INSIDE
COMMODORE
DOS

INSIDE
COMMODORE

DOS

by

Richard Immers, Ph.D.
Adrlan Public Schools
Adrian, Michigan

and
Gerald G. Neufeld, Ph.D.

Brandon University
Brandon, Manitoba
Canada

Technical lllustrations by
Diane M. Corralejo

DATAMOST

19821 Nordhoff Street, Northridge, CA 91324
(818) 709-1202

First Printing, July 1984
Second Printing, February 1985

&

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia

ISBN 0-8359-3091-2

Copyright © 1984 by DATAMOST, Inc.
All Rights Reserved

This manual is published and copyrighted by DATAMOST, Inc. All rights are reserved
by DATAMOST, Inc. Copying, duplicating, selling or otherwise distributing this pro-
duct is hereby expressly forbidden except by prior written consent of DATAMOST, Inc.

.The words COMMODORE, CBM, COMMODORE 64, VIC-20, VIC-1541 and the Com-
modore logo are registered trademarks of Commodore Business Machines, Inc.

Commodore Business Machines was not in any way involved in the writing or other
preparation of this manual, nor were the facts presented here reviewed for accuracy
by them.

The information presented in this manual is the result of intensive study of the
disassembly of the 1541 DOS. Every effort has been made to provide error-free infor-
mation. However, neither the authors nor DATAMOST, Inc. can accept responsibility
for any loss or damage, tangible or intangible, resulting from use or improper or un-
intended use of this information.

Printed in U.S.A.

ACKNOWLEDGEMENTS

A manual like this one would not be possible without a great deal of technical assistance.
Mike Todd’s Disk File column in the ICPUG Newsletter proved to be an invaluable source
of insight into the inner workings of Commodore’s DOS. Raeto West’s book, Program-
ming the PET/CBM, was a constant companion. Jim Butterfield’s numerous articles
also provided valuable bits and pieces of information. Brad Templeton’s POWER™
system and PAL™ assembler made the development of the programs in this manual
a real joy. These packages are commerecially available from Professional Software Inc.
In addition, both the PAL disassembler and MICROMON were used as tools for
disassembling the 1541 DOS.

We would also like to acknowledge the patience and forebearance of our families and
friends. Without their support, producing this manual would have been considerably
more difficult. Mike Louder of DATAMOST, Inc. also provided tremendous support for
its production.

Finally, we would like to extend a special note of thanks to Dr. Tom MacNeil and Nancy
Neufeld for their diligent work in proofreading this manual.

This manual was written on a Commodore computer system using the WordPro 4 Plus
word processing system. The WordPro Plus™ Series is commercially available from
Professional Software Inc. This sophisticated word processing system made editing and
last minute revisions much easier.

TABLE OF CONTENTS

Chapter 1 — INTRODUCTION ..ottt ittt erine e 11
A Brief Word About the Programsc.oivvn.... 1
How to Type in the Programscoovveveninininennnn. 12
Chapter 2 — USING THE 1541’SDOS ittt et enieianans 15
The Purpose of DOS iiiiiiiiiiiiiiiiiriiieieinaenns 15
Communicating with the 1541 iiiiiiiiiiiiann. 15
The Command Channel iiiiiiiiiiinnnn. 16
Using the Command Channelc.ciiiiiiiiiiiiinn... 17
Diskette Housekeepingcccoiiiiiiiiiiiiiiiiiiinnnann, 20
Chapter 3 — DISKETTE FORMATTINGcoiiiiiiiieiinn.. 29
Layout of Tracks and Sectorsccovviiiiiiiiinnnnnnnnn 29
Layout of a Sectorottt 31
The Header Blockottt iiiiaiinenennn. 32
The Data Blockcooiiiiiiiiiiiii i iiennan, 33
Chapter 4 — DISKETTE ORGANIZATION ..., 35
Information Management iiiiiiiiiaiaa.. 35
The Directory You Seecoiiiiiiiiiiiii i 35
The Block Availablity Map ...t 36
The Directory Entries ...ttt 40
Program File Storagec.coiiiiiiiiiii ittt 48
Sequential File Storagecciiiiiriiiiiiiiiniernennnnns 53
Relative File Storageocviiiiiiiiiiiiiiiiiiiii e, 56
User File Storageooiiiiiiiiiiiiiii e 69
Deleted File Storagecccueiiiiiiiiiiiinaannenann.. 69
Locked Filesooiiiiiiiiriii i eienaeaannn 70
Chapter 5 — DIRECT-ACCESS PROGRAMMING 71
Introduction to Direct-Access Programming 71
Beginning Direct-Access Programming, 71
Block-Read Commandocieiiiiiiiiiieneninnnnennn. 73
Buffer-Pointer Commandcciiiiiiiiiiiiiiae.. 75
Block-Write Commandccciiiiiiiiiiiinienerennnnns i
Memory-Read Command, 81
Memory-Write Commandcovviiiiniiiirneersennenss 85
Block-Allocate Commandccoiiirriiiininenrneerennannss 89
Block-Free Commandoiiiiiiiiiiiiiiiiiiiniaannas 94
Memory-Execute Commandcoeiiiiiiiiiiiiiieenennn 96
Block Execute Commandcciviiiiiiiieeinneennannn. 97
Direct-Access Entomologycoviiiiiiiiiiiiiiiiiiiiia. 98

Chapter 6 — INTERMEDIATE DIRECT-ACCESS PROGRAMMING

Chapter 7 — DOS PROTECTION i,
Commodore’s Data Encoding Scheme
Checksumscournin i ittt e
Description of DOS Error Messagescccooevviiiian...
Analyzing a Protected DiskettecoooiiiiiiiiiL
Duplicating a Protection Scheme
How to Create 21 Errors on a Full Track
How to Create a 21 Error on a Single Sector
How to Create a 23 Error on a Single Sector
How to Duplicate a 23 Error on a Single Sector
How to Create 23 Errors on a Full Track
How to Create 20 Errors on a Full Track
How to Create 27 Errors on a Full Track
How to Create a 22 Error on a Single Sector
How to Duplicate a 22 Error on a Single Sector
How to Format a Diskette with Multiple IDs
How to Backup a DOS Protected Diskette
How to CopyaFileccovviiiernni it

Chapter 8 — GETTING OUT OF TROUBLEcvivieiene.
Unseratching a File i e
Recovering a Soft Sector ...,
Recovering a Hard Sector i,
Recovering a Relative File it
Recovering an Entire Disketteo oot
Recovering a Physically Damaged Diskette
Recovering an Unclosed File ...t
Recovering from a Short Newciiiiiinn...
Recovering froma Full New

Chapter 9 — OVERVIEW OF THE 1541 DOSc.ciienn.
Introduction to 1541 DOS i e
The Hard Working 6502t iriiiiieinneannnnnnn.
Major IP Routinescoiiiiiiiiniiiiiii i
Using the IP Routineso i,
Major FDC Routinescoiuueumiiiiiieeeienneenn.
Using the FDC Routinesoovvviiiiininnniiinnnnnann
The Recording Processc.iiiimiiiiiiiinnnnnnn
Block Diagram of the 1541ciiiiiii it
Writing Data to a Diskette ..ot
Reading Data From a Diskettet
Summary Bugs in DOS 2.6covviiiiiiiiiiiiiii i
Write Incompatability with 4040ot
Late NewWs ..o i et et

Appendix A — 1541 RAM VARJABLE DEFINITIONS 217

Appendix B — ANALYSIS OF THE 1541’s ROM 229
Appendix C — PROGRAM LISTINGSt 437
Appendix D — MATHEMATICAL CONVERSION ROUTINES 485
Indexo i e e 499

Ignorance is a precious thing.
Once lost, it can never be regained.

CHAPTER 1

INTRODUCTION

This manual is intended to supplement the documentation provided in the 1541 User’s
Manual. Although this manual is primarily designed to meet the needs of the in-
termediate to advanced programmer, it will also be of interest to the novice Commodore
user who wants to know more about how his 1541 disk drive works. This manual is not
intended to replace the documentation provided by Commodore Business Machines, Inc.
and the reader is assumed to be relatively familiar with the contents of the 1541 User’s
Manual. For the sake of continuity and clarity, some of the information covered in the
1541 User’s Manual is also presented here. However, the majority of the information
presented in this manual is original and is the result of intensive disassembly and an-
notation of the 1541’s DOS by the authors. Some information is based on articles and
notes published in a variety of publications as well as discussions with other
knowledgeable disk experts.

This manual was not prepared with the assistance of Commodore Business Machines,
Inc. Although we cannot guarantee the accuracy of all the information presented in this
manual, the material has been thoroughly researched and tested.

There were several reasons for writing Inside Commodore DOS:

. To correct errors and omissions in the 1541 User’s Manual.

. To help you make more effective use of your disk drive.

. To provide complete information on diskette formatting.

. To provide complete information on the storage of files.

. To allow you to read and write data in non-standard ways.

. To help you make a backup copy of your “protected” diskettes.
. To help you recover damaged diskettes.

. To help you understand the operation of your disk drive.

00 =3 O U W O DD

Although this manual focuses primarily on the 1541 disk drive, much of the information
also applies to other Commodore disk drives.

1.1 A Brief Word About the Programs

This book contains listings for 46 ready-to-use programs written in BASIC. These pro-
grams are copyrighted. They may NOT be used commercially, in whole or in part, period.
Sinee many of the programs are long, typing them all in would be a time consuming,
tedious task. Feel free to share your typing efforts with a friend who has also purchased
a copy of this book. In return, we simply ask that you do not share a program with some-
one who does not own a legitimate copy of this book.

11

The programs in this book are disk utilities. They do not use flashy graphics or sound.
Rather, they are extremely powerful tools. Remember, any tool can be dangerous if it
is used improperly. Be sure that you know what you are doing before you use a given
program. Always experiment with a program on a test diskette before you actually use
it on one that contains valuable programs or data. Practice makes perfect.

Each program was individually tested on a variety of 1541 disk drives having a wide
range of serial numbers. Moreover, each program always worked perfectly. Unfortunately,
it is impossible to guarantee that a particular program will work with your model. If
a given program does not seem to work properly, check your typing carefully. Any er-
rors, especially in the DATA statements which contain a machine language program, will
produce problems.

As a courtesy to the more advanced programmer, we have also included the source listings
for each machine language routine. A source listing immediately follows a related BASIC
program listing and has a file name ending in “PAL”. It is for use with the PAL assembler.
Note: If you are using a different assembler, you may have to make some minor changes.

The programs in this book were designed to be not only useful and beneficial, but in-
structive as well. Many of them illustrate the “state of the art” in the use of Commodore’s
direct-access disk commands. Enjoy!

1.2 How to Type in the Programs

Program listings in books and magazines often suffer from two problems: typographical
errors that occur when the program is retyped into a word processor and the readabili-
ty of Commodore’s control characters (e.g., the reverse field heart that means Clear
Screen). To overcome these problems, the program listings for this book were created
using a special “lister” program. This lister program took a working BASIC program
and converted it into a WordPro™ file. At the same time, control characters were spell-
ed out in words and surrounded by curly brackets. For example, a reverse field heart
was converted to {CLR}. The table below summarizes the listing conventions, the cor-
responding control characters, and the proper key/keys to press on your C64 or VIC-20.

When You See What It Represents What You Type

{CLR} Clear Screen Hold down SHIFT and press
CLR/HOME

{HOME } Home Cursor Press CLR/HOME

{DOWN } Cursor Down Press CRSR/DOWN

{UP} Cursor Up Hold down SHIFT and press
CRSR/UP

{RIGHT} Cursor Right Press CRSR/RIGHT

{LEFT} Cursor Left Hold down SHIFT and press
CRSR/LEFT

{RVS} Reverse Field ON Hold down CTRL and press 9

{ROFF'} Reverse Field OFF Hold down CTRL and press 0

12

NOTE 1: When a number appears inside the curly brackets, it means you repeat the

control character immediately to the left of the number that many times. For
example:

{DOWN 5} means to press CRSR/DOWN five (5) times.

NOTE 2: All programs have been listed in a column 40 characters wide. Except where
special characters have been spelled out between curly brackets, the lines are
listed exactly as they appear on a Commodore 64 display. Spaces must be typed
in as listed. Where necessary, count the character columns to determine the
appropriate number of spaces.

Happy hunting and pecking!

13

CHAPTER 2

USING THE 1541'S DOS

2.1 The Purpose of a DOS

A disk operating system (DOS) is a machine language program that controls a disk drive.
It does several different tasks:

1. Handling communications between a disk drive and a computer.
2. Carrying out housekeeping chores such as formatting a diskette.
3. Managing the storage of information on a diskette.

4. Reading and writing information onto a diskette’s surface.

In many computer systems, a DOS is loaded into the main computer’s memory from
diskette when the computer is first switched on. In this type of system many of the
tasks are carried out using the computer’s microprocessor and RAM. Commodore uses
a different approach. All of Commodore’s disk drives are intelligent peripherals. They
do not have to use the computer’s resources; they have their own. For example, the
1541 disk drive contains its own 6502 microprocessor, 2K of RAM, two 6522 1/O chips,
and a DOS program permanently stored in 15.8K of ROM.

The advantages of having an intelligent disk drive are:

1. The DOS does not use any of the computer’s memory.

2. Some disk operations can be carried out independently from the CPU.
3. Disk operations do not slow down processing.

4. One disk drive can be shared among several computers.

The disadvantages of having an intelligent disk drive are:

1. It is very difficult to customize DOS routines.
2. You must replace the ROMs to convert to a new version of DOS.

2.2 Communicating with the 1541

Your Commodore 64 or VIC-20 can communicate with your 1541 disk drive in several
ways:

1. Through the LOAD, SAVE, and VERIFY commands.
2. Through I/O using the command channel.
3. Through I/0 using data communication channels.

15

Let’s examine each of these in greater detail.
1. LOAD, SAVE, and VERIFY commands:

These BASIC commands are used to store and retrieve programs on the Commodore
tape and disk drives. They are designed for ease of use, even by the novice. The BASIC
interpreter in the computer interprets these commands and sends the disk drive the
necessary information over the serial bus.

2. 1/0 using the command channel:

The command channel is used to send messages to the disk drive to carry out disk opera-
tions like: formatting a blank diskette, erasing an unwanted file, renaming a file, etc.
These operations are often referred to as disk housekeeping. The command channel is
also used to input messages, such as the current error status of the drive, generated
by the DOS. For more details on how to use the command channel, see Section 2.4.

3. I/0 using data communication channels:

The 1541 DOS supports a variety of kinds of files: program files, sequential files, relative
files, user files, and direct-access files. The storage and retrieval of information in files
is carried out using a data communication channel. Although this manual provides detailed
information regarding how files are stored and organized, no attempt is made to teach
you how to develop programs that make extensive use of file handling. We would en-
courage readers who are interested in file handling techniques to refer to Jim Butter-
field’s series of articles in COMPUTE!. The only 1/0 applications discussed in this manual
are those relating to direct-access programming (see Chapter 5).

Since the rest of this manual makes extensive use of the command channel, let's ex-
amine it in some detail.

2.3 The Command Channel

The command channel (channel number 15) is an important communication link between
your computer and the 1541 disk drive. It has several important functions. You can use
it to:

p—

Monitor the error status of the drive to ensure that everything is operating properly.

2. Send commands that direct the DOS to perform various housekeeping chores
associated with disk handling.

3. Send commands that direct the DOS to read or write information to specific areas

on a diskette.

This chapter focuses on the first two of these uses. Chapter 5 provides more detail on
reading or writing to a diskette.

16

2.4 Using the Command Channel

Using the command channel is easy. Just follow these steps:

1. Establish communications using an OPEN statement.

2. Send commands to the DOS using a PRINT# statement.

3. Read DOS messages using a GET# or INPUT# statement.

4. Close the channel using a CLOSE statement when you are finished.

Let’s go over each step to ensure that you know exactly what to do.

1. Establishing communications using an OPEN statement.

In order to establish a communication channel between your computer and your 1541
disk drive, you use an OPEN statement. An OPEN statement is a BASIC command
which looks like this:

SYNTAX: OPEN +file#, device#, channel#

EXAMPLE: OPEN 15, 8, 15

where

file#

i

the logical file number (1-127)

device# = the device number (8 for a stock 1541)

channel# = the channel number or secondary address (2-15)
NOTE: Channel numbers 0 & 1 are reserved for use by the DOS.

Channel numbers 2-14 are data communications channels.
Channel number 15 is the command channel.

The OPEN statement can be used either in immediate mode (typed and executed directly
from the keyboard) or under program control (embedded in a program).

In the example above (OPEN 15, 8, 15) we opened logical file number 15 on the C64
to device number 8 (the disk drive) through channel 15 (the command channel).

2. Sending commands to the DOS using a PRINT# statement.

In order to send commands from your computer to the 1541, you use a PRINT# state-
ment. A PRINT# statement is a BASIC command which looks like this:

SYNTAX: PRINTH# file#, “command"

EXAMPLE: PRINT#15, "NO:MY DISKETTE,MD"

17

where

file# = the logical file number you used when you opened the command channel
command = the disk command to be sent to the DOS

NOTE: The statement is PRINT# not PRINT #. You must not put a space before the
sign. Spaces following the # sign are always optional. DO NOT use 7# as an abbrevia-
tion either. The correct abbreviation is pR(p then SHIFTED R).

In this example, the disk command is “NO:MY DISKETTE,MD”. This command causes
the DOS to prepare the blank diskette in the drive for first-time use.

Although there are many different disk commands, they fall into two groups:

1. Commands related to disk housekeeping.
2. Commands to read or write data to a diskette or the disk drive’s RAM.

The disk housekeeping commands are discussed in the next part of this chapter. The
commands relating to reading or writing data are discussed in Chapter 5 on Direct-Access
Programming.

3. Reading DOS messages using a GET# or an INPUT# statement.

You may use either an INPUT# or a GET# statement to read the command channel
and access any messages or data prepared for the computer by the DOS. Both INPUT#
and GET# statements are BASIC commands. They look like this:

SYNTAX: INFUTH# file#, variable list
GET# file#, variable list

EXAMFLE: INFUT# 1S, EN, EM$, ET, ES
GET# 15, A%

where
file# = the logical file number you used when you opened the command channel

variable list = one or more variable names separated by commas

NOTE: As was noted for PRINT# above, the BASIC statements are INPUT# and GET#¥,
not INPUT # and GET #. You must not put a space before the # sign. Spaces following
the # sign are always optional. Neither the INPUT# statement nor the GET# state-
ment can be used in immediate mode (typed and executed directly from the keyboard).
They must be included within a program.

The INPUT# command and the GET# command operate in much the same way as the
more familiar INPUT and GET commands. INPUT# always reads as far as the next
carriage return character while GET# reads a single byte of information. Generally, GET#
is used in direct-access programming and INPUT# is used only for monitoring the drive’s
error status as indicated immediately below.

18

You can check the error status of your disk drive using the command channel. The DOS
monitors every disk operation as it is carried out and prepares a status report indicating
whether or not the operation was completed successfully. The report consists of an er-
ror code number, an English language message, and the track and sector where the
problem, if any, was encountered. Here is a subroutine that checks the error status.

100 OPEN 15,8,15 : REM
THE OPEN COMMAND CHANNEL
SO0 INFUTH#1S,EN,EM%,ET,ES : REM
INFUT THE ERROR STATUS
510 IF EN < 20 THEN RETURN : REM
NO ERROR ENCOUNTERED
520 PRINT EN;EM$;ET;ES : REM
PRINT THE ERROR STATUS ON SCREEN
S30 CLOSE 15 : END : REM
AEORT ON BAD STATUS

Line 100 opens the command channel. It is a good idea to open the command channel
at the beginning of your program and leave it open until the end. Line 500 inputs the
status report. The error code number is stored in EN, the message in EMS$, the track
in ET, and the sector in ES. Error codes less than 20 may be ignored (line 510). A com-
plete list of the error codes and messages is contained in the back of your 1541 User’s
Manual. A detailed explanation of the nature and cause of many of these errors is pro-
vided in Chapter 7 on Disk Protection.

4. CLOSE the command channel when you are done.

After you have finished using the command channel, it should be closed. Recall that
the open command has three parameters: the logical file number, the device number,
and the channel number. The close command has only one, the logical file number. It
looks like this:

SYNTAX: CLOSE file#

EXAMPLE: CLOSE 15

where

file# = the logical file number you used when you opened the command channel

NOTE: Loading, running, or editing a program closes down all communication channels
automatically. The command channel is closed properly in each instance. However, data
channels are aborted rather than closed. When a data channel is aborted, the file is NOT
CLOSED properly on the disk drive. You do not have to close the command channel
after the issuance of every command. If you forget to close it, the worst that can hap-
penis a 7FILE OPEN ERROR when you attempt to open it again. However, you should
get into the habit of always closing a file when you are finished using it. You won’t get
into trouble leaving the command channel open, but you may lose an important data
file if you leave a data communication channel open.

19

2.5 Disk Housekeeping

As your collection of programs grows, you will have to do some housekeeping to keep
things in shape. Disk housekeeping chores include the following:

Preparing a blank diskette for first-time use.
Erasing the contents of a diskette currently in use.
Initializing a diskette.

Renaming a file.

Scratching or erasing a file.

Copying a file.

SR S A

These operations are carried out by the DOS in response to commands sent to the drive
using the command channel as indicated above. Once a disk housekeeping command is
issued, the disk drive will carry out the task without further intervention by the com-
puter. This means that you could edit or even RUN a program in RAM while the disk
drive busily formats or validates a diskette. This is not really spooling. It occurs because
the 1541 is an intelligent peripheral. The only thing that will cause your computer to
wait for the disk drive to complete its task is your attempting to perform another disk
operation. This includes closing the command channel.

Let’s take a look at the disk commands used for housekeeping. NOTE': If you are using
the DOS SUPPORT program that came on your 1541TEST/DEMO, the syntax for these
disk commands is remarkably shorter. The > or @ keys are used to send a command
to the disk drive. They take the place of the PRINT# statement. In addition, you do
not have to open or close the command channel or embed the disk command in quota-
tion marks. The DOS SUPPORT program will do this automatically for you. The DOS
5.1 syntax can be used only in immediate mode, however. It cannot be used in a pro-
gram or a ’SYNTAX ERROR will result.

The New Command

When a fresh diskette is taken from its storage envelope, the 1541 cannot recognize
it. The diskette must be formatted or newed prior to first-time use. Formatting or new-
ing a diskette is performed by the DOS. The DOS proceeds to write concentric tracks
made up of blocks/sectors to the diskette. In addition, a directory is set up, wherein
the drive records information about all the files stored on the diskette. Chapter 3 pro-
vides a much more detailed account of this operation. The syntax for formatting a diskette
is really quite simple:

SYNTAX: OPEN 15, 8, 15
PRINT#15, "NO:DISK NAME, 1D"
CLOSE 15

ALTERNATE: PRINT#15, “"N:DISK NAME, ID"
EXAMPLE: OPEN 15, 8, 15
PRINT#1S, "NO:MY DISKETTE,MD"
CLOSE 15

DaS S.1: *NO:DISK NAME, ID
>*N:DISK NAME, ID

20

The disk command, “N0:MY DISKETTE,MD”, is sent to the drive by the PRINT#15
statement. The command has three parameters. The first parameter within quotes is
NO:. The N stands for NEW. The 0 is a holdover from the dual drive system and in-
dicates which drive. The 0 is optional on the 1541 and may be omitted. The colon ter-
minates the DOS command. The second parameter is the disk name. It is limited to 16
characters in length. Generally these are alphanumeric characters. In the example above,
we named the diskette: MY DISKETTE. The disk name is cosmetic and appears in the
directory for reference purposes only. It is not written anywhere else on the diskette.
The disk name is followed by a comma. The DOS looks or parses for this. After the
comma are two alphanumeric characters for the disk ID. In the above example we
selected MD as our disk identifier. The ID is written to every block or sector on the
diskette. It is impossible to alter. The DOS repeatedly looks at the ID of a sector to
be sure that you have not switched diskettes on it. Each diskette should be formatted
with a unique ID. This will prevent the DOS from inadvertently overwriting programs
on what appears to be an identical diskette.

A “full” new on a diskette takes roughly 2-3 minutes. There is a quicker way to erase
a diskette that has already been used. This is accomplished by leaving off the disk ID.
For example:

SYNTAX: OFEN 15, 8, 15
PRINT#15, "NO:DISK NAME"
CLOSE 15

ALTERNATE: PRINT#15, "N:DIGK NAME"

EXAMPLE: OFEN 15, 8, 15
PRINT#15, "NO:TEST DISKETTE"™
CLOSE 15

DOS S5.1: *NO:DISK NAME
>N:DISK NAME

Notice that no comma or ID follows the disk name. This command will work only on
a diskette that has previously been formatted. It is referred to as a “short” new. A
“short” new simply erases the first sector in the directory and writes an empty BAM
(block availability map) to tell the DOS that we have a fresh diskette in use.

NOTE: A diskette that is plagued by read or write errors does not have to be pitched.
Copy the files to another diskette first. Then do a “full” new on the offending diskette.
This will erase and reformat the entire diskette. A ‘“short” new rewrites only sectors
0 and 1 of track 18 and will not eliminate any read or write errors. See Chapter 8 about
how to recover from both a “short” new and a “full” new.

The Initialize Command

Initialization has nothing to do with formatting. APPLE™ owners format a diskette by
“initializing” it. This is NOT TRUE with Commodore. Initializing a diskette forces the
DOS to read the disk ID and the contents of the BAM and store them in the drive’s
internal memory. The BAM establishes where the next available sector is for writing.
Without it files would be overwritten. To initialize a diskette perform the following:

21

SYNTAX: OPEN 15, 8, 15
PRINT#15, "I10"
CLOSE 15

ALTERNATE: FPRINT#15, "I

Das 5.1: >1I0
>1

The I is short for INITIALIZE. The drive number can be ignored if you are using only
one 1541. The drive motor purrs for a few seconds and then settles down. It’s that sim-
ple. It is a good habit to initialize a diskette each time you insert it into your 1541 drive.
This point cannot be overemphasized. Do it yourself. Do not rely upon the “autoinit”
feature of the drive. Initialization prevents the DOS from overwriting files in the event
that two diskettes with identical IDs are swapped. The drive cannot tell the difference
between two diskettes with identical IDs since it is the ID that the DOS uses to iden-
tify a diskette. Initialization also assures you that a diskette is properly seated in the
drive before use.

The 1541 drive has a built in autoinitialization feature. Once it encounters an error it
will retry a disk operation several times. Often it can recover from an error on its own.
If it fails, it gives up. Before doing so, though, it will do a “bump.” On a bump the
read/write head is stepped outwards 45 tracks (slight overkill) to assure that it is on
track 1. The drive clatters when a protrusion on the stepper motor’s drive pulley bumps
up against a mechanical stop. (It really isn’t a melt down.) The head then steps inwards
to track 18 and the DOS awaits further instructions. Self initialization avoids this scenario.
Initialize every time you insert a diskette into the drive.

Initialization clears the error channel and turns off the flashing red LED. Unless, of
course, you are trying to initialize an unformatted diskette or forgot to put one in the
drive to begin with. Clearing the error channel destroys the error status the DOS
prepared for you. If error checking is important, retrieve the error message first; then
initialize the drive.

The Rename Command

Occasionally you will want to change the name of a file stored on a diskette. To rename
a file you first open the command channel and then send the rename command like this:

SYNTAX: OFEN 15, 8, 15
PRINT#15, "RO:INEW NAME=0LD NAME"
CLOSE 15

ALTERNATE: FRINT#15, "R:NEW NAME=OLD NAME"
EXAMPLE: OPEN 15, 8, 15
PRINT#15, "RO:DISFLAY T&S=DTS"
CLOSE 15

DS 5.1: *ROZNEW NAME=0OLD NAME
>RINEW NAME=0LD NAME

22

Again the syntax is exacting but simple to follow. The R0: means to rename on drive
0. It is short for RENAMEQ:. As before, the 0 is optional on the 1541. The next parameter
is the new file name. A file name is generally alphanumeric in nature and 16 characters
are allowed at the maximum. (Commas, colons, semicolons, and wild cards are not per-
mitted. Cursor control and reverse video characters should be avoided.) The new file
name is followed by an “="" sign. The last parameter is the existing or old file name.
It must be spelled out exactly as it appears in the directory. Wild cards (*,?) are not
allowed. If you make a typo on this parameter or the file does not appear in the direc-
tory, the rename command fails. No damage is done, so relax. In the above example
our new file name is DISPLAY T&S. It replaces the old file name DTS. One final point.
You cannot rename a file that is currently open for a read or write.

The Copy Command

The copy command allows you to easily backup an existing file on your diskette. There
are three restrictions attached. First, the new file must have a different name. Second,
the copy command will not work on a relative file. Third, you must have enough room
on the diskette. The copy command looks like this:

SYNTAX:
OPEN 15, 8, 15
FRINT#15, “"CO:BACKUP=0:0RIGINAL"
CLOSE 15

ALTERNATE:
FRINT#15, "C:BACKUF=0ORIGINAL"

EXAMPLE:
OPEN 15, 8, 15
FRINT#15, “"CO:MY PROGRAM B/U=0:MY PROGRAM"
CLOSE 15

Das 5.1:
*CO>BACKUP=0:0RIGINAL
>C:BACKUP=0ORIGINAL

The C is short for COPY. The new file above is called MY PROGRAM B/U. It is a backup
copy of a previous program called MY PROGRAM. Note that we must specify the drive
number twice. Again this is a holdover from a dual drive configuration. The C does not
appear twice, however. The same restrictions that apply to the rename command are
also in effect here, i.e., 16 character file name limit, use of restricted characters, etc.
The drive number is optional. See the alternate syntax to save a few keystrokes.

It is also possible to merge two or more sequential data files using the copy command.
The syntax for this is as follows:

SYNTAX:
OFEN 1S5, 8, 15
PRINT#15, "CO:COMBINED=0:FILE1,0:FILEZ,
O:FILE3"
CLOSE 15

23

ALTERNATE:
FRINTH#15, "C:COMBINED=FILE1,FILEZ2,FILE3"

EXAMPLE:
OFEN 15, 8, 15
FRINTH#1S, "CO:MAILFILE=0:NAME,O:ADDRESS,
o:CITY"
CLOSE 15

DOS 5.1:
sCOICOMBINED=0:FILELl ,O:FILEZ,O:FILER
>C:COMRINED=FILEL1,FI1LE2,FILE3X

Our large file now consists of several files appended together. While this feature of the
copy command is available, it is rarely used. Few programming techniques would re-
quire or ever utilize this feature. Note that this technique cannot be used to append
a subroutine onto a BASIC program; the subroutine cannot be merged into the main
program by the disk drive. You will need to use a programmer’s aid like POWER™,
SYSRES™, or BASIC AID™ for the C64 to do this.

The Scratch Command

To get rid of an unwanted file, we scratch it. The only exception is an unclosed file.
An unclosed file is one that appears in the directory as having zero blocks and whose
file type is preceded by an asterisk (*SEQ, *PRG, etc.). This will be explained below.
To scratch a file, first remove the write protect tab and key in:

SYMTAX: OFEN 15, 8, 15
FRINT#15, "SOIFILE NAME™
CLOSE 15

ALTERNATE: FPRINTH#15, "S:FILE NAME"

EXAMFPLE: DPEN 15, 8, 15
FRINT#1S, "SO:TESTING 123"
CLOSE 15

DOS 5.1: *SO0IFILE NAME
*[SIFILE NAME

The scratch command requires a single parameter, the file name, preceded by S or
SCRATCH. As before, the drive number is optional.

There are some variations that incorporate wild cards. Wild cards in a file name are
asterisks (*) or question marks (?). They should be used with utmost caution since more
than one file can be scratched at a time.

EXAMFLE: OFEN 15, 8, 15
FRINTH#1S, “"SOIT="
CLOSE 15

DOS S5.1: =80:TH

24

In the above example all files beginning with the letter T, regardless of file type, will
be scratched. In the event that no file starts with the letter T, none will be affected.
Careless use of a wild card can have catastrophic results. For example:

EXAMFLE: OFEN 15, 8, 15
PRINT#15, "SO0:Is"
CLOSE 15

DDOS 5.1: >50I#

The above command will scratch every file on the diskette. It is the equivalent of per-
forming a short new on a diskette. Be careful!

The second wild card is the question mark. It is used to mask out characters that are
not of importance. Suppose we want to scratch a number of files whose names are all
eight characters long and end in .C64. We could not use .C64* to scratch them since
the match falls at the end of the file name. However, we could use:

EXAMFLE: OFEN 15, 8, 15
PRINTH#15, "S0:7277.C64"
CLOSE 15

DOS S.1:2 >80:17772.C64

Note that we used four question marks in the above example. An exact match of .C64
must occur on characters 5 through 8 of the file name. No match — no scratch. If we
had 1541.C64 and C100.C64 on the disk, both would be scratched by the previous com-
mand. However, BACKUP.C64 would not be affected.

More than one wild card can be used within the same command. For example:
EXAMPFLE: OPEN 15, 8., 15

PRINTH#H15, "SOIT?S5T»"

CLOSE 15
DOS S5.1: >50:T?5T*
This command would scratch files with these names: TEST, TASTY, TESTING123. The
file TOAST would not be affected. Note that it makes no sense to send a command like
this: “S0:T*ST???”. The asterisk has priority over the question mark. All characters

that appear after the asterisk are ignored.

A file type that begins with a * is unclosed: *SEQ, *PRG, ete. It was never closed proper-
ly. This can happen for a variety of reasons:

1. The diskette may have been at its physical capacity and a disk-full situation occurred
during a save or write to a diskette.

2. A bad sector may have been encountered during a write to a diskette.

25

3. The file may have been left open following a write operation because you forgot to
CLOSE the file, or you aborted the program by hitting either the RUN/STOP key
or the RUN/STOP and the RESTORE keys.

4. Your program had a syntax error in it and the BASIC interpreter returned you to
immediate mode.

(See Chapter 8 about how to recover an unclosed file.)

Whatever the cause, an unclosed file should never be scratched! Since the write opera-
tion was aborted, the internal organization of the diskette (i.e., the BAM), has been left
in disarray. It does not match the actual file contents of the diskette. Any further at-
tempt to write to that diskette will probably cause a loss of one or more files. Files can
actually overlap one another now and you will be left with a poisoned diskette. The DOS
does have a command to decorrupt itself. This is the validate command. When in doubt,
validate your diskette!

The seratch command does not actually erase the file on your diskette. Rather it traces
the file across the surface of the diskette and frees any sectors the file occupied. The
file-type byte is also changed to a zero in the directory which indicates to the DOS that
it is no longer active. If you inadvertently scratch a file that you didn’t mean to, stop
right then and there! You can recover it. Do not attempt to write to the diskette. The
sectors just freed will be used on subsequent writes to the diskette. Once you write
to the diskette, recovery is impossible. Chapter 8 on Getting Out of Trouble shows you
how to recover a scratched file.

The Validate Command

This command tells the DOS to reconstruct its map which shows where information is
stored on the diskette, so it conforms to the files listed in the directory. This is a simple
way to decorrupt a damaged diskette. However, it is not a failsafe command as will be
explained shortly. A validate command looks like this:

SYNTAX: OFEN 15, 8, 15
PRINT#15, "vo©
CLOSE 15

ALTERNATE: PRINT#15, "v*

DOS S.1: >VO
>V

The V is an abbreviation for VALIDATE. As before, the 0 is optional for the 1541 drive.

What does a validate do? The DOS keeps a map that indicates which sectors on a diskette
are currently in use. This map is stored on track 18, sector 0. It is referred to as the
Block Availability Map or just the BAM for short. When the validate command is issued,
all blocks are freed in the BAM on the diskette simulating a newly formatted blank
diskette. The drive then picks up the first file in the directory and chains through the

26

entire file. As sectors are picked up along the way, they are allocated in the BAM as
currently in use. If the file is traced successfully, all blocks associated with it are put
back into the BAM as in use. The next file is then picked up out of the directory and
the process continues. When all files have been traced, the new BAM is written to the
diskette and the internal count now matches the directory contents.

So far so good. Now let’s see what happens to an unclosed file. When the DOS encounters
an unclosed file in the directory during a validate command, all it does is change the
file type byte in the directory entry to a 0 (scratched file). No attempt is made to trace
the file. When the validate operation is complete, the unclosed file will no longer appear
in a directory listing and any blocks associated with it will be free. This is what you
want to happen. Now let’s see what happens if you attempt to SCRATCH an unclosed
file.

When you scratch a file, two things happen: the file-type byte in the directory for this
file is set to 0 (seratched file) and the DOS traces through the chain of sectors that make
up the file and marks each sector it encounters as available for use (free) in the BAM.
This is just what you want to have happen for a normal file, but it can poison the diskette
when you try it on an unclosed file. Here’s why. The last sector of an unclosed file was
never written out to the diskette. As a result, the second to the last sector points to
a sector that is not really part of the file. The DOS doesn’t realize this and continues
to follow the “chain.” If you are lucky, the “unwritten sector” will be a empty sector
(never used since the disk was formatted). If this happens, the DOS will stop because
pointers point to a non-existent track and sector (75,1). If you are unlucky, the “unwrit-
ten sector” will be part of a file that you scratched last week and the pointer will just
happen to point into the middle of that very important file you just saved yesterday.
When this happens, the DOS will merrily deallocate the remaining sectors in your file.
The next write operation to the diskette will see this nice big open space and the new
information will be saved right on top of your active file. Now the situation has gone
from bad to worse and is in fact pathological — hence a poisoned disk. The only solution
is to inspect each file first to ensure that it is not tainted and then copy it onto another
diskette.

The validate routine is aborted if an error (an unreadable sector) is encountered. When
it aborts, nothing radical oceurs. The new BAM is not written to the disk until the valida-
tion process has been completed. Don’t worry about the blank BAM getting you in trou-
ble; the DOS will read the old one back in before it allows you to write to the disk.
However, the diskette still remains corrupted with no quick remedy in sight. Chapter
8 on recovery deals with this and other disasters.

27

CHAPTER 3

DISKETTE FORMATTING

When you take a new floppy diskette out of the package, it is blank. Before the drive
can store data onto it, it must be formatted. This is done by inserting the diskette into
the drive and sending a NEW command to the DOS (see Section 2.5). During “format-
ting” or “newing,” 35 concentric tracks are written to the diskette. Each track is made
up of varying numbers of sectors/blocks where programs and data will eventually be
stored. In addition to laying down empty blocks/sectors, the DOS creates a directory
and a block availability map (BAM) and records them on track 18.

This chapter describes the formatting process and the tracks and sectors of a diskette.
Chapter 4 describes the directory and the block availability map (BAM).

3.1 Layout of Tracks and Sectors

During the formatting (newing) process, the DOS divides the diskette into tracks and
sectors. A track is a circular path on the diskette along which information is stored.
Each track is concentric with the hole in the center of the diskette. There are a total
of 35 tracks numbered from 1 to 35. Track 1 is the outermost track and track 35 is the
innermost track. The read/write head may be positioned to any given track. The posi-
tion of track 1 is determined by a mechanical stop that limits the outward movement
of the read/write head. The other tracks are identified by their distance from track 1.
The diagram below indicates the layout of the tracks on a formatted diskette.

TRACK 1

18 (Di'ecr
O,
g/

<abC

<RACK 35

29

TRACK 1

Although there are only 35 tracks, the stepper motor can position the read/write head
to more than 70 different positions. This might seem to imply that additional tracks could
be recorded on the surface of the diskette to increase its storage capacity. Unfortunate-
ly, the accuracy of the head positioning mechanism and the width of the path of magnetiza-
tion produced by the read/write head makes the use of these “phantom” tracks unreliable.
If you would like to experiment with this, the programs described in Chapter 9 allow
you to experiment with stepping the head around.

Each track is divided into seventeen or more sectors (blocks). Each sector holds 256
bytes of data. (Some manufacturer’s récord data in 512 or 1024 byte sectors.) Whenever
data is read from or written to a diskette, it is done one complete sector at a time.

