM READ
320 JOB=128
330 GOSUB570
34() I FE= 1GOT036()
350 GOT0690
360 CLOSE15
37() PRINT" {DO(.1JN} INSERT CLONE IN DRIVEII
380 F·RINTIIPRESS {RVS}RETURN{ROFF} TO CON
TINUE"
390 GETC$: I FC$=" .. THEN39C)
400 IFC$<>CHR$(13)GOT0390
41() F-RINT"OKII
420 OF·EN15,8,15
43() REM SEEl-<
44() JOB=176
45() GOSUB57(1
460 IFE=1GOT0490
470 GOT069()
48() REM WRI TE
49() JOB=144
500 GOSUB57()
SIC) IFE=lGOT053()
52(l GOT0690
530 CLOSE15
540 PRINT" {DOl~N}DONE!..
55() EI'JD

467

560 REM JOB QUEUE
57() TRY=(J
580 PRINT#15~"M-WIICHR$ (8) CHR$ «(» CHR$ (2) C
HR$(T)CHR$(S)
59(1 F'f::INT#15, IIM-l,lJIICHR$ (1) CHR$ (0) CHR$ (1) C
HR$(JOB)
600 TRY=TRY+l
s io PRINT#15, IIM-RIICHRS (1) CHR$«(J)

620 GET#15,E$
63() IFE$=III1THENE$=CHR$ «»
640 E=ASC(E$)
650 IFTRY=500GOT0690
660 IFE>127GOT0600
670 RETURN
680 REM ERROR HANDLER
690 ET$=RIGHT$(STR$(T),LEN(STR$(T»-l)
700 IFT<10THENET$="O"+ET$
710 ES$=RIBHT$(STR$(S),LEN(STR$(S»-l)
720 I FS< 1()THENES$="0" +ES$
730 IFE>lANDE<12THENEN$=RIGHT$(STR$(E+18
),2>:GOT0750
74() EN$= II ()2 II : EMS= II?T I ME OUT II : GOT077()
750 IFE=70RE=8THENEMS="WRITE ERROR":GOTO
770
76C) EMS=II READ ERROR II

770 PRINTII{DOWN}"ENS II
, IIEM$II,"ET$II,IIESS

78() PRINT" {DOWN} {RVS}FAILED{ROFF}"
790 CLOSE1S
BCIO END

468

100 REM RECOVER TRACK & SECTOR - 1541
110 PRINTII{CLRJ-RECOVER TRACK & SECTOR ­
1541 11

120 PRINT"{DOWN}INSERT DISKETTE IN DRIVE..
13() I NPUT II {DOWN} RECOVER TRACK AND SECTOR

(T,S)II;T,S
140 IFT<10RT>35THENEND
150 NS=20+2*(T>17)+(T>24)+(T>30)
160 IFS<OORS>NSTHENEND
170 I NF·UT II {DOWN}ARE YOU SURE Y{LEFT 3}"
;Q$
180 I FQ$< >II Y II THENEI'JD
190 OF·ENI5, 8, 15
20() PRINT#15, II ro-
210 INPUT#15,EN$,EM$,ET$,ES$
220 I FEN$=" oo .. GOT029()
230 PRINTII{DOWN}IIEN$", IIEM$II,IIET$II,IIES$
240 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
250 GETC$: I FC$= II II THEN2S()
260 IFC$<>CHR$(13)GOT0250
27() F·RI NT II OK II

28() REM SEEI<
29() JOB=176
300 GOSUBS2()
31 o I FE= 1GOT034()
320 GOT0640
330 REM READ
340 JOB=128
350 GOSUB520
360 I FE=4GOT042()
37() I FE=5GOT044()
380 IFE<>1GOT0640
39() PRINT" {DOWN}O(), OK, (U), oo II

400 CLOSE15
41() END
420 PRINT#15, IIM-W IICHR$ (71) CHR$ co CHR$ (1)
CHR$(7)
43(J REM WRI TE
44() J OB=144
450 GOSUB52()
460 I FE= 1GOT048()
470 GOT064()
480 CLOSE15
49() PRINT II {DOWN}DONE! II
5()0 END
510 REM JOB QUEUE
52() TRY=O
53() PRINT#15, IIM-WIICHR$ (8) CHR$ co CHR$ (2) C

469

HR$(T)CHR$(S)
54() PRINT#15, IIM-W"CHR$ (1) CHR$ «(l) CHR$ (1) C
HR$(JOB)
550 TRY=TRY+l
56() PRII'JT#15, "M-R"CHR$ (1) CHR$ co
57() GET#15, E$
580 IFE$=II IITHENE$=CHR$ «»
59() E=ASC (E$)
600 IFTRY=500GOT0640
610 IFE>127GOT0550
62() RETURN
630 REM ERROR HANDLER
640 ET$=RIGHT$(STR$(T),LEN(STR$(T»-l)
650 IFT< l()THENET$="O"+ET$
660 ES$=RIGHT$(STR$(S),LEN(STR$(S»-l)
670 IFS< 1 ()THEt"ES$=IIOIl +ES$
680 IFE>lANDE<12THENEN$=RIGHT$(STR$(E+18
) , 2) : GOT07()()
69() EN$=II ()2 II : EM$="?TIME DUTil: GOT0720
7(H) IFE=70RE=8THEt"EM$=IIWRITE ERROR II : GOTO
720
71 () EMS= ..READ ERROR II