On Commodore disk drives, the tracks are not divided into a fixed number of sectors.
The number of sectors depends on the track number. The outer tracks (lower numbers)
are longer and are divided into more sectors than the inner (higher numbered) tracks.
The table below summarizes how the diskette is organized.

Organization of Tracks and Sectors on a 1541 Formatted Diskette

Track Range of Sector Total Sectors Total Bytes

Zone Numbers Numbers Per Track Per Track
1 1to 17 0 to 20 21 5376
2 18 to 24 0to 18 19 4864
3 25 to 30 0to 17 18 4608
4 31 to 35 0to 16 17 4352

A total of 683 sectors are written at the time of initial formatting. Since the disk rotates
at a constant speed of 300 rpm, you may wonder how Commodore manages to vary the
number of sectors from zone to zone. This is accomplished by varying the rate at which
data is read or written (changing the clock rate). Each of the four zones uses a different

30

clock rate. This is accomplished by using a high speed clock and dividing the clock by
N, where the value of N is determined by the zone. The table below summarizes the
clock rates for each zone.

Zone Tracks Divisor Clock Rate Bits/Rotation
1 1to 17 13 307,692 bits/sec 61,538.4
2 18 to 24 14 285,714 bits/sec 57,142.8
3 25 to 30 15 266,667 bits/sec 53,333.4
4 31 to 35 16 250,000 bits/sec 50,000.0

This scheme provides a recording density that varies from about 4000 bits/inch on the
outer tracks to almost 6000 bits/inch on the inner tracks.

If all of the possible bits could be used for data alone, we would be able to store a total
of 2,027,676 bits or 253,459 bytes on a diskette. Unfortunately, not all of these bytes
can be used for data. The total storage capacity of a diskette formatted on the 1541 is
174,848 bytes. The need for space to store a directory to keep track of the location of
the files on a diskette (see Chapter 4) further reduces us to an effective storage capacity
of 169,984 bytes (256 bytes * 664 sectors).

3.2 Layout of a Sector
During the formatting (newing) process, the DOS creates and records onto the diskette
all 683 sectors/blocks that will eventually be used for storing information. Each sector

is comprised of two parts:

1. A header block that identifies the sector.
2. A data block that holds the 256 bytes of data.

The diagram below illustrates how these parts are arranged.

SECTOR #0 SECTOR #1 SECTOR #2
HEAGER BLOCK DATA BLOCK HEADER BLOCK OATA BLOCK I HEADER BLOCK
= sync mark

inter-sec gap

The sectors are recorded in numerical sequence along the circular track. Each sector
consists of an identifying header block followed by a data block. The sectors are separated
from each other by an inter-record gap. A special character called a SYNC MARK is
used to mark the beginning of each header or data block.

31

A SYNC MARK is a very special character. It consists of 10 or more 1 bits in a row
(normally 40 of them). This particular pattern of bits only occurs at the start of a header
or data block. The hardware in the 1541 drive can detect this character and signal the
DOS that a new data or header block is coming.

If you are puzzled about why several $FF characters in a row in the data block are
not interpreted as a sync character, you may want to skip ahead to the section on Com-
modore’s GCR encoding scheme in Chapter 7.

3.3 The Header Block

The header block of a sector allows the DOS to identify which track and sector is being
read. It is composed of a sync mark, eight bytes of identifying information, and a header
gap. The diagram below shows the layout of a header block.

SYNC HEADER HEADER SECTOR TRACK 1] 10 SOF SOF HEAQER
MARK | BLOCK BLOCK NUMBER | NUMBER | CHARACTER JCHARACTER] BYTE BYTE GAP
10 CHECKSUM NUMBER 2 [NUMBER |

NOTE: The header is recorded on disk exactly as indicated above. The diagram on page
54 of the 1541 User’s Manual is incorrect.

Let’s examine the bytes that make up the header block:

Sync Mark: This consists of 10 or more 1 bits as described above. It warns the DOS
that either a data block or a header block is coming.

Header Block ID: This is normally a $08 byte. It serves to indicate to the DOS that
this is a header block and not a data block.

Header Block Checksum: This is a checksum character used by the DOS to ensure
that the header block was read correctly. It is found by EORing the track number, the
sector number, and the two ID characters. If you are not sure what an EOR is, you
may want to read through Section 7.1.

Sector Number: This byte is the number of this particular sector. The sectors are
numbered consecutively around a track.

Track Number: This byte is the number of this particular track. The DOS uses this
byte to check to be sure that the record/play head is positioned to the correct track.

ID Character # 2:This is the second ID character that you specified in the NEW com-
mand when the diskette was formatted (e.g., the 1in “NO:GAMES,V1”). It is sometimes
referred to as the ID HI. The DOS checks this byte against a master disk ID to ensure
that you have not swapped diskettes.

32

ID Character #1: This is the first ID character that you specified in the NEW com-
mand when the diskette was formatted (e.g., the V in “NO:GAMES,V1”). It is sometimes
referred to as the ID LO. The DOS checks this byte against a master disk ID to ensure
that you have not swapped diskettes.

$0F Bytes: These bytes are used as padding (spacing) by the DOS during initial format-
ting. They are called “OFF” bytes. Once formatting is complete OFF bytes are never
referenced again.

Header Gap: The header gap consists of eight $55 bytes. These eight bytes are used
to provide breathing room between the header block and the data block. The DOS never
reads these bytes. They allow the DOS time to set-up for reading the data block that
follows. NOTE: The 4040 drive uses a nine byte header gap. This is one of the reasons
why 1541 drives and 4040 drives are NOT WRITE COMPATIBLE! See Chapter 9 for
more information.

NOTE: A header block is written only during the formatting process. It is never rewrit-
ten again, period.

3.4 The Data Block

The data block of a sector stores the 256 data bytes for this sector. It is composed of
a sync mark, a data block ID character, the 256 bytes of data, a data block checksum
byte, two off bytes, and an inter-sector gap. The diagram below depicts the layout of
a data block.

SYNC | DATA 256 DATA $oo $00 INTER- | SYNC | HEADER
MARK | BLOCK DATA BYTES BLDCK BYTE BYTE SECTOR | MARK] BLOCK
19 CHECKSUM 6AP D

Let’s examine the bytes that make up the data block:

Sync mark: This consists of 10 or more 1 bits as previously described. It warns the
DOS that either a data block or a header block is coming.

Data Block ID: This byte is normally a $07. It serves to indicate to the DOS that this
is a data block and not a header block ($08).

256 Data Bytes: This is the actual data stored in the sector. See Chapter 4 about how
Commodore uses the first two bytes as a forward track and sector pointer instead of

actual data.

Data Block Checksum: This is a checksum character used by the DOS to ensure that
the data block was read correctly. It is found by EORing all 256 data bytes together.

$00 Bytes: These two bytes are also called OFF bytes. They are used to pad a data
block before it is written. They are not referenced again by the DOS.

33

Inter-sector Gap: This is also known as the “tail gap.” Its purpose is to provide breathing
room between the end of the data block and the start of the next sector. The length
of the gap varies from zone to zone and from one drive to another (see the chart in Sec-
tion 7.1). Between consectutive sectors the gap is normally 4 to 12 bytes long. The gap
between the last sector on a track and sector zero is often longer — up to 100 bytes
in length. The gap is designed to be long enough so that if you write a data block on
a day when your drive is turning slightly faster than 300 rpm, you won’t overwrite the
start of the next sector. (Your drive may not be turning at exactly 300 rpm all the time
because of fluctuations in the power supplied to your home or office, mechanical wear,
belt slippage, changes in temperature, etc.) Note that the DOS never reads these bytes.

The entire data block (including the preceding sync mark) is rewritten each time data
is recorded on a diskette.

This concludes our overview on how a diskette is formatted. Additional details about

how bytes are encoded on the surface of a diskette are provided in Section 7.1. The ac-
tual recording process is described in Section 9.7.

34

CHAPTER 4

DISKETTE ORGANIZATION

4.1 Information Management

The information that is stored on a floppy disk is virtually useless unless it can be retriev-
ed quickly. As a result, the organization and management of information is one of the
most important tasks of the DOS. To do an efficient job of management, the DOS must
be able to:

1. Keep track of which sectors contain data and which are still empty (available for use).
2. Assign names and storage locations to large blocks of related information (files).
3. Keep track of the sequence of sectors that were used to store a file.

The DOS stores most of this information in the directory on track 18, halfway between
the outermost track (1) and the innermost track (35). Centering the directory serves
to minimize head movement across the diskette and extends the life of both the drive
and the media. The directory is subdivided into two areas—the map showing which sec-
tors are in use and which are free (the Block Availability Map or BAM) and directory
entries. The BAM resides solely on sector 0 of track 18. It informs the drive as to what
sectors are currently in use and where subsequent writing to the diskette can safely
take place. The remaining sectors (1-18) of track 18 contain directory entries (file names,
file types, and pointers to where files are stored on the diskette).

4.2 The Directory You See

Let’s examine the directory of the 1541 TEST/DEMO diskette that came with your drive.
Insert it in your drive and type on your keyboard:

LOAD "$0",.8
then type

LIST

36

After a brief pause you should see the following on your screen:

O "1541TEST/DEMO *IX 2A
13 "HOW TO USE"™ FRG
=] "HOW FART TwWO" FPRG
4 "WIC-20 WEDGE" PRG
1 "C—64 WEDGE™ FRG
4 "DOS 5.1 FRG
11 "COFY/ALL™ FRG
v "PRINTER TEST" PRG
4 "DISK ADDR CHANGE® FRG
4 "DIR" FRG
6 “VIEW BAM® FRG
4 "CHECK DISK™" FRG
14 "DISFLAY T&S" FRG
7 "FPERFORMANCE TEST" FRG
o "SEQUENTIAL FILE"™ PRG
13 "RANDOM FILE" FRG
538 BLOCKS FREE.

The 0 refers to which drive was accessed. This is a holdover from the 4040 dual drive
system. Next you see the diskette name — 1541TEST/DEMO. In the event that the
diskette name is less than 16 characters in length, blank spaces are appended to the
end of the name. This forced spacing is known as padding. Following the name of the
diskette is the disk ID — ZX in this instance. These two characters are generally (but
not always) the unique alphanumeric characters under which the diskette in question
was formatted originally. The diskette name and ID are cosmetic in nature and appear
in the directory for your reference purposes only. The 2A indicates the DOS version
and format, 4040 in this instance — again a holdover. Next we see the active file entries
on the diskette itself. Each directory entry has three fields:

1. The number of blocks/sectors the given file occupies.
2. The file name.
3. The file type.

Your demo diskette came with 15 active files on it. Moreover, they are all program files
denoted by PRG. The last entry in the directory is the remaining number of available
blocks/sectors left on the diskette for storage. It is the difference between 664 blocks
available at the time of original formatting and the sum of the blocks of the active files
(664 — 106 = 558).

What you see on your screen is not necessarily how the directory is stored on your
diskette, however. Let’s begin our look at the directory with the Block Availability Map
(BAM).

4.3 The Block Availability Map (BAM)

The BAM is where the DOS keeps track of which sectors (blocks) on the diskette con-
tain information (are in use) and which ones can be used for storing new information
(are free). This map is stored on track 18, sector 0. Here is a hex dump of that sector
on the 1541TEST/DEMO disk so we can examine it in detail.

36

00: 12
08: 15
10: 15
18: 15
202 15
28: 15
30: 15
38: 11
40: 00
48: 10
50: 00
S8: 13
60: 13
682 12
70: 12
78: 12
g0: 11
88: 11
90: 31
98: 2¢f
A0 AO
AB: AOQ
BO: 00
B8: 00
Co: 00
c8: 00
DO: 00
pg8: 00
EO: 00
EB: 00
FO: 00
F8: 00

1541 TEST/DEMO

TRACK

01
FF
FF
FF
FF
FF
FF
D7
00
EC
00
FF
FF
FF
FF
FF
FF
FF
35
44
AO
AQ
00
00
OO0
00
00
00
0
00
00
00

41
FF
FF
FF
FF
FF
FF
= o
00
FF
00
FF
FF
FF
FF
FF
FF
FF
34
45
SA
AOD
a0
Q0
00
Q0
o0
00
00
00
00
00

i8

Q0
iF
iF
iF
iF
1F
iF
iF
00
o7
00
07
07
Q3
03
03
01
o1
31
4D
58
00
Q0
00
Q0
o0
00
00
00
00
Q0
0

15
15
15
15
15

15

- SECTOR O

FF FF 1F ..A..... BAM TRACK 1

FF FF 1IF BAM TRACKS 2-3

FF FF 1F BAM TRACKS 4-5

FF FF 1F BAM TRACKS 6-7

FF FF 1F BAM TRACKS 8-9

FF FF 1F BAM TRACKS 10-11
FF FF 1F --=- BAM TRACKS 12-13

15
00
00
00
12
13
12
12
12
11
11
11
54
aF
AO
00
Q0
00
00
00
00
QO
00
00
00
00

00 00 00 .W...... BAM TRACKS 14-15
00 00 00 BAM TRACKS 16-17

00 00 00 BAM TRACKS 18-19
BF FF 077.. BAM TRACKS 20-21
FF FF 07 BAM TRACKS 22-23
FF FF 03 --. BAM TRACKS 24-235
FF FF 03 BAM TRACKS 26-27
FF FF 03 BAM TRACKS 28-29
FF FF 01 BAM TRACKS 30-31
FF FF 01 BAM TRACKS 32-33

FF FF 01 BAM TRACKS 34-35
45 53 5S4 1541TEST DISK NAME

A0 A0 A0 /DEMO

32 41 A0 X 2A DPOS TYPE & DISK ID
Q0 00 00 «e=s. UNUSED
00 00 00

00 00 00

00 00 00an..

00 00 00

00 00 00

00 00 00

00 00 00

Q0 00 00

00 00 00
00 00 00

As indicated above, the BAM does not take up all 256 bytes on this sector. There are
several other things stored here as well. The table below identifies the various parts.
Note that the sector dump above uses hexadecimal notation while the table below gives
the decimal equivalents.

Bytes Contents Purpose
01 18/1 Pointer to first sector of directory entries
2 65 ASCII character A indicating 1541/4040 format
3 0 Unused
4-143 Block Availability Map (BAM)
144-159 Diskette name padded with shifted spaces
160-161 160 Shifted spaces

37

162-163
164
165-166
167-170
170-255

160
50/65

160
?

Diskette ID
Shifted space

DOS version and format type (2A)

Shifted spaces
Unused

In the BAM four bytes are used to describe the status of each track. As a result, the
BAM takes up a total of 4 x 35 = 140 bytes (bytes 4-143 or $04-$8F). Let’s examine
the entry for track 14 to see what these four bytes mean. The entry for track 14 begins

at byte 14 x 4 = 56 ($38). It looks like this:
. 382 11 D7 SF 1F 00 00 00 OO0 W

W W NH W

...... BAM TRACKS 14-15

The first byte for track 14 (location $38 = 56) indicates the number of blocks free on

this track.

. 38: 11 D7 SF 1F 00 00 00 OO0 . W

*¥

...... BAM TRACKS 14-15

In this case there are $11 or 17 (1 * 16 + 1) blocks free.

When the DOS calculates the number of blocks free on a diskette, it sums this byte
from each track’s entry in the BAM. Let’s do our own blocks free calculation to see
how it is done. All we have to do is sum up the decimal values of every fourth byte
starting with byte 4 like this:

HEX DECIMAL
ZONE BYTE TRACK VALUE VALUE

1 4 1 $1F 21
8 2 $1F 21

12 3 $1F 21

16 4 $1F 21

20 5 $1F 21

24 6 $1F 21

28 7 $1F 21

32 8 $1F 21

36 9 $1F 21

40 10 $1F 21

44 11 $1F 21

48 12 $1F 21

52 13 $1F 21

56 14 $11 17

60 15 $00 0

64 16 $00 0

68 17 $00 0

38

2 72 18 $10 16

76 19 $13 19
80 20 $13 19
84 21 $13 19
88 22 $13 19
92 23 $13 19
96 24 $13 19
3 100 25 $12 18
104 26 $12 18
108 27 $12 18
112 28 $12 18
116 29 $12 18
120 30 $12 18
4 124 31 $11 17
128 32 1 17
132 33 $11 17
136 34 $11 17
140 35 $11 + 17
574 BLOCKS FREE

Wait a minute! We calculated 574 blocks free but the directory shows 558. How do we
explain this discrepancy? Easy. Remember that the DOS reserves track 18 for its own
use. Therefore the blocks free on that particular track are not returned to us (574 —
16 = 558). Sixteen sectors on track 18 are still free, but available only to the DOS.

Now that you have seen how to calculate the number of blocks free on a diskette, let’s
get back to our analysis of track 14. The BAM entry looked like this:

. 382 11 D7 SF 1F 00 00 00 00 . W...... BAM TRACKS 14-15
HHHH XKW KN

The first byte was easy to interpret. The remaining three bytes are a bit trickier (no
pun intended). They are a bit map showing the status of the sectors on a given track.
Bit mapping is used to save space. If one byte were used for each of the 683 sectors,
the BAM would take up three sectors (683 / 256). This would be inefficient. By using
bit mapping, each byte describes the status of eight sectors. This way only three bytes
are needed for each track. Let’s examine the bit map for track 14 of our 1541
TEST/DEMO.

- 38X 11 D7 SF 1F 00 Q0 00 00 . W...... BAM TRACKS 14-15
N KW HE ENE
LOCATION $39=57 $3A=58 $3B=3%
BYTE VALUE $D7 +5F $1F
BINAFRY 11010111 01011111 00011111 *
SECTOR 111111 21111
NUMBEF 76343210 54321098 «xx09876
1 = FREE
O = AlLLOCATED

39

Sectors 0 to 7 are represented by the byte at location 57. Sectors 8 through 15 are stored
in the byte at location 58. Finally, sectors 16 through 20 are depicted by the byte at
location 59. When decoded, a bit that is high or a 1 indicates that a sector is not current-
ly in use (free) and can be written to. A bit that is low or a 0 is currently in use (allocated)
and will be overlooked by the DOS when writing subsequently takes place to the diskette.
The third byte is always incomplete since a maximum of 21 sectors are written to any
track. This particular byte is automatically adjusted by the DOS during initial format-
ting to indicate the proper number of sectors for this track. Three bytes are still used
irregardless of the zone, however. If you count up the 1s in the bit map for track 14,
you will find that there are 17 free sectors on track 14. This agrees with the blocks free
count for the track stored at byte location $38 (56) in the BAM, i.e., $11 or 17 decimal.

To ensure that you understand how the bit mapping works, let’s take a look at track
18. Since track 18 is used for storing the directory we would expect some allocation of
sectors here. Byte 72 shows $10 or 16 sectors available here. They are bit mapped in
bytes 73, 74, and 75 as follows:

. 48: 10 EC FF 07 00 Q00 00 00 BAM TRACKS 18-19
L2 2 TR AR
LOCATION $49=73 $4A=74 $4B=73
BYTE VALUE $EC $FF $07
BINARY 11101100 11111113 00000111 =
SECTOR 111111 21111
NUMBER 76343210 34321098 xxx09876
#* 1 = FREE
O = ALLOCATED

If you are still unsure of yourself, don’t be too concerned. The DOS looks after the BAM.
Let’s move on and explore the actual directory entries themselves. Sectors 1 through
18 on track 18 are reserved specifically for them.

4.4 The Directory Entries

Recall that bytes 0 and 1 of track 18, sector 0 point to the next track and sector of the

directory. In this particular instance, the BAM points to track 18, sector 1. Let’s ex-
amine this sector in detail.

1541 TEST/DEMO

TRACK 18 — SECTOR 01

. 00: 12 04 82 11 00 48 4F 57 HOW FILE ENTRY #1
. 08: 20 54 4F 20 55 53 45 A0 TO USE
. 102 AO AO A0 A0 A0 00 OO0 0O .a=

40

. 18:
. 20:

2.
- = -

- 30:
. 38:
. 40:
- 48:
- 90:
- S58:
- 60:
- 68:
. 70:
- 78:
. 80:
- 88:
. 90:
. 98:
« AO0:Z
. AB:
- BO:
- B8:
. CO:
. €C8:
- DoO:
. D8:
. EO:
. ES8:
- FO:Z
. F8:

00
00
20
aF
O
00
2D
45
00
00
34
AO
00
00
20
AO
00
00
59
AO
00
00
4E
54
00
00
4R
a8
00

00
00
30
AQ
00
00
32
AQ
Qo0
00
20
AO
00
00
35
AO
Q0
Q0
2F
AQ
00
00
54
AO
00
Q0
20
41
00

00
82
41
A0
00
82
30
A0
00
82
57
AQ
00
82
2E
AQ
00
8z
41
A0
00
82
45
AO
00
82
41
4E
00

o0
11
52
Ao
00
11
20
AO
00

.
~

=
P }

AO
00
13
31
AO
00
13
4C
AO
00
13
52
AO
00
10
44
47
00

00
03
54
AO
00
o9
S7
AQ
o0
00
44
AO
o0
01
AO
AQ
00
03
4C
A0
00
09
20
AOQ
00
00
44
45
o0

00 OD 00-
48 4F 57HOW FILE
20 534 57 PART TW
Q0 00 00 O .
00 05 00
56 49 43VIC FILE
45 44 47 20 WEDG
00 00 00 E .en
00 04 00

46 2D 36C-6 FILE

47 45 A0 4 WEDGE.
Q0 00 00 I
00 01 00uc.-

44 4F 533DOS FILE

A0 A0 AO 5.1
00 00 00 ane
00 04 00-...

43 4F 50COP FILE
A0 A0 A0 Y/ALL

00 00 00 e

Q0 OB 00

S0 52 49FRI FILE
54 45 53 NTER TES

00 00 00 T -

00 09 00 ...can..

44 49 53DIS5 FILE

52 20 43 K ADDR C
00 00 00 HANGE...
00 04 00

The contents of any directory sector can be tabled as follows:

Byte

0
1

2-31

32-33
34-63

64-65
66-95

96-97

98-127
128-129
130-159

Contents

Purpose

Track of the next directory block
Sector of the next directory block

File entry #1 in the directory block

Unused
File entry #2 in the directory block

Unused
File entry #3 in the directory block

Unused
File entry #4 in the directory block
Unused
File entry #5 in the directory block

41

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

ENTRY

#3

#4

#6

#7

#8

160-161 0 Unused

162-191 File entry #6 in the directory block
192-193 0 Unused
194-223 File entry #7 in the directory block
224-225 0 Unused
226-255 File entry #8 in the directory block

Eight file entries are recorded per sector. Let’s examine the contents of a single direc-
tory file entry.

. 00: 12 04 82 11 00 48 4F 3537 .-.... HOW
E 2 R 3

. 08: 20 S4 4F 20 55 53 45 A0 TO USE

. 10: A0 A0 A0 A0 AO 00 00 00 “n-

. 18: 00 00 00 00 00 00 OD 00

Because this is the first entry in the directory, bytes 0 and 1 are significant. They point
to track 18, sector 4 (converts to 18). This indicates that there are further directory en-
tries. You will note that the sectors are not sequential in nature, i.e., sector 1 does not
point to sector 2, ete. Remember that the diskette itself is rotating at 300 rpm. Stagger-
ing the use of the sectors allows quicker access and fewer rotations of the drive
mechanism and the media. Typically sectors are staggered in increments of 10. The direc-
tory track is staggered in increments of 3, however. The table below indicates the se-
quence in which a full directory containing 144 files is stored:

SECTOR FILLING SEQUENCE
FOR THE DIRECTORY

0 (BAM)

1, 4,7, 10, 13, 16
2,5, 811, 14, 17
3, 6,9, 12, 15, 18

When a diskette is initially formatted, sector 1 is set up with 8 null entries. As you store
files on the diskette the directory grows. It soon becomes a long chain of directory sec-
tors. The first two bytes in a sector point to the next directory sector in the chain (this
is known as a forward pointer). But, what about the last sector in the chain? It has nothing
to point to! In the last sector in the chain, there is no forward pointer; byte 0 contains
a 0 ($00) and byte 1 contains a 255 ($FF) as indicated below. This indicates to the DOS
that there are no more sectors in the directory.

. 00: 00 FF 3 MY MY M¥ ¥¥ XY cascaseaas

One final note about chaining. Commodore uses only forward pointers. A sector does
not show where it came from, only where it is going. This makes recovery of corrupted
files much more difficult, but more about that later.

42

Back to our example:

« Q02 12 04 g2 11 00 48 4F 57 HOW
* %

- 08z 20 54 4F 20 55 53 45 A0 TO USE

- 102 A0 A0 AO AOD AQ 00 OO0 00 .-

- 182 00 00 00 00 00 00 OD 00

The first byte in the file entry is the file-type byte. In this instance we see an $82. This
is interpreted by the DOS to mean that the file entry is a program. The following table
outlines Commodores file types.

HEX ASCII FILE TYPE DIRECTORY SHOWS
$00 0 Scratched Does not appear
$80 128 Deleted DEL

$81 129 Sequential SEQ

$82 130 Program PRG

$83 131 User USR

$84 132 Relative REL

$00 0 Unclosed deleted Same as scratched
$01 1 Unclosed sequential *SEQ

$02 2 Unclosed program *PRG

$03 3 Unclosed user *USR

$04 4 Unclosed relative Cannot occur
$A0 160 Deleted @ replacement DEL

$A1 161 Sequential @ replacement SEQ

$A2 162 Program @ replacement PRG

$A3 163 User @ replacement USR

$A4 164 Relative @ replacement Cannot occur
$CO 192 Locked deleted DEL <

$C1 193 Locked sequential SEQ <

$C2 194 Locked program PRG <

$C3 195 Locked user USR <

$C4 196 Locked relative REL <

Note: It is possible to edit the file-lype byte and get very unusual file types appearing
in the directory (SR?< is one possibility). However, these file types have no practical use.

Enough esoterica for now. Let’s get back to our example:

The next two bytes in the file entry are a pointer to where the first sector of that par-
ticular file is stored on the diskette.

43

- 00 12 04 82 11 00 48 4F 57 HOW

EE XN
. 08 20 54 4F 20 55 53 45 A0 TO USE
- 102 A0 A0 A0 AD AO0 00 00 OO0 aea
- 182 00 00 00 QO OO QO OD 00

This file starts on track 17 ($11), sector 0 ($00).

Next we have the file name.

= 002 12 04 82 11 00 48 4F 57 HOW
HEHE EE

- 082 20 54 4F 20 55 53 45 A0 TO USE
I HE RE R R R K HNE

- 102 A0 A0 A0 AO A0 00 00 00 ana
HE EE EE XX XX

. 182 00 00 00 00 00 00 OD 00

In this case our file is named “HOW TO USE”. Note that file names are padded out
to 16 characters with shifted spaces ($A0) just like the diskette name. The shifted spaces
do not show as part of the file name, however, when the directory is displayed.

- 007 12 04 82 11 00 48 4F 57 HOW

. 08: 20 54 4F 20 55 53 45 A0 TO USE

- 102 A0 A0 A0 AO A0 00 00 00 ann
HH XX XN

- 182 00 00 00 QO Q0 OO0 OD 00

The next three bytes are unused except for relative file entries. For a relative file bytes
$15 (21) and $16 (22) point to the first set of side sectors. Byte $17 (23) gives the record
size with which the relative file was created. This special file type will be examined in
detail later.

The next four bytes are always unused and therefore null ($00).

. 00 12 04 82 11 00 48 4F 57 HOW
. 08: 20 54 4F 20 55 53 45 A0 10O USE

. 10 A0 ADO AO AO AO 00 QOO0 00 .-aa
- 182 00 9O 00 00 00 00 OD 00

E 2. R £ BN = S £ 4

The following two bytes are reserved for use by the DOS during the save and replace
operation (@ replacement). Their function can only be viewed by interrupting the drive
during a SAVE “@0:file name”,8 routine. This is not recommended for obvious reasons.
(During an @ replacement the file-type byte is ORed with $20 first. A new copy of the
file is then written to the disk. Bytes 28 ($1C) and 29 ($1D) contain the track and sector
pointer to the start of the new replacement file. At the end of the @ operation the sec-
tors that held the old file are marked as free in the BAM. The new track and sector

44

pointer is then moved from bytes 28 and 29 to bytes 3 ($03) and 4 ($04) respectively
and bytes 28 and 29 are zeroed again. The proper file type is then restored at byte 2.

See Chapter 9 about the bug in the @ replacement command.)

- 10:
- 182

12
20
A0
00

04 82 11 00 48 4F 57

S4 4F 20 55 53 45 A0

AOC A0 AO A0 00 00 QO

00 00 00 00 00 OD 00
% XX

TO USE

The final two bytes in a file entry are the number of blocks it occupies on the diskette.
It is the sum of the leftmost byte (lo-byte) + the rightmost byte (hi-byte) * 256.

. 002

12
20
A0
00

04 82 11 00 48 4F 57
54 4F 20 55 53 45 AOQ
A0 A0 A0 A0 00 OO0 00
Q0 00 00 00 00 0D 00

®E XX

LO HI

In our example, the file is (13 + 0 * 256) = 13 blocks long.

To be sure you understand the file entries work let’s break out the first sector of the
test/demo directory to show each file entry. Remember that bytes 0 and 1 of each entry
are unused with the exception of the first entry. Here they represent a forward track
and sector chain and have nothing to do with that file in particular.

. 00:
- 08:
- 10:
. 18:

. 202

- 2301

12
20
AQ

00

00
20
aF
00

1541 TEST/DEMO
TRACK 18 - SECTOR 01
DIRECTORY ENTRY 1
04 82 11 00 48 4F S
S4 4F 20 55 33 45 A0
A0 AD A0 A0 00 00 00
00 00 00 00 00 0D 00
DIRECTORY ENTRY 2
00 82 11 O3 48 4F 57
S0 41 52 34 20 54 57

A0 A0 A0 A0 00 QO 00
00 00 00 00 00 03 00

45

File type = $82 = PRG
Starts on 17/1 ($11/$00)
Name: HOW TO USE
File length: 13 BLOCKS

File type = $82 = PRG
Starts on 17/3 ($11/$03)
Name: HOW PART TWO
File length: 5 BLOCKS

60:
68:
70:
78:

80:
88:
F0:
78:

AO:
Ag:
BO:
B8:

co:
c8:
DO:
Dg:

EO:
E8:
FO:
Fg:

Q0
2D
45
00

00

k4
-

A0
00

a0
20
Ao
00

QO
59
A0
00

Q0
4E
54
00

00
4R
48
Q0

DIRECTORY ENTRY 3

Q0
32
A
00

82
I0
AQ
00

11
20
A0
00

09 56 49 43
S7 45 44 47
AC OO0 00 00
00 00 04 0O

DIRECTORY ENTRY 4

82
a7
AOQ
Q0

13
45
AO
00

00 46
44 47
A0 00
00 00

2D 36
45 AO
00 00
01 00

QO
20
AC
00

DIRECTORY ENTRY 5

82 13
2E 31
A0 A0
00 00

01 44 4F 53
A0 A0 AO AOD
A0 00 00 00
00 00 04 QO

Q0
35
A
00

DIRECTORY ENTRY &6

00 82 13 03 43 4F 50
2F 41 4C 4€C A0 AO A0
A0 ADO A0 A0 00 00 00
00 00 00 00 00 0B 00

DIRECTORY ENTRY 7

00 82 13 09 50 32 49
34 45 52 20 354 45 53
A0 A0 AD AQ OO OO 00
00 00 00 00 QO 09 00

DIRECTORY ENTRY 8

00 82 10 00 44 49 53
20 41 44 44 32 20 43
41 4E 47 45 00 00 00
00 00 00 00 00 04 OO

46

—-20 WEDG
E “os

K ADDR C
HANGE. ..

File type = $82 = PRG
Starts on 17/9 ($11/09)

Name: VIC-20 WEDGE
File length: 4 BLOCKS

File type = $82 = PRG
Starts on 19/0 ($13/$00)
Name C-64 WEDGE
File length: 1 BLOCK

File type = $82 = PRG
Starts on 19/1 ($13/$01)
Name: DOS 5.1

File length: 4 BLOCKS

File type = $82 = PRG
Starts on 19/3 ($13/03)
Name: COPY/ALL

File length: 11 BLOCKS

File type = $82 = PRG
Starts on 19/9 ($13/09)
Name: PRINTER TEST
File length: 9 BLOCKS

File type = $82 = PRG
Starts on 16/0 ($10/00)

Name:DISK ADDR CHANGE

File length: 4 BLOCKS

We will end our tour of the directory by displaying the next sector (track 18, sector
4) which happens to end the directory chain ($00, $FF in bytes 0 and 1, respectively).
Notice that only seven directory entries are present in this block. The last directory
entry is a null entry. It will be converted into a valid entry when the directory is
expanded.

00z
08:
10:
18:

20:
28:
302
38:

403
48:
S0:

58:

60:
68:
70:
78:

80:
88:
Q0:
98:

AO:
A8:
BO:
B8:

co:
ca:
Do:
D8:

EO:
E8:
Fo:
F8:

00
A0
A0
00

00

=
ot

A0
Q0

00
4=
AQ
Q0

00
S0
AO
00

Q0
44
20
00

00

=
ot

445
00

00
44
AO
OO0

Q0
Q0
00
ale)

1541 TEST/DEMO

TRACK

FF
AD
AO
00

Q0
20
A0
00

00
4B
A0
00

Q0
4C
AO
00

00
4F
954
(18]

00
45
49
00

00
aF
AC
00

00
o0
Q0
QOO0

82
Ao
A0
00

82
42
AO
00

g2
20
AQ
Q0

a2
41
Ao
[al4)

g2
S2
45
o0

82
4E
4C
00

82
4D
Ao
00

ale]
00
Q0
00

18 - SECTOR

10
A0
A0
o0

10
41
A0
Q0

10
44
A0
Q0

10
59
Ao
Q0

14
4D
53
Q0

14
54
45
00

OF
20
A0
00

00
00
00
0

01
AO
AO
00

03
4D
AC
a0

07
49
AO
00

OF
20
A0
00

02
41
54
00

o7
49
AQ
00

01
446
Ao
00

00
00
Q0
00

44
AO
00
00

56
AC
00
00

43
53
00
00

44
sS4
00
00

S0
4E
00
00

50
41
Q0
00

52
49
00
00

00
00
Q0
Q0

49
AO
00
04

49
AC
00
06

48
4B
Q0
04

49
26
[4]14]
OE

45
43
00
Qo9

45
4C
00

Q5

41
4C
00
0D

00
00
00
o0

04

S2
Ao
00
00

45
AO
00
00

45
AQ
Q0
00

53
S3
Q0
00

52
45
00
00

52
20

00

47

TEST...

FILE ...

File type = $82 = PRG
Starts on 16/1 ($10/01)
Name: DIR

File length: 4 BLOCKS

File type = $82 = PRG
Starts on 16/3 ($10/03)
Name: VIEW BAM
File length: 6 BLOCKS

File type = $82 = PRG
Starts on 16/7 ($10/07)
Name: CHECK DISK
File length: 4 BLOCKS

File type = $82 = PRG
Starts on 16/15 ($10/$0F)
Name: DISPLAY T&S

File length: 14 BLOCKS

File type = $82 = PRG
Starts on 20/2 ($14/$02)
Name: PERFORMANCE TEST
File length: 9 BLOCKS

File type = $82 = PRG
Starts on 20/7 ($14/$07)
Name: SEQUENTIAL FILE
File length: 5 BLOCKS

File type = $82 = PRG
Starts on 15/1 ($0F/$01)

Name: RANDOM FILE
File length: 13 BLOCKS

NULL ENTRY

You will find four of the utilities listed in Appendix C particularly helpful in furthering
your understanding of the organization of a diskette. The first program is DISPLAY
TRACK & SECTOR. The hex dumps in this section were generated using this utility.
A hex dump can be sent either to the screen or printer. When sent to the screen only
half a page of the specified track and sector is displayed at one time to prevent scroll-
ing. Bytes 0 — 127 (300 — $7F) are displayed first followed by bytes 128 — 255 ($80
— $FF). Use this program for your own experimentation. The second program is
DISPLAY A BLOCK AVAILABILITY MAP. It portrays the BAM in a two-dimensional
representation. The diskette name, ID, DOS version, and blocks free are also displayed.
The third program is VIRTUAL DIRECTORY. 1t displays a directory in its entirety
including scratched files. Output can be directed to a printer by changing the OPEN
4, 3 statement in line 440 to OPEN 4,4. The last program, DISPLAY A CHAIN, traces
a file chain. The chain of sectors may be viewed on the screen or sent to the printer.

The programming techniques that are used in these sample programs will be partially
explained in later sections.

Now that we’ve seen how the directory is kept, let’s look at how the different types
of files are actually stored on a diskette. We’ll start by looking at a program file.

4.5 Program File Storage

The most common type of file is a program file, PRG. It is designated by an $82 in the
directory. Program file structure is quite simple. Diagrammatically, the first sector (block)
in a program file looks like this.

TRACK SECTOR LOAD | LOAD THE FIRST 252 BYTES
LINK LINK Lo Hi OF YOUR PROGAAM

Byte Purpose

Track of the next block in this file
Sector of the next block in this file
Lo-byte of the load address
Hi-byte of the load address

W=

4-255 The first 252 bytes of the program

The first pair of bytes are the pointer to the track and sector of the next block in the
file. Technically, this is known as a “‘forward pointer.” It points ahead to the next sec-
tor in the file. All Commodore files use this type of pointer.

The second pair of bytes is the “load address” of the file in lo-byte/hi-byte form. They
indicate where the program is to be loaded into memory. A BASIC program that was
saved from a C64 will have a $01 and a $08 in these two locations. This indicates that
the program is to be loaded into memory starting at memory location $0801 (remember
it is in lo-byte/hi-byte form). In decimal notation this is memory location 2049 — the start
of BASIC on a C64.

48

Have you ever wondered about the significance of the ““,1"” in the command LOAD
‘“name”,8,17 It determines whether or not a program is “relocated” when it is loaded
into memory. If you do not specify the “,1”, the C64 will ignore the load address at
the start of the file and load the program starting at memory location $0801 (2049). When
the ““,1” is present, the C64 (or VIC-20) will pay attention to the load address and load
the program into memory starting at the location specified by bytes $02 and $03.

The remaining sectors, except the last one, look like this:

TRACK SECTOR THE NEXT 254 BYTES
LINK LINK OF YOUR PROGRAM

Byte Purpose

0 Track of the next block in this file
1 Sector of the next block in this file

2-255 The next 254 bytes of the program
The last block in a program file is special because:

1. 1t is the last sector.
2. 1t is usually only partially full.

To signal the DOS that this is the last block, the first byte is set to $00. The first byte
is normally the track link. Since there is no track 0, the DOS knows that this is the
last sector in the file. The second byte indicates the position of the last byte that is part
of the program file. Any bytes beyond this position are garbage.

Diagrammatically, the last sector in a program file looks like this:

NULL LAST THE FINAL BYTES GARBAGE
$00 BYTE OF YOUR PROGRAM

Byte Purpose

0 Null byte to indicate that this is the last sector
1 Number of bytes to read from this sector (N)

2-N The last (N-2) bytes of the program
(N+1)255 Garbage

Let’s examine the program file “DIR” on your 1541TEST/DEMO disk. DIR appears
in the directory on track 18, sector 04. The directory entry looks like this:

49

TRACK 18 - SECTOR 04

. 002 00 FF 82 10 01 44 49 352DIR
- 08 A0 A0 ADO AD AD ADC AO AD .snee..
» 102 A0 A0 A0 AD AD 00 Q0 00
- 182 00 0O 00 00 00 00 04 00

From the entry we see that “DIR” starts at track 16 ($10), sector 01 ($01) and that
the file is four blocks long (4 + 0 * 256).

- 00 00 FF 82 10 01 44 49 32 DIR
*% E®

. 08: A0 AD AD AO ADO A0 AO A0

- 102 AO AD AD AD AD OO0 00 00

- 182 00 0O QO 00 Q0 QO 04 00
% HE

Let’s look at the first block in this file.