720 F'RINTII {DO~JN} IIEN$", IIEM$II, IIET$II, IIESS
73() PRII'JTII {DOWN} {RVS}FAILED{ROFF}"
7 4() CLOSE 15
75() END

470

100 REM LAZARUS - 1541
110 PRINT"{CLR}LAZARUS - 1541 11

12() PRINT" {DOWN} INSERT DISKETTE IN DRIVE
II

130 INPUTII{HOME}{DOWN 4}ATTEMPT A RESURR
ECTION (YIN) Y{LEFT 3}";Q$
14() I FQ$< >II YII THENEND
1500PEN15,8,15
16() REM SEEK
170 FORT=lT035
180 NS=20+2*<T>17)+(T>24)+(T)30)
190 T$=RIGHT$(STR$(T),LEN(STR$(T»-l)
200 IFT< 1()THEI'JTS= II()II +T$
210 JOB=176
22() GOSUB51o
230 IFE=lGOT0250
240 BD=BD+l:R=R+NS:GOT0420
250 REM READ
260 FORS=OTONS
270 S$=RIGHT$(STR$(S),LEN(STR$(S»-l)
280 IFS<10THENS$=IIOIl+S$
290 PRINTII{HOME}{DOWN 6}{RVS}RESURRECTIN
S{ROFF} TRACK "TS" - SECTOR IIS$
3()() J OB= 128
31() GOSUB510
32e) I FE= 1GOT041 o
330 R=R+1
340 IFE<>4ANDE<>5GOT0410
350 IFE=5GOT0380
36() PRINT#15, II M-WII CHR$ (71) CHR$ (e) CHR$ (1)
CHR$(7)
37() REM WRITE
380 JOB=144
39() GOSUB510
400 IFE<>1THENW=W+l
41e) NEXTS
420 NEXTT
43() CLOSE15
44() PRINT" {HOME} {DOWN 6}

II
45() IFBD=35THENPRINTII {HOME} {DOWN 6}?BAD
DISK":END
460 PRINT"{HOME}{DOWN 6}READ ERRORS :IIR
470 F'RINT" {DOWN}WRITE ERRORS: IIl.tJ
48() PRINT" {DOWN}DONE ~ II
490 END
500 REM JOB QUEUE
510 TRY=()
52() F'RINT#15, IIM-W"CHRS (8) CHR$ (0) CHR$ (2) C
HR$(T)CHR$(S)

471

53(} PRINT#15, "M-~IIICHR$(1) CHR$ «» CHR$ (1) C
HR$(JOB)
54() TRY=TRY+ 1
55e) F·RINT#15, IIM-RIICHR$ (1) CHR$ co
56() GET#15, E$
570 IFE$=II JlTHENES=CHR$ (e)

580 E=ASC(E$)
590 IFTRY=500GOT0610
600 IFE>127GOT0540
610 RETURN

472

100 REM INTERROGATE FORMATTING ID~S - 15
41
110 OIMT(35)
12() FORI=l T035
130 T(I)=l
14() NEXTI
1S() PRINT" {CLR} INTERROGATE FORMATTING ID
~ S - 1541 11

160 PRINTII{DOWN}INSERT MASTER IN DRIVEII
170 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUEII
180 GETC$:IFC$= .. IITHEN180
190 IFC$<>CHR$(13)GOT0180
2()O OF·ENI5, 8, 15
21() PRINT" {CLR} II

220 REM SEEI<
23() FORT=1 T035
240 IFT(T)=OGOT0440
25() GOSUB55()
260 IFE<>lGOT0410
270 PRINTtt15,IIM-R II CHR$ (2 2) CHR$ (O)
280 GET#15,I$
29() I F I $=" .. THEN I $=CHRS co
300 I=ASC (IS)
310 I$=RIGHT$(STR$(I),LEN(STR$(!»-l)
32() PRINT#15, IIM-RIICHR$ (23) CHRS t o)

33() GETD15, DS
340 IFD$= THEND$=CHR$(O)
3S() D=ASC (D$)

360 D$=RIGHT$(STRS(D),LEN(STRS(D»-l)
37() I$=IICHRS (11+1$+11) II

380 D$=IICHR$(II+D$+II)II
390 10$=1$+11 + 11+0$
40() GOT045<)
41() IFE=3THENID$=II?NO SYNC MAR~~SIl:GOT045
o
42() I FE=2THEN I 0$= II ?HEADER BLOCte~s NOT PRE
SENT II:GOT0450

430 IFE=9THEI'JID$=II?CHECt<SUM ERROR IN HEA
OERS II:GOT0450
440 ID$=II?TIME DUTil
450 T$=RIGHT$(STR$(T),LEN(STR$(T»-l)
46(J IFT< 1 ()THENT$=II II+T$
470 F·RINTIITRACK IIT$II = .. ID$
4BC) REM PAUSE
49C) GETC$: IFC$=uIIGOT051()
soo GETC$: I FC$= II ..THEN5()()
510 NEXTT
52() CLOSE 15
530 END

473

540 REM JOB QUEUE
550 TRY=()
56() F-RINT#15, IIM-WIICHR$ (8) CHR$ «) CHR$ (2) C
HR$ (T) CHR$ co
57() PRINT#15~ IIM-WIICHR$ (1) CHR$ «» CH~:$ (1) C
HR$ (176)
5SC) TRY=TRY+ 1
59() PRINT#15~ IIM-RIICHR$ (1) CHR$ t o
600 GET#15,E$
s i o IFE$=II IITHENE$=CHR$ co
620 E=ASC(E$)
630 IFTRY=500GOT0650
640 IFE>127GOT0580
650 RETURN

474

100 REM INTERROGATE A TRACK - 1541
110 PRINT"{CLR}INTERROGATE A TRACK - 154
I"
120 PRINTII{DOWN}INSERT MASTER IN DRIVEII
130 INPUTII{DOWN}INTERROGATE TRACKII;T
140 IFT<10RT)35THENEND
1S() INPUT" {DOWN}ARE YOU SURE Y{LEFT 3} II
;Q$
16() I FQ$() .. Y II THENEND
1700PEN15,8,15
180 NS=20+2*(T>17)+(T>24)+(T>30)
190 REM SEEK
2()O JOB=176
210 GOSUB370
220 REM READ
230 PRINT"{CLR}II
240 FORS=OTONS
250 JOB=128
26(} GOSUB370
270 S$=RIGHT$(STR$(S),LEN(STR$(S»-l)
280 IFS<10THENS$=1I 11+8$
290 PRINTIITRACKII;T;II- II;
300 IFE=lTHENPRINT IISECTOR "5$11 = OKII:GOT
033()
310 IFE>1ANDE<12THENEM$=ST~$(E+18)+1IREA
D ERRORII
320 FeR I NT II SECTOR II S$ II =II EM$
330 NEXTS
340 CLOSEIS
350 EI'JD
360 REM JOB QUEUE
37(} TRY=()
38() PRINT#15, IIM-WnCHR$ (8) CHR$ co CHR$ (2) C
HR$(T)CHR$(S)
39() PRINT#15, II M-WII CHRS (1) CHR$ (0) CHR$ (1) C
HR$(JOB)
40() TRY=TRY+l
410 PRINT#15,IIM-RIICHR$(1)CHR$(O)
420 GET#15,E$
430 I FE$= II II THENE$=CHR$ (o

440 E=ASC(ES)
450 IFTRY=500GOT0480
460 IFE>127GOT0400
470 RETURN
480 EM$=II?TIME DUTil
49() F~ETURN

475

100 REM SHAKE, RATTLE, & ROLL - 1541
110 PRINTII{CLR}SHAKE, RATTLE, &: ROLL - 1
541 11

120 PRINT" {DOWN} INSERT DISI<ETTE IN DRIVE
••
130 INPUT" {DOWN} CLATTER TRACK II ; T
140 IFT<10RT>35THENEND
150 INPUT"{DOWN}ARE YOU SURE Y{LEFT 3}"
;(;)$

160 I FQ$(>•• VII THENEND
1700PEN15,8,15
1800PEN2,B,2,"#1I
190 PRINTII{CLR}II
200 REM SEEK
210 GOSUB360
220 NS=20+2*<T>17)+(T>24)+(T>30)
230 FORS=OTONS
240 REM READ
250 PRINT#15, "UI"; 2; or T; S
260 INPUT*15~EN$,EM$,ET$,ESS
27(l PRlt.JTIiTRACt<lI; T; 11- .. ;

28(l IFEN$=II(H)UTHENFIRINTIISECTOR II
; S; 11= 01<11

: GOT03()()
290 PR I NTII SECTOR II ES$ II = .. EN$ II •• EMS
300 NEXTS
310 CLOSE2
320 INPUT#15,EN$,EM$,ET$,ES$
330 CLOSEIS
340 END
350 REM JOB QUEUE
360 TRY=O
370 PRINT#15,IIM-W II CHR$ (B) CHR$ (O) CHR$ (2) C
HR$(T)CHRS(S)
380 PRINT#1S, II M-W" CHRS (1) CHR$ co CHR$ (1) C
HR$(176)
390 TRY=TRV+l
400 PRINT#15,"M-R IICHR$(1)CHR$(O)

410 GET#15,E$
420 IFE$=II IITHENE$=CHRS co
430 IFTRY=500GOT0460
440 IFASC(E$»127GOT0390
450 RETURN
46() CLOSE2
470 INPUT#15,EN$,EM$,ETS,ESS
480 CLOSE1S
490 PRINT" {DOWN} {RVS}FAILED{ROFF}"
500 END

477

100 REM INTERROGATE A DISKETTE - 1541
110 DIMT(35)
120 FORI=lT035
130 T(I)=!
14() NEXTI
150 PRINT II {CLR} INTER~:OSATE A DIS.(ETTE ­
1541 11

160 PRINT II {DOWf\J} II'JSERT MASTER IN DRIVE"
170 PRINT II {DOWN} FaRESS {RVS}RETURN{ROFF}
TO CONTINUE"
180 GETC$:IFC$=IIIITHEN180
190 IFC$<>CHR$(13)GOTOIBO
2()O PR I I'JT II 0.< II

210 PRlt"T
220 OF'EI\J15, 8, 15
23() FORT= 1 T035
240 IFT(T)=OGOT0390
250 NS=20+2*<T>17)+(T>24)+(T>30)
260 REM SEEK
270 JOB=176
280 GOSUB430
29() REM READ
3()O FORS=()TONS
31() JOB=128
32() GOSUB43()
33() I FE= 1 GOT038()
340 S$=RIGHT$(STR$(S),LEN(STR$(S»-!)
350 I FS< 1(}THENS$=" 11+5$

36() I FE >- 1ANDE<12THENEM$=STR$ (E+ 18) + II REA
D ERROR II

37() F'F:INTIiTRACf<lI; T; 11- SECTOR IIS$II =IIEM$
38() NEXTS
39() I'JEXTT
4 oo CLOSE 15
41 o Ef\JD
420 REM JOB QUEUE
430 TRY=()
44() F'RINT#15, IIM-WIICHR$ (8) CHF:$ «» CHR$ (2) C
HR$(T)CHR$(S)
45() PRINT#15, IIM-WIICHR$ (1) CHR$ «» CHR$ (1) C
HR$(JOB)
46() TRY=TRY+l
47() PRINT#15, IIM-RIICHR$ (1) CHR$ co
480 GET#15,E$
490 IFE$=II IITHENE$=CHf::$ (e)

soo E=ASC (E$)
510 IFTRY=500GOT0540
520 IFE>127GOT0460
530 RETURf\J
54() EM$= ..?T I ME OUT ..
55() F=ETURN

479

100 REM DUMP TRACK & SECTOR - 1541
110 POI(E56,159
12C) CLR
13() PRINT II (CLR} DUMF· TRACI< & SECTOR - 154
1 11

14() F·RINT II {DOWN} II'JSERT DISJc~ETTE IN DRIVE
II

15() I I'JPUT II {DOWN} TRACJc~ g(SECTOR (T, s) .. ; T ,
S
160 IFT<10RT>35GOT0630
170 NS=20+2*(T>17)+(T>24)+(T>30)
180 IFS<OORS>NSGOT0630
190 INPUTII{OOWN}ARE YOU SURE Y{LEFT 3}1I