TRACK 16 — SECTOR 01

- 00 10 OB 01 04 OD 04 04 OO “
. 08: 9F 32 2C 38 2C 31 35 00 .2,8,15.
. 102 1E 04 03 00 99 22 93 22 o

. 18: 3A 89 20 31 30 30 30 30 :. 10000
. 20z 00 2E 04 OA OO0 9F 31 2C1,
. 28: 38 2C 30 2C 22 24 30 22 8,0,"$0"
. 302 00 3C 04 14 00 A1l 23 31 .<....#1
. 38: 2C 41 24 2C 42 24 00 4A ,A%$,B%$.J
. 40: 04 1E 00 A1 23 31 2C 41#1,A
. 48: 24 2C 42 24 00 S8 04 28 $,B%.X. (
. S0: 00 Al 23 31 2C 41 24 2C ..#1,A%,
. S58: 42 24 00 60 04 32 00 43 B%...2.C
. 60: B2 30 00 77 04 3C 00 8B .0...<..
. 68: 20 41 24 B3 Bl 22 22 20 A$..""
. 70: A7 20 43 B2 C6 28 41 24 . C.. (A%
. 782 29 00 94 04 46 Q0 8B 20)...F..
. 80: 42 24 B3 E1 22 22 20 A7 B$..""

. 88: 20 43 B2 43 AA C6 28 42 C.C..(B
. 90: 24 29 AC 32 35 36 00 AF $).256..
. 981 04 S50 00 99 22 12 22 CA .P..".".
. AQ: 28 C4 28 43 29 2C 32 29 (.(C),2)
. AB: 3B A3 33 29 3B 22 92 22 5.3);i"."
. BO: 3B 00 C9 04 SA 00 Al 23 5...Z..#%
. B8: 31 2C 42 24 3A 8B 20 S3 1,B$:. S
. CO: 54 B3 B1 30 20 A7 20 31 T..0 . 1
. C8: 30 30 30 00 DE 04 64 00 000.....

50

. DO: 8B 20 42 24 B3 RBR1 C7 28 . Bé...(
. D8: 33 34 29 20 A7 20 39 30 34) . 90
- EOZ 00 Q0O OS5 6E 00 A1 23 31 #1
. EB: 2C 42 24 3A 8B 20 42 24 ,B%:. B$%
- FO: B3 B1 C7 28 33 34 29 A7 ... (34).
. F8: 20 99 42 24 3R 3A 879 31 .B%s:.

Not very recognizable is it? Remember this is C64 internal BASIC not a BASIC listing.
Bytes 0 and 1 are of interest. They are the track and sector link that point to the next
block in the program file. In this case, they point to track 16 ($10), sector 11 ($0B). Since
this is the first data block of the file, bytes 2 and 3 are also important. They are the
load address. We can see that the load address is $0401 or 1025 decimal. This file was
written on a PET. (The start of BASIC memory on the C64 is at $0801. The VIC-20
begins at $1001, $1201, or $0401 depending ont he amount of external memory.) DIR
will require a straight relocating load, i.e., LOAD “DIR” 8. If you used a LOAD “DIR”,
8,1 command, the program would be loaded into the screen RAM of the C64. NOTE: If
you load this program properly, you will NOT be able to get it to VERIFY correctly.
The reason 1is that the internal BASIC links were changed when the program was
relocated.

. 00 10 OB 01 04 OD 04 04 00
R HH W N

Let’s follow the forward chain to track 16, sector 11 and take a look at the start of the
second block in our file.

TRACK 16 - SECTOR 11
. 00: 10 02 31 30 00 1C 05 78 ..10....
. 08: 00 A1 23 31 2C 42 24 3A ..#1,B%:
- 10: 8B 20 42 24 B2 C7 28 33 . B%.. (3

PN NN NSNS e o’ NINSTNN

Nothing much of interest here. Let’s chain to track 16 ($10), sector 02 ($02) and take
a look at the start of the next block.

TRACK 16 — SECTOR 02
. 00z 10 OC B2 22 22 3A 99 22 ...""1."
. 08: 3E 22 3B 00 1A 06 AB OF >"5.....
- 10: Al 42 24 3A 8B 42 24 B2 .B%$:.B%.

NN et P At e M PN S B oINS NN

51

Again, nothing much of interest. Chain to track 16 ($10), sector 12 ($0C).

TRACK 16 — SECTOR 12

. 002 00 68 8B 20 41 24 B2 22 ... A."
- 08: 44 22 20 A7 20 31 30 00 D" . 10.
- 10z 2D 07 3C 28 8B 20 41 24 —.<{(. A%
- 18: B2 22 2 22 20 BO 20 41 ."." . A
. 201 24 B2 22 3IE 22 20 BO 20 $.">" .

. 281 41 24 B2 22 3IE 22 20 A7 AS.">" .
- 30X 20 34 30 30 30 00 3E 07 4000. >,
- 38 46 28 8B 20 41 24 B2 22 F(. A$."
. 40: 51 22 20 A7 20 80 00 52 @" . ..R
. 48: 07 50 28 8B 20 41 24 B2 .P(. A$.
- S0 22 53 22 20 A7 20 33 30 "S" . 50
- 982 30 30 00 SE 07 F7 2A 89 00. ..*,
. 602 20 31 30 31 30 30 00 Q0 10100,
. 687 00 A0 00 A1l 20 54 24 3A ... T$:
. 70z 8B 20 54 24 E3I Bl 22 22 . T&..""
. 78: 20 A7 20 8D 20 32 30 30 . . 200

AN NAAS NS e N i N\ P e NN P NN

Now we’re cooking. This is the last sector of the file. How can we tell? The track of
the next block in the file is 0 ($00). But what about the sector link? It’s a misnomer.
The sector link in the last block is actually a byte count. It informs the DOS that only
bytes 2 through 104 ($68) are important in this example. Recall that an end of file in
BASIC is designated by three zeros in a row. An End-or-Identify (EOI) signal will be
sent once byte 104 has been transferred across the serial bus. When the C64 receives
this EOI signal, the status variable, ST, will be set to a value of 64. (Any further at-
tempt to read a byte will cause the drive to time out.) Here’s the tail end of our pro-
gram. The three null bytes, ($00), at $66/7/8 are the last three bytes in our program file.

. 00: 00 68 8B 20 41 24 B2 22 ... As."
-~ 08: 44 22 20 A7 20 31 30 00 D" . 10.
. 102 2D 07 ZC 28 8B 20 41 24 —_.<(. A%
- 18: B2 22 2E 22 20 BO 20 41 ."." . A
« 20: 24 B2 22 3E 22 20 BO 20 $.">"

- 28: 41 24 B2 22 3E 22 20 A7 As.">" .
- 302 20 34 3F0 30 IO 00 3E 07 4000, >,
. 38: 46 28 8B 20 41 24 B2 22 F(. A$."
- 40: 51 22 20 A7 20 BO 00 52 @ . ..R
. 48: 07 50 28 8B 20 41 24 B2 .P(. A$.
- D0: 22 293 22 20 A7 20 35 30 "S" . DO
- 98: FT0 30 00 SE 07 F7 2A 89 00. ..*,
. 602 20 F1 30 31 30 30 00 00 10100..
. 6B 00 xx MX XM XX MX MX XX .

ANAMNA AN A A AN e SANS

52

What about the rest of the block? Ignore it. It is garbage. The DOS does not zero out
a buffer before it begins filling it with new information sent from the computer. As a
result, the last block in a file, which is almost never filled with new information, is padded
with whatever happened to be left in the buffer from a previous read or write opera-
tion. There are two exceptions to the rule, namely, the directory and relative files. A
partial directory block is always padded with nulls ($00). Moreover, it always appears
as a full block. Bytes 0 and 1 of the last directory block will contain a $00 and a $FF,
respectively. Relative file structure will be explained shortly.

4.6 Sequential File Storage

The format of a sequential file is very straightforward. All the sectors, except the last
one, look like this:

TRACK SECTOR 254 BYTES OF OATA
LINK LINK

Byte Purpose

0 Track of the next block in this file
1 Sector of the next block in this file
2-255 254 bytes of data

The last block in a sequential file is special for two reasons:

1. It is the last sector.
2. It is usually only partially full.

To signal the DOS that this is the last block, the first byte is set to $00. The first byte
is normally the track link. Since there is no track 0, the DOS knows that this is the
last sector in the file. The second byte indicates the position of the last byte in the file.
Any bytes beyond this position are garbage.

Diagrammatically, the last sector in the file looks like this:

NULL | LAST THE FINAL OATA BYTES IN GARBAGE
$00 | BYTE YOUR SEQUENTIAL FILE

Byte Purpose

0 Null byte to indicate this is the last sector

1 Position of the last byte in the file (N)

2-N The last N -2 bytes of the sequential file

(N+1)255 Garbage

53

No sequential files appear on the 1541TEST/DEMO. (The file named SEQUENTIAL
FILE is a program file demonstrating the sequential access method.) The C-64 DISK
BONUS PACK does come with one sequential file on it. The file named “ DIREC-
TORY ” appears as a SEQ when displaying the directory. “ DIRECTORY ”
can be found at track 18, sector 01 on the C-64 DISK BONUS PACK. Let’s take a peek
at the directory entry for this file:

TRACKE. 18 — SECTOR 01

- 20 00 00 81 11 01 20 20 20

. 28 44 49 32 45 43 54 4F 52 DIRECTOR
. 30: 59 20 20 20 A0 OO0 00 00 Y .=
. 382 00 00 00 00O 00 00 02 00

DIRECTORY 7 is the second file entry in the directory.

. 20: 00 00 81 11 01 20 20 20
HX X ER
. 28: 44 49 52 45 43 54 4F 52 DIRECTOR

. 302 59 20 20 20 A0 00 00 QO Y .
. 38: 00 00 00 00 00 00 02 00
*

A sequential file is designated by an $81 in the directory. The first block of this file
is stored on track 17 ($11), sector 1 ($01). We also see that “ DIRECTORY ”is
two blocks long (2 + 0 * 256). Let’s take a look at the first half of the starting data block.

TRACK 17 — SECTOR 01

. 002 11 OB 43 36 34 20 53 54 ..C64 ST
. 087 41 52 54 45 52 20 4B 49 ARTER KI
- 102 54 20 20 20 36 34 20 20 7 64

. 18 32 41 OD 31 35 34 31 20 2A.1541
- 202 42 41 43 4B 55 50 0D 41 BACKUP.A
. 28: 4D 4F 352 54 20 54 41 42 MORT TAB
. 302 4C 45 0D 41 52 32 4F 57 LE.ARROW
- 38: 0D 42 49 54 53 20 41 4E .BITS AN
- 402 44 20 42 39 54 45 53 OD D BYTES.
. 48 43 41 4C 45 4E 44 41 52 CALENDAR
. 50: 0D 43 48 41 4E 47 45 20 .CHANGE
. 58: 44 49 S3 4B 0D 43 48 41 DISK.CHA
- 60z 52 20 42 4F 4F 54 OD 43 R BOOT.C
- 68: 4F 4C 4F 52 20 54 45 S3 OLOR TES
- 70 54 OD 43 4F 50 59 2D 41 T.COPY-A
. 78: 4C 4C 36 34 OD 44 45 4D LL64.DEM

i W N L, N, o N T L,

b4

Bytes 0 and 1 are the track and sector link (forward pointer). They inform us that the
next data block can be found at track 17, sector 11. The remaining 254 bytes are data.
The sequential data that appear here are in fact the disk name (C64 STARTER KIT),
the cosmetic disk ID (64), and the file names found on the C-64 DISK BONUS PACK.
It is interesting to note that a carriage return character ($0D) was used as a delimiter
to separate record entries. Next we see:

TRACK 17 - SECTOR 11

. 007 00 86 2D 20 59 41 4E 4B ..- YANK
. 08 45 45 0D 53 4F 55 4E 44 EE.SOUND
- 101 20 2D 20 41 4C 49 45 4E — ALIEN

- 18: OD 53 4F 55 4E 44 20 2D .SOUND -
- 20 20 42 4F 4D 42 oD 53 4F BOMB.SO
- 282 95 4E 44 20 2D 20 43 4C UND — CL
. 30 41 S50 0D 53 4F S5 4E 44 AP.SOUND

- 382 20 2D 20 47 55 4E 46 49 - GUNFI
- 407 352 45 OD 533 4F 53 4E 44 RE.SOUND
. 48: 20 2D 20 30 4F 4E 47 OD - FONG.

- 90> 33 4F 55 4E 44 20 2D 20 SOUND -

. 098I 52 41 59 47 S5 4E OD 33 RAYGUN.S
. 60 4F 55 4E 44 20 2D 20 53 OUND - S
- 68: 49 352 43 4 OD 53 30 52 IREN.SFR
- 70 49 54 45 20 42 4F 4F 54 1TE BOOT
. 78: 0D 53 55 30 435 52 4D 4F .SUPERMO
- 80> 4E 36 34 2E 56 31 0D 59 N64.V1.Y
. 88: 54 53 S50 52 49 54 45 53 TSPRITES
- Q02 A0 A0 A0 AC A0 00 00 00
- 987 00 00 00 00 OO0 00 05 00
- A0 00 00 B2 07 00 53 4E 4FS5NO
- AB: 4F S0 59 20 4D 41 34 48 OPY MATH
- BO: A0 A0 A0 AD AD 00 00 00

- BB: 00 00 00 00 Q0 00 33 00 3.
. COZ 00 00 82 1D 00 41 4D 4F AMO
- €82 32 54 20 G4 41 42 4C 45 RT TABLE
- DO A0 A0 A0 AD AD OO 00 00 ...ceeu..

- D8: 00 00 Q0 00 00 00 27 00"%.
-~ EO: 00 00 82 05 02 4D 4F 52MOR
- EB: 54 47 41 47 45 A0 A0 A0 TBAGE...
- FOI A0 A0 ADO ADO AD Q0 00 00c...
- F8: 00 00 00 00 00 00 2D 00—.

We can see from the above data block that this is the last sector in the chain. Byte 0
contains a zero indicating no forward track. Byte 1 then is a byte count ($86=134). Byte
134 is the last byte in our data file. Recall that the status variable (ST) will be set to
64 on the C64 side after byte 134 has been read.

. B80: 4E 36 34 ZE S6 31 OD xx N64.VL.

55

The remainder of the block has been padded ($87—$FF). The padding is clearly
recognizable this time around. It has no rhyme or reason but it is still interesting to
say the least. A portion of the C-64 DISK BONUS PACK directory itself was used to
pad the remainder of the data block in question.

o BOI My MM oMM MY MY %X ¥¥ D% N64.V1.Y
. 88: 94 53 50 52 49 54 45 53 TSFPRITES

. 20 A0 A0 AO A0 AO OO0 00 00
- 982 00 00 00 Q0 00 00 05 00c...
- AOI 00 00 82 07 00 53 4E 4F SNO
- AB: 4F S50 59 20 4D 41 54 48 OPY MATH
. BO: A0 A0 AO AO AO 00 0O OO0
- B8: 00 00 060 00 00 00 33 00 3.
. COZ OO0 00 82 1D 00 41 4D 4F AMO
. €£8: 52 54 20 54 41 42 4C 45 RT TABLE
. DO A0 A0 AD A0 AD0 00 00 00 ..cuuwnwe
. D8 00 00 QO 00 00 00 27 00 7.
- EOZ 00 00 82 05 02 4D 4F 52 MOR
. EB: 54 47 41 47 45 A0 A0 AO TGAGE...
- FO: A0 A0 ADO A0 A0 00 00 00
- F8:z 00 00 00 00 00 00 2D 00 -

4.7 Relative File Storage

Relative file types have the most elaborate internal structure. Relative files are often
referred to as random access files. A relative file is actually two files in one:

1. A sequential data file with records of a fixed length.
2. A file of track and sector pointers called side sectors.

The sequential data file uses fixed length records so that the DOS can calculate where
to find any given record. This makes it possible to position to a particular record and
read or write it without disturbing the rest of the file. In the jargon of relative files,
the length of one record in the sequential data file is known as the record size.

The complete file of track and sectors pointers is called the side sector file. The size
of this file depends on the length of the sequential file. In general it is 1/120th the length
of the sequential file (minimum length = 1 block; maximum length = 6 blocks). Each
block in this file is known as a side sector. There are really two sets of track and sector
pointers in this file. The larger set is a list of the track and sector numbers of the blocks
used to store the sequential data file (its file chain). The other is a list of the track and
sector numbers of the side sectors (the file chain of the side sector file).

The purpose of the side sector file is to allow the DOS to find any given record with
remarkable efficiency. One disk read of a side sector is all that is required to locate the
track and sector of the block where a particular record is stored. Two additional reads
may then be required to retrieve a record itself if it spans two data blocks. This will
be explained shortly when we examine records in more detail.

56

Remember that sequential data blocks have the following format:

Byte Purpose

0 Track of the next block in this file
1 Sector of the next block in this file
2-255 254 bytes of data

Diagrammatically, each block (side sector) in the side sector file looks like this:

TRACK | SECTOR | SIDE RECORD | TRACK/SECTOR TRACK/SECTOR
LINK LINK SECTOR | SizE LINKS FOR 6 LINKS FOR 120
NUMBER SIOE SECTORS OATA BLOCKS

Byte Purpose

0 Track of the next side sector

1 Sector of the next side sector

2 Side sector number

3 Record length

4-15 Track and sector list of the side sector file

45 Track and sector of side sector #0
6-7 Track and sector of side sector #1
89 Track and sector of side sector #2
10-11 Track and sector of side sector #3
12-13 Track and sector of side sector #4
14-15 Track and sector of side sector #5

16-256 Track and sector list of 120 data blocks
16-17 Track and sector of data block #1

18-19 Track and sector of data block #2
20-21 Track and sector of data block #3

;

254-255 Track and sector of data block #120

To help you make some sense out of this, let’s begin with the directory entry for a relative
file. Here’s the start of the directory of a diskette that has a relative file stored on it.

57

TRACK 18 — SECTOR 01

. 00 00 FF 81 11 00 533 43 20 sC
. 08: X1 4D 41 47 20 446 49 4C 1MAG FIL
- 102 45 A0 A0 AOC A0 00 00 00 E.......
- 182 00 00 00 00 OO0 00 01 00
- 202 00 00 81 11 01 S3 43 20 sC
. 282 32 4D 41 47 20 446 49 4C 2MAG FIL
- 300 45 A0 A0 A0 AO 00 00 00 E.......
- 382 00 00 00 00 00 OO0 01 00
- 40: 00 00 81 11 02 53 43 20 SC

- 482 33 4D 41 47 20 46 49 4C 3MAG FIL

= 902 45 A0 AO A0 AO 00O 00 00 E.......

- 982 00 00 00 00 00 00 01 00

. 607 00 00 84 11 03 4D 41 47MAG Here’s the entry
- 681 20 46 49 4C 45 A0 A0 A0 FILE... for the REL file:
- 702 AO ADO A0 A0 AO 11 OD 96

- 782 00 00 OO 00 00 OO B4 01

R I L

“MAG FILE” will serve as our demo throughout this section. Let’s examine its direc-
tory entry in detail from track 18, sector 1.

- 602 00 00 84 11 03 4D 41 47 MAG
halalalaliall File type and T/S link
. 682 20 46 49 4C 45 A0 AO A0 FILE...
- 70 A0 A0 A0 ADO ADO 11 OD 96
- 782 00 OO0 00 00 OO0 OO0 B4 01

From the directory entry we can see that “MAG FILE” is a relative file. A relative
file is indicated by an $84 as the file type. The track and sector pointers in the directory
reveal that “MAG FILE” starts at track 17 ($11), sector 03 ($03). This is the sequential
data file portion of the relative file. It is the beginning of our data.

- 702 AO A0 A0 A0 A0 11 OD 96 "aa
el Side sector information
Record length

Side sector information follows the file name. The first side sector begins at track 17
($11), sector 13 ($0D). In addition, we see our record length ($96=150). Each record in
our sequential data file is 150 bytes long. This is fixed throughout the entire data file.

. 782 00 00 00 OO0 00 00 B4 01
W File length (lo/hi-byte)

58

Our sample relative file consumes a total of 436 blocks on the diskette (180 + 1 * 256),
(There is still room for expansion.) We can determine the number of side sectors by
simple divison. A side sector stores track and sector pointers for 120 data blocks of our
sequential file. To determine the number of side sectors, simply divide the total number
of blocks that appear in the directory entry by 120 and round up to the next higher
integer:

436 /120 = 3.6 = 4

Four side sectors are needed to keep track of this much data. To figure out how many
records currently exist requires a little more arithmetic. First we have to subtract the
number of side sectors from the total number of blocks.

436 — 4 = 432

Now we can determine the total number of data bytes currently in use by our sequen-
tial file.

432 * 254 = 109728
Why 254 as a multiplier? Remember that the first two bytes of any data block are for-
ward track and sector pointers (266 — 2 = 254). We finish our set of calculations by
dividing this total by the fixed record length.

109728 / 150 = 731.52
A total of 731 records exist at the current time in “MAG FILE.”

Let’s examine the first side sector.

TRACK 17 — SECTOR 13 SIDE SECTOR #0

. 00: OC 13 00 96 11 OD OC 13 Forward pointer, SS #, size,

- 08: 06 10 13 OF 00 00O 00 OO0 and6pairsofside sector pointers
. 102 11 03 11 OE 11 04 11 OF 120 pairs of data block

. 18: 11 05 11 10 11 06 11 11 pointers

. 20 11 07 11 12 11 08 11 13

. 28: 11 09 11 14 11 OA 11 OB

. 30z 11 OC 10 00 10 OA 10 14 -
. 38: 10 08 10 12 10 06 10 10
- 40: 10 04 10 OE 10 02 10 0OC -

- 48: 10 01 10 OB 10 O3 10 0D
. 50z 10 05 10 OF 10 07 10 11
. 58: 10 09 10 13 OF 07 OF 11
- 60 OF 05 OF OF OF O3 OF OD
. 68: OF 01 OF OB OF OO0 OF OA
. 70: OF 14 OF 08 OF 12 OF 06
. 78: OF 10 OF 04 OF OE OF 02
. BO: OF OC OF 09 OF 13 OE 07
. 88: OE 11 OE 05 OE OF OE O3

59

. 90z OE OD OE O1 OE OB OE 00
- 98: OE OA OE 14 OE 08 OE 12
. AQI OE 06 OE 10 OE 04 OE OE
- AB: OE 02 OE OC OFE 09 OE 13
. BO: OD 07 OD 11 OD O5 OD OF
. B8: OD O3 OD OD OD 01 OD OB
. €0 OD OO OD OGA OD 14 OD 08
. €8: OD 12 OD 06 OD 10 OD 04
- DO: OD OE OD 02 OD OC OD 09
. DB: OD 13 OC 07 OC 11 OC 05
. EO: OC OF OoC O3 OC OD OC 01
. E8: OC OB OC OO0 OC OA OC 14
. FO: OC 08 OC 12 OC 06 OC 10
. F8: OC 04 OC OE OC 02 OC OC

Of primary interest are the first 16 bytes.

- 00z OC 13 00 96 11 OD OC 13
- 08: 06 10 13 OF 00 00 00 00

Bytes 0 and 1 show us that the next side sector resides at track 12 ($0C), sector 19 ($13).
Byte 2 informs us that this is side sector 0. A maximum of 6 side sectors are used by
any one relative file. This is determined solely by the physical storage capacity of the
diskette (664 blocks free after formatting divided by 120 track and sector pointers in
a side sector equals 5.53 side sectors). Side sectors are numbered from 0 to 5. Byte 3
shows us the record size again (150 bytes). Bytes 5-15 are the track and sector locations
of the six possible side sectors. They can be tabled as follows:

BYTE SIDE SECTOR TRACK - SECTOR
4-5 0 17 ($11) - 13 ($0D)
6- 7 1 12 ($0C) - 19 ($13)
89 2 6 ($06) - 16 ($10)

10-11 3 19 ($13) - 15 ($0F)

12-13 4 0 ($00) - 0 ($00)

14-15 5 0 ($00) - 0 ($00)

We can see from the table above that side sectors 4 and 5 have not yet been allocated.
Once our data file expands to encompass more than 480 and 600 sectors, respectively,
they will be allocated, provided there is room on the diskette.

The remaining 240 bytes are track and sector pointers to the first 120 blocks in the se-
quential file. From bytes 16 and 17 of side sector 0 we see that our data begins at track
17 ($11), sector 03 ($03). (This is the track and sector recorded in the directory itself.)
Track 17, sector 03 chains to track 17 ($11), sector 14 ($0E) which chains to track 17
($11), sector 4 ($04) and so on.

60

TRACK. 17 — SECTOR 13 SIDE SECTOR #0

- 102 11 03 11 OE 11 04 11 OF
¥ N
- 18: 11 05 11 10 11 O06 11 11
- 202 11 07 11 12 11 08 11 13
. 282 11 092 11 14 11 OA 11 OB
. 30 11 OC 10 00 10 OA 10 14 ,.......
- 38 10 08 10 12 10 06 10 10
- 40: 10 04 10 OE 10 02 10 OC-
- 48: 10 01 10 OR 10 03 10 OD
- 50 10 O3 10 OF 10 07 10 11
. 58: 10 072 10 13 OF 07 OF 11
. &0 OF O35 OF OF OF 03 OF OD
. &8: OF 01 OF OB OF 00 OF OA
. 70: OF 14 OF 08 OF 12 OF 06c..-
. 78: OF 10 OF 04 OF OE OF 02
- 80: OF OC OF 09 OF 13 OE 07en
- 882 OE 11 OE OS5 OE OF OE 03
- 90 OE OD OE 01 OE OB OE 00
. 982 OE OA OE 14 OE OB OE 12
- A0z OE 06 OE 10 OE 04 OE OE
- AB:I OE 02 OE OC OE 09 OE 13
. BO: OD 07 OD 11 OD O5 OD OF
- B8: OD O3 OD OD OD 01 OD OB
« COZ OD 0O OD OA OD 14 OD 08
- C8: OD 12 OD 06 OD 10 OD 04
. DO OD OE OD 02 OD OC OD 09 -
. D8: ODb 13 OC 07 OC 11 OC 05
- EOZ OC OF OC O3 OC OD OC 01c..a.
- EB8: OC OB OC 00 OC OA OC 14
- FOz OC 08 OC t2 OC 06 OC 10
. F8: OC 04 OC OE OC 02 OC OC ...c.cu..-

Let’s trace the remaining side sectors now.

TRACK 12 - SECTOR 19 SIDE SECTOR #1

= 00 06 10 01 96 11 OD OC 13
. 08: 06 10 13 OF 00 00 00 00 ...cac-w-
. 102 OC 09 OB 13 OB 07 OB 11
. 182 OB 05 OB OF OB O3 0B OD
. 20 OB 0t OB OB OB 00 OB OA
. 282 OB 14 OB 08B OB 12 OB 06
. 30 OB 10 OB 04 OB OE OB 02
. 382 OB OC OB 09 OA 13 OA 07
- 402 OA 11 OA O5 OA OF OA O3 ...
- 48 OA OD OA 01 OA OB OA 00c.a.-
. 502 0A OA OA 14 0A 0B 0OA 12

61

- DO:

- EO:

- FO:

0A
oA
09
09
o9
o9
09
08
o8
08
08
08
o8
o7
07
o7
o7
o7
06
06
06

06
02
Q7
03
00
12
OE
13
OF
OB
08
04
09
05
o1
14
10
oc
11
oD
oA

oA
oA
09
09
o9
o9
o9
08
08
o8
08
08
o7
07
07
Q7
07
o7
06
06
06

10
ocC
11
oD
oA
06
02
o7
03
Q0
12
OE
13
OF
OR
08
04
09
05
o1
14

0A
OA
09
09
o9
09
09
o8
o8
o8
08
08
o7
07
07
o7
07
06
06
06
06

04
09
05
01
14
10
oc
11
0D
oA
06
02
o7
03
00
12
OE
13
OoF
OB
08

Side sector 1 looks OK on this end.

- BO:

13
06
06
06
05
05
oS

=
F

05
04
04
04
04
04
03
03
03
03
03
03
02
02
02

0A
09
09
09
09
09
09
08
o8
08
08
08
07
07
07
07
07
06
06
06
06

TRACK 06 - SECTOR

OF
10
06
OE
11
0D
oA
06
02
o7
03
00
12
OE
13
OF
OB
08
04
09
05
01
14

02
13
06
06
05
05
05
0S5
05
04
04
04
04
04
03
03
03
03
03
02
02
02
02

96
OoF
02
o9
05
o1
14
10
oc
11
oD
oA
06
02
Q7
03
o0
12
QE
13
OF
OB
08

11
00
06
05
0S5
05
03
05
0S5
04
04
04
04
04
03
03
03
03
03
02
02
02
02

oD
00
oc
13
OF
OB
08
04
o9
05
01
14
10
oc
11
oD
oA
06
02
o7
03
00
12

oc
00
06
05
05
05
05
05
04
o4
04
04
04
04
03
03
03
03
03
02
02
02
02

13X
OF
OR
08
04
09
05
01
14
10
oC
11
OD
0A
06
02
07
03
ale]
12

16

13
00
04
o7
03
00
12
OE
13
oF
OB
o8
o4
09
05
o1
14
10
oc
11

oA
06

62

SIDE SECTOR #2

. B8:
- Co:
. C8:
- DoO:
- Db8:
. EO:
- EB:
- FO:
- F8:

Side sector 2 seems to

- 582

- 70:
- 78:
. 802
- 88:
- 90:
- 98:
- AO0:
- AB:
- BO:
- B8:
. Co:
- C8:
. DOz
. D8:
- EO:
. EB:
. FO:
. F8:

02
o2
01
01
01
o1
01
13

13

00
06
13
13
13
14
14
14
14

=
ot

15
15
15
15
16
16
16
156
16
17
00
00
Q0
[818]
00
QO
00
Q0
Q0
e
00
(0]8]

10
oCc
11
oD
oA
06
02
00
02

02
02
01
01
o1
01
o1

-
>

13

TRACK

F
10
04
o7
09
OR
0D
OF
11
o0
02
04
Qb6
08
OA
oC
OE
10
12
01
00
00
00
00
00
(818
00
Q0
00
00
00
lale

03
13
13
13
14
14
14
14
14
15
15
15
15
15
16
16
16
146
16
17
00
00
00
Q0
00
00
00
00

Q0
00

00
00

o4
o9
05
01
14
10
ocC
OR
oD

02
01
01
o1
01
01
01
13
13

ot

-
>

OoF
OB
o8
04
09
01

03

02
01
01
o1
01
01
13
13

13

be in order too.

19 - SECTOR

6
OF
10
12
00
Q2
04
Q06
08
oA
oC
Ot
10
12
01
03
05
o7
09
OR
o0
Q0
00
00
00
Q0
00
Q0
00
00
00
00

11
00
13
13
14
14
14
14
14
15
15
15
15
15
16
i6
16
16
17
17
Q0
00
Q0
00
oG
Q0
00
Q0
00
00
Q0
00

oD
o0
06
o8
oA
oC
OE
10
12
01
o3
05
07
o9
OB
oD
OF
11
00

~y
F =

00
00
00
Q0
o0
00
00
00
00
00
00
00

oC
00
13
13
14
14
14
14
14
15
15
15
15
16
16
16
16
i6
17
17
Q0
00
Q0
00
00
00
00
00
00
00
00
00

15

13
00
11

05
01

03
05
o7
09
OB
oD
OF
11

00
02
04
06
08
OA
oC
00
Q0
lale}
00
00
00
00
00
00
00

63

SIDE SECTOR #3

Hold it right there please. Bytes 0 and 1 should look familiar by now. Still thinking?
(Hint: End of chain and a byte count.)

. 00 00 9F 03 96 11 OD OC 13
*E XX

Byte 1 of side sector 3 shows a byte count of 159 ($9F). Recall that bytes 16-255 in a
side sector are a list of track and sector pointers to 120 data blocks. As a result, bytes
158 and 159 must be interpreted together. They point to the last block in our sequential
data file in this instance. The last block is stored on track 23 ($17), sector 12 ($0C). Notice
too, that the remainder of the side sector is padded with nulls. The remaining 96 bytes
are in limbo until our relative file is expanded. Bytes 160 and 161 will then point to the
next track and sector of data and so on. When side sector 3 is full, a new side sector
will be created. Bytes 0 and 1 of side sector 3 will then point to side sector 4. Bytes
12 and 13 in side sectors 0, 1, and 2 will also be updated to reflect the creation of side
sector 4.

Now let’s take a brief glance at the sequential file itself.

TRACK 17 — SECTOR 03

. 00: 11 OE 4D 41 47 20 46 49 ..MAG FI
. 08: 4C 45 0D 20 37 30 39 0D LE. 709.
. 10 20 36 OD D4 49 54 4C 45 6..1TLE
. 182 OD C3 4F 4D 50 55 54 45 ..0OMPUTE
- 20: 52 OD CD 41 47 41 SA 49 R..AGAZI
. 281 4E 45 OD €9 53 53 55 45 NE..SSUE
-~ 30: OD DO 41 47 45 OD C3 4F ..AGE..O
. 382 4D 4D 45 4E 54 0D OD 00O MMENT...

- 40z 00 OO0 00 00 OO0 Q00 00 00
. 482 00 00 00 OO 00 OO0 00 00
- 50z 00 00 00 00 00 00 OO0 00
. 9582 00 00 00 00 00 00 00 00

. 60z 00 00 OO0 00 00 00 00 00
. 68: 00 00 00 00 00 00 00 00-
- 70z 00 00 00 00 00 00 00 00
- 78: 00 00 00 00 00 00 00 00
. 802 00 00 Q0 00 OO0 Q0 00 00c....
. 88: 00 00 00 00 OO0 00 00 Q0
- 90 00 00 OO0 OO0 00 Q0 00 00
. 982 20 31 35 30 20 OD 2E OD 150 ...
. AO: 2E OD 2E OD 2E OD 2E OD
- AB: 2E OD 2E OD 2E OD 2E OD
- BO: 2E OD 2E OD 2E OD 2E OD
. B8: 2E OD 2E OD 2E OD 2E OD
. CO: 2E OD 2E OD Z2E OD OO0 00
. €C8: 00 00 OO 00 OO0 Q0 00 00
- DO 00 OO0 00 OO0 00 00 00 00

64

- D8 00 00 OO0 00 00 00 00 00
- EOZ 00 OO0 00 00 00 00 00 00
. EB8: 00 00 Q0 00 00 OO0 00 00
- FO: Q0 GO0 00 00 00 00 00 00
- F8: 00 00 00 00 00 00 00 00

The block reveals a typical sequential file. Bytes 0 and 1 are the chain. The first data
block links to track 17 ($11), sector 14 ($0E). The next 150 bytes (2 — 151) constitute
our first record. Note that the unused bytes within a record are written as nulls ($00)
by the DOS so the record is always a fixed length. The content of individual records
will vary enormously. This is program dependent so the data block in question contains
whatever data was specified by the program used. This particular record is from a free
form data base. It was reserved to for management information by the main program
and contains the following data:

1. The name of our relative file (“MAG FILE”).

2. The number of active records (709).

3. The number of fields in use (6).

4. The field titles (TITLE, COMPUTER, MAGAZINE, ISSUE, PAGE, COMMENT).

In the sequential data file portion of a relative file, the record length (record size) is
constant. In this case, the records are all 150 bytes long. Record number 2 begins at
byte 152 ($98) and will extend on into the next data block. Two reads would be required
to fetch the entire contents of this record. The first 104 bytes of the record will be found
here, but the remaining 46 are in the next block of the file. Here they are.

TRACK 17 — SECTOR 14

- 00z 11 04 OO 00 00 00 00 00
. 08: 00 00 QO 00 00 OO0 00 00
« 102 00 00 00 00 00 OO0 00 00
- 182 00 00 00 OO0 OO0 Q0 00 00
- 20 00 00 00 00 00 00 00 00
. 282 00 00 00 00 00 00 OO0 00
. 30: D3 4F 55 4E 44 20 D3I 59 .0OUND .Y
. 38 4E 54 48 45 53 49 53 0D NTHESIS.
- 40: 41 4C 4C OD C3 4F 4D SO ALL..OMP
- 48: 55 54 45 0D CA 41 4E 20 UTE..AN

. 50: 38 33 0D 32 36 OD 2E OD B3.26...
. 982 OD 2E OD 2E OD 2E OD 2E ana
. 602 OD 2E OD 2E OD 2E OD 2E ..c.cu...
. &8 OD 2E OD 2E OD 2E OD 2E
- 707 OD 0O 00 00 00 00 00 00
. 78: 00 00 00 Q0 00 00 00 00
- 80 00 00 00 00 00 00 00 00
. 882 00 Q0 00 00 00 00 00 OO0an.
- 201 00 00 00 OO Q0 00 00 00
. 9282 00 00 00 00 OO0 00 00 00
« AOZ: 00 00 00 00 00 00 00 00

65

. ABZ QO 00 00 OO0 00 00 OO0 00scan
. BO: 00 00 00 00 Q0O 00 00 00
. B8 00 00 00 00 00 00 00 00
« CO: 00 00 00 00 00 00 D7 52 .sacen.. R
. £8: 49 354 49 4E 47 20 D4 52 ITING .R
. DO: 41 4E 353 S0 4F 52 54 41 ANSPORTA
. DB: 42 4C 45 20 C2 41 53 49 BLE .ASI
. EO: 43 OD 41 4C 4C OD C3 4F C.ALL..O
- EB: 4D 30 35 54 45 0D CA 41 MPUTE..A
- FOI 4 20 38 33 0D 33 36 OD N 83.36.
- F8: 2E OD OD 2E OD 2E OD 2E

Record number 2 is used again for management information by our data base. It simply
contains the record length. One can see from the number of carriage returns ($0D) that
while only 6 fields are in use, 21 were established by the main program. One can also
see that a blank field from this data base is stored as a period (§2E = CHR$(46) = “.”).
Record number 3 begins at byte 48. It contains our first actual data. It would look like so:

Title: Sound Synthesis
Computer: All

Magazine: Compute (sic)
Issue: Jan 83

Page: 26

Comment: (none)

Just out of curiosity let’s examine the last two sectors of our sequential file chain as
reported in bytes 156-159 of side sector 3. Why two sectors? Our fixed length of 150
bytes dictates this. (A fixed record length of 1, 2, 127, or 254 would not span a given
sector. The maximum length of a relative record is 254 bytes. 254 is the only number
evenly divisible by these factors. A record length of 1 or 2 would be rather impractical.)

TRACK 23 — SECTOR 02

. 002 17 OC 00 00 00 00 00 00
- 08z 00 00 00 00 00 Q0 00 OO
- 102 00 00 OO0 00 00 00 00 00
- 182 00 00 00 Q0 00 00 00 00
. 20 00 00 00 OO0 00 00 OO0 00
. 28: 00 00 00 00 00 00 00 00
- 302 00 00 00 00 00 00 00 00-.
- 38: 00 00 00 00 00 00 00 00a.c--s
- 40: Q0 00 00 00 00 00 00 00-.
. 48: 00 00 OO0 00 00 00 00 00
- 30: 00 00 00 00 00 00 00 00
- 98z 00 00 00 00 00 Q0 00 00 ..eunc-.
. 60z 00 00 00 00 00 00 00 00 s
. 682 00 00 00 00 Q0 00 00 00
- 702 00 00 00 00 Q0 00 OO0 00
- 787 00 00 00 00 00 00 OO0 00

66

80:
88:
Q02
28:
A0
A8:
BO:
B8:
Co:
ca:
Do
b8:
EO:
E8:
FoO:
F8:

00:
08:
10:
i8:
20:
28:
30:
38:

40:

50:

00
00
Q0

00
00
00
00
00
00
00
00
Qo
00
00
00
00
Q0
00
00
00
00
00
00
0o
00
00
00
Q0
00
00
00
00
00
00
00

00
00
00
00
o0
00
Q0
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

TRACK

E1l
00
00
00
o0
00
00
00
Q0
00
00
00
00
00
Q0
00
00
Q0
00
00
Q0
00
00
00
00
00
(418
00
00
00
00
00

00
00
00
00
00
00
00
o0
00
00
00
00
00
o0
00
00
00
00
00
00
00
00
FF
00
00
00
Q0
00
00
00
00
00

o0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
(010
00
00
oo
o0
00
00
00
00
00
00
00
00
00
Q0
00
1618
00
00
o0
oo
Q0
00
00
00
00
00
00
00

FF
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
Q0
00
00
00
Q0
00
Q0

00
00
00
00
00
00
Q0
Q0
00
00
00
00
00
00
00
00

— SECTOR

00
00
00
FF
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
Q0
00
Qo0
00
Q0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
Q0
00
o0
00
00
Q0
00
QO
00
Q0
00
Q0
00
o0
Q0
00
00
00
00
00
00
00
00
00
Q0
00
Q0
o0
00
00
00

00
00
o0
00
00
o0
00
00
o0
00
00
Q0
00
00
00
[616]

12

00
00
00
00
00
00
00
o0
00
00
00
00
Q0
00
Q0
o0
Q0
00
00
Q0
Q0
00
Q0
00
00
Q0
o0
00
00
00
Q0
00

67

An analysis of the preceding two sectors will all but end our discussion on relative file
structure. Bytes 2-131 of track 23, sector 2 are the overflow of a previous record. Bytes
132-255 of this same track and bytes 2-27 of track 23, sector 12 make up the next record.
This record is empty, as indicated by a 255 ($FF) in the first byte and nulls in the re-
maining bytes. Track 23, sector 12 has no forward chain and a byte count of 177 (§B1).
Our last record in the relative file ends at byte 177 (28-177). What is interesting is the
padding beyond this point.:

« BOI vy uy FF OO0 00 00 00 00O
. BB Q0 00 OO0 00 00 OO0 00 00
- COz 00 00 00 00 00 00 00 00vcaas
. €82 00 00 OO0 00 00 00 00 00
. DO Q0O 00 00 00 00 00 00 00
- DB2 00 Q0 00 00 00 00 00 00
. EQ: 00 00 OO0 00 00 OO0 00 00
- E82 00 00 00 00 00 Q0 00 004
- FO:I 00 00 00 OO0 00 Q0 OO 00
. FB8: 00 00 00 00 00 00 00 00

We would expect to find all nulls ($00). Byte 178 (§B2), however, shows an $FF, i.e.,
the start of a new record. The DOS is one step ahead of the game when expansion time
rolls around. A partial record has already been created in this instance. The DOS need
only calculate the difference between 255 and the byte count to determine the number
of nulls that must follow to complete the record:

255 — 177 = 78 bytes already in existence
It then takes the record size to figure out the padding needed:
Total Record Length — Bytes in Existence = Nulls to Go
150 — 78 = 72
Slick!
We will close our section on relative file structure by taking a brief look at how the

computer, or you, can locate a particular relative record. Pick a number, any number.
Record number 4 you say. No problem if you know the record length.

First we find the appropriate side sector.
4 — 1 = 3 previous records
3 * 150 fixed length = 450th starting byte (i.e., 0 — 449 previous bytes)
450 / 254 = 1.7716535

INT (1.7716535) + 1 = pointer set 2

68

Pointer set 2 / 120 sets of pointers in a side sector = 0.01666667
INT (0.01666667) = side sector 0
Where in side sector 0 is it? Easy.
Byte 14 + (pointer set 2 * 2 bytes in a pointer) = byte 18
Bytes 18 and 19 will contain the track and sector of our record.
Where in the actual data block is it? A piece of cake.
1.7716535 — INT(1.7716535) = remainder .7716535
2 (skip over bytes 0 and 1) + (7716535 * 254 bytes of data) = byte 198

Still a disbeliever? Check it out yourself in the preceding hex dumps of track 17, sector
13 and track 17, sector 14.

4.8 User File Storage

A user file (USR) file is one that is designed by the user. This file type is designated
by an $83 in the directory. Although a user file is a legal Commodore file type (USR),
its use is quite rare. Using a USR file rather than a more common file type is for
showmanship only.

A user file may have the structure of either a sequential file or a program file if it was
created by the DOS. It may be structured entirely differently if it was created using
direct-access techniques described in Chapter 5. Before you do something rash, remember
that the DOS will expect to find the track and sector links in their normal places. If
they are not there, all the blocks that make up your file will be earmarked as free in
the BAM whenever the disk is validated!

4.9 Deleted File Storage

A deleted file (DEL) has a file-type byte of $80 in the directory. This is not a scratched
file ($00), but an undocumented Commodore file type (DEL). It is extremely rare. Only
one vendor has dared use a DEL file on a commercial product to date. It was not a fune-
tional file and was placed on the diskette to intimidate users as part of a low level pro-
tection scheme.

You cannot create a DEL file using an OPEN statement. You can only create a DEL
file by changing the file-type byte of an existing file to $80 as described in the next sec-
tion. Since a DEL file is really another file type in disguise, a DEL file may have the
structure of either a sequential file or a program file. If it has the structure of a pro-
gram file, it may be loaded using one of these commands:

LOAD "FILE NAME,DEL,R",8 (RELOCATED)

LOAD "FILE NAME,DEL.R",8,1 (NOT RELOCATED)

69

If a DEL file is structured like a sequential file, it may be opened in read mode using
the following command: .

OPEN 2,8,2,"FILE NAME,DEL,R"

4.10 Locked Files

Earlier in this chapter you may have been surprised to see locked files of various form
in the table of legal file types. Locked file types are once again an undocumented feature
of Commodore disk drives. A locked file cannot be scratched unless it is first unlocked.
Unfortunately, the DOS does not support the locking or unlocking of a file. You have
to do-it-yourself by editing the file-type byte in the directory entry for that file. The
program EDIT TRACK & SECTOR listed in Appendix C allows you to do this. We
will not describe the technique here. See the section on Unscratching a File in Chapter
8 for instructions on how to edit the file-type byte. Use the values from the table below,
rather than those listed in Chapter 8, when locking or unlocking a file.

File Type Normal Locked

Deleted DEL $80 DEL < $Co0
Sequential SEQ $81 SEQ < $C1
Program PRG §82 PRG < $§C2
User USR $§83 USR < $C3
Relative REL $84 REL < $C4

The DOS determines whether or not a file is locked by checking bit 6 of the file-type
byte. If it is set (1), the file is locked. Even if a file has been locked, it may be renamed
or copied using normal disk commands.

Conclusion

The material covered in this chapter is primarily of academic interest. However, do not
attempt to recover a blown file unless you thoroughly understand the structure of the
directory and how files are stored.

70

CHAPTER 5
DIRECT-ACCESS PROGRAMMING

5.1 Introduction to Direct-Access Programming

In Chapter 2 you learned how to use such DOS commands as NEW, SCRATCH, and
VALIDATE, for diskette housekeeping. This chapter describes how to use another set
of DOS commands known as direct-access commands. These commands are not com-
monly used in typical programming applications. However, they allow you to step beyond
simple housekeeping chores to develop more powerful disk utility programs that do such
things as:

Change a disk name or cosmetic ID.
Display a block availability map (the BAM).
Display a directory.

Display a track and sector.

Chain through a directory entry.

Edit a track and sector.

Recover an inadvertently scratched file.
Recover a damaged diskette.

Duplicate a diskette.

Copy a file.

Catalog a disk library.

As you grow with your 1541, the need for routines of this nature will become increas-
ingly apparent, if it isn’t already. This chapter illustrates the use of direct-access com-
mands in simple programs. A basic understanding of the function of these commands
is necessary to appreciate the routines found in subsequent chapters and Appendix C.

5.2 Beginning Direct-Access Programming

The 1541 DOS recognizes nine direct-access commands. These direct-access commands
and their functions are listed below.

Direct-Access Command Function

Block-Read (U1) Read a data block into 1541 RAM.
Buffer-Pointer (B-P) Set pointer to any byte in a disk buffer.
Block-Write (U2) Write a data block from 1541 RAM to diskette.

71

Memory-Read (M-R) Peek bytes out of 1541 RAM or ROM.

Memory-Write (M-W) Poke bytes into 1541 RAM.
Block-Allocate (B-A) Set bit in BAM to indicate a sector is in use.
Block-Free (B-F) Set bit in BAM to indicate a sector is not in use.
Memory-Execute (M-E) Execute a 6502 routine stored in 1541 RAM

or ROM.
Block-Execute (B-E) Load and execute a 6502 routine in 1541 RAM.

More often than not, direct-access commands complement one another in actual use.
For example, a sector can be read from disk using a Ul command, examined using a
B-P or M-R command, altered using a B-P or M-R command, and rewritten to disk us-
ing a U2 command.

The block-read (U1), buffer-pointer, and block-write (U2) comands are the easiest to com-
prehend and, as a result, the most widely used. The memory-read and memory-write
commands represent a more sophisticated level of direct-access programming and are
sometimes used in lieu of the buffer-pointer command. The block-allocate and block-free
commands are used primarily for the maintenance of random access files. Random ac-
cess files were the forerunner of relative files and are rarely used today. The memory-
execute command is used at the guru level of disk programming and requires a rudimen-
tary knowledge of both machine language and the innards of the 1541 to implement.
The block-execute command, while documented by Commodore, is almost never used.

In order to use the commands mentioned above you will need to learn how to open a
direct-access data channel. The format of a direct-access OPEN statement is:

SYNTAX: OPEN file#, device#, channel#, "#"

EXAMPLE: OPEN 2,8,2,"#"
OPEN 1,8,14,"#"

where

file# = the logical file number (1 to 127)

device# =8

channel# = the secondary address of the associated open statement (2 to 14)

Opening a direct-access data channel establishes a communication link between the C64
and the 1541. In the first example, we opened logical file number 2 on the C64 side
to device number 8 with a secondary address of 2 (channel number 2) on the 1541 side.
The only time a channel number is ever referenced is as part of a direct-access com-
mand, e.g., a block-read command (U1). Data is always read from disk (GET# file#,
INPUT# file#,) or written to disk (PRINTH# file#,) by way of the logical file number of
the direct-access OPEN statement NOT the channel number. The logical file number
and the channel number do not have to match as they do in our first OPEN example.
They are two separate entities. The logical file number which resides on the C64 side
passes read or write commands to the channel number on the 1541 side. Any similarity

72

between the logical file number and the channel number is for mnemonic purposes only.
The second example is a perfectly legal direct-access OPEN statement. In this instance,
we opened logical file number 1 (GET#1, PRINT#1,) to device number 8 with a second-
ary address of 14 (channel number 14) on the 1541 side. Whether or not you use mnemonic
OPEN statements is strictly a matter of personal preference.

We will begin our tutorial on direct-access programming with a quick review of the 1541
format explained in Chapter 3. The table below outlines the range of track and sector
numbers found on a diskette.

Zone Track Sector Range Number of Sectors
1 1-17 0-20 21
2 18 -24 0-18 19
3 25 - 30 0-17 18
4 31-35 0-16 17

NOTE: If you attempt to access a track less than 1, a track greater than 35, or a sector
out of range for a given track, you will get a DOS error message number 66, ILLEGAL
TRACK OR SECTOR.

5.3 Block-Read Command (U1)

The block-read command (U1) transfers the contents of a given track and sector to an
area of disk RAM commonly referred to as a buffer or workspace. The format of a block-
read command (U1) is:

SYNTAX:
PRINTH# file#, "Ul1"3: channel#; drive#; tracks
sector
ALTERNATE:
PRINTH file#, "Ul:" channel#; drive#; tracks;
sector
PRINTH# file#, "Ul: channel#, drive#, track,
sector”
EXAMPLE:
PRINT#15,"U1"3250518;50
where
file# = the logical file number of the command channel
channel# = the secondary address of the associated open statement
drive# =0
track = 1to 35
sector = 0 to the range for a given track

73

After a given track and sector has been transferred to a buffer with a block-read com-
mand (U1), the buffer pointer is automatically left in position 255. Bytes 0-255 of the
buffer are now accessible from the starting position, i.e., byte 0. The GET# command
is normally used to retrieve one byte at a time from the buffer by way of the logical
file number of the direct-access OPEN statement. The GET# command is used rather
than INPUT# because the data may contain null bytes, carriage returns and/or line feeds,
commas, colons, or other control characters. When using the GET# command you must
remember to test each incoming byte for equality with the null string “”’. A null byte
must be converted to CHR$(0) or an ZILLEGAL QUANTITY ERROR will result when
you try to find the ASCII value of the byte. (The GET# command fails to make the
necessary conversion for you.) The ASCII value of a byte is used to check for control
characters. These characters are misinterpreted by the INPUT# command. The follow-
ing example reads the block from track 18, sector 0 (the BAM) into disk RAM and prints
the contents to the screen.

100 REM BLOCK-READ (U1)

110 OPEN 15,8,15

120 PRINTH#15,"10"

130 INPUT#1S,EN$,EM$,ET$,ES$
140 IF EN$<>"00"GOTO 290

150 OPEN 2,8,2,"#"

160 PRINTH#15,"U1"52;031850
170 INPUT#15,EN%,EM$,ET$,ES$
180 IF EN$<>"00"GOTO 270

190 FOR I=0 TO 255

200 GET#2,B$%

210 IF B$=""THEN B$=CHR% (0)
220 A=ASC (B$%)

230 PRINT ST,I1,A,

240 IF A>31 AND A<96 THEN PRINT B%,
250 PRINT

260 NEXT I

270 CLOSE 2

280 INPUT#1S,EN$,EM$,ET$,ES$
290 CLOSE 15

300 END

Line Range Description

110 Opens logical file number 15 (PRINT#15,) to device 8 with a
secondary address of 15 (command channel).

120 Initializes drive 0.

130-140 Query the error channel.

150 Opens logical file number 2 (GET#2,) to device 8 with a secondary
address of 2 (channel number 2) letting the 1541 assign a buffer
area.

160 Reads the block from drive 0, track 18, sector 0 into channel 2 buf-
fer area.

170-180 Query the error channel.

190 Begin loop to read 256 bytes.

74

200 Transfer a byte from channel 2 buffer area to C 64 memory by way
of the GET# command (GET# logical file number not the channel

number).

210 Test for equality with the null string .

220 ASCII conversion of a byte.

230 Print the status variable (ST), our loop counter, and the ASCII
value of the byte.

240 Print the byte if it’s within normal ASCII range.

250 Terminate comma tabulation.

260 Increment loop counter.

270 Close logical file number 2.

280 Suppress the error light.

290 Close logical file number 15.

300 End.

An explanation of programming technique is in order here. Initialization (line 120} is
done prior to opening a direct-access data channel (line 150). Initialization automatically
shuts down all direct-access data channels (2 -14) that are open on the 1541 side. The
command channel (15) is not affected. Logical files still remain open on the C64 side,
however. Any attempt to access a data channel after initialization results in a 70, NO
CHANNEL error. The DOS attempts to rewrite the BAM each time a direct-access
channel is closed (line 270). If a diskette is either write protected or DOS protected,
the BAM is not rewritten and the error light remains on until cleared. Fortunately, no
damage has been done to the data on the diskette. The error light is quite distracting
nevertheless. You can suppress the error light after closing a direct-access data chan-
nel simply by inputting the error number, message, track, and sector via the command
channel (line 280).

The alternate formats of the block-read command (U1) in line 160 are:
PRINT#15,"U1:"25051850
PRINT#15, "U1:2,0,18,0"

Although the block-read command (U1) comes in three basic flavors, line 160 uses the
preferred format. It will be used in demonstration programs throughout the chapter
for consistency. Alternate formats will appear in passing.

Additionally, lines 210-220 are often combined into one BASIC statement for the sake
of efficiency:
A=ASC (B$+CHR$ (0))

Recall that lines 210-220 are necessary because the GET# command does not interpret
nulls correctly.

5.4 Buffer-Pointer Command (B-P)

The buffer-pointer command allows access to any individual byte in a DOS buffer. Any
byte from position 0 through 255 in the buffer may be read or overwritten. The format
of a buffer-pointer command is:

75

SYNTAX:
PRINT# file#, "B—P"; channel#; byte position

ALTERNATE:
PRINTH# file#, "B-F:" channel#; byte position
PRINT# file#, "B-P: channel#, byte position”

EXAMPLE:
PRINT#15,"B-P"52:5144
where
file# = the logical file number of the command channel
channel# = the secondary address of the associated open statement

byte position = 0 to 255

The following program displays a disk name by reading only bytes 144 to 159 from track
18, sector 0.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

REM BUFFER-POINTER
OPEN 15,8,15
PRINT#15, " 10"
INPUT#15,EN$,EM$,ET$,ES$
IF EN$<>"00"GOTO 320

OPEN 2,8,2,"#"
PRINT#15,"U1"5250; 1850
INPUT#15,EN$,EM$,ET$,ES$
IF EN$<>"00"GOTO 300
PRINT#1S, "B-P";2; 144

FOR I=1 TO 16

GET#2,B%

IF B$=""THEN B$=CHR$ (0)
A=ASC (B$)

IF A>127 THEN A=A-128

IF A<32 OR A>9S THEN A=63
IF A=34 THEN A=63
DN$=DN$+CHR% (A)

NEXT I

PRINT" {DOWN3>DISK NAME: “;DN$
CLOSE 2

INPUT#15,EN$, EM$,ET$,.ES$
CLOSE 15

END

Line Range Description

190

Sets channel 2 pointer to position 144 in the buffer area.

200-280 Concatenate (build) the disk name one byte at a time by jamming it

within printable ASCII range.

76

The alternate formats of the buffer-pointer command in line 190 are:

PRINT#15,"B-F:"25144

PRINT#15,"B-P:2,144"

5.5 Block-Write Command (U2}

The block-write command (U2) writes the data from a DOS buffer to any given track
and sector on a diskette. The format of a block-write command (U2) parallels that of
a block-read command (U1). The format of a block-write command (U2) is:

SYNTAX:
PRINT# file#, "U2"3 channel#; drive#: track;
sector
ALTERNATE:
PRINTH# file#, "U2:" channel#; drive#; tracks;
sector
PRINT# file#, "UZ2: channel#, drive#, track,
sector"”
EXAMPLE:
PRINT#15, "U2"525051830
where
file# = the logical file number of the command channel
channel# = the secondary address of the associated open statement
drive# =0
track = 1to 35
sector = 0 to the range for a given track

The entire contents of a buffer are written to disk during the execution of a block-write
command (U2). The position of the buffer-pointer is irrelevant. It is not referred to by
the DOS during the execution of a block-write command (UZ2).

The first program listed below allows a disk name to be changed using a block-write
command (U2). The second example allows you to edit the cosmetic disk ID that ap-
pears in the BAM. NOTE: This program does not change the formatting 1D that is
embedded in the header block of every sector.

77

100 REM EDIT DISK NAME

110 FORI=1TO16

120 PAD$=PAD$+CHR$ (160)

130 NEXTI

140 PRINT"{CLRYEDIT DISK NAME — 1541"
150 PRINT" {DOWN}REMOVE {(RVS}WRITE PROTEC
T TAB{ROFF>"

160 PRINT" {DOWN3 INSERT DISKETTE IN DRIVE
170 PRINT" {DOWN3}PRESS {(RVS}RETURN{ROFF32
TO CONTINUE"

180 GETC$: IFC$=""THEN180

190 IFC$<>CHR$ (13)G0TO180

200 PRINT"OK" :

210 OPEN15,8,15

220 PRINT#15,"10"

230 INPUT#15,EN$,EM$,ET$,ES$

240 IFEN$="00"GOTOZ80

250 PRINT" (DOWN3"EN$", "EM$","ET$","ES$
260 CLOSE1S

270 END

280 OPENZ2,8,2,"#"

290 PRINT#15,"U1";2:0:18;50

300 INPUT#1S,EN$,EM$,ET$,ES$

310 PRINT#15,"B-P":12;2

320 GET#2,B$

330 IFB$=""THENB$=CHR$ (0)

340 DOS=ASC (B$)

350 IFDOS=65G0TO390

360 PRINT" (DOWN}73,CBM DOS V2.6 1541,00,
00 [1]

370 PRINT" {DOWN3 {RVS3FAILED{ROFF3}"

380 GOTO720

390 PRINT#15,"B-P";2;144

400 FORI=1TO16

410 GET#2,B$

420 IFB$=""THENB$=CHR$ (0)

430 A=ASC (B$)

430 IFA>127THENA=A—128

450 IFA<3Z0RA>ISTHENA=63

460 IFA=34THENA=63

470 ODN$=0DN$+CHR$ (A)

480 NEXTI

490 PRINT"{DOWN}OLD DISK NAME: *;ODN$
S00 INPUT" {DOWNINEW DISK NAME";NDNs$

S10 IFLEN(NDN$) < >OANDLEN (NDN$) < 17G0TOS30

520 GOTO720

530 INPUT" {DOWNZARE YOU SURE (Y/N) Y{LE
FT 33":0%

78

540
530
560
570
280
590
600
610
620
630
640
650

IFE$< > Y"GOTO720

NDN$=LEFT$ (NDN$+PAD$, 16)
PRINT#15, "B-P";2; 144

PRINT#2, NDN$;

FRINT#1S, "U2"32;05 1830
INPUT#15,EN$,EM$,ETS,ESS
IFEN$="00"GOT0640

PRINT" {DOWN}"EN$", "EM$","ET$","ES$
PRINT" {DOWN? {RVS>FAILED{ROFF3"
GO0TO720

CLOSEZ2
INPUT#15,ENS$,EM$,ETS$,ESS

660 PRINT#15,"I0"

670 INPUT#1S,EN$.EM$,ET$,ES$

680 CLOSE1S

690 PRINT" {(DOWNXDONE'"

700 END

710 REM CLOSE

720 CLOSEZ2

730 INPUT#15,EN$,EM%,ET%,ES®

740 CLOSE1S

730 END

Line Range Description

280 Opens logical file number 2 (GET#2, PRINT#2,) to device
8 with a secondary address of 2 (channel number 2) let-
ting the 1541 assign a buffer area.

310-380 Query DOS version.

550 Pad new diskette name.

560 Reset channel 2 pointer to position 144.

570 Overwrite existing disk name in channel 2 buffer area.

580 Write channel 2 buffer to drive 0, track 18, sector 0.

660 Update the BAM ($0700—$07FF) to reflect a disk name

change.

The alternate formats of the block-write command (U2) in line 580 are:

PRINTH#15,"U2:"235051830

PRINT#15,"U2:2,0,18,0"

100 REM EDIT DISK ID

110 PRINT"{CLRIEDIT DISK ID - 13541"

120 PRINT"{DOWN}REMOVE {RVS>WRITE PROTEC
T TAB{ROFF3"

79

130 PRINT" {DOWN> INSERT DISKETTE IN DRIVE
140 PRINT" {DOWN3PRESS {RVS}RETURN{ROFFY
TO CONTINUE"

150 GETC$: IFC$=""THEN150

160 IFC$<>CHRS (13)GOTO150

170 PRINT"OK"

180 OPEN15,8,15

190 PRINT#15,"I0"

200 INPUT#15,EN$,EM$,ET$,ESS

210 IFEN$="00"G0OT0250

220 PRINT"{DOWN3}"EN$", "EM$","ET$","ES®
230 CLOSE15

240 END

250 OPEN2,8,2,"#"

260 PRINTH#15,"U1"3;25051830

270 INPUT#15,ENS$,EM$,ET$,ESS

280 PRINTH#1S,"B-P";2;2

290 GET#2,B$

300 IFB$=""THENB$=CHR$ (0)

310 DOS=ASC (B%)

320 IFDOS=6SG0T0360

330 PRINT"(DOWN}73,CBM DOS V2.6 1541,00,
00 [1]

340 PRINT" (DOWN2 {RVS3IFAILED{ROFF3}"

350 GOTO6L90

360 PRINT#1S, "B-P";2;162

370 FORI=1T02

380 GET#2,B%

390 IFB$=""THENB$=CHR% (O)

400 A=ASC (B$)

410 IFA>127THENA=A-128

420 IFA<320RA>ISTHENA=63

430 IFA=34THENA=63

440 ODI$=0DI$+CHRS (A)

450 NEXTI

460 PRINT"{DOWNOLD DISK ID: ";0DI$

470 INPUT"(DOWN3INEW DISK ID";NDI$

480 IFLEN(NDI$)<>OANDLEN (NDI$)<3G0TOS00
490 GOTOLT0

S00 INPUT"{DOWNJ}ARE YOU SURE (Y/N) Y{LE
FT 32":0%

510 IF@$<>"Y"BOT0690

S20 NDI$=LEFT$ (NDI$+CHR$(0),2)

S30 PRINTH#1S, "B-P";2;5162

S40 PRINTHZ2.NDI$;

550 PRINT#15,"U2";250351830

560 INPUT#15,EN$,EM$,ET$,ESS

570 IFEN$="00"GOT0610

S80 PRINT" (DOWN3"EN$", “EM$",6 "ET$","ESS$

80

590 PRINT" {DOWN3 {RVS}FAILED{ROFF3"
600 GOTOLF0

610 CLOSEZ2

620 INPUTH#1S,EN$,EM$,ET$,ES$
630 PRINT#15, 10"

640 INPUT#15,EN$,EM$,ET$,ESS
650 CLOSE1S

660 PRINT" {DOWN3}DONE ! "

&70 END

680 REM CLOSE

690 CLOSEZ2

700 INPUT#15,EN$,EM$,ET$,ES$
710 CLOSE15

720 END

The alternate formats of the block-write command (U2) in line 550 are:

PRINT#15, "U2:"250518:50

PRINT#15, "U2:2,0,18,0"

That’s enough about the block-write command (U2) for now.

5.6 Memory-Read Command (M-R)

The memory-read command allows you to read the contents of any area of the 1541’s
RAM or ROM. You must specify in the memory-read command the memory address
of RAM or ROM that you want to read. The format of a memory-read command is:

SYNTAX:
PRINT# file#, "M-R" CHR$(lo-byte) CHR%(hi-
byte) CHR$%(# of bytes)

ALTERNATE:
PRINT# file#, "M-R:" CHR$(lo-byte) CHR$%(hi-
byte) CHR%(# of bytes)

EXAMPLE:
PRINT#15, "M-R"CHR%$ (0) CHR% (3)

81

where

file# = the logical file number of the command channel
lo-byte = lo-byte of the memory address

hi-byte = hi-byte of the memory address

of bytes = 1 to 255

The third parameter of the memory-read command, CHR$(# of bytes), is undocumented
by Commodore. The use of the third parameter is always optional. The default is CHR$(1),
ie., 1 byte.

Typically a block-read command (U1) is issued prior to a memory-read command. A block-
read command (U1) transfers the data that is recorded on a given track and sector to
one of four pages (256 bytes) of RAM. A page of RAM is called a buffer. When you open
a direct-access data channel to the 1541 with OPEN 2,82 “#”, the DOS arbitrarily selects
one buffer as a workspace for that channel. As long as you use the GET# file# command
or the PRINT# file# command from the associated OPEN statement you do not need
to know which buffer the DOS is using. The buffer in use is only important when you
issue a memory-read command. You may tell the DOS which buffer area to use in the
direct-access OPEN statement itself. The format for selecting a buffer is:

SYNTAX:
OFEN file#, device#, channel#, "# buffer#"

EXAMPLE:
OPEN 2,8,2, "#0"

where
buffer# =0to3

The table below shows how the buffer areas are organized in the 1541.

Buffer Number Address Example

$0000 - $OOFF Not available (ZERO PAGE)

$0100 - $01FF Not available (STACK)

$0200 - $02FF Not available (COMMAND BUFFER)
$0300 - $03FF OPEN 2,82 “#0”

$0400 - $04FF OPEN 2,8,2 “#1”

$0500 - $O6FF OPEN 2,8,2,“#2”

$0600 - $06FF OPEN 2,82,“#3”

$0700 - $0TFF Not available (BAM)

W -=O

82

NOTE: Two or more direct-access data channels cannot share the same buffer area.
If you attempt to open a direct-access data channel to a buffer already in use a 70, a
NO CHANNEL error will result.

The GET# command is used following a memory-read command to retrieve the contents
of the buffer you selected. There is one major difference, however. Bytes are now fetched
over the command channel not the logical file number of the “OPEN file#, device#,
channel#, buffer#” statement. Bytes must still be tested for equality with the null string
" and converted to CHR$(0) if need be.

The next program selects buffer #0 ($§0300 - $03FF) as a workspace and does a block-
read of track 18, sector 0. Bytes are returned to the C64 side from buffer #0 with memory-
read and GET# commands, and printed to the screen.

100 REM TWO FARAMETER MEMORY-READ
110 OPEN 15,8,15

120 FRINT#15, " 10"

130 INPUT#15,EN$,EM$,ET$,ES$
180 IF EN$<3>"00"GOTO 300

150 OPEN 2,.8,2,"#0"

160 PRINT#15,"U1";25051830

170 INPUT#1S,EN$,EM$,ET$,ES$
180 IF EN$<3>"00"GOTO 280

190 FOR I=0 TO 255

200 PRINT#15, "M-R"CHR$ (1) CHR$ (3)
210 GET#15,B%$

220 IF EB$=""THEN B$=CHR$ (0)

230 A=ASC (B$)

240 PRINT I1,A,

250 IF A>31 AND A<96 THEN PRINT Bs$,
260 PRINT

270 NEXT I

280 CLOSE 2

290 INPUT#15,EN$,EM$,ET$,ES$
300 CLOSE 15

310 END

Line Range Description

150 Opens logical file number 2 to device 8 with a secondary
address of 2 assigning buffer number 0 (30300 - $03FF)
as a workspace.

160 Reads the block from drive 0, track 18, sector 0 into
channel 2 buffer area ($0300 - $03FF).

190 Begin loop to read 256 bytes ($0300 - $03FF).

200 Indexed memory-read command ($0300 - $03FF).

210 Transfer a byte from channel 2 buffer area to C64

memory via the command channel (GET#15,).

83

The alternate format of the standard memory-read command in line 200 is:

PRINT#15, "M—R: "CHR% (1) CHR% (3)

Please note that we deliberately omitted the third parameter of the memory-read com-
mand in the preceding example. The following example incorporates all three parameters
of the memory-read command to read a disk name.

100 REM THREE PARAMETER MEMORY-—-READ
110 OPEN 15,8,15

120 FPRINT#1S5,"10"

130 INPUTH#15,EN$,EM$,.ET$,.ES$

140 IF EN$<>"00"GOTO 320

150 OFPEN 2,8,2,"#1"

160 FRINT#135,"U1"52:031850

170 INPUT#15,EN$. EM$,ET$,.ESS

180 IF EN$<>"00"GOTO 300

190 PRINT#15, "M-R"CHR$(144)CHRS$ (4) CHR$ (1
&)

200 FOR 1I=1 TO 16

210 GET#15,B%

220 IF B$=""THEN B$=CHR$ (()

230 A=ASC (B%)

240 IF A>127 THEN A=A-128

250 IF A<32 OR A>925 THEN A=63
260 IF A=34 THEN A=63

270 DN$=DN$+CHR% (A)

280 NEXT 1

290 PRINT" {DOWN>DISK NAME: "3;DN$
300 CLOSE 2

310 INFPUT#15,EN$,EM$.ETH,ESS

320 CLOSE 15

330 END

Line Range Description

150 Opens logical file number 2 to device 8 with a secondary
address of 2 assigning buffer number 1 ($0400 - $04FF)
as a workspace.

160 Reads the block from drive 0, track 18, sector 0 into
channel 2 buffer area ($0400 - $04FF).

190 Memory-read command ($0490 - $049F).

200 Begin loop to read 16 characters.

210 Transfer a byte from channel 2 buffer area to C64

memory over the command channel (GET#15,).
Inclusion of the third memory-read parameter means that we no longer have to issue

a memory-read command to fetch each byte like we did in the first sample program,
Instead, we establish a loop after the memory-read command to pull a byte in. (See lines

84

200-280 above.) The alternate format of the three parameter memory-read command
in line 190 is:

PRINT#15, "M-R: "CHR$(144)CHR% (4)CHR$ (1&)

5.7 Memory-\Write Command (M-}

The memory-write command is the opposite of the memory-read command. Data is writ-
ten to a DOS buffer via the command channel. The format of a memory-write command is:

SYNTAX:
PRINT# file#, "M-W" CHR$(lo-byte) CHR%(hi-
byte) CHR$(# of bytes) data

ALTERNATE:
PRINT# file#, "M-W:" CHR$(lo-byte) CHR%(hi-
byte) CHR$ (# of bytes) data

EXAMPLE:
FRINT#15, "M-W"CHR$ (2) CHR$ (5) CHR$ (2) CHR$ (1)
CHR$(8)
FRINT#15, "M-W"CHR$ (2) CHR$ (53) CHR$ (2)CHR$ (1) D%

where

file# = the logical file number of the command channel
lo-byte = lo-byte of the memory address

hi-byte = hi-byte of the memory address

#of bytes =1to34

data

a string variable or a CHRS$ iteration

A total of 34 data bytes may be written with each issuance of a memory-write command.
Typically only 8, 16, or 32 data bytes are sent out at one time in a loop as our buffer
size (256 bytes) is evenly divisible by these factors. At the most sophisticated level of
disk programming, machine language programs can be poked into RAM inside the 1541
with a memory-write command and then executed. (See Chapter 7 for actual programs
of this nature.) In practice, however, one encounters limited use of the memory-write
command.

The following example demonstrates the use of the memory-write command. It allows
you to change the load address of a program file. A routine of this nature would be used
to aid in the disassembly of a program that normally loads into high memory (e.g.,
$8000-$BFFF) and is already occupied by a machine language monitor program
(SUPERMONG64) or ROM.

85

100
110
120

130

REM EDIT LOAD ADDRESS
H$="0123456789ABCDEF"
PRINT"{CLRYEDIT LOAD ADDRESS - 1541"

FRINT" {DOWN>REMOVE {(RVSIWRITE PROTEC

T TAB{(ROFF3"

140

150

PRINT" {DOWN> INSERT DISKETTE IN DRIVE

PRINT" {DOWNJ}PRESS {(RVS>RETURN{ROFF3

TO CONTINUE"

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
c,o n
320
330
340
350
360
370
380
390
4Q0

410
420
430
440
450
440
470
480
490
S00
S10
520
530

GETC$: IFC$=""THEN1&0

IFC$< >CHR%$ (13) GOTO160

PRINT"OK"

OPEN15,8, 15

PRINT#1S,"I0"
INPUT#15,EN$,EM$,ET$,ES$
IFEN$="00"GOT0260

PRINT" {DOWN3"EN$", "EM$","ET$","ES$
CLOSE15S

END

PRINT#1S, "M—R"CHR$ (1) CHR$ (1)
GET#15,D0S$
IFDOS$=""THENDOS$=CHR$ (0)

DOS=ASC (DOS$)

IFDOS=65G0T0330

FRINT" {DOWN}73,CBM DOS V2.6 1541,00,

GOTO910

INPUT" {(DOWNIFILENAME";F$
IFLEN(F$) < >0ANDLEN (F$) < 1760T0360
GOTO920

OPEN2,8,2, "0 "+F$+" P, R"
INPUT#15,EN$, EM$,ET$, ES$
IFEN$="00"G0T0400

GOTO940

PRINT#15S, "M-R"CHR$ (24) CHR$ (0) CHR$ (2)

GET#15,T$

T=ASC (T$+CHR$ (0))
GET#15S,S$

S=ASC (S$+CHR$ (0))

CLOSE2
INPUT#15,EN$,EM$,ET$,ES$
IFEN$="00"G0T0490
GOTO900

OFENZ2, 8,2, "#2°"
PRINT#15,"U1"3250:T;S
INPUT#15,EN$,EM$,ET$, ESS
IFEN$="00"GOT0540
GOTO900

86

540
530
560
570
580
390
600
610
620
630
640
6350

660
670
680
690

PRINT#15, "M~R"CHR$ (2) CHR$ (5) CHR$ (2)
GET#15,LOWS

LOW=ASC (LOW$+CHR$ (0))

GET#15,HIGHS

HIGH=ASC (HIGH$+CHR$ (0))

D=HIGH

GOSUB1010

OLA$=HD$

D=L0W

G0SUB1010

OLA$=0LA$+HD$

PRINT" (DOWN}OLD LOAD ADDRESS: ";OLA$

INPUT" {DOWN3NEW LOAD ADDRESS";iNLA$
IFLEN(NLA%$)=4G0T06%0

GOTO960

INPUT" {DOWN>}ARE YOU SURE (Y/N) Y{LE

FT 33":0%

700
710
720
730
740
750
760
77Q
780
790

IFQ$<{>"Y"GOTO9260

HD$=RIGHT®% (NLA%,2)

GOSUB1060

IFTME=1G0OTO960

LOW=D

HD$=LEFT$ (NLA%, 2)

GOSUB1060

IFTME=1GOTO260

HIGH=D

PRINT#15, "M-W"CHR$(2)CHR$ (5)CHR$ (2)C

HR$ (LOW) CHR$ (HIGH)

800
810
820
830
840
850
860
870
880
890
900
910
20
930
940
950
960
970
980
970

PRINT#135,"UZ"32505T3S
INPUT#15,ENS,EM$,ETS$,ESS
IFEN$="00"60T0840

GOTO940

CLOSEZ2

INPUT#15,EN$,EM$,ET%,ESS

CLOSELS

PRINT" {DOWN>DONE'"

END

REM CLOSE

PRINT" {DOUWN>"EN$", "EM$","ET$","ESS
PRINT" {DOWN} {RVS3>FAILED{ROFF}"
CLOSELS

END

PRINT" {DOWN"EN$", "EM$","ET$","ES$
PRINT" {DOWN3> {RVS3>FAILED{ROFFX"
CLOSEZ

INPUTH15,EN$,EM$,ET$%,ES$

CLOSE1S

END

1000 REM DECIMAL TO HEXADECIMAL
1010 H=INT(D/16)

87

1020
1030
1040
1050
1060
1070
1080
1090
I=16
1100
1110
1120
1130
1140
1150

cI=16

1160
1170

L=D-(H*16)

HD$=MID% (H$,H+1, 1) +MIDS (HE.L+1,1)
RETURN

REM HEXADECIMAL TO DECIMAL

TME=0

H=0

FORI=1TO16

IFLEFT$(HD$, 1)=MID$(H%,I,1) THENH=I1:

NEXTI

IFH=0THENTME=1:G0T01200

H=H-1

L=0

FORI=1TO16

IFRIGHT% (HD%, 1)=MID$(H$,I,1) THENL=I

NEXTI
IFL=0THENTME=1:60TO1200

1180 L=L-1

1190

D=H#*16+L

1200 RETURN

Line Range Description

260-320 Query DOS version ($0101).

330-350 Input file name.

360-390 Opens logical file number 2 to device 8 with a secondary
address of 2 for a program read.

400-440 Fetch file name track ($0018) and sector ($0019).

450 Close logical file number 2.

490 Reopens logical file number 2 to device 8 with a second-
ary address of 2 assigning buffer number 2 ($0500 -
$05FF) as a workspace.

500 Reads the starting block of the filename from drive 0 as
specified by $0018 and $0019 into channel 2 buffer area
($0500 - $O5FF).

540 Three parameter memory-read command to fetch two
byte load address ($0502 - $0503).

550 Fetch lo-byte of load address ($0502).

570 Fetch hi-byte of load address ($0503).

590-640 Decimal to hexadecimal conversion of load address.

660-700 Input new load address.

710-780 Hexadecimal to decimal conversion of new load address.

790 Memory-write of new two byte load address ($0502 -
$0503).

800 Write channel 2 buffer ($0500 - $05FF) to drive 0, track

($0018), sector ($0019).