;Q$
200 IFQ$<>IIYIIGOT0630
2100PEN15,8,15
22() PRINT#15,r 1110"
230 INPUT#15,EN$,EM$,ET$,ES$
240 I FENS="oo- GOT029()
2S() PRINT" {DOWN} liENS", "EM$", II ETS II , "ES$
260 PRINTII{DOWN}PRESS {RVS}RETURN{ROFF}
TO CONTINUE"
27() GETC$: IFCS=II IITHEI'J27()
280 IFC$<>CHR$(13)GOT0270
290 T$=RIGHT$(STR$(T),LEN(STR$(T»-l)
300 IFT< 10THEI\JTS=1I0"+T$
310S$=RIGHT$(STR$(S),LEN(STR$(S»-I)
320 IFS< 1C)THENS$=II(}II+S$
330 REM SEEK
34() JOB=176
350 GOSUB670
360 IFE=<>lGOT0410
37() REM READ
380 JOB=128
39() GOSUB670
400 IFE=10RE=40RE=5GOT0510
410 IFE>lANDE<12THENENS=RIGHT$(STR$(E+18
) ,2) : GOT0430
42() EN$=IICl2II : EM$=II?TIME DUTil: GOT044()
43() EM$= IIREAD ERROR II

440 ET$=T$
450 ES$=S$
46() F'RINT II <DOWN} liENS", IIEMS II , IIET$II,r IIES$
470 CLOSE1S
48() F·OKE56, 16()
490 CLR
soo END
510 FORJ=()T031
520 FORI=()T07
53() PRIf\JT#15, IIM-RII CHR$ (J*8+!) CH~:$ (4)

481

540 GET#15~D$

550 D=ASC(D$+CHR$(O»
560 POKE(40704+J*8+I),D
57() NEXTI
58() NEXTJ
590 CLOSE15
6(H) F-RINTII {OOlAJN} DONE ! II

61() PRII'JTII {DOWN}F-OKE56, 16(): CLR"
62() EI'JD
63(J POI<E56, 160
640 CLR
65() END
660 REM JOB QUEUE
67() TRV=O
68() PRINT#15, II M-(.w.JII CHR$ (8) CHR$ co CHR$ (2) C
HR$(T) CHR$ (S)
690 PRINT#15, IIM-W"CHR$ (1) CHRS «» CHR$ (1) C
HR$(JOB)
7 ()(J TRY=TRY+l
710 PRINT#15, IIM-RIICHR$ (1) CHR$ «»
720 GET#15,E$
730 IFE$=II IITHEI'JE$=CHR$ (0)
74(1 E=ASC (E$)
750 IFTRY=500GOT0770
760 IFE>127GOT0700
770 RETURN

482

100 REM BULK ERASER - 1541
110 PRINTII{CLR}BULK ERASER - 1541 11

120 PRINTII{DOWN}INSERT DISKETTE IN DRIVE
II

130 INPUTII{DOWN}{RVS}ERASE{ROFF} THIS DI
SKETTE Y{LEFT 3}II;Q$
140 IFQ$<>uYIlTHENEND
150 INF'UT II {DOWN}ARE YOU SURE Y{LEFT 3} II
;Q$
16() I FQ$< >IIY II THENEND
1700PEN15,8,15
180 FORI=()T023
190 READD
200 D$=D$+CHR$(D)
210 NEXTI
22() PRINT#15, "M-WIICHR$ (0) CHR$ (4) CHR$ (24)

D$
23() FORT=l T035
240 PRINT" {HOME} {DOWN 8} {F:VS}ERASING{ROF
F} TRACKIIT
250 REM SEEK
260 JOB=176
270 GOSUB360
280 REM EXECUTE
29() JOB=224
300 GOSUB360
31() NEXTT
32() PRINT" {HOME} {DOWN S}DONE ~

II

330 CLOSE1S
34() END
350 REM JOB QUEUE
360 TRY=O
370 F'RINT#15, IIM-W"CHR$ (8) CHR$ (0) CHRS (2) C
HR$(T)CHR$(O)
38() PRINT#15, IIM-WIICHR$ (1) CHR$ (0) CHR$ (1) C
HR$(JOB)
390 TRY=TRY+l
400 PRINT#lS, IIM-RIICHR$ (1) CHR$ (e)

410 GET#15,E$
42() IFE$=II IITHENE$=CHR$ «(l)

430 E=ASC(E$)
440 IFTRY=500GOT0470
450 IFE>127GOT0390
46() RETURN
470 CLOSE15
480 F'RII\JTII {DOWN} {RVS}FAILED{ROFF}"
490 END
500 REM 21 ERROR

483

510 DATA 32,163~253,169, 85,141, 1, 28

520 DATA 162,255,160, 48, 32,201,253, 32

530 DATA O,254~169, 1~ 76,105,249,234

APPENDIX 0

MATHEMATICAL CONVERSION ROUTINES

485

100 REM DECIMAL TO HEXADECIMAL
110 H$= II O123456789ABCDEF II

12() PRINT" {CLR}DECIMAL TO HEXADECIMAL II
130 D=-1
140 If\JPUTIl {DOWN}DECIMAL II; D
150 IFD<OORD>255THENEND
16(} H=INT (D/ 16)
170 L=D-(H*16)
180 HD$=MID$(H$~H+l~l)+MID$(H$,L+l,l)

190 PRINTII{DOWN}HEXADECIMAL: IIHD$
200 GOT0130

487

100 REM HEXADECIMAL TO DECIMAL
110 HS=1I0123456789ABCDEF II

120 F·RINTII {CLR}HEXADECIMAL TO DECIMAL"
130 HD$=
140 I NF·UT II {DOWN} HEXADEC I MAL II ; HD$
150 IFLEN(HD$)=OTHENEND
160 IFLEN(HD$)<>2THENEND
170 H=()
18C) FORI=! T016
190 IFLEFT$(HD$,1)=MID$(H$,I,1)THENH=I:I
=16
200 NEXTI
210 IFH=060T0130
220 H=H-l
230 L=O
24C) FORI=1 T016
250 IFRIGHT$(HDS,l)=MID$(H$,I,l)THENL=I:
1=16
26(l NEXTI
270 IFL=OGOT0130
280 L=L-l
290 D=H*16+L
30() PRINT" {DOWNJDECIMAL : -n
310 GOT013(1

489

100 REM DECIMAL TO BINARY
110 DEFFNB(B)=2A(B-INT(B/B>*8>ANDD

120 PRINTII{CLR}DECIMAL TO BINARY"
130 D=-l
140 INPUTII{DOWN}DECIMALII;D
150 IFD<OORD)255THENEND
160 PRINT II {DOWN}BII'JARY : .. ;
170 FORB=7TOO STEP-1
lac) IFFNB (B) =OTHENPRINTIIOII; : GOT02()O
190 PRINT"1 11

;

200 NEXTB
210 PRINT
220 GOT0130

491

..

100 REM BINARY TO DECIMAL
110 PRINTII{CLR}BINARY TO DECIMAL II

120 BS=
130 II'JPUT" {DOWN}BINARY (E. G. ~ 10101()10) II

;B$
140 IFLEN(B$)=OTHENEND
150 IFLEN(B$)<>8THENEND
160 8=0
170 D=O
180 FORI=lTOa
190 IFMID$(B$.. I.l>=1I1 ltTHENB=B+l:D=D+2A(B

-!>:60T0210
200 IFMID$(B$!lI~l)="O"THENB=B+l

210 NEXTI
220 IFB<>8GOT0120
230 PRINTII{DOWN}DECIMAL
liD
240 GOT0120

493

100 REM HEXADECIMAL TO GCR
110 H$= II O123456789ABCDEF II
120 DIMB$ (15)
130 B$ co ="01()10
14() B$ (1) = ..O 1O11
150 B$ (2) =III0()1()
16(l B$ (3) =1I1()(111
170 B$(4)="()1110
180 B$(S)=II()1111
190 B$(6)=1I10110
2 oo B$ (7) ="1()111
210 BS (8) = It 0 1(}()1
22(l B$(9)="l1()()1 11

230 B$ ci o =" 1l0l()11
24() B$(11)=1I11()11 11

250 B$ (12) =1I011()1 II

26() B$ (13) ="l11()1 11

270 B$(14)=1I11110"
2B() BS (15) =1I1()101 11

290 PRII\JT" {CLR}HEXADECIMAL TO GeRlt
3()() HG$= II ..

310 INPUTII{DOWN}HEXADECIMAL (E.G.~ 084AO
023)II;HGS
320 IFLEN(HG$)=OTHENEND
330 IFLEN(HG$)<>BTHENEND
34() FOR 1=1 T04
350 HG$(I)=MID$(HG$,I*2-1,2)
36() I'JEXTI
37() FORJ=1 T04
38() H (J) =()

390 FORI=1T016
400 IFLEFT$(HG$(J)~l)=MID$(H$,I,l)THENH(

J)=I:I=16
41() NEXTI
420 IFH(J)=OGOT0300
430 H(J)=H(J)-l
440 L (J) =()

45(} FORI=1 T016
460 IFRIGHT$(HG$(J),l)=MID$(H$~I,l)THENL

(J)=I:I=16
47() I'JEXTI
480 IFL(J)=OGOT0300
49() L (J) =L (J) -1
500 NEXTJ
SIC) FORI=l T04
520 IMAGE$=IMAGES+B$(H(!»
530 IMAGE$=IMAGE$+B$(L(I»
54() NEXTI
55e) F'RII\JT II {DOL&JN}" IMAGE$
56() PRINT" {UP} II;

495

• II •,

II.
~

57() FOR I =1 TOB
580 F·RI NT II --'-

59() I'JEXTI
6()() F·~~It~TII {UP}"
61l) FORI=! T05
620 BD$(I)=MID$(IMAGE$~I*8-7~8)

63t) NEXTI
64(} FORJ= 1T05
650 FORI=lT08
66() IFMIDS (BD$ (J) , I" 1) =III I1 THEND (J) =0 (J) +
2A.(8-I)
670 NEXTI
680 NEXTJ
690 FORI=lT05
700 H=INT(D(I)/16)+1
710 L=D(!)-(H-l)*16+1
720 DH$(!)=MID$(HS,H,l)+MIDS(H$,L,l)
730 NEXTI
740 PRINTII{DOWN}HEXADECIMAL: II;
7S() FOR 1=1 T04
76() PRINTHGS (I) ; II .. ;

770 NEXT!
78() F·RINT
79() PRINT" {DOWN}GCR
800 FORI=lT05
810 PRINTDHS(I);II II;
820 NEXTI
830 PRINT
840 PRINTII{DOWN}DONE!"
850 END

496

100 REM GCR TO HEXADECIMAL
110 H$=II0123456789ABCDEF II

120 DEFFNB(B)=2~(B-INT(B/8)*8)ANDD

130 DIMB$(15)
140 B$ «» =1I(l1C)1()1I
150 B$(1)=1I01011 11
1be) B $ (2) = .. 1oo 1o ..
l7C) BS (3) =11 10C)11 11

l8C) B$ (4) ="t)111()11
190 B$(5)=101111"
2C)(> B$(6)=1I1()110"
210 B$(7)=1I10111 11

22() B$ (8) =1I()I(H)1 11
230 B$ (9) =11 11(l()I 11
240 B$(10)=1I11()10 Jl

250 B$(11)=1I11011 11

260 B$ (12) ="011()1 11

270 B$(13)=1I11101"
28() B$ (14) = Jl l 1 1 1(}11
290 B$(15)=1I10101 11

3()O PR I NT" {CLR} GCR TO HEXADEC I MAL II

310 GH$=IIII
32(} INPUT II

{DO~JN}GCR (E. G. ~ 525DA52A53)";
GHS
330 IFLEN(GHS)=OTHENEND
340 IFLEN(GHS)<>10THENEND
35() FOR1=1T05
360 GH$(I)=MID$(GH$,I*2-1,2)
37~) NEXTI
38(} FORJ=l T05
39() H (J) =()

4 oo FORI=1 T016
410 IFLEFT$(GHS(J),l)=MIDS(HS,I,l)THENH(
J)=I:I=16
42() NEXTI
430 IFH(J)=OGOT0310
44() H (J) =H (J) -1
450 L (J) =()

460 FORI=lT016
470 IFRIGHT$(GH$(J),1>=MID$(H$,I,1>THENL
(J)=I:I=16
480 NEXTI
490 IFL(J)=OGOT0310
5(JO L (J) =L (J >-1
510 NEXTJ
520 FORI=lT05
530 HD(I)=H(!>*16+L(I)
540 f\JEXTI
550 IMAGE$=....
560 FORI=lT05