88

The alternate format of the memory-write command in line 790 is:

FRINT#15, "M—W: "CHR$ {(2) CHR$ (5) CHR$ (2) CHR$ (LO)
CHR$(HID)

5.8 Block-Allocate Command (B-A)

The block-allocate command allocates a sector in the BAM as in use. A sector is allocated
by setting its associated bit low (0) on track 18, sector 0. (Review the coverage on bit
mapping in Chapter 4 if necessary.) The DOS will not write to an allocated sector dur-
ing a normal write operation such as a SAVE. However, an allocated sector can be over-
written with a block-write command (U2). Hence the origin of the term ‘““direct-access.”
The format of a block-allocate command is:

SYNTAX:
FRINT# file#, "B-A"; drive#; track; sector

ALTERNATE:
PRINTH# file#, "B-A:";: drive#; track; sector

EXAMPLE:
FPRINT#15, "B-A"503137

where

file# = the logical file number of the command channel
drive# =0

track =1t0o 35

sector = 0 to the range for a given track

The following program allocates every sector on a diskette. Run this program on a test
diskette.

100 REM BLOCK-ALLOCATE
110 OPEN 15,8,15

120 PRINT#1S,"10"

130 INPUT#15,EN$,EM$,ET$,ESS
140 IF EN$<>"00"GOTO 310

150 OPEN 2,8,2,"#"

160 T=1

170 S=0

180 PRINT#15,"B-A";0;T;S

190 INPUT#15,ENS$,EM$,ET$,ES$

89

200 IF EN$="00"6G0T0O 180

210 IF EN$<{>"45"G0TO 330

220 BA=BA+1

230 PRINT T1,S5,BA

240 T=VAL (ET%)

250 IF T=0 GOTO 290

260 IF T=18 THEN T=19:S5=0:60T0 180

270 S=VAL (ES$)

280 GOTO 180

290 CLOSE 2

300 INPUTH#15,EN%,EM$,ET$,ES$

310 CLOSE 15

320 END

330 PRINT" {DOWN3"EN$", "EM$","ET$"," ESS

340 CLOSE 2

350 INPUT#1S5,EN$,EM$,ETS,ESS

360 CLOSE 1S

370 END

Line Range Description

150 Open a direct-access channel.

160 Initialize track to 1.

170 Initialize sector to 0.

180 Block-allocate command.

190 Query error channel.

200 The track and sector were not allocated.

210 Something is amiss so bail out.

220 Counter representing the number of sectors allocated in
line 170.

230 Print track, sector, counter.

240 The sector just allocated already was but the DOS
returns the next available track in the error message (65,
NO BLOCK, track, sector).

250 If the next available track is zero then all 683 blocks on
the diskette have been allocated.

260 Don’t allocate the directory.

270 The DOS returns the next available sector in the error
message (65, NO BLOCK, track, sector).

280 Allocate the next available track and sector.

290 Close the direct-access channel.

330-370 Error handler.

The alternate format of the block-allocate command in line 180 is:

PRINT#15, "B-AZ"505T3S

The opening of a direct-access channel (line 150) is standard form. Why? Because the
BAM is rewritten to a diskette when a direct-access data channel is closed (line 290).

In reality, though, the BAM is updated on the fly but very erratically. Thus, opening
and closing a direct-access data channel is a good habit to get into. An ounce of
prevention. ..

By the way, what happens when you try to save to a full disk? Error 72, DISK FULL
right? Would you believe error 67, ILLEGAL TRACK OR SECTOR,36,01? Track 36?
That’s right. An error 72 only occurs during normal write mode (i.e., not a direct-access
write) where at least 1 free block exists at the outset or the directory is at its physical
limit, i.e., 144 active file entries.

A block remains allocated until a diskette is validated. Unless a given track and sector
somehow chains to a directory entry its bit will be freed (1) during validation. (See the
validate command in Chapter 2.) Caution must be taken to ensure that the block-allocate
command does not allocate an unused sector in the directory. See line 260 above. Once
a sector has been allocated in the directory, it is never deallocated by the DOS, even
during a validate. An allocated directory sector can only be freed under software control.

The following program makes use of the block-allocate command to certify a formatted
diskette. A worst-case binary pattern is written to any sector not currently in use. Bad
sectors, if any, are allocated in the BAM. However, these bad sectors will be deallocated
if the diskette is ever validated. (Sorry, but that’s the nature of the beast.)

100 REM CERTIFY A DISKETTE — 1541
110 FORI=1T032

120 NULL$=NULL $+CHRS$ (0)

130 WRITE$=WRITE$+CHR% (15)

140 NEXTI

150 DIMT%(481),S%(681)

160 PRINT" {CLR} CERTIFY A DISK
ETTE"

170 PRINT" {DOWN} {RVSIWAER
NING{ROFF3}"

180 FRINT" {DOWN3 {RVS}RANDOM ACCESS{ROFF}
AND {RVSI}DEL {ROFF} FILES WILL BE LOST”

190 PRINT"REMOVE {RVYSIWRITE PROTECT TAB{
ROFF3 "

200 PRINT"{DOWN3INSERT DISKETTE IN DRIVE
210 PRINT"{DOWN3}FPRESS {RVS}RETURN{ROFF3>

TO CONTINUE"

220 GETCS$: IFC$=""THEN220

230 IFC$<>CHRS (13)GOTO220

240 FRINT"OK"

250 OFEN15,8.15

260 PRINT#15,"10"

270 INPUT#15,EN$,EM$,ET$,ES$

280 IFEN$="00"GOTO330 _

290 PRINT"{DOWN}"ENS$", "EM$","ET$","ES$

300 CLOSE1S

310 END

91

O REM BAM
O PRINT#15, "M-R"CHR$(0)CHR$(7)CHR+: {192

340 FORI=0TO191

350 GET#15,B%

360 IFE$=""THENB$=CHR$ (0)

370 EAM$=BAM$+B$

380 NEXTI

390 DOS=ASC (MID$ (EAM$,3,1))

400 IFDOS=65G0T0460

410 CLOSE1S

420 FRINT"{DOWN3}73,CBM DOS V2.6 1541,00,

430 FRINT" {DOWN3 {RVS3}FAILED{ROFF3"

430 END

450 REM BUFFER

460 I=0

470 FORJ=1TOS8

480 FRINT#15S, "M-W"CHR$ (1) CHR$ (4) CHR$ (32)
WRITES

490 I=I+32

SO0 NEXTJ

S10 T=1

520 S=0

S30 C=0

S40 A=0

S50 FRINTH#1S,"B-A";05T:S

S60 INPUT#15,EN$,EM$,ET$,ES$

570 IFEN$="00"G0T0620

580 T=VAL (ET$)

590 IFT=0ANDC=0G0TO760

600 IFT=0GOTO800

610 S=VAL (ES$)

620 T$=RIGHT$ ("O"+RIGHT$(STR$(T) ,LEN(STR
$(T))-1),2)

630 S$=RIGHT$ ("O"+RIGHT$(STR$ (S) ,LEN(STR
$(5))-1),2)

640 C=C+1

650 IFC=1THENPRINT"{UP} *

660 PRINT#15,"B-A";0;3T:S

670 PRINT" {HOME3 {DOWN &3 {RVS>CERTIFYING{

ROFF) TRACK "3Té3" — SECTOR ";S5%
680 PRINT" {DOWNINUMBER OF SGECTORS CERTIF
IED :"sC

690 PRINT" {DOWN>NUMBER OF BAD SECTORS AL
LOCATED: "5 A

700 GOSUB1030

710 IFE=160TOS50

720 A=A+1

730 TZ4Z(AY=T

92

740 S%{(A)=S
750 GOTOSS0
760 CLOSE1S
770 FRINT" {DOWN}ALL SECTORS HAVE EBEEN AL
LOCATED"
780 FRINT" {DOWN3} {RVSIFAILED{ROFF3 "
790 END
800 I=0
810 FORJ=1T06
20 PRINT#15, "M-W"CHR$ (1) CHR$ (4) CHR$ {32)
MID$ (BAM$, I+1,32)
830 I=I+32
840 NEXTJ
B85S0 PRINT#15, "M-W"CHR$ (192) CHR$ (4) CHR$ (3
2INULL$
860 FRINT#15, "M-W"CHRS$ (224) CHR$ (4) CHR$ (3
2YNULL$
870 T=18
880 S=0
890 GOSUB1030
900 PRINT#15,"10"
910 INFUT#15,EN$,.EM$,ET$,ES$
920 IFA<>0G0TO960
930 CLOSE1S
940 FRINT" {DOWN}NO BAD SECTORS!'"
950 END
960 FORI=1TOA
970 PRINT#15,"B-A";05T%(I):S%(I)
980 NEXTI
990 CLOSE1S
1000 PRINT" {DOWN3DONE'"
1010 END
1020 REM SEEK
1030 JOB=176
1040 GOSUEB1120
1050 IFE=1GOT01080
1060 RETURN
1070 REM WRITE
1080 JOB=144
1090 GOSUB1120
1100 RETURN
1110 REM JOB QUEUE
1120 TRY=0
1130 PRINT#15, "M—W"CHR$ (8) CHR$ (0) CHR$ (2)
CHR$ (T) CHR$ (S)
1140 PRINT#15, "M—W"CHR$ (1) CHR$ (0) CHR$ (1)
CHR$ (JOB)
1150 TRY=TRY+1
1160 PRINT#15, "M-R"CHR$ (1) CHR$ (0)
1170 GET#15,E$%

93

1180 IFE$=""THENE$=CHR% (0)

1190 E=ASC(E%)

1200 IFTRY=500G0TO01220
1210 IFE>127G0TO1150

1220 RETURN

Line Range

Description

330-380
390-440
460-500
510-540
550
700

710

720-740
800-890
960-980

Store the BAM ($0700 - $07A0).

Query DOS version.

Write worst-case binary pattern to buffer at $0400.
Initialize track, sector, and counters.

Block-allocate command.

Write worst-case binary pattern at $0400 - $04FF to a
deallocated track and sector.

Query error channel.

Error array.

Restore the BAM.

Allocate any bad sectors in error array.

The alternate format of the two block-allocate commands above are:

S50 PRINT#15,"B-AI"503T;5S

970 PRINT#15, "B-A:"305 T4 (I)585%(1)

Lines 330-380 and 800-890 compensate for a bug in the block-allocate command. (See
Chapter 9 for the lowdown.) Lines 330-380 store an image of the BAM in C64 RAM.
The BAM is restored in lines 800-890. Lines 1020-1230 will be explained in detail in

Chapter 6 on intermediate disk programming techniques.

5.9 Block-Free Command (B-F)

The block-free command deallocates (frees) a sector in the BAM. A sector is deallocated
by setting its associated bit high (1) on track 18, sector 0. The format of a block-free

command is:

SYNTAX:
PRINTS# file#,

ALTERNATE:
PRINTH# file#,

EXAMPLE:

"B-F"; drive#; track; sector

"B-F:"3; drive#; track; sector

PRINT#15, "B-F"303137

94

where

file# = the logical file number of the command channel
drive# =0

track = 1to 35

sector = 0 to the range for a given track

The following program deallocates every sector on a diskette. Run this program on a
test diskette.

100 REM BLOCK~FREE

110 OPEN 15,8,15

120 PRINT#15, " 10"

130 INPUT#15,EN$,EM$,ET$,ES$
140 IF EN$<>"00"GOTO 260

15¢ OPEN 2,8,2,"#"

160 FOR T=1 TO 35

170 IF T=18 GOTO 240

180 NS=20+2%(T>17)+(T>24) +(T>30)
190 FOR S=0 TO NS

200 PRINT#15,"B-F";0:T:S

210 BF=BF+1

220 PRINT T,S,BF

230 NEXT S

240 NEXT T

250 CLOSE 2

260 INPUTH#15,EN$,EM$,ET$,ES$
270 CLOSE 15

280 END

Line Range Description

150 Open a direct-access channel.

160 Begin loop for tracks 1 to 35.

170 Don’t deallocate the directory.

180 Calculate sector range.

190 Begin loop for sectors 0 to sector range.
200 Block-free command.

210 Counter to indicate number of blocks freed.
220 Print track, sector, counter.

250 Close the direct-access channel.

The alternate format of the block-free command in line 200 is:

PRINT#15,"B-F:"30;5T:5

95

The opening and closing of a direct-access channel is essential if the block-free command
is to work correctly. Experimentation in freeing a full diskette reveals that tracks 34
and 35 still remain allocated if this procedure is not followed.

5.10 Memory-Execute Command (M-E)

The memory-execute command is used to execute any standard ROM routine or, at the
pinnacle of disk programming, a custom machine language program that has been poked
into 1541 RAM. The format of a memory-execute command is:

SYNTAX:
PRINTH# file#, "M-E" CHR$(lo-byte) CHR%{(hi-
byte)

ALTERNATE:
PRINTH# file#, "M-E:" CHR$(lo-byte) CHR$ (hi-
byte)

EXAMPLE:
PRINT#15, "M-E"CHR$(0) CHR$ {(6)

where

file# = the logical file number of the command channel
lo-byte = lo-byte of the RAM or ROM address

hi-byte = hi-byte of the RAM or ROM address

Machine language programs are poked into 1541 RAM with the memory-write command.
The following primitive program pokes a single RTS instruction to RAM and executes it.

100 REM MEMORY-EXECUTE

110 OPEN 15,8,15

120 PRINT#15, "M-W"CHR$ (O)CHR$ (6)CHR$(1)C
HR$ (26)

130 PRINT#15, "M-E"CHR%$ (0) CHR% (&)

140 CLOSE15

150 END

Line Range Description

120 Write 1 byte ($60) to RAM at $0600.
130 Execute RTS at $0600.

96

The alternate format of the memory-execute command in line 130 is:

FPRINT#15, "M—-E: "CHR$ (0) CHR%$ (6)

More sophisticated coding is available in Chapter 7. In addition, refer to Chapter 9 for
pertinent information about the execution of standard ROM routines.

5.11 Block-Execute Command (B-E)

The block-execute command is used to execute a machine language program that resides
on diskette. A sector is read into a DOS buffer and executed in a manner similar to
a LOAD and RUN on the C64. The format of a block-execute command is:

SYNTAX:
PRINT# file#, "B-E"; channel#; drivei#;
tracks sector

ALTERNATE:
PRINT# file#, "B—-E:"; channel#; drive#;
tracks sector
PRINTH# file¥#, "B-E: channel#, drive#,
track, sectar”

EXAMPLE:
PRINT#15, "B-E"525035150

where

file# = the logical file number of the command channel
channel# = the secondary address of the associated open statement
drive# =0

track = 1to 35

sector = 0 to the range for a given track

The block-execute command could be used in a diagnostic routine but it is difficult to
visualize any other advantage that this command has over a normal memory-execute
command. The following program demonstrates one of the few block-execute commands
you will probably ever see. (lights, camera, action!) Run this program using a test diskette.

100 REM BLOCK-EXECUTE

110 OPEN 15,8,15

120 PRINT#15," 10"

130 INPUT#15S,EN$,.EM$,ET$,ES$
140 IF EN$<>"00"GOTO 250

97

150 OFEN 2,8,2, "#3"

160 PRINTH#15,"U1";2;03130

170 INPUT#15,EN$,EM$,ET$,ESS$

180 IF EN$<3>"00"GOTO 220

190 PRINT#15, "M—W"CHR$ (0) CHR$ (6) CHR$ (1) C
HR$ (96)

200 PRINT#15,"U2"325051:0

210 PRINT#15, "M—W"CHR$ (0) CHR$ {6)CHR$ (1) C
HR$ (0)

220 PRINT#15,"B-E"32;05130

230 CLOSE 2

240 INFUT#15S,EN$.EM$,ET$,ES$

250 CLOSE 15

260 END

Line Range Description

150 Open a direct-access channel specifying buffer number 1
' ($0600 - $06FF).

160 Block-read of track 1, sector 0 ($0600 - $06FF).

190 Write 1 byte ($60) to RAM at $0600.

200 Block-write to track 1, sector 0 ($0600 - $06FF).

210 Just to keep us honest.

220 Block-execute of track 1, sector 0 ($0600 - $06FF').

The alternate formats of the block-execute command in line 220 are: -

PRINT#15,"B—-E:"35235031350

FRINT#1S5,"B-E:2,0,1,0"

5.12 Direct-Access Entomology

We will conclude our discussion of the disk utility command set by pointing out just
a few of the DOS V2.6 direct-access anomalies we’ve found to date.

Block-Read {B-R)

Throughout the preceding section we relied solely upon the use of the Ul command to
read a sector and not the traditional block-read command (B-R). Why? The block-read
command (B-R) is unreliable, period. When the contents of a buffer are accessed with
the GET# command — surprise, surprise! The number of bytes returned is a funetion
of the number of the track you accessed. For example, a block-read (B-R) of any sector

98

on track 15 will return only 15 bytes before sending an erroneous End-Or-Identify (EOI).
The C64 status variable (ST) is set to 64 and any further attempt to access the buffer
merely returns the same sequence of bytes over and over and over again. Moreover,
the byte in position 0 can only be accessed when the buffer-pointer is reset to position
0 in line 190. See for yourself.

100 REM BLOCK-READ (B-R)

110 OPEN 15,8,15

120 PRINT#15, " 10"

130 INFUT#15,EN$,EM$,ET$,ES$
140 IF EN$<>"00"GOTO 300

150 OPEN 2,8,2,"#"

160 PRINT#15, "B-R"32:0518;0
170 INFUT#15,EN$,EM$,ET$,ES$
180 IF EN$<3>"00"GDTO 280

190 FRINT#15, "B-P";2;0

200 FOR I=0 TO 255

210 GETH#2,H$

220 IF B$=""THEN B$=CHR$ (0)
30 A=ASC (B$)

240 PRINT ST,1,A,

250 IF A>31 AND A<96 THEN FRINT E$,

260 PRINT

270 NEXT I

280 CLOSE 2

290 INPUT#15,EN$,EM$,ET$,ES$

300 CLOSE 15

310 END

What’s even more problematic is the situation that occurs when you do a block-read
(B-R) of a track and sector that was rewritten by the block-write command (B-W) which
is discussed below. The EOI occurs in connection with the ASCII value of the Oth byte
of the sector that was read. Byte 0 contains the value of the buffer-pointer position at
the time the block was written with a block-write command (B-W). The forward track
reference that was originally there, has been destroyed. The ASCII value of the Oth
byte determines how many characters you can access before the EOI occurs. Run the
block-read (B-R) program listed above against track 1, sector 0 after you've done the
block-write (B-W) experiment listed below on a test disk. Change the track number in
line 160 from an 18 to a 1 like this:

160 PRINT#15,"B—R"525051350

After further experimentation on your own, you should have little trouble understand-
ing why the Ul command replaces the block-read command (B-R). Not only do user
manuals continue to promote the use of the block-read command (B-R), but they also
either ignore the Ul command altogether or simply mention it in passing without even
a hint on how to use it.

99

Block-Write (B-\W/)

Recall that we also neglected to mention the block-write command (B-W) which we replaced
with the U2 command. When you write a block with the block-write command (B-W)
a different kind of dilemma occurs. Bytes 1 through 255 of the buffer are recorded on
diskette correctly but the last position of the buffer-pointer is written to the Oth byte
of the sector (the location of the forward track pointer). If it’s any consolation, the data
is still intact. Too bad the link has been destroyed. Run the following block-write pro-
gram on a test diskette.

100 REM BLOCK-WRITE (E-W)
11¢ OPFEN 15,8,15

120 PRINT#15," 10"

130 INFUT#15,EN$,EM$,ET$,ES$
140 IF EN$<3>"00"GOTO 260

150 OPEN 2,8,2,"#"

160 PRINT#15,"U1"52505130
170 INFUT#15,EN$,.EM$,ET$,ES$
180 IF EN$<:>"00"GOTO 240

190 FOR I=0 TO 255

200 PRINT#2,CHR$ (1) 3

210 NEXT 1

220 PRINTH#1S,"B-P";2:16

230 PRINT#15,"B-W"3;2;0513;0
240 CLOSE 2

250 INPUT#15,.EN$,EM$,ET$,ES$
260 CLOSE 15

270 END

Now run the original block-read (U1) program that we wrote using this diskette. Be
sure to change the track in line 160 from an 18 to a 1 as follows:

160 FRINT#15,"U1"5250351350

If all goes according to our diabolical plan, byte 0 will contain a 5 which is exactly where
our buffer-pointer ended up. We arbitrarily set it to position 6 in line 220 above and
256 bytes later it wraps around to position 5. (Remember that bytes are numbered from
0 to 255 in a buffer area.)

Now change the Ul to a B-R in line 160 and run the program again. This time, only
5 bytes can be accessed before an EOI signal is returned.

UJ and UI-

Cormrmodore has traditionally had a warm reset buried somewhere in ROM on every
piece of hardware they have manufactured to date. The UJ command is to the 1541 what

a SYS 64738 is to the C64, a warm reset. Or rather, that is what it’s supposed to be.
The issuance of a UJ command is supposed to reset the 1541, Instead, it hangs the 1541.

100

Press the RUN/STOP key and RESTORE key in tandem to regain control of the C64
after typing in this one liner in immediate mode.

OPEN 15,8,15,"UJ" : CLOSE1S

Use U: in place of UJ.

The same thing is true for the UI- command although Commodore can’t really be held
responsible here. The UI- command was implemented to set the 1541 to VIC-20 speed,
not to take the C64 out to lunch.

u3-u9

The VIC-1541 User’s Manual outlines 7 USER commands that perform a jump to a
particular location in RAM. These USER commands and their respective jump addresses
are:

User Number Jump Address
U3 (UC) $0500

U4 (UD) $0503

Us (UE) $0506

U6 (UF) $0509

U7 (UG) $050C

U8 (UH) $050F

U9 (U $FFFA

These jump locations are not quite as mystifying as they appear at first glance. Let’s
modify our simplistic memory-execute program.

100 REM U3

110 OFEN 15,8,15

120 PRINT#15, "M-W"CHR$ (0)CHR$ (S)CHR$ (1) C
HR$(26)

130 PRINT#1S5,"U3"

140 CLOSE1S

150 END

One should be able to discern that any of the first six USER commands, U3 - U8, could
double for a memory-execute command. It is very difficult to understand why Commodore
included six jumps to the $0500 page (buffer number 2). Moreover, the U9 command
jumps to $FFA which is a word table pointing to the NMI vector. U9 is an alternate
reset that bypasses the power-on diagonstics.

101

CHAPTER 6

INTERMEDIATE
DIRECT-ACCESS PROGRAMMING

NOTE: This chapter is not intended for beginners. The reader is assumed to be relatively
Jamiliar with the direct-access programming commands described in Chapter 5.

The intermediate level of direct-access programming involves passing requests directly
to the Floppy Disk Controller (FDC) via the job queue. Normally a 1541 command is
initiated on the C64 side (e.g., SAVE, a block-read (U1), ete.). The command is inter-
preted by the 1541’s 6502 Interface Processor (IP) as a set of simple operations called
jobs. (This is analogous to the way the BASIC interpreter works inside the C64.) These
jobs are poked into an area of 1541 RAM called the job queue. Every 10 milliseconds
the job queue is scanned by the Floppy Disk Controller (FDC). If a job request is found
the FDC executes it. The complete set of jobs that the FDC can perform are as follows:

Read a sector.

Write a sector.

Verify a sector.

Seek a track.

Bump the head to track number 1.

Jump to a machine language routine in a buffer.
Execute a machine language routine in a buffer.

A S ol M e

The hexadecimal and decimal equivalents for each job request as seen by the FDC are:

Job Code Description
$80 (128) READ

$90 (144) WRITE
$A0 (160) VERIFY
$B0 (176) SEEK

$C0 (192) BUMP

$DO (208) JUMP
$E0 (224) EXECUTE

If the FDC finds a job request in the job queue, it attempts to carry it out. Once the
job is complete or aborted the FDC replaces the job code with an error code. The error
codes returned by the FDC to the IP are listed below. The IP error codes and their
respective error messages are what you see when you read the error channel.

103

FDC Code IP Code Error Message

$01 (1) 0 OK

$02 (2) 20 READ ERROR (header block not
found)

$03 (3) 21 READ ERROR (no sync character)

$04 (4) 22 READ ERROR (data block not
present)

$05 (5) 23 READ ERROR (checksum error in
data block)

$07 (7) 25 WRITE ERROR (write-verify
error)

$08 (8) 26 WRITE PROTECT ON

$09 (9) 27 READ ERROR (checksum error in
header block)

$0B (11) 29 READ ERROR (disk ID mismatch)

A more detailed description of each of these error messages can be found in Chapter 7.

Suppose that we want to read the contents of a given track and sector. The command
initiated on the C64 side is parsed by the IP. If the syntax is correct, it is broken down
into a job code, a track, and a sector. Depending upon what buffer has been assigned,
the job code is poked into the corresponding job queue table location. The track and
sector for the job are poked into the corresponding header table locations. The buffers
and their corresponding job queue and header table addresses are outlined below:

Buffer Address Job Track Sector
$0000 - $00FF Not available (ZERO PAGE)
$0100 - $01FF Not available (STACK)
$0200 - $03FF Not available (COMMAND BUFFER)
#0 $0300 - $03FF $0000 $0006 $0007
#1 $0400 - $04FF $0001 $0008 $0009
#2 $0500 - $05FF $0002 $000A $000B
#3 $0600 - $06FF $0003 $000C $000D

$0700 - $07FF

Not available (BAM)

For example, a block-read command (U1) issued by the C64 to read the contents of track
18, sector 0 into buffer number 0 ($0300-$03F F') is checked for a syntax error and then
broken down by the IP. In time, the FDC will find an $80 (128) at address $0000 in the
job queue table, a $12 (18) at address $0006 in the header table, and a $00 (0) at address
$0007 in the header table. Armed with that information, the FDC will attempt to seek
(find) the track and read the sector. Upon successful completion of the read, the con-
tents of the sector will be transferred to buffer number 0 ($0300-$03FF) and a $01 (1)
will be returned by the FDC to address $0000. (If the job request could not be com-
pleted for some reason, the job request would be aborted and the corresponding error
code would be stored at address $0000 instead.) Interrogation of the error channel will
transfer the IP counterpart of the FDC error code, the English message, the track

104

number, and the sector number to the C64 side. If the job request was successful (00,
OK,00,00), the contents of the track and sector could then be retrieved from the buffer
at $0300 - $03FF using a GET# command as described in the previous chapter.

What happens, though, if we bypass the drive’s parser routine and attempt to work
_the FDC directly ourselves? We thought you’d never ask. Grand and glorious schemes
become possibilities, and that’s what intermediate direct-access programming is all about.
Armed with a lookup table of job codes, a map of the 1541’s buffer areas, a track, a
sector, and a lookup table of error codes, the FDC is at your beck and call. Tired of
those horrendous grating noises when your drive errs out? Well wish no more. The
drive does not do a bump (the root of all evil) to reinitialize when you are working the
job queue directly. What more could you ask for? We know. The code, right?

The following program works the job queue directly to read the block from track 18,
sector 0 into buffer number 0 ($0300 - $03FF) and prints the contents to the screen.
Sound vaguely familiar? It should. It’s a modification of the first program we wrote under
beginning direct-access programming.

100 REM JOB QUEUE READ

110 OFEN 15,8,15

120 PRINT#15,"10"

130 INPUT#15,EN$,EM$,ET$,ES$
140 IF EN$<>"00"GOTO 340

150 REM SEEK

160 T=18

170 S=0

180 JOB=176

190 GOSUB 370

200 IF E<>1 GOTO 340

210 REM READ

220 JOR=128

230 GOSUB 370

240 IF E<>1 GOTO 340

250 FOR I=0 TO 255

260 PRINT#15, "M-R"CHR$ (1) CHR$ (3)
270 GET#15,B%

280 IF B$=""THEN B$=CHR$ (0)

290 A=ASC (B%)

300 PRINT ST,1,A,

310 IF A>31 AND A<96 THEN PRINT B$,
320 PRINT

330 NEXT I

340 CLOSE 15

350 END

360 REM JOB QUEUE

370 TRY=0

380 PRINTH#15, "M-W"CHR$ (&) CHR$ (0) CHR$ (2)C
HR$ (T)CHR$ (S)

390 PRINT#15, "M—W"CHR$ (0) CHR% (O) CHR$ (1) C

1056

HR$ (JOB)

400 TRY=TRY+1

410 PRINT#15, "M-R"CHR$%$ (0) CHR% (0)
420 GET#15,E%

430 IF E$=""THEN E$=CHR${(0)

440 E=ASC(E$)

450 IF TRY=500 GOTO 470

460 IF E>127 GOTO 400

470 RETURN

Line Range Description

Main Program

110
120-140
160
170
180-190
200
220-230

240
250
260
270

280
290
300

310
320
330
340
350

Subroutine

370
380

390

400-460
470

Open the command channel.

Initialize drive.

Initialize track to 18.

Initialize sector to 0.

SEEK track 18.

Query FDC error code.

READ sector 0 on track 18 into buffer number 0
($0300-303FF).

Query FDC error code.

Begin loop to read 256 bytes ($0300-$03FF).

Two parameter memory-read.

Transfer a byte from buffer number 0 to C64 memory
by way of the command channel (GET#15,).

Test for equality with the null strmg “r,

ASCII conversion of a byte.

Print the status variable (ST), our loop counter, and the
ASCII value of the byte.

Print the byte if it’s within printable ASCII range.
Terminate comma tabulation.

Increment loop counter.

Close the command channel.

End.

Initialize try counter.

Stuff the track and sector numbers into buffer number
0’s header table ($0006-$0007).

Stuff job code number into buffer number 0’s job queue
table ($0000).

Wait for FDC to complete the job.

Return with FDC error code in hand.

The good news is that working the job queue is not quite as complex as it at first ap-
pears. The subroutine in lines 370-470 is the very heart of the matter. We simply stuff

106

our track and sector into the header table, our job code into the job queue table, and
wait until the FDC has completed the operation.

Keep in mind that this example was using buffer number 0 ($0300-$03FF). The corre-
sponding header table and job queue table addresses were $0006 for the track, $0007
for the sector, and $0000 for the job code. Please note that every job code is greater
than 127. (Bit 7 is deliberately set high (1).) Recall that when the FDC has completed
a job, the job code is replaced with an error code. All error codes are less than 128,
(Bit 7 is deliberately set low (0).) Line 460 waits until bit 7 of the job code is set low
(0) by the FDC. If bit 7 is high (1), the FDC is still working so we must continue to
wait (line 410).

Error handling is a bit out of the ordinary too but not all that hard to comprehend either.
An FDC error code of 1 means the job was completed successfully. Any other number
indicates an error.

You will also note a simple hierarchy of jobs in the program listing. Before we can read
a sector (line 220) we must always find the track first (line 180). Now are you ready
for this one? Initialization is not necessary at all when working the job queue directly.
Lines 120-140 were included as a force of habit. Applications like reading damaged or
DOS protected diskettes may dictate that we do not initialize. Now for the bad news.

WARNING

Read this passage carefully. Then read it again for good measure. Experience is a hard
teacher — test first, lesson afterward.

1. You must remember at all times when working the job queue that you have
directly bypassed the parser routine. This is extremely dangerous because you
have in effect killed all protection built into the 1541 itself. Let us explain. If
by some poor misfortune you elect to do a read on track 99, the FDC doesn’t
know any better and takes off in search of track 99. You can physically lock
the read/write head if it accidentally steps beyond its normal boundaries, i.e.,
a track less than 1 or a track greater than 35. No damage is done to the 1541
itself but if the power-onsequence doesn’t return the head to center you will
have to disassemble the drive and reposition the head manually. Exceeding the
sector range for a given track is no problem, however. The drive will eventual-
ly give up trying to find a sector out of range and report an FDC error 2 (an
IP 20 error). Tracks are a pain in the stepper motor, however.

2. You must keep your header table locations and your job queue table locations
straight in relation to the buffer number you are working. If they are not in
agreement, the drive will go off into never-never land. The FDC will either at-
tempt to work a nonexistent job code or seek a track and sector out of bounds.
Remember the FDC will do exactly what you tell it to do. You are at the helm
at all times. At the minimum, you will have to power off the drive to regain
control. Again, no physical damage has been done to the 1541 but you may have
to reposition the read/write head yourself. We know from experience.

107

3. You should always monitor the job yourself. The try counter in line 450 is a
stopgap measure. Five hundred wait cycles seems like an exaggerated figure
here. However, you must give the drive adequate time to find a desired track
and settle down before performing a job. If for some reason it cannot complete
the job, it usually aborts and returns an error code on its own. If it doesn't,
something is amiss and a try counter may trap it. (You might have to power
off the drive to restore the status quo.) A try counter is a little like workman'’s
compensation. Don’t work the job queue without it.

Now, read these three paragraphs a second time.

The following program works the job queue directly to read track 18, sector 0 into buf-
fer number 1 ($0400-$04F F). The disk name is returned with a three parameter memory-
read of bytes 144-159 ($0490-$049F). It’s another oldie but goodie.

100
110
120
130
140
150
160
170
180
190
200
210
22

230
240
250
6)

260
270
280
290
300
310
220
330
340
250
360
370
380
390
400

REM JOBR QUEUE READ — DISK NAME
OPEN 15,8,15

PRINT#15, 10"
INFUT#15,EN$,EM$,ET$,ES$

IF EN$<3>"00"GOTO 360

REM SEEK

T=18

S=0

JOB=176

GOSUE 390

IF E<>1 GOTO 360

REM READ

JOB=128

GOSUB 390

IF E<>1 GOTO 3460

PRINT#15, "M-R"CHR$ (144) CHR$ (4) CHR$ (1

FOR I=1 TO 16
GET#15,B$

IF B$=""THEN B$=CHR$ (0)

A=ASC (B$)

IF A>127 THEN A=A-128

IF A<32 OR A>9S5 THEN A=63

IF A=34 THEN A=63

DN$=DN$+CHRS (A)

NEXT I

PRINT" {DOWN2DISK NAME: ";DN$

CLOSE 15

END

REM JOB QUEUE

TRY=0

FRINT#15, "M—-W"CHR$ (8) CHR$ (0) CHR$ (2) C

HR® (T)CHR$ (S)

410

PRINT#15, "M-W"CHR$ (1)CHR$ (O)CHR$ (1) C

108

HR$ (JOB)
420 TRY=TRY+1
30 FRINT#15, "M-R"CHR% (1) CHR$ (O)
440 GET#15,.E%
450 IF E$=""THEN E%$=CHR% (0)
460 E=ASC(E$)
470 1IF TRY=5300 GOTO 4%0
480 IF E>127 GOTO 420
490 RETURM

Line Range Description

120-140 Force of habit.

160 Initialize track to 18.

170 Initialize sector to 0.

180-190 SEEK track 18.

200 Query FDC error code.

220-230 READ sector 0 on track 18 into buffer number 1
($0400-$04F F).

240 Query FDC error code.

250 Three parameter memory-read ($0490-$049F).

260-340 Concatenate the disk name one byte at a time by jam-
ming it within printable ASCII range.

390 Initialize try counter.

400 Stuff the track and sector number into buffer number 1’s
header table ($0008-$0009).

410 Stuff the job code number into buffer number 1’s job
queue table ($0001).

420-480 Wait for FDC to complete the job.

490 Return with FDC error code in hand.

Not much new here except the buffer in use. Let’s review the key memory addresses
for working buffer number 1 ($0400-$04FF):

BUFFER NUMBER 1 = $0400 - $04FF

TRACK NUMBER $0008 (HEADER TABLE)
SECTOR NUMBER $0009 HEADER TABLE)
JOB CODE = $0001 (JOB QUEUE TABLE)

While we’re at it, we might as well review the order of jobs for the sake of posterity.
First SEEK a track. Then READ a sector.

The next program incorporates four FDC job codes, namely a SEEK, a READ, a
WRITE, and indirectly a VERIFY. This routine is a modification of the edit disk name
program found in the previous chapter. Keep in mind that we are working buffer number
2 here (30500-$05FF). The header table addresses are $000A for the track and $000B
for the sector. The job codes themselves will be poked into location $0002 in the job
queue table.

109

100 REM JOE GUEUE READ/WRITE — EDIT DISK
NAME
110 FOR I=1 TO 16
120 PAD$=PAD$+CHR$ (160)
130 NEXT I
140 FRINT"{CLR}EDIT DISKE NAME - 1541"
150 PRINT" {DOWNIREMOVE {RVSI}WRITE PROTEC
T TAB{ROFF3"
160 PRINT" {DOWN} INSERT DISKETTE IN DRIVE
170 PRINT" {DOWN}FRESS {(RVS}RETURN{ROFF3
TO CONTINUE®
180 GET C#$:IF C$=""THEN 180
190 IF C$<3>CHR$(13)G0TO 180
200 FRINT"OK"
210 OFEN 15,8, 15
220 PRINT#1S,"I0"
230 INFUTH15,EN$,EM$,ET$,ES$
240 IF EN$="00"GOTO 290
250 PRINT" {DOWN)"EN$", “"EM$","ET$","ES$
260 CLOSE 15
270 END
280 REM SEEK
290 T=18
300 §=0
310 JOB=176
320 GOSUB 660
330 REM READ
340 JOB=128
350 GOSUB 660
360 PRINTH#15, "M—R"CHR$ (144) CHR$ (5) CHR$ (1
&)
370 FOR I=1 TO 16
380 GET#15,B$
390 IF B$=""THEN B#$=CHR$ (0)
400 A=ASC (E$)
410 IF A>127 THEN A=A-128
420 IF A<32 OR A>95 THEN A=63
30 IF A=34 THEN A=63
440 ODN$=0DN$+CHR$ (A)
450 NEXT I
460 PRINT" {DOWN}OLD DISK NAME: ";ODN$
470 INFUT" {DOWNI}NEW DISK NAME";NDN$
480 IF LEN(NDN$)<>0 AND LEN(NDN$)<17 GOT
0 500
490 GOTO &30
SO0 INFUT" {DOWNIARE YOU SURE (Y/N) Y{LE
FT 33";0%
S10 IF Q$<>"Y"GOTO 630
520 NDN$=LEFT$ (NDN$+PAD%, 16)

110

S30 PRINT#15, "M-W'"CHR$(144)CHR$ (S)CHR$ (1
6) NDN$
540 REM WRITE
550 JOE=144
560 GOSUR 660
570 PRINTH#15,"10"
580 INPUT#15,EN$,EM$.ET$,ESS
390 CLOSE 15
600 PRINT" {DOWNJIDONE'®"
610 END
6270 REM CLOSE
630 CLOSE 15
&40 END
650 REM J0B QUEUE
660 TRY=0
670 FRINT#15, "M-W"CHR% (10)CHR%$ (0O) CHR$ (2)
CHR$(T)CHR$(S)
680 PRINT#15, "M-W"CHR$ (2)CHR$ (O)CHR$ (1)C
HR%$ (JOB)
&90 TRY=TRY+1
700 FPRINT#15,"M-R"CHR% (2)CHR% (0Q)
710 GET#15,E%
720 IF E$=""THEN E$=CHR%$ (Q)
730 E=ASC(E%)
740 IF TRY=500 GOTO 780
750 IF E>127 GOTO &90
760 IF E=1 THEN RETURN
770 REM ERROR HANDLER
780 ET$=RIGHT$(STR$(T) ,LEN(STR$(T))-1)
790 IF T<10 THEN ET$="0"+ET$
800 ES%= RIGHT$(STR$(S),LEN(STR$(S))—1)
810 IF S<10 THEN ES$="0"+ES%
20 IF E>1 AND E<12 THEN EN$=RIGHT$ (STR%
(E+18) ,2):60T0 840
830 EN$="02":EM$="7TIME OUT":60TO 860
840 IF E=7 OR E=8 THEN EM$="WRITE ERROR"
:60TO 860
850 EM$="READ ERROR"
860 FRINT" {DOWNZ"EN$", "EM$","ET$”,"ESS
870 PRINT" {DOWN?2 {RVSI}FAILED{ROFF>"
880 CLOSE 15

890 END

Line Range Description

290-320 SEEK track 18.

340-350 READ contents of sector 0 from track 18 into buffer
number 2 ($0500-$05F F).

550-560 WRITE buffer number 2 ($0500-$05FF) to track 18, sec-
tor 0.