497

• II.,

II.
~

57() D=HD (I)

580 FORB=7TOO STEP-l
59() I FFt"B (B) =(ITHEt,.a I MAGE$= I MAGE$+" o .. : GOTO
61()
be)el IMAGES=IMAGE$+lIl ll

61() t.JEXTB
62() I'JEXT I
63(} PRINT" {DOWN} II IMAGE$
640 PRINT" {UFa} .. ;
65() FO~:I=1T05
6b() FaRI NT II ,.,

67() NEXTI
68() PRINT" {UP} II

69(} FORI=! TOB
700 H$(I)=MID$(IMAGE$,I*5-4,S)
71() NEXTI
720 FORJ=1TOB
73C) FOR I =(ITO 15
740 IFH$(J)=B$(I)THEND(J)=!+1:I=15
750 NEXTI
76() NEXTJ
77() FORI=1 TOB
780 IFD(I)=OTHENBDE=l
790 NEXTI
800 IFBDE=lGOT0940
810 PRINT"{DOWN}SCR
820 FORI=lT05
830 FaRINTGHS (I)" .. ;
84(l NEXTI
8SC) PRINT
86Cl FaRII'JTII {DOWN}HEXADECIMAL: II;
870 FORI=lT08
880 PRINTMID$(HS,D(I),l);
890 IFI/2=INT(I/2)THENPRINT" II;
90() f\JE XT I
91() FaRlf\JT
92() FaR It"T" {DOWN}DONE! ..
930 END
94() FORI =1TOB
95Cl IFD (I) =()THENPRII'JTII {RVS} IIH$ (I) II {ROFF}
1I;:GOT0970
960 PRlf\JTH$ (I) ;
97() NEXTI
980 PRINTII {DOWN} {F:VS}BYTE DECODlf\J8 ERROR
{ROFF}II
99(l END

498

INDEX

499

INDEX

A

aborted validate routine -- 27
asterisks in file names 24-25
autoinitialization feature 22

B

B-A ------------___ 72
B-E --------------------------___ 72
B-F 72
B-P ---------__ 71
bad sectoring 122
backup of a protected diskette 162
BAM ----__ 21, 26, 36-40
binary to GCR conversion ----__ 115-116
bit copying ------------------------__ 122
bit manipulation ---------------------__ 115
block allocate map ----------___ 26
block availability map ------------- 21
block, data --------------------------__ 113

header ---___ 113
block-allocate command 89, 113
block-execute command --------------------------- 72, 97
block-free --__ 71, 72, 94
block-read -------------- ---------__ 71, 98
block-write command 71, 77, 100
buffer 82
buffer areas, organization of 82
buffer-pointer command 71, 75
bugs in DOS 2.6 206-208
bump 112
byte separation 114
bytes, determining 116
bytes in the header block 32
bytes per diskette 31

c

C 23
cards, wild 23, 24
carriage return as a delimiter 55
chaining 42
characters, sychronization 113-114
checksum, header block 32

501

checksums 118-119
clock rates ---- - 30-31
close 19
coda 0bscura _ _ _ __ ____ __ ________ 122
codes, F DC job 109, 112
command channel -__ 16
command, validate 26-27

commands,
block-allocate 89
block-execute -- - -____ 97
block-free - --- ------- - -----__94
block-read --__ 98
block-write 77, 100
buffer-pointer 75
copy ---__________ 23
direct-access 71-72
DOS --- -------- '15-16
initialize 21
LOAD -_________ 16
mem0ry-execute --- -_-___ 96
memory-write 85
rename 22-23
SAVE -_________ 16
scratch 24
validate --- 26-27
VERIFY 16

Commodore encoding scheme 113
Commodore file types 43
communications, computer-disk drive 183
controller, floppy disk -_______________________________________ 103
coping a locked file 70
copy command 23

o

data block 31, 113
data communication channel 16
DEL 69
deleted file 69-70
delimiter _ ____________ 55
determining bytes 116
DIR 49, 51
direct access -__ 89
direct-access commands 71-72
direct-access data channel 72
disk commands, execution 83-184
disk drives, incompatability 208
disk, full -----__ 91
disk ID __ ___ ___ 21

502

disk interrogation 122
disk management -------__ 35
disk protection schemes 122
diskette, recovering a physically damaged 177
diskette, recovering an entire 177
DOS bugs 206-208
DOS, definition of 15
DOS error messages 119-121
DOS protection 113
DOS, tasks of 15
DOS 2.6 sync mark 114
duplicating a protection scheme 123

E

encoding scheme, Commodore 113
end or identify 99
EOI --______________ 99
EOR 118
EOR truth table 118
error messages, DOS 104, 119-121
error, illegal track or sector 91

illegal quantity 74
110 channel 83
recovery hard 175-176
recovery soft 175
time out 112
write 112

errors, hard 175
read 120
read/write 175
soft 175
write 120

execute .,'__ 112
execution of disk commands 183-184

F

FDC _ 103, 182
F DC formatting routine 193
FDC job codes 109, 112
FDC main loop 189-190
FDC major entry points 190
FDC read routine 191
F DC routines, major 188-193
FDC routines, using 193-199
FDC write routine 192
fields of a directory .___ 36

503

1541 binary to GCR look up table . 114-115
file, deleted 69-70
file management 184-185
file name limits 23
file open error ----__ 19
file padding ----- ---_ 53
file, random access 56

relative -------- 56

sequential data -- -- 56
side sector ---------------- --- 56
user storage ---___ 69

file storage, program --___ 48
sequential -- 53

file types, Commodore --- 43
files, locked ---_ 70
fixed record length ----__ 66
floppy disk controller 103, 182

formatting a diskette --- 29
forward pointer 42, 48
full disk --________ 91
full new, recovering from -----_______________________ 179-180

G

GCR conversion - 114-115
group coded recording --------------------------------------- 114