770-890 Error handler.

111

Lines 100 to 530 should be self explanatory by now. Lines 540-560 are equivalent to
a block-write command (U2). To write a sector via the job queue we stuff the track and
sector in the header table and a $90 (144) into the job queue table and let her rip.

The error handler, however, is of interest. The conversion from FDC code to IP code
is quite easy. We simply add 18 to the FDC error code (line 820). Note that we try to
restrict all errors within a range of 20 to 29. An FDC error code of 0 or greater than
11 is indicative that something went radically wrong. Line 820 arbitrarily reports a
ITIME OUT in this situation. Speaking from experience, the job just plainly didn’t get
done. A time out occurs very rarely, unless of course, one is inspecting a damaged or
DOS-protected diskette.

Line 840 is another highlight. An FDC WRITE ($90) automatically flips to an FDC
VERIFY ($A0) to compare the contents of the buffer against the sector just written.
Kind of neat, isn’t it? If the buffer and the sector do not match, we see an FDC error
7,1i.e., an IP error number 25, WRITE ERROR. Since a VERIFY is done automatical-
ly by the FDC, we will not elaborate any further on this particular job code.

The job code for a BUMP is a $C0 (192). Why anybody would ever want to implement
this job request is beyond us.

A subtle difference exists between the remaining two job codes, a JUMP ($D0) and an
EXECUTE ($E0). A JUMP executes a machine language routine poked into RAM. No
more, no less. Like a BUMP job, it is seldom used. The program that moves the
read/write head in Chapter 9 is the only place where we have ever found a practical
use for it.

An EXECUTE ($EO0) is the Rolls Royce of job codes, however. Before a machine language
routine is executed, the FDC makes sure that:

1. The drive is up to speed.
2. The read/write head is on the right track.
3. The read/write head has settled.

The FDC cannot be interrupted when performing an EXECUTE job. Once the FDC
starts to EXECUTE the machine language routine, control is not returned to the IP
until the routine is completed. A runaway routine cannot be debugged even with BRK
instructions. You must power down the 1541 and try to second guess the side effects
of the routine to determine what went wrong.

NOTE: The FDC does not automatically return an error code when the routine is com-
pleted. It is the programmer’s responsibility to change the job code in the job queue
table from an EXECUTE ($E0) to an $01 at the end of the routine. If this is not done,
the FDC will find the same EXECUTE request on its next scan of the job queue and
re-run the routine. Infinite regression!

Most of the programs in Chapter 7 make use of the EXECUTE job code in one form
or another. Therefore, example programs will be given there.

112

CHAPTER 7

DOS PROTECTION

7.1 Commodore’s Data Encoding Scheme

Before we can enter the netherworld of DOS protection you have to possess a thorough
understanding of how the 1541 records a sector on a diskette. Any given sector is di-
vided into two contiguous parts, a header block and a data block. For clarity sake let’s
review the parts of a sector discussed in Chapter 3.

Header Block (16 8-bit bytes)

Number of Bytes Description

Sync Character

Header Block Identifier ($08)
Header Block Checksum
Sector Number

Track Number

ID LO

ID HI

Off Bytes ($0F)

Header Gap ($55)

m[o;—n;—n;—n;—n;—n;—n|

Data Block (260 8-bit bytes)

Number of Bytes Description

- Sync Character

1 Data Block Identifier ($07)
256 Data Bytes
1 Data Block Checksum
2 Off Bytes ($00)
Variable Tail Gap ($55)

The 1541 writes a track on the surface of a diskette as one continuous bit stream. There
are no demagnetized zones between sectors on a track to delineate where one sector
ends and another one begins. Instead, Commodore relies upon synchronization characters

113

for reference marks. A DOS 2.6 sync mark can be defined as five 8-bit $FF’s written
in succession to disk. Note that a sync mark is recorded at the front end of each header
block and each data block. To differentiate a sync mark from a normal data byte, the
1541 writes to diskette in two modes, a sync mode and a normal write mode.

To appreciate the uniqueness of a sync mark we must first look at how a normal data
byte is recorded. During normal write mode each 8-bit byte is encoded into 10 bits before
it is written to disk. Commodore calls this encoding scheme binary to GCR (Group Code
Recording) conversion. The conversion technique itself is quite straightforward. Each
8bit byte is separated into two 4-bit nybbles, a high nybble and a low nybble. For ex-
ample, the binary representation of $12 (18) is %00010010. The breakdown of this 8-bit
byte into its two 4-bit nybbles is depicted below:

Hexadecimal Binary High Nybble Low Nybble

$12 (18) 00010010 0001xxxx xxxx0010

Mathematically speaking, a 4-bit nybble can be decoded into any one of 16 different
decimal values ranging from 0 (all bits turned off) to 15 (all bits turned on) as follows:

Bit Number 3 2 1 0
Power of 2 3 2 1 0
Weight 8 4 2 1

Hence, the 1541’s GCR lookup table contains just sixteen 4-bit nybble equivalencies:

Hexadecimal Binary GCR
$0 (0) 0000 01010
$1 (1) 0001 01011
$2 (2 0010 10010
$3 3) 0011 10011
$4 (4) 0100 01110
$5 (5) 0101 01111
$6 (6) 0110 10110
$7 (D 0111 10111
$8 ® 1000 01001
$9 (9 1001 11001
$A (10) 1010 11010
$B (11) 1011 11011
$C (12) 1100 01101
$D (13) 1101 11101
$E (14) 1110 11110
$F (15) 1111 10101

Using the binary to GCR lookup table above, let’s walk through the necessary steps
to convert a $12 (18) to GCR form.

114

STEP 1. Hexadecimal to Binary Conversion
$12 (18) = 00010010

STEP 2. High Nybble to GCR Conversion
0001xxxx = $1 (1) = 01011

STEP 3. Low Nybble to GCR Conversion
xxxx0010 = $2 (2) = 10010

STEP 4. GCR Concatenation

01011 + 10010 = 0101110010

Two things should stand out when scrutinizing the 1541’s binary to GCR lookup table.

1. No combination of any two 5-bit GCR bytes will ever yield 10 consecutive on bits
(1s) which is used as the sync mark. Binary to GCR conversion eliminates all likelihood
that a permutation of normal data bytes can ever be mistaken by the read/write elec-
tronics for a sync mark.

2. No more than two consecutive off bits (0s) appear in any given 10-bit GCR byte or
combination of GCR bytes. This latter constraint was imposed for accuracy when
clocking bits back into the 1541 during a read. (See Chapter 9 for additional
information.)

This brings us full circle to what actually differentiates a sync mark from a normal data
byte. Simply put, a sync mark is 10 or more on bits (1s) recorded in succession. Only
one normal data byte, an $F'F (%11111111), can even begin to fill the shoes of a sync
mark. During normal write mode, however, an $FF would take the following GCR form,
1010110101. Enter sync mode. When the 1541 writes an $FF in sync mode no binary
to GCR conversion is done. A single $FF is only eight consecutive on bits and falls short
of the ten consecutive on bits needed to create a sync character. To remedy this, Com-
modore writes five consecutive 8-bit $FFs to disk. This records 40 on bits (1s) in succes-
sion. the overkill is intentional on the DOS’s part. Commodore is trying to guarantee
that the 1541 will never have any trouble finding a sync mark during subsequent
reads/writes to a diskette.

Four 8-bit data bytes are converted to four 10-bit GCR bytes at a time by the 1541 DOS.
RAM is only an 8-bit storage device though. This hardware limitation prevents a 10-bit
GCR byte from being stored in a single memory location. Four 10-bit GCR bytes total
40 bits — a number evenly divisible by our overriding 8-bit constraint. Commodore sub-
divides the 40 GCR bits into five 8-bit bytes to solve this dilemma. This explains why
four 8-bit data bytes are converted to GCR form at a time. The following step by step
example demonstrates how this bit manipulation is performed by the DOS.

STEP 1. Four 8-bit Data Bytes
$08 $10 $00 $12

115

STEP 2. Hexadecimal to Binary Conversion
1. Binary Equivalents

$08 $10 300 $12
00001000 00010000 060000000 00010010

STEP 3. Binary to GCR Conversion
1. Four 8-bit Data Bytes

00001000 00010000 00000000 00010010

2. High and Low Nybbles
0000 1000 0001 0000 0000 0000 0001 0010

3. High and Low Nybble GCR Equivalents
01010 01001 01011 01010 01010 01010 01011 10010

4. Four 10-bit GCR Bytes
0101001001 0101101010 0101001010 0101110010

STEP 4. 10-bit GCR to 8-bit GCR Conversion
1. Concatenate Four 10-bit GCR Bytes

0101001001010110101001010010100101110010
2. Five 8-bit Subdivisions
01010010 01010110 10100101 00101001 01110010

STEP 5. Binary to Hexadecimal Conversion
1. Hexadecimal Equivalents

01010010 01010110 10100101 00101001 01110010
$62 $56 $A5 $29 $72

STEP 6. Four 8-bit Data Bytes are Recorded as Five 8-bit GCR Bytes
$08 $10 $00 $12 are recorded as $52 $56 $A5 $29 $72

Four normal 8-bit bytes are always written to diskette as five 8-bit GCR bytes by the
DOS. The 1541 converts these same five 8-bit GCR bytes back to four normal 8-bit bytes
during a read. The steps outlined above still apply but they are performed in the reverse
order. (The appendix contains various mathematical conversion routines for your use.)

In light of the above discussion, we need to recalculate the number of bytes that are
actually recorded in a sector. We stated in Chapter 3 that a header block was comprised
of eight 8-bit bytes excluding the header gap. This is recorded on the diskette as ten
8-bit GCR bytes. The formula for determining the actual number of bytes that are re-
corded is:

Number of 8-bit GCR Bytes Recorded = (Number of 8-bit Data Bytes/4) * 5

116

Similarly, a data block consisting of 260 8-bit bytes is written to disk as 325 8-bit GCR
bytes. Lest we forget, each sync mark is five 8-bit bytes. We must also remember to
add in the header gap which is held constant at eight bytes. (Header gap bytes ($55)
are not converted to GCR form and serve only to separate the header block from the
data block.) An entire sector is recorded as 353 bytes not 256 data bytes.

Data Bytes GCR Bytes
Sync Character ($FF) 5 * 5
Header Block 8 10
Header Gap ($55) 8 * 8
Sync Character ($FF) 5 * 5
Data Block 260 325

* No binary to GCR conversion.

We deliberately excluded the inter-sector (tail) gap in calculating the number of bytes
in a given sector. Why? Because the tail gap is never referenced again by the DOS once
formatting is complete. During formatting the Floppy Disk Controller (FDC) erases a
track by writing 10240 overlapping 8-bit $FFs. Once a track has been erased the FDC
writes 2400 8-bit $FF's (%11111111) followed by 2400 8-bit $55s (%01010101). The intent
is to wrap around the circumference of the track with a clearly discernable on/off pat-
tern of bytes. The FDC then counts to see how many sync (§FF) and nonsyne ($55) bytes
were actually written to the track. From this count the FDC subtracts the total number
of bytes that the entire range of sectors in a given zone will use. The remainder is then
divided by the number of sectors in that zone to determine the size of the tail gap. The
algorithm is analogous to cutting a pie. The tail gap varies not only between tracks due
to a decrease in both circumference and the sector range but between disk drives as
well, due to varying motor speeds. A stopgap measure is incorporated into the algorithm
for the latter reason. If a tail gap is not computed to be at least four bytes in length
formatting will fail and an error will be reported. In general, the length of the tail gaps
fall into the ranges tabled below:

Zone Tracks Number of Sectors Variable Tail Gap
1 1-17 21 4-7
2 18 - 24 19 9-12
3 25 - 30 18 5-8
4 31-35 17 4-8

Note that the values given above do not apply to the highest numbered sector on a track.
The gap between this sector and sector 0 is usually much longer. We have seen tail gaps
in excess of 100 bytes here.

Also note that a header block is never rewritten after formatting is complete. The data
block of a sector, including the sync character, is completely rewritten every time data
is written to that sector. The eight byte header gap is counted off by the DOS to deter-
mine where to start writing the data block.

117

7.2 Checksums

The only remaining concern we have at this time is how we compute a checksum. Unlike
tape storage where a program file is recorded twice in succession, data is recorded on
diskette only once. In other words, there is no cyclic redundancy. Checksum comes to
the rescue. A single byte checksum or hashtotal is used by the DOS to determine whether
or not an error occurred during a read of a header block or a data block. A checksum
is derived by Exclusive-ORing (EOR) bytes together. Two bytes are EORed together
at one time by comparing their respective bits. The four possible EOR bit combinations
are shown in the following truth table.

EOR Truth Table

0OEORO0 =0
0EOR1 =1
1EORO =1
1EOR1 =0

A header block checksum is the EOR of: the sector number, the track number, the ID
LO, and the ID HI. (These four bytes serve to differentiate sectors from one another
on a diskette.) A data block checksum is the EOR of all 256 8-bit data bytes in a sector.
Recall that a data block normally consists of a forward track and sector pointer plus
254 data bytes. Please note that bytes are EORed by the DOS prior to their GCR
conversion.

The following example demonstrates how a header block checksum is calculated. The
algorithm for calculating a data block checksum is identical, only longer.

Hexadecimal Binary
Sector Number $00 (0) 00000000
Track Number $12 (18) 00010010
iID LO $58 (88) 01011000
ID HI $5A (90) 01011010

STEP 1. Initialization
EOR $00 (0) With Sector Number

$00 = 00000000
Sector Number ($00) = 00000000

00000000

STEP 2. EOR With Track Number

00000000
Track Number ($12) = 00010010

00010010

118

STEP 3. EOR With ID LO

00010010
ID LO ($58) = 01011000

01001010
STEP 4. EOR With ID HI

01001010
ID HI ($5A) = 01011010

00010000
STEP 5. Binary to Hexadecimal Conversion
00010000
$10 (16)
The checksum for $00, $12, $58, and $5A is thus $10 (16). This checksum just happens
to be the header block checksum for track 18, sector 0 on the 1541TEST/DEMO. In ad-

dition, the binary to GCR conversion tour presented earlier was for the first four bytes
($08 $10 $00 $12) of the same header block.

7.3 Description of DOS Error Messages

In Chapter 6 we presented a table of FDC and IP error codes. The following table outlines
the order in which errors are evaluated by the DOS during a read and a write,
respectively.

READ ERRORS

FDC Job FDC IP

Request Error Code Error Code Error Message

SEEK $03 (3) 21 No Syne Character

SEEK $02 (2) 20 Header Block Not Found
SEEK $09 (9) 27 Checksum Error in Header Block
SEEK $0B (11) 29 Disk ID Mismatch

READ $02 (2) 20 Header Block Not Found
READ $04 (4) 22 Data Block Not Present
READ $05 (5) 23 Checksum Error in Data Block
READ $01 (1) 0 OK :

119

WRITE ERRORS

FDC Job FDC IP

Request Error Code Error Code Error Message
WRITE - — 73 DOS Mismatch
WRITE $0B (11) 29 Disk ID Mismatch
WRITE $08 (8) 26 Write Protect On
WRITE $07 (7) 25 Write-Verify Error
VERIFY $01 (1) 0 OK

Each error is described in greater detail below.

21 READ ERROR [NO SYNC CHARACTER)

The FDC could not find a sync mark (10 or more consecutive on bits) on a given track
within a prescribed 20 millisecond time limit. A time out has occurred.

20 READ ERROR (HEADER BLOCK NOT FOUND)

The FDC could not find a GCR header block identifier ($52) after 90 attempts. The FDC
did a seek to a track and found a synec character. The FDC then read the first GCR
byte immediately following it. This GCR byte was compared against a GCR $52 ($08).
The comparison failed and the try counter was decremented. The FDC waited for another
syne character and tried again. Ninety attempts were made.

27 READ ERROR [CHECKSUM ERROR IN HEADER BLOCK)

The FDC found a header block on that track. This header block was read into RAM
and the GCR bytes were converted back to their original binary form. The FDC then
EORed the sector number, the track number, the ID LO, and the ID HI together. This
independent checksum was EORed against the actual checksum found in the header
block itself. If the result of the EOR was not equal zero, the checksums were not equal.
The comparison failed and the FDC returned a $09 to the error handler.

29 READ ERROR (DISK ID MISMATCH)

The IDs recorded in the header block found above did not match the master copy of
the disk id’s stored in $0012 and $0013. These zero page memory addresses are normal-
ly updated from track 18 during initialization of a diskette. Note that they also can be
updated by a seek to a track from the job queue.

20 READ ERROR (HEADER BLOCK NOT FOUND)

A GCR image of the header was created using the sector number, the track number,
and the master disk IDs. The FDC attempted to find a header on this track that match-
ed the GCR image in RAM for that sector. Ninety attempts were made before this er-
ror was reported.

120

22 READ ERROR [DATA BLOCK NOT PRESENT)

The header block for a given track and sector passed the previous five tests with flying
colors. The FDC found the data block syne mark and read the next 325 GCR bytes into
RAM. These GCR bytes were converted back into 260 8-bit binary bytes. The first decod-

ed 8-bit byte was compared against a preset data block identifier at $0047 and failed
to match. Note this zero page memory address normally contains a $07.

23 READ ERROR ({CHECKSUM ERROR IN DATA BLOCK)

An independent checksum was calculated for the 256 byte data block converted above.
This checksum did not match the actual checksum read from the diskette.

00, OK,00,00

Nothing wrong here.

73 DOS MISMATCH (CBM DOS V2.6 1541)
An attempt was made to write to a diskette with a non-compatible format. The DOS

version stored at location $0101 was not a $41. This memory address is normally up-
dated during initialization by reading byte 2 from track 18, sector 0.

29 READ ERROR ([DISK ID MISMATCH)
Same as 20 READ ERROR above but conflicting id’s were found during a write at-

tempt rather than a read. Repeated occurrance of this error on a standard diskette is
indicative of a seating problem or a slow-burning alignment problem.

26 WRITE PROTECT ON

An attempt was made to write to a diskette while the write protect switch is depress-
ed. Remove the write protect tab from the write protect notch.

25 \XW/RITE-VERIFY ERROR

The contents of the data just written to a sector did not match the data in RAM when
they were read back. This was probably caused by a flaw on the surface of the diskette.
The end result was an unclosed file. Validate the diskette to decorrupt the BAM. (See
Chapter 2.)

00, OK,00,00

Looking good.

121

7.4 Analyzing a Protected Diskette

Bad sectoring is central to any disk protection scheme. In a nutshell, disk protection
involves the deliberate corruption of a given track or sector. The authenticity of a diskette
is often determined by a short loader program that reads the corrupted track or sector.
In essence the FDC or IP error code is a password allowing access to the run time module.
As aresult the loader is extremely protected. If it can be cracked the program is generally
freed from its bonds. This is easier said than done though. A loader is usually rendered
indecipherable (Coda Obscura) through an autostart feature, the use of unimplemented
6502 op codes, encryption, or compilation. Frankly speaking, it’s much easier to go after
the whole disk. The following passages will introduce you to the black art of bit copying.

The appendix contains four routines written specifically to assist in the interrogation
of a diskette. They are:

1. Interrogate Formatting IDs
2. Interrogate a Track

3. Shake, Rattle, and Roll

4. Interrogate a Diskette

These four programs tend to complement one another quite well in actual use. Their
uses and limitations are discussed below.

INTERROGATE FORMATTING ID’S returns the embedded disk ID for each track
using a SEEK. Recall that working the job queue prevents the dreaded BUMP. A seek
to a track is deemed successful by the FDC if at least one intact sector can be found.
The header of said sector is stored in zero page from $0016-$001A.The ASCII equivalents
of the ID HI ($0016) and ID LO.($0017) are read and printed to the CRT if the SEEK
was good. At a glance one can determine if a protected diskette has a blown track or
if it has been formatted with multiple ID’s. This latter scheme is less commonly used
to date. This program will not report the integrity of each individual sector. We have
other routines for that task.

There is one severe drawback to this program as it stands. Occasionally the FDC gets
hung up on a track. The SEEK may continue to attempt to find a sync mark without
timing out. (You must power off the 1541 to recover from this situation.) Experimenta-
tion in interrogating unformatted diskettes has produced the same effect. We surmise
that the track in question was passed over during high-speed duplication. The FDC may
in fact be homing in on a residual bit pattern left over from the manufacturer’s certifica-
tion process. The program has a built-in fail-safe mechanism for this very reason. Please
take note: Lines 110-140 establish an active track array. All tracks are presumed active
at the onset (line 130). Line 240 tests the integrity of the track prior to a seek. If a track
is inactive (its flag equals 0) the track is bypassed and the program will work from start
to finish. Should the need arise simply patch in a line that reads:

145 T{(track number)=0
145 T(17)=0, for example.

If it’s any comfort at all, a loader cannot check the integrity of said track either. The
sole function of such a track is to discourage prying eyes.

122

INTERROGATE A TRACK scans a single track using the job queue. The track is found
with a SEEK and then the integrity of each sector is verified with a READ. IP error
codes are returned to the screen. No BUMP occurs. The routine may occasionally pro-
vide erroneous information. This is a major shortcoming of a READ from the queue.
Certain errors are returned clean as a whistle (22, 23, 27). A partially formatted track
(mid-track 21 error) or a smattering of 20 errors tend to throw the FDC into an absolute
tizzy. Make note of this. Repeated runs of the same track often return a different error
pattern. Errors tend to accumulate when a BUMP is overridden. Solution? See the follow-

ing paragraph.

SHAKE, RATTLE, AND ROLL also scans a single track by using a Ul command rather
than a direct READ from the job queue. The track is still found by a SEEK, however,
to prevent 29 errors in the event that multiple formatting played a part in the protec-
tion scheme. A 29 error is not an error per se. It is merely a stumbling block. A Ul
without a SEEK to a multiple-formatted diskette will report a DISK ID MISMATCH.
Information can be stored on a track with a different ID. A loader will retrieve it by
the same method we’re using here. Errors will force a BUMP so use discretion. Please
note that a full track of 21 errors, 23 errors, or 27 errors does not need to be read with
this routine. After you analyze a track, write the errors down and file your notes away
for archival needs. Your 1541 will love you for it.

INTERROGATE A DISKETTE is the lazy man’s routine. It scans an entire diskette
reporting only bad sectors to the screen. The program is essentially INTERROGATE
A TRACK in aloop. Note that you may have to patch around a track to map the entire
diskette. See the example patch above.

7.5 Duplicating a Protection Scheme

The following table represents the state of the error. The rank order in which errors
tend to crop up on copy protected diskettes are as follows:

21 ERROR (FULL TRACK)

23 ERROR (SINGLE SECTOR)

23 ERROR (FULL TRACK)

20 ERROR (SINGLE SECTOR)

27 ERROR (FULL TRACK)

. 29 ERROR MULTIPLE FORMATTING)
. 22 ERROR (SINGLE SECTOR)

. 21 ERROR (PARTIAL TRACK)

O NS O 0N

Historically speaking, the 21 error (full track) and the 29 error appeared on the scene
concurrently. At the present time, a full track 21 error and a single sector 23 error are
the predominant errors used to corrupt a diskette. These same two errors are also the
easiest to duplicate. The last entry, partial formatting of a track, is the new kid on the
block.

123

The following 13 programs can be used to duplicate a multitude of errors on a diskette.
They are:

File Name Error Number Error Range

21 ERROR 21 FULL TRACK

DESTROY A SECTOR 20, 21 SINGLE SECTOR

23A ERROR 23 SINGLE SECTOR

23B ERROR 23 *SINGLE SECTOR

23M ERROR 23 FULL TRACK

20 ERROR 20 SINGLE SECTOR

20M ERROR 20 FULL TRACK

27M ERROR 27 FULL TRACK

22A ERROR 22 SINGLE SECTOR

22B ERROR 22 *SINGLE SECTOR
FORMAT A DISKETTE 29 MULTIPLE FORMATTING ID’S
BACKUP — SINGLE DRIVE BACKUP
COPY — SINGLE FILE COPY

* Creates an exact duplicate of a bad sector.

Source listings for the machine language routines in these programs are included as
a courtesy to the more advanced reader. The BASIC drivers themselves are nondeseript
and will not be explained in depth. It is assummed that the reader has digested the
sections on beginning and intermediate direct-access programming in Chapters 5 and
6. Algorithms will be briefly mentioned along with any new techniques and/or limita-
tions that apply.

7.6 How to Create 21 Errors on a Full Track
Limitations: None.
Parameters: Track number.

FULL TRACK 21 ERROR

100 REM 21 ERROR - 1541

110 PRINT"{CLR}21 ERROR - 1541"

120 PRINT” {DOWN>XINSERT CLONE IN DRIVE"
130 INPUT" {DOWNI}DESTROY TRACK":T

140 IFT<10RT>35THENEND

150 INPUT"{DOWN>ARE YOU SURE Y<{LEFT 33"
Q%

160 IF@$<>"Y"THENEND

170 OPEN15,8,15

180 PRINT#15,"I10"

124

190 INPUT#15,EN$,EM$,ET$,ES$
200 IFEN$="00"GOT0250

210 PRINT"{DOWN}"EN$", "EM$","ET$","ES$
220 CLOSE1S

230 END

240 REM SEEK

250 JOB=176

260 GOSUB400

270 FORI=0TO23

280 READD

290 D$=D$+CHR%$ (D)

300 NEXTI

310 PRINT#1S, "M~W"CHR$ (0) CHR$ (4) CHR% (24)
D$

320 REM EXECUTE

330 PRINT" (DOWN?} {RVS3>DESTROYING(ROFF} TR
ACK"; T

340 JOB=224

350 GOSUB400

360 PRINT" (DOWNXDONE!'"

370 CLOSE1S

380 END

390 REM JOB QUEUE

400 TRY=0

410 PRINT#15, "M—-W"CHR$ (8) CHR$ (0) CHR$ (2)C
HR$ (T) CHR$ (0)

420 PRINT#15, “M-W"CHR$ (1) CHRS$ (0)CHR$ (1)C
HR$ (JOB)

430 TRY=TRY+1

440 PRINT#15, "M—-R"CHR$ (1) CHR$ (0)

450 GET#15,E$

460 IFE$=""THENE$=CHR% (Q)

470 E=ASC(E$)

480 IFTRY=S00G0OTOS10

490 IFE>127G0T0430

S00 RETURN

S10 CLOSE1S

520 PRINT" {DOWN?} {RVS3FAILED{ROFF3}"

S30 END

540 REM 21 ERROR

SS0 DATA 32,163,253,.169, 85,141, 1, 2

o

560 DATA 162,233,160, 48, 32,201,233, 32

370 DATA 0,254,169, 1, 76,105,249,234

125

FULL TRACK 21 ERROR SOURCE LISTING

100 REM 21.PAL
110 REM

120 OPENZ,8,2,"20:21.B,P,W"
130 REM

140 SYS40960
150 ;

160 .0OPT P,02
170 3

180 *= $0500
190 ;

200 JSR $FDA3
210 LDA #%55
220 STA $1CO1
230 LDX #$FF
240 LDY #$48
250 JSR $FDC9
ES

260 JSR $FEOO
270 LDA #301
280 JMP $F969

ENABLE WRITE
NON SYNC BYTE

- e

WRITE 18432 NON SYNC BYT

-

ENABLE READ

-

Full Track 21 Error Source Annotation

This routine borrows from FORMT ($F AC7). Prior to formatting a track, the FDC erases
it with sync marks ($FDAS3). Experimentation has shown that an RTS from this ROM
entry point would create a track of all 20 errors. Thus we are forced to trace the FORMT
routine a little farther. The subroutine WRTNUM ($FDC3) writes either sync or non-
sync bytes. By entering six bytes into this routine we can establish the number of bytes
it writes. A JSR to $FE00 is necessary to re-enable read mode. Otherwise the write
head is left on and it will erase everything in its path. Note that we LDA #§01, the
FDC error code for OK, and JMP to the error handler at $F969 to exit.

7.7 How to Create a 21 Error on a Single Sector

Limitations: Preceding sector must be intact (See the annotation below).
Parameters: Track and sector number.
DESTROY A SECTOR

100 REM DESTROY A SECTOR - 1541

110 DIMD$(7)

120 PRINT"{CLR}DESTROY A SECTOR — 1541"

130 PRINT"{DOWN} INSERT CLONE IN DRIVE"

140 INPUT" {DOWN3}DESTROY TRACK AND SECTOR
(T,8)";7,S

150 IFT<10RT>3STHENEND

126

160
170
180
0%
190
200
210
220
230
240
230
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
$(J3)
440
450
460
470

NS=204+2%(T>17)+(T>24)+(T>30)
IFS<O0ORS>MSTHENEND
INFUT" {DOWN3}ARE YOU SURE Y{LEFT 33"

IFQ&E<>"Y" THENEND
OFPEN1S5,8,15
PRINT#15,"10"
INPUTH#15,EN$,EM$,.ET$,ES®
IFEN$="00"G0T0280

PRINT" {DOWN3"EN$", "EM$", "ET$", "ES$
CLOSELS

END

REM SEEK

IFS=0THENS=NS: GOTD300
S5=5-1

JOB=176

GOSUBS70

REM READ

JOB=128

GOSUBS70

FORJ3=0T07

FORI=0TQ7

READD
D$(J)=D%(J)+CHR$ (D)
NEXTI

NEXTJ

I=0

FORJ=0TO7

PRINTH#15, "M-W"CHR$ (I)CHR$ (5)CHR$(8)D

I=1+8

NEXTJ

REM EXECUTE

FPRINT#15, "M-W"CHR$(2)CHR$ (0)CHR$(1)C

HR$ (224)

480
490
300
3510
520
93

540
530
560
570
=80

PRINT#15, "M-R"CHR$ (2) CHR$ (O)
GETH#15,E$
IFE$=""THENE$=CHR$ (0)

E=ASC (E$)

IFE»127G0T0480

CLOSE1S

PRINT*" {DOWN3DONE ! *

END

REM JOB QUEUE

TRY=0

PRINT#15, "M-W"CHR$ (8) CHR$ (0) CHR$ (4) C

HR% (T) CHR% (S5)CHR$ (T) CHR$ (5)

590

PRINT#15, "M-W"CHR$ (1) CHR$ (O)CHR$ (1) C

HR% (JOB)

600

TRY=TRY+1

127

610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790

PRINT#15, "M-R"CHR$ (1) CHR$ (0)

GET#15,E$

IFE$=""THENE$=CHR$ (0)

E=ASC(E$)
IFTRY=500G0T0&80
IFE>127G0T0600
IFE=1THENRETURN
CLOSE1S

PRINT" {DOWN?} {RVS
END

REM DESTROY A SE
DATA 32, 16,245,
DATA 80,254,184,
DATA 80,254,184,
DATA141, 3, 28,
DATA 9,192,141,
DATA 85, 80,254,
DATAZ208,247, 80,
DATA 1, 76,105,

JFAILED{ROFF>"

CTOR
32, 86,245,162, O
202,208, 250,162, 69
202,208,250, 169,25
173, 12, 28, 41, 31
12, 28,162, 0,169
184,141, 1, 28,202
254, 32, 0,254,169
249,234,234,234,23

SINGLE SECTOR 21 ERROR SOURCE LISTING

100
i1t0
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

REM DAS.PAL
REM

OPENZ2,8,2, "@0:DAS.B, P, W"

REM
8SYS540960

1

.OPT P,02

s

#= $0500

2
JSR $FS510

FIND HEADER

H
JSR $F556 3 FIND SYNC

s WAIT OUT DATA *

s

LDX #$00

READ1 BVC READ1
cLv

DEX

BNE READ1

L]

LDX #3$45

READ2 BVYC READ2
cLv

DEX

BNE READZ2

’
LDA #$FF 3 DATA

DIRECTION 0OUT

128

380 STA $1C03

390 LDA %1COC; ENABLE WRITE MODE
400 AND #s$1F

410 ORA #3$CO

420 STA $1COC

430 ;

440 LDX #$00

450 LDA #%55

460 WRITE1 BVC WRITE1

470 CLV

480 STA $1C01

490 DEX

S00 BNE WRITE1

510 3

520 WRITEZ BVC WRITEZ2

530 ;

540 JSR $FEOO ; ENABLE READ MODE
550 3

560 LDA #%01

S70 JMP $F969

Single Sector 21 Error Source Annotation

This routine finds the preceding sector and syncs up to its data block (lines 200-210).
Lines 250-350 wait out 325 GCR bytes. We flip to write in lines 370-420 and write out
256 non-sync bytes. This overwrites both sync marks of the sector that was input. This
routine will create a 20 error on a single sector as it stands. By serendipity, it has a
unique side effect. If two consecutive sectors are destroyed we get a 21 error on both
of them. The FDC times out trying to find one or the other or both. Caution must be
used when spanning a sector range. To duplicate the following scheme we must destroy
sector 0 first followed by sectors 20, 19, and 18 respectively.

Sector Error Number
0 21
1-17 OK
18 - 20 21

Repeat. This routine will not create a 21 error on a single sector per se. Two consecutive
sectors must be destroyed.

7.8 How to Create a 23 Error on a Single Sector
Limitations: None.

Parameters: Track and sector number.

129

SINGLE SECTOR 23 ERROR

100
110
120
130
140
(T,
150
160
170
180
;0%
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
$(J)
420
430
440
450

REM 23A ERROR - 1541

DIMD$(11)

PRINT"{CLR>}23 ERRUOR - 1541"

PRINT" {DOWN3> INSERT CLONE IN DRIVE"

INPUT" {DOWN3}DESTROY TRACK AND SECTOR
s)";T,S

IFT< 10RT >3STHENEND
NS=20+2% (T>17) +(T>24) +(T>30)

IFS< 00RS >NSTHENEND

INFUT" {DOWNYARE YOU SURE Y{LEFT 33"

IFQ$< >"Y" THENEND
OFEN15,8,15
FPRINT#15,"10"
INPUTH#15,EN$,EM$,ET$,ESS
IFEN$="00"G0T0280

PRINT" {DOWN>"EN$", "EM$","ETs$","ES%
CLOSELS

END

REM SEEK

JOB=176

GOsUBSS50

REM READ

JOB=128

GOSUBSSO

FORJ=0TO11

FORI=0TO7

READD
D$(J)=D%(J)+CHR% (D)
NEXTI

NEXTJ

I=0

FORJ=0TO11

PRINT#15, "M-W"CHR$ (1) CHR$ (5) CHR$(8)D

I=1I+8

NEXTJ

REM EXECUTE

PRINT#15, "M-W"CHR% (2)CHR$ (Q)CHR$ (1) C

HR$ (224)

460
470
480
490
S00
510
520
530

PRINT#15, "M-R"CHR%$ (2) CHR$ (Q)
GET#15,E%
IFE$=""THENE$=CHR$ (0)

E=ASC (E$)

IFE>12760T0460

CLOSE15

PRINT" {DOWN>DONE!"

END

130

540 REM J0OB QUEUE

S50 TRY=0

560 PRINTH#15, "M-W"CHR$% (B)CHR$ (0)CHR$(4)C
HR$ (T)CHR$ (S)CHR$ (T) CHR$ (S)
S70 FRINT#1S, "M-W"CHR$ (1)CHR$ (W) CHR$(1)C

HR$ (JOB)

580 TRY=TRY+1

S90 PRINT#15, "M—-R"CHR$ (1) CHR$ (0)

600 GET#15,E%

610 IFE$=""THENE$=CHR$ (0)

620 E=ASC(E$)

630 IFTRY=S00GOT0660

640 IFE>127G0OTDS80

650 RETURN

660 CLOSE1S

670 PRINT" {DOWN3> {RVS3FAILED{ROFF3"

680 END

690 REM 23 ERROR

700 DATA 169, 4,133, 49,165, 58,170,232
710 DATA 138,133, S8, 32,143,247, 32, 16
720 DATA 245,162, 8, 80,254,184,202,208
730 DATA 250,169,255.141, 3, 28,173, 12
740 DATA 28, 41, 31, 9,192,141, 12, 28
750 DATA 169,255,162, S.141, 1, 28,184
760 DATA 80,254,184,202,208,250,160,187
770 DATA 185, o0, 1, 80,254,184,141, 1
780 DATA 28,200,208,244,185, O, 4, 80
790 DATA 254,184,141, 1, 28.7200,208,244
800 DATA 80,254, 32, 0,254,169, 5,133
810 DATA 49,169, 1, 76,105,249,234,234

SINGLE SECTOR 23 ERROR SOURCE LISTING

100
110
120
130
140
1350

REM 23A.FAL

REM

OFEN2,8, 2, "@0: 23A.B, P, W"

REM

SYS40960

’

131

160 .0OPT P,02
170 3
180 *= $0500
190 ;
200 LDA #$04
210 STA $31
220 3
230 LDA $3A
240 TAX
250 INX
CHECKSUM
260 TXA
270 STA $3A
280 3
290 JSR $F78F
GCR
300 JSR $FS10
#
310 ;
320 LDX #$08
330 WAITGAP BVC WAITGAP
AP
340 CLV
350 DEX
360 BNE WAITGAP
370 ;3
380 LDA #$FF
TE
390 STA $1CO03
400 LDA $1COC
410 AND #$1F
420 ORA #$CO
430 STA $1CCC
440 LDA #$FF
450 LDX #$05
460 STA $1CO1
470 CLV
480 WRITESYNC BVC WRITESYNC
490 CLV
S00 DEX
510 BNE WRITESYNC
520 3
530 LDY #$BR
S40 OVERFLOW LDA $0100,Y ; WRITE OUT
OVERFLOW BUFFER
550 WAIT1 BVC WAITI
S60 CLV
570 STA $1CO1
580 INY
590 BNE OVERFLOW

INCREMENT

CONVERT TO

FIND HEADER

-a

WAIT OUT G

e

EMABLE WRI

132

600 BUFFER LDA $0400,Y 5 WRITE OUT
BUFFER

610 WAIT2 BVC WAIT2

620 CLV

630 STA $1C01

640 INY

650 BNE BUFFER

660 WAIT3I BVC WAIT3

670 3§

680 JSR $FEQOQO s ENABLE REA
D

690 3

9
700 LDA #%$05
710 STA %31
720 LDA #%$01
730 JMP $F26%

Single Sector 23 Error Source Annotation

This routine borrows from WRIGHT ($F56E). Our entry point is 12 bytes into the routine.
This bypasses the write protect test and the computation of the checksum. The driver
routine reads the sector into $0400-$04FF. Lines 200-210 of the source listing set the
indirect buffer pointer to this workspace. The checksum is next incremented at $003A.
Buffer number 1 is converted to GCR form. Recall that 260 data bytes are converted
into 325 8-bit GCR bytes. More than one buffer is used to store the GCR image. The
first 69 GCR bytes are stored in an overflow buffer at $01BB-$01FF. The remaining
256 bytes are found at $0400-$04FF. We sync up to the appropriate sector in line 300,
count off the eight byte header gap, and flip to write mode. Five $FFs are then written
to disk (the sync mark) followed first by the overflow buffer and then the regular buf-
fer. We restore the indirect buffer pointer at $0031 to a $05 and jump to the error handler
with a $01 in hand.

7.9 How to Duplicate a 23 Error on a Single Sector
Limitations: None (Requires disk swapping).

Parameters: Track and sector number.

DUPLICATE A SINGLE SECTOR 23 ERROR

100 REM DUPLICATE A 23 ERROR - 1541
110 DIMD$% (1)
120 PRINT" {CLR3}DUPLICATE A 23 ERROR - 15

41"
130 PRINT" {DOWN} INSERT MASTER DISKETTE I
N DRIVE"
140 INPUT" {DOWN}READ TRACK AND SECTOR (T
,$)"3T,S

150 IFT<10RT>3STHENEND

133

160
170
180
Q%
190
200
21Q
220
230
240
250
260
270
280
290
300
310
320
330
340
350

NS=2042% (T>17)+(T>24) +(T>30)
IFS<00ORS>NSTHENEND
INPUT" {DOWNXARE YOU SURE Y{LEFT 33"

IF@$< >"Y" THENEND

OPEN15,8, 15

PRINT#15,"10"
INPUT#15,EN$,EM$,ET$,ES$
IFEN$="00"GOTO280

PRINT" {DOWN3}"EN$", "“EM$","ET$", "ES$
CLOSE15S

END

REM SEEK

JOB=176

GOSUB&SO

REM READ

JOB=128

GOSUB650

CLOSE1S

PRINT" {DOWN3IMSERT CLONE IN DRIVE"
PRINT" {DOWN}FRESS {RVSI}RETURN{ROFF}

TO CONTINUE"

360
370
380
390
400
410
420
430
4430
430
460
470
480
490
S00
510
$(J)
520
530
540
550

GETC$: IFC$=""THEN360
IFC$< >CHR$ (13) GOTO360
PRINT"OK"

OFEN15,8,15

REM SEEK

JOB=176

GOSUB6S50

FORJ=0TO10

FORI=0TO7

READD

D$(J)=D% (J)+CHR$ (D)
NEXTI

NEXTJ

I=0

FORJ=0TO10

FRINT#15, "M—-W"CHR$ (I)CHR$ (S)CHR$(8)D

I=1+8

NEXTJ

REM EXECUTE

PRINT#15, "M-W"CHR$ (2)CHR$ (0)CHR$ (1) C

HR$ (224)

560
S70
580
590
600
610

PRINT#15, "M-R"CHR$ (2) CHR% (O)
GET#15,E%
IFE$=""THENE$=CHRS (0)
E=ASC(E$)

IFE»>12760T0S60

CLOSELS

134

620 PRINT" {DOWN3}DONE! "

630 END

640 REM JOB QUEUE

650 TRY=0

660 PRINT#15, "M—W"CHR$ (8) CHR$ (Q) CHR$ (4)C
HR$ (T) CHR$ (S) CHR$ (T) CHR$ (S)

670 PRINT#15, "M-W"CHR$ (1) CHR$ (0)CHR$ (1)C
HR$ (JOB)

680 TRY=TRY+1

690 PRINT#15, "M—R"CHRS$ (1) CHR$ (0)

700 GET#15,E$

710 IFE$="*"THENE$=CHR$ (O)

720 E=ASC(E$)

730 IFTRY=S00G0TO760

740 IFE>127G0T0680

750 RETURN

760 PRINT" {DOWN}FAILED"

770 CLOSE1S

780 END

790 REM DUPLICATE A SECTOR

800 DATA 169, 4,133, 49, 32,143,247, 32

810 DATA 16,245,162, 8, 80,254,184,202
820 DATA 208,250,169,255,141, 3, 28,173
830 DATA 12, 28, 41, 31, 9,192,141, 12
840 DATA 28,169,255,162, S,141, 1, 28
850 DATA 184, 80,254,184,202,208,250, 160
860 DATA 187,185, O, 1, 80,254,184,141
870 DATA 1, 28,200,208,244,185, 0, 4
880 DATA 80,254,184,141, 1, 28,200,208
890 DATA 244, 80,254, 32, 0,254,169, 5
900 DATA 133, 49,169, 1, 76,105,249,234
DUPLICATE A SINGLE SECTOR 23 ERROR SOURCE LISTING
100 REM 23B.PAL

110 REM

120 OPENZ,8,2,"@0:23B.B,P,W"

130 REM

140 SYS540960
150 3

135

160
170
180
190
200
210
220
230

GCR

240
#
250
260
270
AP
280
290
300
310
320
TE
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

.OPT P,02

%= $0500

H
LDA
STA
3
JSR
JSR

’
LDX

#404
$31

$F78F

$FS510

#408

WAITGAP BVC WAITGAP

CcLv
DEX
BNE

LDA

STA
LDA
AND
ORA
STA
LDA
LDX
STA
cLvV

WAITGAP

HEFF

$1C03
$1COC
#E1F
#$CO
$1C0C
HS$FF
#4005
$1C0O1

-

-a

WRITESYNC BVC WRITESYNC

cLv
DEX
BNE
5

LDY

OVERFLOW LDA $0100,Y

WRITESYNC

#+BB

OVERFLOW BUFFER
WAIT:T BVC WAIT1

490
500
510
520
530
540

550
560
370
580
S90

cLv
STA
INY

$1CO1

BNE OVERFLOW

BUFFER LDA $0400,Y
BUFFER
WAIT2Z2 BVC WAITZ2

cLv
STA
INY
BNE

$1C01

BUFFER

H

136

CONVERT TO

FIND HEADER

WAIT OUT G

ENABLE WRI

WRITE OUT

WRITE OUT

600 WAIT3 BVC WAITS3

610 3§

620 JSR $FEQO 3 ENABLE REA
D

630 3

640 LDA #$05

650 STA $31

660 LDA #%01

670 IMF $F969

Duplicate a Single Sector 23 Error Source Annotation

Identical to the 23A.PAL file with one exception. The checksum is left intact after a
corrupted data block is read from the master using the job queue. The sector is stored
at $0400-$04FF and the checksum at $003A. The checksum is not recalculated or in-
cremented. The entire sector and its checksum are rewritten to the clone.

7.10 How to Create 23 Errors on a Full Track

Limitations: None.
Parameters: Track number.

FULL TRACK 23 ERROR

100 REM 23M ERROR - 1541
110 DIMD$(11)
120 PRINT"{CLR>MULTIPLE 23 ERROR - 1541"

130 PRINT" {DOWN> INSERT CLONE IN DRIVE"
140 INPUT"” {DOWNJDESTROY TRACK"3

150 IFT<10RT>35THENEND

160 INPUT" {DOWN>ARE YOU SURE VY{LEFT 33"
;0%

170 IFQ$<>"Y"THENEND

180 OPEN15,8.15

190 PRINT#15,"I0"

200 INPUT#15,EN$,EM$,ET$,ESS

210 IFEN$="00"GOTO260

220 FRINT" {DOWN3"EN$", "EM$","ET$","ESS$
230 CLOSELS

240 END

250 REM SEEK

260 JOB=176

270 GOSUBS80

280 NS=20+2%(T>17)+(T2>24)+(T>3Q)

290 FORS=0TONS

300 REM READ

310 J0B=128

137

320 GOSUBSS0

330 IFS>060T0460

340 FORJ=0TO11

350 FORI=0TO7

360 READD

370 D% (J)=D% (J) +CHR$ (D)

380 NEXTI

390 NEXTJ

400 1=0

410 FORJ=0TO11

420 PRINT#15S, "M-W"CHR$ (1) CHR$ (5)CHR$ (8)D
$(J)

430 I=1+8

440 NEXTJ

450 REM EXECUTE

460 PRINT" {HOMEZ {DOWN 83 {RVS}DESTROYING{
ROFF} TRACK"T"— SECTOR"S

470 PRINT#15, "M—W"CHR$ (2) CHR$ (0) CHR$ (1) C
HR$ (224)

480 PRINT#15, "M-R"CHR$ (2) CHR$ (0)

490 GET#15,E$

500 IFE$=""THENE$=CHR$ (0)

S10 E=ASC(E$)

520 IFE>127G0T0480

S30 NEXTS

S40 CLOSE1S

S50 FRINT" {HOME? {DOWN 83 DONE!

S60 END

570 REM JOB QUEUE

S80 TRY=0

S90 PRINT#1S. "M-W"CHR$ (8) CHR$ (0) CHR$ (4)C
HR$ (T) CHR$ (S) CHR$ (T) CHR$ (S)

600 PRINTH#1S, “M—W"CHR$ (1) CHR$ (0) CHR$ (1)C
HR$ (JOB)

610 TRY=TRY+1

620 PRINT#15, "M-R"CHR$ (1) CHR$ (0)

630 GETH#15,E$

640 IFE$=""THENE$=CHR$ (0)

650 E=ASC(E$)

660 IFTRY=500G0T0690

670 IFE>12760T0610

680 RETURN

690 CLOSE1S

700 PRINT" {DOWN? {RVS3}FAILED{ROFF3}"

710 END

720 REM 23 ERROR

730 DATA 169, 4,133, 49,165, 58,170,232

740 DATA 138,133, S8, 32,143,247, 32, 16

138

750 DATA 245,162, 8, 80,254,184,202,208
760 DATA 250,169,255,141, 3, 28,173, 12
770 DATA 28, 41, 31, 9,192,141, 12, 28
780 DATA 169,255,162, 5,141, 1, 28,184
790 DATA 80,254, 184,202,208,250,160,187
800 DATA 185, 0, 1, 80,254,184,141, 1
810 DATA 28,200,208,244,185, O, 4, 80
820 DATA 254,184,141, 1, 28,200,208,244

830 DATA 80,254, 32, 0,254,169, 5,133

840 DATA 49,169, 1,133, 2, 76,117,249
FULL TRACK 23 ERROR SOURCE LISTING

100 REM 23M.PAL
110 REM

120 OPEN2,8,2,"@0:23M.B,P,W"
130 REM

140 SYS40960
150 ;

160 .OPT P,02
170 ;

180 *= $0500
190 3

200 LDA #$04
210 STA $31
220 ;3

230 LDA $3A
240 TAX

250 INX

CKSUM

260 TXA

270 STA $3A
280 ;

290 JSR $F78F
R

300 JSR $FS510
310 3

320 LDX #$08
330 WAITGAF BVC WAITGAP
340 CLV

350 DEX

INCREMENT CHE

Nap

CONVERT TO GC

FIND HEADER

WAIT OUT GAF

L 1]

139

360 BNE WAITGAF

370 3

380 LDA #$FF 5 ENABLE WRITE
390 STA $1C03

400 LDA $1COC

410 AND #$1F

420 ORA #$CO

430 STA $1COC

440 LDA #$FF

450 LDX #%05

460 5TA $1CO1

470 CLV

480 WRITESYMNC BVC WRITESYNC

490 CLV

S00 DEX

510 BNE WRITESYNC

S20 3

930 LDY #$BB

540 OVERFLOW LDA $0100,Y 3 WRITE OUT OVE
RFLOW BUFFER

S50 WAIT1 BVC WAITH
960 CLV

970 STA $1CO1

S80 INY

SS90 BNE OVERFLOW
600 BUFFER LDA $0400,Y
FER

610 WAITZ BVC WAIT2
620 CLV

630 STA $1C01

640 INY

650 BNE BUFFER

660 WAITI BVC WAITI
&70 3

680 JSR $FEQOQ s ENABLE READ
620 3

700 LDA #%05

710 STA %31

720 LDA #%$01

730 STA €02

740 JIMP $F97S

WRITE OUT BRUF

-

Full Track 23 Error Source Annotation

See the annotation for 23A.PAL. The BASIC driver loops to do all sectors on a given
track.

140

7.11 How to Create a 20 Error on a Single Sector

Limitations: Preceding sector must be intact.

(See the annotation for a single sector 21 error)

Parameters: Track and sector number.

SINGLE SECTOR 20 ERROR

100
110
120
130
140
(T,
150
160
170
180
0%
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
$(J)
430
450
460
470

REM 20 ERROR - 1541
DIMD$(11)

PRINT"{CLR}20 ERROR - 1541"

PRINT" {DOWN> INSERT CLONE IN DRIVE"
INPUT" {DOWN3DESTROY TRACK AND SECTOR
$)";T,S

IFT<10RT >3STHENEND
NS=20+2% (T>17) +(T>24) +(T>30)
IFS<O00RS >NSTHENEND

INPUT" {DOWN3ARE YOU SURE Y{LEFT 33"

IFQ$< >"Y " THEMEND
OPEN15,8,15

PRINT#1S, "10"
INPUT#15,EN$,EM$,ET$,ES$
IFEN$="00"G0OTOZ80

PRINT" (DOWN3} "EN$", "EM$","ET$","ES$
CLOSE15S

END

REM SEEK

IFS=0THENS=NS: GOTO300

S=5-1

JOB=176

GOSUBS70

REM READ

JOB=128

BOSUBS70

FORJ=0TO11

FORI=0TO7

READD

D$ (J) =D% (J) +CHR$ (D)

NEXTI

NEXTJ

1=0

FORJ=0TO11

PRINT#1S, "M~W"CHR$ (1) CHR$ (5) CHR$ (8) D

I=1+8

NEXTJ

REM EXECUTE

FRINT#13, "M-W"CHR$ (2)CHR$ () CHR$ (1) C

HR$ (224)

141

480
490
500
510
520
5930
540
250
560
570
580

FRINT#1S, "M-R"CHR$ (2) CHR$ (0)
GET#15,E$
IFE$=""THEMNE$=CHR%$ (0Q)
E=ASC(E%)

IFE>12760T0480

CLOSELS

PRINT” {DOWN3DONE!'"

END

REM JOEB GQUEUE

TRY=0

FRINTH#15, "M-W"CHR$ (8) CHR$ (0)CHR$ (4) C
HR$ (T) CHR$ (5) CHR% (T) CHR$ (S)
S0 PRINT#15, "M-W"CHR$ (1)CHR$(0)CHR+(1)C

31,144

80,254

HR$ (JOB)

600 TRY=TRY+1

610 FRINT#15, "M~R"CHR%$ (1) CHR$ (0)

620 GET#15,E$

630 IFE$="*"THENE$=CHR% (0)

640 E=ASC(E$)

650 IFTRY=500G0T0680

660 IFE>127GOTD600

670 IFE=1THENRETURM

680 CLOSE1S

690 PRINT" {DOWN3} {RVS3}FAILED{ROFF3"

700 END

710 REM 20 ERROR

720 DATA 32, 16,245, 32, 86,245,160, 20
730 DATA 165, 25,201, 18,144, 12,136,136
740 DATA 201, 25,144, 6,136,201,

750 DATA 1,136,230, 24,197, 24,144, 6
760 DATA 240, 4,169, 0,133, 25,169, O
770 DATA &9, 22, 69, 23, &9, 24,

780 DATA 133, 26, 32, 52,249, 32,

790 DATA 169,255,141, 3, 28,173,

800 DATA 41, 31, 9,192,141, 12,

810 DATA 0,181, 36, 80,254,184,141, 1
820 DATA 28,232,224, 8,208,243,

830

DATA 32, 0,254,169, 1, 76,105,249

142

SINGLE SECTOR 20 ERROR SOURCE LISTING

100 REM 20.PAL

110 REM

120 OPENZ,8,2,"@0:20.B,P,W"

130 REM

140 SYS40960

150 ;

160 .OPT P,02

170 ;

180 *= $0500

190 3

200 JSR 3FS10 i FIND HEADER BLOC
K

210 JSR $FSS6 ; FIND DATA BLOCK
220 ;

’
230 LDY #%$14
240 LDA $19
250 CMP #3%12
260 BCC ZONE
270 DEY
280 DEY
290 CMP #4129
300 RCC ZONE
310 DEY
320 CMP #$1F
330 RCC ZONE
340 DEY
350 ZONE INC $18
360 CHMP %18
370 BCC HEADER
380 BERQ HEADER
320 LDA #%00
400 STA %19
410 ;
420 HEADER LDA #$00
430 EOR $16
440 EOR %17
450 EOR #18
460 EOR %19
470 STA $1A

480 5

490 JSR $F934 5 CREATE NEW HEADER
IMAGE

S00 JSR $FSS6 i FIND HEADER BLOC
K

510 LDA #$FF 3 WRITE MODE

520 STA $1C03
530 LDA $1C0C
540 AND #%1F

143

530 ORA #s$CO
560 S5TA %1CoC
S70 LDX #$00
580 WRITE LDA $0024,X
590 WAIT1 BVC WAIT1
600 CLV
610 STA $1C01
620 INX
J0 CFX #+08
640 EBNE WRITE
630 WAITZ BVC WAIT2
660 3
670 JSR $FEQO s READ MODE
680 3
690 LDA #%01
700 JIMP $F969

Single Sector 20 Error Source Annotation

This routine represents a halfhearted attempt to rewrite a header. It is dependent upon
the preceding sector being intact. Lines 200-210 sync up to the preceding header and
data block. Lines 230-400 calculate the next sector in the zone. A header image for the
sector is created in RAM at $0024-$002C. We sync up one more time which positions
us to the start of the header block we want to destroy. We flip to write mode and rewrite
the header. We are coming in just a shade too slow and create enough noise at the end
of the sync mark to destroy the actual header block identifier. (Tweaking the internal
clock reveals that the header was completely rewritten.) If the tail gap was a constant
length our task would be analogous to rewriting a sector where the FDC syncs up to
a header block, reads the header, and counts off eight bytes. We would similarly sync
up to a data block, count off 325 GCR bytes, then count off the tail gap, and flip to write
mode. However, it is virtually impossible to gauge the length of the tail gap, so we’re
stuck. Rest assured, though. It still gets the job done.

7.12 How to Create 20 Errors on a Full Track

Limitations: None.
Parameters: Track number.

FULL TRACK 20 ERROR

100 REM 2Z0M ERROR - 1541
110 DIMD$ (24)
120 PRINT" {CLR>MULTIFLE 20 ERROR - 1541"

130 PRINT" {DOWN>INSERT CLONE IN DRIVE"
140 INPUT" {DOWN>DESTROY TRACK"ST

150 IFT<10RT>ISTHENEND

160 INPUT" {DOWNXARE YOU SURE Y{LEFT 33"
s 0%

144

170 IFQ$<>"Y" THENEND

180 OPEN15,8,15

190 PRINTH#15,"10"

200 INPUT#15,EN$,EM$,ET$,ES$

210 IFEN$="00"GOTOZ60

220 PRINT" {DOWN}"EN$", “EM$","ET$","ES$

230 CLOSE15S

240 END

250 REM SEEK

260 NS=20+2%(T>17)+(T>24) +(T>30)

270 S=NS

280 JOB=176

290 GOSUBSS0

300 FORI=OTOZ23

310 READD

320 D$=D%+CHR$ (D)

330 I$=I$+CHR$ (0)

340 NEXTI

350 PRINT#15, "M~W"CHRS$ (0) CHR$ (6) CHR® (24)
D$

360 REM EXECUTE

370 PRINT" {DOWN3} {RVS}DESTROYING{ROFF} TR
ACK "3

380 JOB=224

390 GOSUBSS80

400 PRINTH#15, "M-W"CHR$ (0) CHR$ (6) CHR$ (24)
I$

410 FORJ=0TDZ24

420 FORI=0TO7

430 READD

440 D% (J)=D$% (J) +CHR$ (D)

450 NEXTI

460 NEXTJ

470 1=0

480 FORJ=0T024

490 PRINTH#15,"M—-W"CHR%$ (I)CHR$ (4) CHR$(8)D
$(J)

S00 I=I+8

510 NEXTJ

520 REM EXECUTE

530 PRINT#15, "M—E"CHR% (O) CHR$ (4)

540 CLOSE1S

550 PRINT" {DOWN23DONE!"

S60 END

S70 REM JOB QUEUE

80 TRY=0

590 PRINT#15, "M-W"CHR$ (12) CHR$ (0) CHR$ (2)
CHR$ (T) CHR$ (S)

600 PRINT#15, "M-W"CHR$ (3) CHR$ (0)CHR$(1)C
HR$ (JOB)

145

610
620
630
640
650
660
670
680
6920
700
710
720

30

740

7350

760
770
780
790
800
B810Q
820
830
840
850
860
870
880
820
00
?10
20

20
240
950
60
P70
280
20

TRY=TRY+1

PRINT#15, "M-R"CHR$ (3) CHR$ (0)
GET#15,E$
IFE$=""THENE$=CHR$ (0)
E=ASC(E$)

IFTRY=S00G0T0690
IFE>12760T0610

RETURN

CLOSE1S

PRINT" {DOWN3 {RVS3IFAILED{ROFF 3"
END

REM 21 ERROR

DATA 32,163,253,169, 85,141, 1, 28

DATA 162,255,160, 48, 32,201,253, 32
DATA 0,254,169, 1, 76,105,249,23

REM 20M ERROR

DATA169, ©0,133,127.166, 12,134, 81
DATA134,128, 166, 13,232,134, 67,169
DATA 1,141, 32, 6,169, 8,141, 38
DATA 6,169, 0,141, 40, 6, 32, O
DATA193,162, 0,169, 9,157. ©, 3
DATAZ232,232,173, 40, 6,157, 0, 3
DATA232,165, 81.157, O, 3,232,169
DATA 0,157, ©, 3,232,157. ©, 3
DATAZ32,169, 15,157, O, 232,157
DATA 0, 3,232,169, 0, 93,250.
DATA 93,251, 2. 93,252. 2, 93,253
DATA 2,157,249, 2,238, 40, 6,173
DATA 40, 6,197, 67,208,189,138, 72
DATA169, 75,141, O, 5,162, 1,138
DATA157, ©O. 5,232,7208,250,169, O
DATA133, 48,169, 3,133, 49, 32, 48
DATAZS4,104,168,136, 32,229,253, 32
DATA245,253, 169, 5,133, 49, 32,233
DATA24S5,133, S8, 32,143,247,169, 35
DATA133, 81,169,169,141, O, 6,169
DATA S,141, 1, 6,169,133,141, 2
DATA 6,169, 49,141, 3, 6,169, 76
DATA141, 4, 6,169,170,141, S, 6

A

1000 DATA169,252,141, 6, 6,169,224,133

1010 DATA 3,165, 3, 48,252, 76,148,193

146

FULL TRACK 20 ERROR SOURCE LISTING

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
330
5S40
330
560
S70

REM
REM

20M. FPAL

OPEN2,8,2, "@0:20M.B, P, W"

REM

SYS540960

.OPT P,02

* e
]

-s ae ‘49
*

LDA
STA
LDX
STX
STX
LDX
INX
STX
LDA
STA
LDA
STA
LDA
STA

.
JSR

C IR

LDX

HEADER LDA #%09

STA
INX
INX
LDA
STA
INX
LDA
STA
INX
LDA
STA
INX
STA
INX
LDA

$0400

INITIALIZATION

#$00
$7F
$0C
$351
$80
$0D

$43
#4601
$0620
#$08
$Q626
#$00
$0628

1)

$C100 5

i ®* CREATE HEADERS

#$00

$0300, X

an

$0628
$0300, X

-a

$51
$0Z00, X

-e

#$00
$0300, X

$0300, X

#SOF

*

TAIL GAP

SECTOR COUNTER

LED ON

*

HBID

CHECKSUM

SECTOR

TRACK

IDL

IDH

147

580
390
600
610
620
630
640
650
660

670
680

690
700
710
720
730
740
730
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
210
Q20
9?30
240
950
260
970
280
20
1000
1010
1020
1030
1040
1050
1060
1070

STA
INX
STA
INX
LDA
EOR
EOR

EOR

EOR
STA

’

INC
LDA
CMP
BNE
3

TXA
PHA

s

3 * CREATE DATA =

s

LDA
STA
LDX
TXA

DATA STA $0500, X

INX
BNE

$0300, X

$0300, X

#$00
$02FA, X
$02FB, X
$02FC, X
$02FD, X
$02F9, X

$0628
$0628
$43
HEADER

#44B
$0500
#$01

DATA

GAF

GAP

COMPUTE CHECKSUM

1541 FORMAT

1541 FORMAT

s * CONVERT TO GCR *

LDA
STA
LDA
STA
JSR
PLA
TAY
DEY
JSK
JSR
L.DA
STA
JSR
STA
JSR

‘40 ea ‘@

#4$00
$30
#$03
$31
$FEZO

$FDES

$FDFS
#$05
+31
+FSE?
$3A
sF78F

* JUMP INSTRUCTION =%

148

1080 LDA #$23
10920 STA %51
1100 3

1110 LDA #%A9
1120 STA $0600
1130 LDA #$0S5
1140 STA $0601
1150 LDA #$85
1160 STA $0602
1170 LDA #%$31
1180 STA $0603%
1190 LDA #$4C
1200 STA $0604
1210 LDA #$AA
1220 STA $0605
1230 LDA #$FC
1240 STA $Q0606
1250 3

1260 LLDA #$EO
1270 STA $03
1280 3

1290 WAIT LDA 403
1300 BMI WAIT
1310 ;

1320 IJMP $C194

Full Track 20 Error Source Annotation

This routine has a real surprise in store. Initialization in lines 220-290 sets the drive
number to 0 ($007F) rather than rely on a default. The track is read from the header
table location $000C and stored at $0051. (Recall that the driver set up the header table.)
This memory location normally contains an $FF at powerup to let the drive know that
formatting has not yet begun. We must reset it to the active track, or the drive will
do a BUMP to track one to start the format. Similarly, we read the sector range from
$000D, incremented this number to obtain a sector total for the track, and stored it at
$0043. Line 300 is our try counter. Normally the drive makes 10 attempts to format
a single track. We either get it right the first time or give up. (The driver erases the
track as a safeguard.) We cannot allow the FDC to reattempt to format the track because
it will bypass our machine language routine and re-enter the standard ROM routine.
Lines 310-330 arbitrarily sets the tail gap to eight bytes in length. This avoids duplicating
245 bytes of code from $FB1D to $FC12. RAM is at a dire premium and we have neither
the overhead nor the desire.

Next we turn on the LED for cosmetic purposes (line 370) and build our header table
and a dummy data block (lines 410-860). We incremented the data block identifier in
line 420. Binary to GCR conversion is done in lines 900-1040. Now for the jump instruc-
tion. First we reset the track number to 35 (lines 1080-1090) to let the FDC think that
this is the last track of a normal format. Why? We will be passing control to a standard
ROM routine in a minute and will let the FDC execute it. In other words, we are going
to work the 6502 in both IP and FDC modes. Formatting is done as a single job; one

149

track at a time. When a track is formatted the FDC looks at $0051 to see if 35 tracks
have been done. If not, it increments $0051 and does the next track as another discrete
job. The IP is going to wait for the FDC to reformat the track and then retake control.
We store the indirect buffer pointer to our data block buffer and a jump to $FCAA at
$0600. This ensures that the data block will not be lost in the ensuing shuffle. We then
set up the job queue for an execute of buffer number 3 ($0600) and away we go. The
IP monitors the FDC while it is reformatting the track. (Not only that, but the FDC
will verify the track to ensure that it was reformatted incorrectly!) When bit seven of
the job code ($E0) goes low, the IP wrestles control away from the FDC and jumps
to ENDCMD ($C194) to terminate the routine. DOS ist gut!

7.13 How to Create 27 Errors on a Full Track

Limitations: None.
Parameters: Track number.
FULL TRACK 27 ERROR

100 REM 27M ERROR - 1341
110 DIMD$(23)
120 PRINT"{CLRIMULTIFLE 27 ERROR - 1341"

130 PRINT" {DOWN3} INSERT CLONE IN DRIVE"
140 INPUT" {DOWN}DESTROY TRACK":T

150 IFT<10RT>3STHENEND

160 INFUT" {DOWN}ARE YOU SURE Y{LEFT 33*
3 0%

170 IF@$<>"Y" THENEND

180 DOPEN15,8,15

190 PRINT#15," 10"

200 INPUTH#15,EN$,EM$,ET$,ESS

210 IFEN$="00"GOT0260

220 PRINT" {DOWN}"EN$", "EM$","ET$","ES$
230 CLOSE1S

240 END

250 REM SEEK

260 NS=20+2% (T>17)+(T>24) + (T>30)

270 S=NS

280 JOB=176

290 GOSUBSS0

300 FORI=0TOZ3

310 READD

320 D$=D$+CHR$ (D)

330 I$=I%$+CHR$ (0)

340 NEXTI

350 PRINT#1S, "M-W"CHR$ (0) CHR$ (6) CHR$ (24)
D%

360 REM EXECUTE

150

370 PRINT" {DOWN3 {RVS3IDESTROYING{ROFF} TR
ACK"3 T

380 JOB=224

390 GOSUBS80

400 FRINT#1S, “M—W"CHR$ (0) CHR$ (&) CHR$ (24)
I$

410 FORJ=0TO2S

420 FORI=0TO7

430 READD

440 D$(J)=D$%$ (J)+CHR$ (D)

450 NEXTI

460 NEXTJ

470 1=0

480 FDRJI=0TOZ2S

490 PRINT#1S, "M-W"CHRS$ (I)CHR$ (4) CHR$ (8)D
$(J)

S00 I=1+8

S10 NEXTJ

S20 REM EXECUTE

S30 PRINT#15, "M-E"CHR®$ (0) CHR$ (4)

S40 CLOSE1S

S50 PRINT" {DOWN3DONE'"

S60 END

570 REM JOB QUEUE

580 TRY=0

590 FRINT#15, "M—-W"CHR$ (12) CHR$ (0) CHR$ (2)
CHR$ (T)CHR$ (S)

600 PRINTH#1S, "M—W"CHR$ (3) CHR$ (0) CHR® (1) C
HR$ (JOB)

510 TRY=TRY+1

620 PRINT#15, "M-R"CHR$ (3) CHR$ (0O)

630 GETH#15,E$

640 IFE$=""THENE$=CHR® (0O)

650 E=ASC(E$)

660 IFTRY=S00GOT0690

670 IFE>127G0T0D610

680 RETURN

690 CLOSE1S

700 PRINT"{DOWN} {RVS3}FAILED{ROFF2"

710 END

720 REM 21 ERROR

730 DATA 32,163,253,169, 85,141, 1, 28

740 DATA 162,255,160, 48, 32,201,253, 32
750 DATA 0,254,169, 1, 76,105,249,234
760 REM 27M ERROR

770 DATA169, 0,133,127,166, 12,134, 81
780 DATA134,128,166, 13.232,134, 67,169

151

Gl

790 DATA 1,141, 32, 6.169, 8,141,
800 DATA 6,169, 0,141, 40, &, 32,
810 DATA193,162, ©,169, 8,157, O,
820 DATA232,232,173. 40, 6,157, O,
830 DATA232,165, 81,157, 0, 3.232,16
840 DATA 0,157, o0, 3,232,157, O,
850 DATAZ32,169, 15,157, O, 3.232,1
860 DATA 0, 3,232,169, 0, 93,250,
870 DATA 93,251, 2. 93,252, 2, 93,253
880 DATA 2.157.249. 2.254,249, 2,238
890 DATA 40, 6,173, 40, 6,197, 67,208
900 DATA186,138, 72,169, 75,141, 0, 5
910 DATAL62, 1,138,157, 0. 5,232,208
920 DATAZS0. 169, 0,133, 48,169, 3,133
930 DATA 49, 32, 254,104,168,136, 32
940 DATAZ29,253, 3_.445,253,169, S,133
950 DATA 49, 32,233,245,133, 58, 32,143
960 DATAZ47,169, 35,133, 81,169,169,141
970 DATA 0O, 6,169, 5,141, 1, 6,169
980 DATAI33,141, 2, 6,169, 49,141, 3
990 DATA 6,169, 76,141, 4, 6,169,170
1000 DATA141, S, 6,169,252,141, 6, 6

ol

NMNWOWWHOom

1010 DATA169,224,133, 3,165, 3, 48.2

~
L

n

1020 DATA 76,148,193,234,234,234,234,234
FULL TRACK 27 SOURCE LISTING

100 REM 27M.FAL

110 REM

120 OPEN2,8,2,"@0:27M.B,P.W"
130 REM

140 SYS40960

150 3

160 .0OPT P,02

170 3

180 *= $0400

190 ;

200 ;% INITIALIZATION *
210 ;

220 LDA #%00

230 STA $7F
240 LDX $0C
250 STX $51
260 STX %80
270 LDX %0D
280 INX

290 STX 43
300 LDA #$01

152

310
320
330
340
335

360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
630
660
670
680
690
700

710
720
730
740
750
760
770
780
790

STA
LDA
STA
LDA
STA

JSR

i* CREATE HEADERS

LDX

HEADER # L DA #$08

STA
INX
INX
LDA
STA
INX
LDA
STA
INX
LDA
STA
INX
STA
INX
LDA
5TA
INX
STA
INX
LDA
EO0R
EOR
EOR
EOR
STA
H
INC
H
INC
LDA
cCMF
BNE
TXA
PHA

$0620
#$08
$0626
#$00
0628

$C100

#4$00

$0300, X

$0628
$0300, X

$51
$0300, X

#$00
$0300, X

$0300, X

#EOF
$0300, X

$0300, X

#$00
$02FA, X
$02FEB, X
$02FC, X
$02FD, X
$02F9, X

$02F9, X

0628
$0628
$43
HEADER

-
b

ag

.a

-e

o

L 1]

TAIL GAF

SECTOR COUNTER
LED ON

*

i HBID

CHECKSUM

SECTOR

TRACK

IDL

IDH

GAP

GAF

COMPUTE CHECKSUM

INCREMENT CHECKSUM

153

800
810
820
830
840
850
860
870
880
890
F00
2?10
P20
?30
240
950
960
?70
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
230
1240
1250
1260
1270
1280
1290

i* C

L]
LDA
STA
LDX
TXA
DATA
INX
BNE
H

i C

LDA
STA
LDA
STA
JSR
PLA
TAY
DEY
JSR
JSR
LDA
STA
JSR
STA
JSR

REATE DATA =

#$4E i 1541
$0300
#$01 s 1541

STA $0300. X
DATA
ONVERT TD GCR *

#$00
$30
#$03
$31
$FESQ

$FDES
$FDFS
#3505
$31
$FSEQ
$3A
$F78F

g* JUMP INSTRUCTION =

b
LDA
STA
H
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
H
LDA
STA

#$23
+31

#HA9
$0600
#$05
0601
#$85
$0602
#$31
$0603
#$4C
$0604
#$AA
$0605
#$FC
$0606

#$E0
+03

154

FORMAT

FORMAT

1300 3

1310 WAIT LDA $03
1320 BMI WAIT
1330 ;

1340 JIMP $C174

Full Track 27 Error Source Annotation

See the annotation for 20M.PAL. The only major difference is in line 700 above. Note
the header block identifier ($08) in line 420 is left alone.

7.14 How to Create a 22 Error on a Single Sector

Limitations: None.
Parameters: Track and sector number.
SINGLE SECTOR 22 ERROR

100 REM 22A ERROR — 1541

110 PRINT"{CLR}22A ERROR - 1541"

120 PRINT" {DOWN} INSERT CLONE IN DRIVE"

130 INPUT" {DOWN3}DESTROY TRACK AND SECTOR
(T,S)";T,S

140 IFT<10RT>3STHENEND

150 NS=20+2%(T>17)+(T>24) +(T>30)

160 IFS<OORS>NSTHENEND

170 INPUT"{DOWN}ARE YOU SURE Y{LEFT 33"

;0%

180 IF@$<>"Y" THENEND

190 OPEN1S,8,15S

200 PRINT#15,"I0"

210 INPUT#15,EN$,EM$,ET$,ES$

220 IFEN$="00"GOT0270

230 PRINT" {DOWN3"EN$", "EM$","ET$","ES$

240 CLOSE1S

250 END

260 REM SEEK

270 JOB=176

280 GOSUB440

290 IFE<>160TOSSO

300 REM READ

310 JOB=128

320 GOSUR440

330 IFE<>1ANDE< >4ANDE< >S60TO0SS50

340 PRINT#15, "M-W"CHR$ (71) CHR$ (0) CHR$ (1)

CHR$ (&)

350 REM WRITE

360 JOB=144

155

370 60OSUB440

380 PRINT#15, "M-W"CHR$ (71)CHR$ (O)CHR$ (1)
CHR$(7)

390 IFE<>1G60TOSSO

400 CLOSE1S

410 FPRINT" {DOWN>DONE!'"

420 END

430 REM JOB QUEUE

440 TRY=0

430 PRINT#135, "M-W"CHR$ (8)CHR$ (0)CHR$(2)C
HR®(T)CHR$ (S)

460 PRINT#15, "M-W"CHR$ (1)CHR$(0)CHR$(1)C
HR$ (J0OB)

470 TRY=TRY+1

480 PRINT#15,"M-R"CHR$ (1)CHR$(0)

490 GET#15,.E$

S00 IFE$=""THENE$=CHRS$ (0)

510 E=ASC(E%$)

520 IFTRY=3006G0TOS40

530 IFE>1276G0T0470

540 RETURN

550 CLOSELS

560 PRINT" {DOWNZ} {RVS}FAILED{ROFF3>"

570 END

SINGLE SECTOR 22 ERROR SOURCE LISTING

None. Line 340 in the program creates a single sector 22 error by decrementing the
data block identifier. Line 380 restores the status quo.

7.15 How to Duplicate a 22 Error on a Single Sector
Limitations: None (requires disk swapping).

Parameters: Track and sector number.

DUPLICATE A SINGLE SECTOR 22 ERROR

100 REM DUPLICATE A 22 ERROR - 1541

110 PRINT"{CLR}DUFLICATE A 22 ERROR - 15
41"

120 PRINT" {DOWN} INSERT MASTER IN DRIVE"

130 INPUT" (DOWN3TRACK AND SECTOR (T,S)";
T,S

140 IFT<10RT>3STHENEND

150 NS=20+2%(T>17) +(T>24) + (T>30)

160 IFS<OORS>NSTHENEND

170 INPUT"{(DOWNJARE YOU SURE Y{LEFT 33"
;0%

156

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

IFQ$< >"Y " THENEND
OPEN15,8, 15

PRINT#15, " 10"
INPUT#15,EN$,EM$,ET$,ESS
IFEN$="00"GOTO270

PRINT" {DOWN3}"EN$", “EM$","ET$","ES$
CLOSE15

END

REM SEEK

JOB=176

GOSUBSS0

REM READ

JOB=128

GOSUBRSS0

PRINT#15, "M-R"CHR$ (56) CHR$ (O)
GET#15,D%

IFD$=""THEND$=CHR$ (0)

CLOSE15

PRINT" {DOWN}REMOVE MASTER FROM DRIVE

FPRINT"INSERT CLONE IM DRIVE"
PRINT"PRESS {RVS}RETURN{ROFF} TO CON

TINUE"

390
400
410
420
430
440
450
4460
D%

470
480
490
300

GETC$: IFC$=""THENZ90

IFC$< >CHR% (13) GOTO390

PRINT"OK"

OPEN15,8.,15

REM SEEK

JOB=176

GOSUBSS0

PRINT#15, "M-W"CHR$ (71) CHR$ (0) CHR%$ (1)

REM WRITE

JOB=144

GOSUBSSO
FRINT#15,"M-W"CHR$(71)CHR$ (O)CHR% (1)

CHR%(7)

S10
520
530
540
S50

560

CLOSE1S

FRINT" {DOWN>DONE "

END

REM JOB QUEUE

TRY=0

FRINT#15, "M-W"CHR$ (8)CRR$ (0)CHR$ (2)C

HR$ (T) CHR%$ (5)

370

FRINTH#15, "M-W"CHR$ (1) CHR% (0)CHR$(1)C

HR$ (JOB)

580
590
600
610

TRY=TRY+1
PRINT#15, “M-R"CHR$ (1) CHR$ (0)
GET#15,E$
IFE$=""THENE$=CHR$ (0)

157

620 E=ASC (E$)

630 IFTRY=500G0T0660

640 IFE>127G0T0OS80

6350 RETURN

660 PRINT#135,"M-W"“CHR% (71)CHR$ (Q)CHR$ (1)
CHR$ (7)

670 CLOSE1S

680 PRINT"{DOWN3 {RVSIFAILED{ROFF>"

690 END

DUPLICATE A SINGLE SECTOR 22 ERROR SOURCE LISTING

None. Line 320 in the program reads the data block identifier from the master. Lines
460-490 duplicate the error on the clone. Line 500 puts our house back in order.

7.16 How to Format a Diskette with Multiple IDs

Limitations: None (requires disk swapping).
Parameters: None.