H

hard error, recovery 175-176
hard errors ------- --- 175
header block 31, 32-33, 113
header block, byte makeup ------------- 32-34
header block checksum 32
header block ID 32
header block layout 32

I 22
ID character -2 32
ID HI _____ ____________ ________ _____________ __________ _______ _ ___ __ ___ __ __ ________ ____ 32
illegal quantity error 74
illegal track or sector error 91
incompatability , write ---___ 208-209
initialize command -----__ 21
initializing a disk ------------___ 21-22

504

inter-sector gap ------------------ 34, 117
inter-sector tail ----___ 117
interface processor -__ 103, 182
IP ---------___ 103, 182
IP error codes --___ 103-104
IP routines - ---__ 182-185

J

job codes 107
job queue --____ 105
jobs ______ ___ __ __ __ __ _ ___ _____ _ __ ___ ___________ __ 103
jump 112

L

last block signal 49
layout of a header block 32
length, fixed record 66
LOAD -____________ 16
load address 48
locating particular relative files 68-69
locked file, coping 70
locked file, renaming 70
locked files 70

M

M-E ---------------- 72
M-mode -- 177-178
M-R ---------------- 72
M-W ---------------- 72
magnetic domains 199
major FDC routines 188-193
memory-execute command ---_________________________ 72, 96
memory-read command ------____________________________ 71, 81
memory-write command -------_________________________ 71, 85
merging sequential files with copy command 23-24

N

N 21
naming a file 20-21
NEW 21
newing a diskette 29
no channel error 83
null directory entry 47

505

o

organization of buffer areas --- 82

p

padding the last block in a file 53
parser routine __________________________________ ____________________ __ ____ ___________________________ 104-105
pointer, forward 42, 48
PRG __ ____ __________ ________ ________________________________48
processor, interface 182
program file storage 48
programmer's aid 24
protected diskette, analyzing 122-123
protected diskette, backup of a 162
protection, DOS 113
protection scheme, duplication 123-124

a
question marks in file names 25

R

random access file 56
read errors 119
read mode 200
read/write errors 175
reallocating sectors 173
record size 56
recording process 199
recovering a hard error 175-176
recovering a physically damaged diskette 177
recovering a relative file 176
recovering a scratched file 173-175
recovering a soft error 175
recovering an entire diskette 177
recovering an unclosed file 177-178
recovering from a full new 179-180
recovering from a short new 178-179
recovering scratched files 26
recovery, relative file 176
relative file 56
relative file entries 44
relative files 56
relative file, recovery 176
rename command 22-23
renaming a locked file 70
re set, warm .. 100

506

s
SAVE 16
save and replace operation 44-45
scratch cornmand __ _ __ 24
scratched files 27
scratched files, recovering 26
scratching a file 24
scratching an unclosed file 27
sector 31
sector filling sequence 42
sector layout 31
sector number _ __ _ _ _ __ 32
sectors 29
sequential data file 56
sequential file storage 53
short new, recovering from 178-179
side sector __ _ _ __ __ __ 56
side sector file 56
signal, last block 49
soft error, recovery 175
soft errors ---- 175
ST 99
status variable 99
stopgap measure 117
sychronization characters 113-114
sync mark 31-32, 115
sync mark, placement 114
sync mode 114

T

tail gap 34, 117
time out error 112
tracing a file 26-27
track number ------- ----------- -- --------------- - 32
tracks -- -____________ 29
tracks on a formatted diskette -- 29

u
U2 -- ------------------ ----------- 71
U1 ------------------- 71
unclosed file, recovering ----------------- ------
177-178unclosed files 27

unscratching a file 173
user file storage 69
using IP routines -__ 185
using the FDC routines 193-199
USR --- 69

507

v

v ---__ 26
validate command - 25, 26-27
validate routine, aborted ----- 27
variabIe, status -- -------___ 99
VE RIFY -------___ 16

w

warm reset -------- ~---------------------------------------___ 100
wild cards ----------------------------___ 23
wild cards in file names ------------ 24
write error ----__ 112, 120
write mode ----___ 114, 200

508

WHEN IT COMES TO BOOKS,
WE'VE GOT YOU COVERED!

Kids to Kids onthe C-64
Written by kids for kids, explains

BASIC programming in simple,
straightforward language. Two

chapters are devoted to sound and
graphics, and another shows how to

write an original game. $9.95

A Shortcut Through
Adventureland, Volume II

The cheater's guide to all of
Infocom's text adventures to date:

The Zork Trilogy, Infidel, The
Witness, Deadline and Enchanter to

name a few. $9.95

C-64 Game Construction Kit
Shows you how to write your own

BASIC games! This unique book
gives examples of different games

and teaches fundemental lessons of
quality game programming. $14.95

Programming for Profit
Aimed at the programmer who

wants to get his or her software
published. This is a unique

guidebook through the maze of
traditions, rules and standards in the

software industry. Contains hints
and tricks of the trade

and much more! $14.95

TheC·64 Home Companion
This is the book that should have
come with your Commodore 64.

Straight answers to horne computing
questions, dozens of software

reviews, BASIC and more! $19.95

C-64 Logo Workbook
Teaches children in grades 2-6

how the Logo language can be used
for problem solving. Learn about the

"turtle," variables, geometry and
recursion. $12.95

Super Computer Snooper (C-64)
Learn how the computer "thinks."

Investigate memory, screens,
programs and variables, keyboards,

printers, and expansion boards, and
much more! $14.95

A Shortcut Through
Adventureland, Volume I
Contains answers to 14 of the most
popular hi-res puzzle solving
adventures including Wizard and the
Princess, Cranston Manor, The Dark
Crystal, Escape from Rungistsn,
Time Zone and more. $9.95

The Musical Commodore
Introduces you to music theory and
computing at the same time. For
beginners as well as pros, this book
helps you turn your C-64 into a
musical instrument. $14.95

Available at better book and
computer stores, or contact Datamost.

Computers & Writing
An innovative approach to teaching
children to write using the
computer. Topics discussed include
computers in the classroom,
adapting traditional teaching
methods to include computers,
setting up a creative environment at
home and more. For both parents
and teachers. $9.95

Intermediate Commodore
Takes you from being a fledging
programmer and teaches important
principles so you can handle more
complicated problems. Helps you
take that step from elementary
BASIC programming to machine
language programming. $14.95

Games Commodores Play
A collection of classic computer
games that teaches BASIC using a
games and graphics approach.
Simply type them in and make your
own modifications. $14.95

The Elementary Commodore
Explains the Commodore 64 in
simple, everyday language. How to
hook it up, use the keyboard, and
program in BASIC. Teaches about
word processing, utilities and
peripherals. $14.95

NOW THAT YOU'VE GOTTEN "INSIDE" COMMODORE DOS •••
1541 User's Guide - Written by one of the authors of Inside
Commodore DOS, this book proves to be the perfect complement to
Inside Commodore DOS. This book shows you how to make more
effective use of your 1541 disk drive. It expands the documentation
that came with your 1541 disk drive. Practical information on setting
up and operating the disk drive as well as the DOS which came with
'your drive is included. Diskette housekeeping is throughly discussed
including how to format or initialize a disk, and renaming, copying,
and combining files. Complete your knowledge of the 1541 with the
1541 User's Guide. $19.95

Tired of paying $50, $75 or even $100 for quality
products for your Commodore 64? If so, try our
KWIK-WARE! line. At just $19.95, each KWIK-WARE!
product delivers high quality at an unbeatable price,
and all KWIK-WARE! products are fully compatable
with one another.

KWIK·WRITE!
KWIK·PHONE!

$19.95 EachKWIK·LOAD!
KWIK·PAD!

SMART PERIPHERALS FOR THE
COMMODORE 64!

KWIK·LOADI, winner of Softsel's award for the hottest
selling new utility of 1984, is the basis for all KWIK-WARE!
products, all of which have the extra speed of KWIK-LOAD!
built-in. KWIK-LOAD! loads and copies files over 300% faster
than normal Commodore DOS. It includes KWIK-COPY!, a
menu driven group of utilities which lets you perform DOS
commands, check drive speed, edit sectors on disk, and
alphabetize disk directories.

KWIK.PADI, a co-resident secretary program. This handy
utility features a built-in calculator mode, memo pad,
appointment book, calendar, address book and more!

KWIK·WRITEI offers all the features of more costly word
processors for a fraction of the price. Fully menu driven,
KWIK-WRITE! features full fledged help screens, cut and paste,
search and replace, print preview, screen displays up to 132

characters wide, a full range of embedded printer commands,
and much more.

KWIK·PHONEI, a complete telecommunications package
featuring simple command menus. It is compatible with
acoustic or direct-connect modems. The exclusive, built-in
KWIK-MAIL! feature will answer your phone automatically to
send or receive text, programs or hi-res graphics and a
built-in phone book stores thousands of phone numbers.

Be sure to watch for KWIK·CALCI, a complete spreadsheet
package with over 2,500,000 available cells. KWIK-CALC!
offers the versatility of the more expensive spreadsheet
programs. KWIK-CALC! is priced at $24.95.

At DATAMOST, we didn't just ask why software is so
expensive, we did something about it. KWIK- WARE! only
$19.95 per package.

EIGHT FUN WAYS TO START ENJOYING YOUR C·64

Ankh - Dare to adventure in the MetaReal world, guiding
your "Surrogate Other" through a maze of 64 rooms. Test
your reasoning, logic, and intellect in this hi-res arcade-action
puzzle. Can you find the answer, using only your "other" and
your wits? $19.95

Aztec - Guide your intrepid adventurer through eight levels
of an ancient Aztec ruin, in quest of the elusive golden idol.
Use your wit, dexterity, and weapons to fight off spiders,
scorpions, cobras, natives, and worse. $19.95

Jet-Boot Jack- Help Jack gather up all the notes using only
his custom Jet-Boots and your dexterity, in his adventure
through the wonderous Music Machine. A 10-screen, multi­
skill level obstacle course guaranteed to test the expertise of
even the most seasoned game player. $19.95

Mabel's Mansion - In this hi-res, real time adventure,
Barney the Bellhop must find his inheritance in his Aunt
Mabel's haunted house. Hidden among the 90 rooms of her
house are numerous treasures, guarded by hundreds of ghosts,
ghouls, and monsters. $19.95

Mr. Robot and His Robot Factory - A 22-screen
challenge. Jump from the treadmill to ladder to trampoline
gathering power pills and bonus robots by avoiding bombs and
the dreaded alienfire. Design and save up to 26 screens per
disk. $19.95

Mychess 11- The only chess program with stunning 3-D,
B&W or color graphics! Play against your C-64 or another
person. Includes possible moves, search for checkmate, hint,
and examine square (to check for safe moves). Includes 128
games on disk as played by former masters. $29.95

Paint Magic - The ultimate graphics utility. Quickly draw
circles, lines and boxes with one command. Infinite fills. Grab
and draw any image, shrink and enlarge, or use the micro­
scopic mode. 16 colors. $39.95

Polar Pierre - The first two player game where two players
can play at the same time! Guide Pierre or Jacques through
a multiple screen obstacle course, avoiding snowballs,
lightning, stompers, and deadly falls. $19.95

Available at better computer stores, or
contact Datamost.

Commodore 64 and 1541 are registered trademarks of Commodore Business Machines,
Inc. KWIK-LOAD!, KWIK-COPY!, KWIK-WRITE!, KWIK-MAIL!, KWIK-PAD!,
KWIK-PHONE!, KWIK-CALC!, and KWIK-WARE! are all registered trademarks of
DATAMOST, Inc.

	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - Using the 1541's DOS
	Chapter 3 - Diskette Formatting
	Chapter 4 - Diskette Orgamization
	Chapter 5 - Direct-access programming
	Chapter 6 - Intermediate direct-access programming
	Chapter 7 - DOS protection
	Chapter 8 - Getting out of trouble
	Chapter 9 - Overview of the 1541 DOS
	Appendix A - 1541 RAM Variable Definitions
	Appendix B - Analysis of the 1541's ROM
	Appendix C - Program Listings
	Appendix D - Math Conversion Routines
	Index