MULTIPLE ID FORMATTING

100 REM FORMAT A DISKETTE - 13541
110 DIMT (35) ,HE(33) ,LE(35)
120 PRINT"{CLR3>FORMAT A DISKETTE - 1541"

130 PRINT" {DOWN3 INSERT {RVSIMASTER{ROFF3
IN DRIVE"

140 GOSUB?10

150 PRINT" {DOWN3{RVSIFETCHING{ROFF> FORM

ATTING ID"

160 OPEN15,8,15

170 FORI=1T035

180 T(I)=1

190 NEXTI

200 J0OB=176

210 FORT=1T0O35

220 IFT(T)=060TO340

230 GOsSUB970

240 1IFE=160T0280

230 H#(T)=CHR%$ (0)

260 L$(T)=CHR$(0)

270 GOTO340

280 PRINT#135, "M-R"CHR$ (22) CHR% (Q)

290 GET#I1S,H$(T)

300 IFH&(T)=""THENH$ (T)=CHR®$ (Q)

310 PRINT#15, "M-R"CHR%$ (23) CHR% (0)

320 GET#15,L%(T)

158

33

340
3350
360
370
380

390

IFLS(T)=""THENL$(T)=CHR% (Q)

NEXTT

T=18

GOSuUBR70

CLOSE1S

PRINT"{CLR>FORMAT A DISKETTE - 1541°"

FRINT" {DOWN3> INSERT {RVS3>BLANK{ROFF3J

IN DRIVE"

400
410
420
430
44Q
430
460
470
480
490
300

(1)

510
520

330

GOsSUB?10
OPEN15,8.15
FORJ=0TO&
FORI=0TO7

READD
D$(J)=D%(J)+CHR% (D)
NEXTI

NEXTJ

I=0

FORJ=0TO6

FRINTH#15, "M-4"CHR$% (I)CHR$% (4)CHR$% (8)D

I=1+8
NEXTJ
FORI=1TO3S

S40 FRINT#H#1S5, "M-W"CHR% (49+1)CHR%$ (4) CHR$ (
DLs(I)

SS0 PRINTH#1S, "M-W"CHR$(84+1)CHR% (4) CHR$ ¢
1YH®(I)

360 NEXTI

570 REM EXECUTE

580

FRINT"” {DOWN3 {RVS>FORMATTING{ROFF3> DI

SKETTE"

590
600
610
620
630
640
650
660
670

FPRINT#15,"M—-E"CHR% (0)CHR%$ (4)
INFUTH#1S,EN$,EM$,ET$,ESS$

T=18

S=0

J0B=176

GOSUB?70

JOB=128

GO0sSUB?70

PRINT#1S, "M-W"CHR% (0)CHR% (4)CHR$ (3)C

HR$ (18) CHR$ (1) CHR$ (63)

680
690
700
710
720
730

JOB=144

G0SUB?70

S=1

JOB=128

505UBY 70

PRINT#15S, "M-W"CHR$ (0)CHR$ (4)CHR$ (2)C

HR$ (0) CHR$ (255)

740
750

J0B=144
G0OsSuUB970

159

760 CLOSE1S

770 OPEN15,8,15

780 PRINT#1S,"NO:1541 FORMAT"

790 INPUT#1S5,EN$,EM$,ET$.ES$

800 S=0

810 JOB=128

820 GOSUB970

830 PRINT#15, "M—W"CHR$ (162) CHR$ (4) CHR$ (2
) CHR$ (S0) CHR$ (S4)

840 JOB=144

850 GOSUB970

860 PRINT#15, "M-W"CHR$ (162) CHR$ (7) CHR$ (2
) CHR$ (S0) CHR$ (54)

870 CLOSE1S

880 PRINT" {DOWN3DONE!'"

890 END

900 REM DELAY

910 PRINT" {DOWN}PRESS {RVS>RETURM{ROFF}
TO CONTINUE"

920 GETC$: IFC$=""THEN920

930 IFC$<>CHR% (13)GOT0920

940 PRINT"OK"

950 RETURN

960 REM JOR QUEUE

970 TRY=0

980 PRINT#1S, "M-W"CHR$ (8) CHR$ (0) CHR$ (2)C
HR$ (T) CHR$ (S)

990 PRINT#15, "M—W"CHR$ (1) CHR$ (0) CHR$ (1) C
HR$ (JOB)

1000 TRY=TRY+1

1010 PRINT#1S, "M-R"CHR$ (1) CHR$ (0)

1020 GET#15,E$

1030 IFE$=""THENE$=CHR$ (0O)

1040 E=ASC(E$)

1050 IFTRY=500G0TO1070

1060 IFE>12760T01000

1070 RETURN

1080 REM NEW

1090 DATA169. 0,133,127, 32, 0,193,169

1100 DATA 76,141, 0, 6,169,199.141, 1
1110 DATA 6,169,250,141, 2, 6,169,224
1120 DATA133, 3,164, 81,185, 49, 4,133
1130 DATA 19,185, 84, 4,133, 18,192, 35
1140 DATA208,240,165, 3, 48,252, 76,148

1150 DATA193,234,234,234,234,234,234,234

160

MULTIPLE ID FORMATTING SOURCE LISTING

100 REM FAD.PAL
110 REM

120 OPEN2,8,2,"@0:FAD.B,P,W"
130 REM

140 SYS540960

150 3

160 .OPT P,02

170 ;

180 *= $0400

190 IDL = $0431

200 IDH = IDL+35

210 ;

220 LDA #300

230 STA $7F ;§ DRIVE NUMBER
240 ;

250 JSR $C100 ;5 LED

260 ;

270 LDA #$4C 5 JUMP TO $FAC7
280 STA $0600

290 LDA #3C7

300 STA $0601

310 LDA #$FA

320 STA $0602

330 3

340 LDA #3EO

350 STA $03

360 ;

370 TABLE LDY 451 ; TRACK NUMBER
380 ;

390 LDA IDL,Y ;3 ID LO
400 STA $13

410 3

420 LDA IDH,Y 5 ID HI
430 STA 12

440 ;

450 CPY #$23 i TRACK 35
460 BNE TABLE

470 ;

480 WAIT LDA %03

490 BMI WAIT

500 ;

510 JMP $C194

Muitiple ID Formatting Source Annotation

This is a modification of the standard formatting routine, NEW ($EE0D). Embedded
IDs are read from each track on the master and tabled in 1541 RAM starting at $0431

161

by the driver. The appropriate ID for each track is stored as the master disk ID (§12/3)
by the IP before control is passed to the FDC to format a track. After a track is format-
ted, the IP retakes control, finds the next ID in the table, stores it at $12/3, and passes
control back to the FDC. Because we do not have a NO:DISK NAME,ID command in
the command buffer, we cannot use the later portions of the standard formatting routine
to create the BAM and directory. Lines 670-780 of the driver clean up afterward.

7.17 How to Backup a DOS Protected Diskette

Limitations: Does not recreate any bad sectors. Requires six passes to backup a diskette
(see the annotation below).

Parameters: A formatted diskette.
1541 BACKUP

100 REM 1541 BACKUP
110 POKES6,33

120 CLR

130 FORI=1T0144

140 READD

150 POKE49151+1,D

160 NEXTI

170 DIMT(3S)

180 FORI=1TO3S

190 T{(I)=1

200 NEXTI

210 READSRW, ERW

220 PRINT"{CLK3}1541 BACKUP"
230 PRINT" {DOWN3} INSERT MASTER IN DRIVE"
240 GOSUB1110

250 OPEN15,8,15

260 RW=8448

270 FORI=1TO126

280 POKES447+1,0

290 NEXTI

300 RAM=8704

310 POKE2S52,34

320 C=0

330 REM SEEK

340 FORT=SRWTOEZRW

350 NS=20+2% (T>17)+(T>24) + (T>30)
360 IFT(T)=0GOTO410

370 JOR=17&

380 GOSUB1190

390 IFE=1G0OT0470

400 T(T)=0

410 RW=RW+(NS+1)

420 RAM=RAM+(256% (NS+1))

162

430 FOKEZ2SZ, (RAM/256)

440 R=R+ (NS+1)

450 GOTD&Z20

460 REM READ

470 FORS=0TONS

480 GOSUB1 300

490 FPRINT"{HOME> {DCGWN 73 {RVSIREADING{ROF
F>; TRACK "T$" - SECTOR "S%
S00 J0OBR=128

510 GOSUB11990

S20 IFE=1G0OTOSS0

530 R=R+1

540 IFE< >4ANDE< >560TO530
550 SYS549165

S60 C=1

570 POKERW, 1

580 RW=RW+1

520 RAM=RAM+256

600 POKEZSZ, (RAM/256)

610 NEXTS

620 NEXTT

630 CLOSELS

640 IFC=0G0TO1010

650 FRINT"{CLR}1541 EACKUP"
660 FRINT" {DOWNXINSERT CLONE IN DRIVE"™
670 GOSUB1110

680 0OPEN1S5,8,15

690 RW=8448

700 RAM=8704

710 POKE2S52, 34

720 REM SEEK

730 FORT=SRWTOERW

740 NS=2042%(T>17)+(T>24)+(T>30)
750 J0OB=176

760 GOSUR1190

770 IFE=1G60T0820

780 RAM=FRAM+ (256% (NS+1))
790 W=W+ (NS+1)

800 GOTO990

810 REM WRITE

820 IFT(T)=15E0T08790

830 RW=RW+ (NS+1)

840 RAM=RAM+ (256% (MNS+1))
850 POKE252, (RAM/256)

860 GOTO990

870 FORS=0TONS

880 IFPEEK (RW)=06G0T0O950
890 GOSUB1300

P00 FRINT" {HGCMEJ {DOWN 73 {RVSIWRITING{ROF
F} TRACK "T3" - SECTOR "S$%

163

910 SYS49228
920 J0OB=144
930 GOSUB1120

940

IFE< >1 THENW=W+1

930 RW=RW+1

60 RAM=RAM+256

970 POKE252, (RAM/256)
980 NEXTS

990 NEXTT

1000
1010
1020

1030
1040
1050
1060

1070
1080
1090
1100
1110

CLOSELS
IFERW< >33560T0210
PRINT" {HOME3J {DOWN 23}READ ERRORS :"R

PRINT" {DOWNJIWRITE ERRORS:"W"

PRINT" *
PRINT"DONE! "
PRINT" "

POKESG, 160

CLR

END

REM DELAY

PRINT" {DOWN}PRESS {RYSIRETURN{ROFF3

TO CONTINUE"

1120
1130
1140
1150
1160
1170
1180
1120
1200
CHR$
1210
CHR$
1220
1230
1240
1250
1260
1270
1280
1290
1300
R&(T
1310
R$ (S
1320
1330

IFC=0ANDSRW< »160T011560
GETC#: IFC$<>" " THEN1130

GETC#: IFC$=""THEN1140

IFC$< >CHR$ (13)60T01140

FRINT"OK"

RETURN

REM JOB QUEUE

TRY=0

PRINT#15, "M—W"CHR$ (8) CHR$ (0) CHR$ (2)
(T)CHR$ (S)
PRINT#15, "M—W"CHR$ (1) CHR$ (0) CHR$ (1)
(JOB)

TRY=TRY+1

PRINT#1S, "M-R"CHR$ (1) CHR$ (Q)
GET#15,E$

E=ASC (E$+CHR$ (0))

IFTRY=500G0TO1280

IFE>12760T01220

RETURN

REM STR$(T,S)

T$=RIGHT$ ("O"+RIGHT$ (STR$(T) ,LEN(ST
))=1),2)

S$=RIGHT$ ("O"+RIGHT$ (STR$(S) ,LEN(ST
))=1),2)

RETURN

REM $CO0O

164

1340

1350

1360

1400

1410

1420

1430

14490

1450

1460

1470

1480

1490

1500

1510

1520
1530

DATA 77, 45, 82, ©, 4,255,128, 77
DATA 45, 87, 0, 4, 32,169, 0,133
DATA251,141, 3,192, 32, 34,192,169
DATA128, 133,251,141, 3,192, 32, 34

DATA192, 96,162, 15, 32,201,255,16

)

DATA 0,189, 0,192, 32,210,255,23

)]

DATAZ224, 7,208,245, 32,204,255,162

(8]

~

DATA 15, 32,198,255,160, 0, 32,20
DATAZ5S, 145,251, 200, 192, 129, 208, 246
DATA 32,204,255, 96,169, 0,141, 10
DATA192,240, 11,173, 10,192, 24,105
DATA 32,141, 10,192,240, 47,162, 15
DATA 32,201,255,162, 0,189, 7,192
DATA 32,210,255,232,224, 6,208,245
DATA173, 10,192,133,251,160, 0,177
DATAZS1, 32,210,255,200,192, 32,208
DATAZ46, 169, 13, 32,210,255, 32,204
DATA25S,169, 0,240,198, 96,234,234

REM TRACK
DATA1,6,7,12,13,17,18,24,25,30,31,.3

1541 BACKUP SOURCE LISTING

100
110
120
130
140
150
160
170

REM BACKUF.FPAL

REM

OPEN 2,8,2,"@0IM.B,P,W"
REM

SYS40960

.OFT P,02

165

180 5 M-R / M-W ROUTINES
190 3
200 *= $CO00
210 3
220 3 RAM LOCATIONS USED
230 3 -
240 FOINT = $00FB ;FOINTER TO READ/WRITE
FAGE
250 3
260 ;3 ROM ROUTINES USED
270 § ———m——
280 CHKOUT = $FFC9? ;0FEN CHANMEL FOR OUT
PUT
290 CHROUT = $FFD2 ;0BUTFUT A CHARACTER
F00 CLRCHN = $FFCC sCLEAR ALL CHANNELS
310 CHKIN = $FFC6 CPEN CHANNEL FOR INP
uTr
——320 CHRIN = - $EFCF- S INPUT A CUARACTER
RS H
340 ;3 DISK M-R & M-W COMMANDS
350 3
360 MR .ASC "M-R"
I70 .BYTE %00, $04,%FF, $80
380 3
390 MW .ASC "M-W*
400 TEMP .BYTE %$00,3%04,%20
410 3
420 5 *—— - e e e e e e e — ¥*
430 3% READ FROM DISK ROUTINES *
440 §H—mm e - ——%
450 3 M-R ENTRY FOINT
460 3 e e e — e
470 L.LDA #%00
480 STA FPOINT sPFOINT TO FIRST HALF
490 STA MR+3 FASK FOR FIRST HALF
S00 JSR READIT sREAD FIRST HALF
10 3
S20 LDA #%80
930 STA FOINT sFOINT TO SECOND HALF
540 STA MR+3 sASK FOR SECOND HALF
S50 JSR READIT sREAD SECOND HALF
560 3
S570 RTS sRETURN TO BASIC
980 3
590 ;3 SUBROUTINE TO READ IM HALF PAGE
600 5§ —— - - - -
610 READIT LDX #%0F (PREPARE CHANNEL 1S
FOR QUTFUT
620 JSR CHKOUT
30 3

166

640
650
660
670
680
6920
700
710
720
730
uT
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
200
910
POI
920
930
40
50
260
70
980
0
1000
1010
FOR
1020
1030
1040
1050
1060
1070
1080
10920

LDX #3$00

LOOF1 LDA MR,X 3SEND M-R COMMAND
JSR CHROUT

INX

CFX #3%07

BNE L 0OO0F1

]
JSR CLRCHN 5 CLEAR THE CHANNEL

LDX #40F ;PREPARE CHANNEL 15 FOR INP

JSR CHKIN

s

LDY #3$00

LOOP2 JSR CHRIN
STA (POINT),Y
INY

CPY #%81

BNE L0OOF2

JSR CLRCHN 5 CLEAR THE CHANNEL

RTS sEND OF READ HALF PAGE
I "
s*®# SEND TO DISK ROUTINES *
e *
s FIRST M-W ENTRY FOINT

; _____________________

MRITE LDA #$00 INITIALIZE PART PAGE
NTER

STA TEMP

BEQ ENTER

LOOF3 LDA TEMP
CLC

ADC #$20

S5TA TEMP

EEQ@ DONE

ENTER LDX #%0F ;FPREPARE CHANNEL 15
OUTPUT

JSR CHKOUT

LDX #$00

LOOP4 LDA MW,.X $SEND "M—w LO HI $20

JSR CHROUT
INX

CPX #$06
BNE LOOFP4

167

1100 3

1110 LDA TEMP POINT TO START OF PART PA
GE

1120 STA FOINT

1130 3

1140 LDY #$00

1150 ;

1160 LOOPS LDA (POINT),Y sSEND 32 CHARAC
TERS

1170 35R CHROUT

1180 INY

1190 CPY #$20

1200 BNE LOOFPS sSNOT DONE 32 YET

1210 3

1220 LDA #+%0D s CARRIAGE RETURN

1230 JSR CHROUT

1240 JSR CLRCHN ;CLEAR THE CHANNEL

1250 3

1260 LDA #+00

1270 BER LOOP3 sALWAYS TO DO NEXT FART
1280 3

1290 DONE RTS i BACK TO BRASIC

1541 Backup Source Annotatlop

The BASIC driver reads a sector from the master diskette into 1541 RAM using the
job queue. The contents of the RAM are transferred into the C64 with a machine language
memory-read. After a pass is complete, the clone is inserted into the drive. A machine
language memory-write command is then used to transfer the bytes back to 1541 RAM.
The BASIC drive writes the buffer out to the diskette using the job queue. The above
routine illustrates how to do memory-read and memory-write commands in machine
language. It is interesting to note that reading 256 bytes from 1541 RAM appears to
take amost ten times as long as writing 256 bytes to 1541 RAM. However, the C64 in-
ternal clock is not reliable at all while performing I/O to the disk drive. Bypassing a
bad track can be done anywhere between lines 200-340 if necessary. Any of the previous
11 routines may be used to recreate any errors that you found on the master diskette
after a backup is made.

7.18 How to Copy a File

Limitations: 125 blocks in length
Will not copy a relative file
Wild cards are not permitted

Parameters: File name and file type.

168

1541 COPY

100 REM 1541 COPY
110 POKES6, 16

120 CLR

130 POKEZ51,0

140 POKE252,16

150 POKE253,0

160 POKE254,16

170 FORI=1TO72

180 READD

190 POKE49151+1,D

200 NEXTI

210 PRINT"{CLR>1S41 COPY"

220 PRINT" {DOWN3 INSERT MASTER IN DRIVE"
230 GOSUB7S0

240 GOSUBS10

250 INFUT" {DOWN3FILENAME";F$

260 IFLEN(F$)<>0ANDLEN (F$)<17G0T0280
270 GOTO1000

280 INPUT" {DOWN3FILE TYPE (DSPU) P{LEFT
33"iTS

290 IFT$="D"ORT$="S"ORT$="P"ORT$="U"GOTO
310

300 GOTO1000

310 RW$="R"

320 GOSUBBYO

330 SYS49152

340 CLOSEZ2

350 INPUT#15.EM$,EM$,.ET$,ESSH

360 IFEN$="00"GOTO380

370 GOTO8S0

380 CLOSE1S

390 PRINT" {DOWN3>INSERT CLONE IN DRIVE"
400 GOSUB7S50

410 GOSUBB10

420 PRINT#15,"M-R"CHR$ (1) CHR$ (1)

430 GET#15,D%

440 D=ASC (D$+CHR$ (0))

450 IFD=65G0T0490

460 PRINT"(DOWN3}73,CBM DOS V2.6 1541,00,
00"

470 6OTO710

480 PRINT#1S, "M-R"CHR$ (250) CHR$ (2) CHR$ (3
)

490 GET#15,L$

500 L=ASC (L$+CHR$ (0))

510 GET#15,B%

520 GETH#15,H$

S30 H=ASC (H$+CHRS (O))

169

540
550
960
3570
580
590
600
610
620
630
640
630
660
&70
680
690
700
710
720
730
740
7350

C=L+ (H*256)
S=PEEK (252) + ((FEEK (253) —16) #256)
B=INT ((S/254)+.5)
IFC-B>=0G0TD600

FRINT" {DOWN3}72,DISK FULL, GO, 00"
GOTO710

RW$="W"

GOSUBSFO

5Y549182

CLOSEZ2

INPUT#15,EN$,EM$,ET$,ES$

PRINT" {DOWN3DONE ' "

CLOSE1S

POKES6, 160

CLR

END

REM CLOSE

CLOSE1S

PRINT" {DOWN3 {RYS3}FAILED {ROFF3}"
GOTOL70

REM DELAY

PRINT" {DOWN3PRESS {(RVS}RETURN{ROFF3

TO CONTINUE"

760
770
780
790
800
810
820
830
840
850
860
870
880
890
00
210
920
930
240
930
960
970
980
990

GETC$: IFC$=""THEN740

IFC$< >CHR$ (13) GOTO760

PRINT“OK"

RETURN

REM INITIALIZATION

OPEN15,8,15

PRINT#15,"10"
INPUT#15,EN$,EM$,ET$,ES$

IFEN$="00" THENRE TURM

PRINT" {DOWN3"EN$", "EM$","ET$","ES$
CLOSE1S

GOTO&70

REM FILE NOT FOUND — FILE EXISTS
OFEN2,8,2, "0 "+F$+", "+T$+" , "+RW$
INPUT#15,EN$,.EM$,ET$.ESS
IFEN$="00"THENRETURN

CLOSEZ2

PRINT" {DOWN}"EN$", “EM$","ET$","ES$
PRINT" {DOWN3 {RYS}FAILED{ROFF}"

INPUT#15,EN$,EM$,ET%,ES$
CLOSE1S

GOTOL70

REM LOAD - SAVE

DATA162, 2, 32,198.255.160, 0O, 32

1000 DATAZ228, 255,145,251, 32,183,255, 41

1010 DATA 64,208, 8,200,208,241,230,252

170

1020 DATA 76, S,192,132,251, 32,204,

1030 DATA 96,162, 2, 32,201,255,160,

1040 DATAL177,253, 32,210,255,196.251,

1050 DATA 3,200,208,244,220,254, 76,

1060 DATAL192,165,254,197,252,208, 242,

240

8

132

1070 DATAZ53, 32.204,255, 96.204.234,274

COPY A FILE SOURCE LISTING

100 REM COPY.PAL

110 REM

120 OFPENZ2,8,2,"@0:COPY.B,P,W"
130 REM

140 SYS4Q0960

150 ;

160 .OPT P,02

170
180
190
200
210
220 LDX #$02

230 JSR $FFCé

240 3

250 LOAD LDY #%$Q0
260 READ JSR $FFE4
270 STA ($FBR),Y
280 JSR $FFB7

290 AND #64

300 BNE READY

310 INY

320 BNE READ

330 INC s$FC

340 JMP LOAD

35S0

360 READY STY $FB
370 JSR s$FFCC

380 RTS

320
400 5§ S5AVE
410
420 LDX #$02

430 JSR $FFC9

440 3

450 SAVE LDY #4$00

Xk e

= $C000

-e W

LOAD

an

OFEN2,8, 2

1]

IN

READST

A 1]

CLOSE2

1)

h 1]

OPEN2,8, 2

13

171

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

WRITE LDA
JSR $FFD2
CPY $FER
BER BREAK
CONT INY
BNE WRITE
INC s$FE
JMP SAVE

]

BREAK LDA
CMP $FC
BNE CONT
]

STY &FD
JSR $FFCC
RTS

($FD),Y

$FE

*

1

ouT

CLOSEZ2

Copy a File Source Annotation

This routine emulates a LOAD and SAVE from machine language.

Conclusion

In conclusion, we hope that this chapter has taken some of the mystery out of DOS pro-
tection schemes. We encourage serious readers to study the program listings carefully.
The programming techniques employed are perhaps the most sophisticated applications
of Commodore’s direct-access commands that you will ever see.

172

CHAPTER 8

GETTING OUT OF TROUBLE

The best way to get out of trouble is to stay out of trouble in the first place! It is much
easier to recover a lost file by digging out an archival copy than trying to recover it
from a blown diskette. Need we remind you? BACKUP! BACKUP! BACKUP!

However, since we feel that Murphy was a rash optimist, the likelihood of you always
finding that backup copy is minimal, unless of course, you manage to recover that file
on the diskette. Then, and only then, will the archival copy magically appear right where
you thought you left it.

Since you are reading this chapter, you probably have a problem and are in desperate
need of help. Please read on.

8.1 Unscratching a File

Inadvertently scratching a file is by far the most common problem. As long as you have
not written any new information to the diskette since you scratched that file, it can be
recovered. Recall that when a file is scratched, it is not erased from the diskette. Only
two things have happened:

1. The file-type byte in the directory entry is set to $00.
2. The sectors associated with that file are freed in the BAM.

To unscratch a file, all you have to do is change the file-type byte back to its original
value and VALIDATE the diskette to re-allocate the sectors.

The programs VIRTUAL DIRECTORY and EDIT TRACK & SECTOR, which are
listed in Appendix C, help you to do this. Here’s how you should use these programs
to recover a scratched file.

STEP 1. Load and run the VIRTUAL DIRECTORY program on the diskette. The direc-
tory will be displayed in groups of eight entries. Scratched files are highlighted
in reverse video. Each group constitutes a different sector on track 18. Count
the groups to determine which group the scratched entry is in. Note not only
which group the scratched entry is in, but also whether it is in the first half
or the last half of the group. (One of the first four file entries or one of the
last four.)

Consult the table below to determine the number of the sector containing the entry.

173

Group - Sector Group - Sector Group - Sector

1-18,1 7-182 13 - 18,3
2.184 8-185 14 - 18,6
3-18,7 9-188 15 - 18,9
4-1810 10 - 18,11 16 - 18,12
5 - 18,13 11 - 18,14 17 - 18,15
6 - 18,16 12 - 18,17 18 - 18,18

STEP 2. Load and run the EDIT TRACK & SECTOR program on the diskette with
the scratched file. When asked for the track and sector, enter track 18 and
the sector number you read from the table. When prompted for the starting
byte, enter 00 if the scratched file entry was one of the first four files in the
group. Enter an 80 if the scratched file was displayed among the last four in
the group.

STEP 3. When the hex dump of the half-sector is displayed, cursor over to the third
column of hexadecimal numbers on the display. Next locate the name of the
file in the ASCII display on the right-hand side of the screen. Move the cur-
sor down until it is on the same line as the start of the file name. If you have
done things correctly you should be on a row labeled with a $00, $20, $40, $60,
$80, $A0, $CO, or $EO. The byte under the cursor should be a 00. This is the
file-type byte. The 00 indicates a scratched file. Type over the 00 value with
the value that corresponds to the correct file type as indicated below.

File Type Value
PRG 82
SEQ 81
REL 84
USR 83
DEL 80

STEP 4. Hold down the SHIFT key and press the CLR/HOME key. This will terminate
the edit mode. When asked whether to rewrite this track and sector, press
Y and the modified sector will be written to the diskette in a few seconds.

STEP 5. Load and list the directory to see if the file name now appears. If it does not,
you made a mistake and things may have gone from bad to worse. Hopefully,
the file will be listed.

STEP 6. VALIDATE the diskette by entering in direct mode:

OPEN 15,8,15,"V0".CLOSE1S

If the drive stops and the error light is not flashing, everything has gone according to
plan and the file has been recovered successfully. (If the VALIDATE command failed,
see sections 8.2 and 8.3.)

174

NOTE: 1t is a good idea to practice these steps on a test diskette before you attempt
to recover your lost Accounts Receivable! To do this: SAVE a file to disk, SCRATCH
it, and follow the steps outlined above.

8.2 Recovering a Soft Error

In Chapter 7 we described in detail the read/write DOS errors. We did not, however,
categorize these errors by type. Read/write errors fall into two categories: “hard” er-
rors and “soft” errors. A hard error is one that cannot be recovered, period. Hard er-
rors are errors that occur in a header block. Recall that a header block is never rewrit-
ten after initial formatting. Since a header block cannot be rewritten, the data in a sec-
tor containing a hard error is unrecoverable. (Unfortunately, this also means that the
forward pointer has been lost and, for all intents and purposes, the remainder of the
file as well.) Soft errors are errors that occur in a data block. Since data blocks can be
rewritten, soft errors can sometimes be recovered if the diskette itself is not flawed
or physically damaged. The table below indicates whether a read/write error is a hard
or soft error.

Soft Errors Hard Errors
22 Read Error 20 Read Error
23 Read Error 21 Read Error

27 Read Error
29 Read Error

Appendix C contains two programs that are useful in trying to recover a sector that
has a soft error. However, recovery cannot be guaranteed in all cases. These two pro-
grams are RECOVER TRACK & SECTOR and LAZARUS. The first program attempts
to rewrite a damaged sector. LAZARUS will attempt to resurrect an entire diskette.
The latter program returns a status report of the number of read errors encountered.
It also reports the number of write errors that occurred. A write error indicates that
a soft error encountered along the way was actually a hard error in disguise. Sorry about
that.

8.3 Recovering a Hard Error

A hard error does not necessarily mean that an entire file is unrecoverable. In all honesty,
though, the technique that we are about to describe is a shot in the dark. Before you
attempt the steps outlined below ask yourself the following question. Are you experien-
cing errors on other diskettes in your library? If you answered yes to this question,
the cause of these errors may be in the disk drive itself. Your 1541 may be out of align-
ment and a trip to your nearest Commodore dealer is in order. If the problem occurs
on only one diskette read on.

NOTE: This section does not apply to relative files. Refer to section 8.4 instead.

WARNING: The technique we are about to describe here is not for the faint-hearted.
Consult with your physician before attempting this exercise.

175

STEP 1. Load and run the VALIDATE A DISKETTE program contained in Appen-
dix C. This program emulates the VALIDATE command from BASIC. It will
chain through each active file entry in the directory and highlight a bad file
without aborting.

STEP 2. Load and run FIND A FILE. This program will return the track and sector
locations of where the file resides in the directory as well as where it starts
on the diskette. The directory track and sector is extraneous information for
our present purpose. Note only the starting track and sector.

STEP 3. Load and run DISPLAY A CHAIN. This program requires you to input a
track and sector. Input the starting track and sector obtained in step 2. The
program will chain through all forward track and sectors on the diskette from
this entry point until an error is encountered. (If the error is a soft error, STOP!
Do not pass GO. Go directly to section 8.2.) Ignore the sector where the error
was encountered. The file is virtually lost from that point on. (Recall that the
link has been destroyed.) Make note of the last successful track and sector
displayed.

STEP 4. Load and run EDIT TRACK & SECTOR. You will want to input the track
and sector obtained in step 3. The starting byte is always 00. Change the first
two bytes to 00 and FF, respectively. Rewrite the sector when prompted to
do so. You have in effect severed the forward track and sector link described
in Chapter 4. This allows you to manipulate the front end of the file. It is the
only portion of the file that is clearly intact.

Ifit is a BASIC PRG file, the internal BASIC links have been destroyed. You can restore
the links on the C64 with a machine language monitor or on the diskette with the EDIT
TRACK & SECTOR program. If you do not restore the BASIC links, the C64 will crash
as soon as you attempt to edit the last line of the program. Using EDIT TRACK &
SECTOR, call up the sector that was just rewritten. You will have to inspect both half-
pages of the block. Look for the last 00 byte in the page. Change the two bytes that
immediately follow it to a 00 00 also. Note the position of the last 00 byte edited in hex-
adecimal. If you are in the second-half of the block, rewrite the sector and then recall
the first-half. Change the forward sector pointer to the hexadecimal position of the last
00 byte you changed. Rewrite the sector a final time. You will now be able to load, list,
and edit the program. Hopefully, you will remember to save it to a different diskette
this time.

If it was a SEQ file, the recovered data is intact. You will have to read it into C64 RAM
and rewrite it to another file. If you do not know how to manipulate a sequential file
contact someone who does.

8.4 Recovering a Relative File

The only realistic way to recover a REL file is to open it for a read and copy it record
by record into a sequential file. The program to do this should not abort when an error
is encountered. Simply skip over the record and go on. This way only the records that
reside, in whole or in part, on the damaged sector are not recovered. If you do not know
how to do this, take your diskette to an experienced programmer and see if he/she can
assist you.

176

8.5 Recovering an Entire Diskette

NOTE: This section applies only to a diskette that cannot be initialized.

Chapter 7 contains a program called 1541 BACKUP (section 7.15). Run this program
to make a backup of your blown diskette. After you have made a backup, load and list
the directory. If the directory appears normal, you will want to validate the backup.
If the validate command fails, inspect and copy each intact file to a new diskette. Some
files may be lost in the process.

If the directory cannot be displayed in its entirety, a hard error was encountered on
track 18 during the backup operation. The sector containing the hard error could not
be copied. As a result, the directory on the backup is corrupt. Load and run DISPLAY
A CHAIN on the backup. Attempt to follow the chain starting at track 18, sector 1.
The display will indicate the location of the uncopyable sector by aborting. Run EDIT
TRACK & SECTOR on the backup to relink the directory around this sector. Refer
to the table in section 8.1 to determine which sector normally follows the one in ques-
tion. Keep in mind that eight files will be lost by this action. If all goes well you should
be able to list the directory now. Inspect and copy all remaining files to a new diskette.

8.6 Recovering a Physically Damaged Diskette

If your diskette has sustained physical damage all is not lost. The most common forms
of physical damage are a warped jacket or environmental contamination. In either case,
the solution is to don a pair of plastic gloves, carefully slit open the protective jacket,
remove the plastic disk, wash it if necessary, and insert it into another jacket. Obtain-
ing a new jacket may mean destroying a perfectly good diskette, though. NOTE: Some
brands of head cleaners come with a reusable jacket that is just right for this job.

Be sure to keep your fingers off the recording surface at all times! Handle the plastic
disk only by the edges or the central hub ring. Also make a mental note as to which
side faces up. (The reinforcing ring is usually affixed to this side.)

If the plastic disk is gummy, you will want to wash it carefully. Use a small amount
of photographer’s wetting agent to keep the water from leaving a residue. Allow the
plastic disk to air dry.

Once you have inserted the plastic disk inside a new jacket, attempt to initialize it. If
you cannot initialize it, try turning the diskette over. You may have the wrong side up.

If the diskette can be initialized, make a backup NOW!

8.7 Recovering an Unclosed File

An unclosed file is one whose file type is preceded by an asterisk in a directory listing
(e.g., *SEQ, *PRG). Such files cannot be read normally. However, there is an un-
documented read mode that will allow you to read an unclosed file. This is the M mode.
The M stands for MODIFY. The way to open a file for a read normally looks like this:

177

SYNTAX:
OFEN 2. B8, 2, "file name,S,R" (SEQ file)
OPEN 2, 8, 2, "file name,P,R" (PRG file)

To read an unclosed file substitute, an M for the R in the OPEN statement like this:

SYNTAX:
OFEN 2, 8, 2, "file name,S,M" (SEQ file)
OFEN 2, 8, 2, "file name,P,M" (PRG file)

The file can now be read into the C64 and stored in RAM. There is one problem, though.
You will have to display the incoming data bytes because an EOI will not be returned
by the disk drive. Note that the last sector written to the diskette will contain an er-
roneous forward track and sector pointer. As a result, there is no realistic way to deter-
mine when you have read beyond the actual contents of the unclosed file itself. Watch
the incoming data bytes carefully. Your read program should have an embedded break-
point. When you think you’ve captured all of the data bytes, rewrite them to another
diskette.

Once you have the data safely stored on another diskette, use the techniques described
at the end of Section 8.3 to restore the internal BASIC links if it was a PRG file.

Don’t forget to VALIDATE the diskette which has the unclosed file in the directory
while you’re at it. Recall that scratching an unclosed file poisons the BAM.

8.8 Recovering from a Short New

If you have inadvertently performed a short NEW on a diskette, there is more hope
than you think. Recall that a short NEW only zeros out the BAM and sector 1 from
track 18. Run the EDIT TRACK & SECTOR program on the diskette in question. Call
up track 18, sector 1 and change the forward track and sector pointer from a 00, F'F
to a 12, 04.

Next, load and list the directory. If your diskette contained more than eight active files,
all but the first eight files will be displayed on the screen. (The first eight files have
been lost for now.) Do not attempt to VALIDATE the diskette because the directory
sectors will not be reallocated. Copy all of the remaining files onto a new diskette.

If the first eight files are very important, you can attempt to recover them as well.
However, it will not be easy! You must find the starting track and sector locations of
these files yourself through a process of elimination. Begin by making a grid with a space
for each sector on the diskette like this:

178

1
SECTOR :>
2

Next, VALIDATE the original diskette and then load and run the program DISPLAY
A BLOCK AVAILABILITY MAP listed in Appendix C. Working from the display on
the CRT, indicate on your chart which sectors are in use by other files. Once you have
done this, you should see a blank area centered around track 18. This is where you lost
files reside.

Now, load and run the DISPLAY A CHAIN program. The first file probably starts
on track 17, sector 0. Record the chain displayed to the screen on your chart. Once you
have recorded the first chain, begin looking for the next one. It probably begins on an
open space on track 17 or, if the first chain was a long one, on track 19, sector 0. Work
outward from track 18 until you have located all eight missing files.

Once you have the starting track and sector locations for the files, use the EDIT TRACK
& SECTOR program to reconstruct track 18, sector 1. The tables and hex dumps from
Chapter 4 can be used as a guide. Be sure to substitute the starting track and sector
locations that you found and not the ones in this manual.

Now copy the eight files onto another disk. Once this is done, take a break and meditate
on the virtues of archival backups!

8.9 Recovering from a Full New

If you are reading this section in desperation, relax. It is already too late. However,
if it dawns on you in the future that you are holding a blank diskette in your hand while
the master that you were going to backup is being reformatted, don’t PANIC! Attempt
to regain your composure and pop the drive door open. At this point you don’t care
what the 1541 User’s Manual says about opening the drive door when the red activity
indicator is on. You are losing one full track every time you hear the stepper motor click.

Next attempt to make a backup copy of the diskette using the 1541 BACKUP program

listed on page 162. (Please, try to remember which diskette you want to format this
time.) Recall that formatting works from the outermost track (track 1) to the innermost

179

track (track 35). If you threw the door in time track 18 will still be intact and so will
most of your files. The DOS works outwards from track 18 when writing to a diskette.
The outermost tracks were probably never in use.

Now load and run the VALIDATE A DISKETTE program to assess the damage. Often-
times all files are recovered.

Conclusion

In short, recovering a damaged diskette is more art than science. The utilities that we

have presented here can prove invaluable in time of need. When all is said and done,
however, it is much easier to create errors than to pick up the pieces afterward.

180

CHAPTER 9

OVERVIEW OF THE 1541 DOS

9.1 Introduction to 1541 DOS

Recall that in Chapter 2 we stated that the 1541 is an intelligent peripheral. It contains
its own 6502 microprocessor, 2K of RAM, 1/0 chips, and the DOS program which is per-
manently stored in 15.8K of ROM. The diagram below illustrates how the RAM, ROM,
and I/O chips are arranged.

2K of RAM Input-Output Chips
$0000 $1800
Job queue, constants, 6522 VIA CHIP
pointers & work area Main I/O to computer
$0100 $180F
Stacks, work areas
and overflow buffer $1C00
$0200 6522 VIA CHIP
Command buffer & work Main I/0 to disk
$0300 $1COF
Data buffer #0
$0400
Data buffer #1
$0500 DOS in 15.8K of ROM
Data buffer #2 $C100 —
Communications and
$0600 file management
Data buffer #3 $F259
$0700 Disk controller
Buffer for BAM routines
$0800 $FFFF

9.2 The Hard Working 6502

The 1541 disk drive is a new addition to Commodore’s line of disk drives. Commodore’s
earlier drives, the 2040, 4040, 8050 and 8250 had three microprocessors: a 6502 to han-
dle communications with the computer, a 6504 to act as a disk controller, and a 6532
to translate between normal 8-bit characters and the 10-bit GCR code that is actually
written on the diskette. The 1541 has only one 6502 to do everything.

181

The 6502 in the 1541 alternates between two modes of operation: Interface Processor
(IP) mode and Floppy Disk Controller (FDC) mode. The 6502 switches to its FDC mode
approximately every 10 milliseconds. The switch is made in response to an interrupt
(IRQ) generated by one of the 6522 timers. The main IRQ handling routine checks to
see if the IRQ was generated by the timer. If it was, the 6502 begins to execute the
FDC routines. Once in FDC mode the interrupt signal is disabled and the 6502 remains
in FDC mode until any jobs it has to do are completed. If the interrupt signal was not
disabled, it might disrupt a read or write job.

9.3 Major IP Routines

One of the difficulties in using the detailed ROM maps in Appendix B is locating the
routine you want. This section summarizes the major IP routines and their entry points
to help you find your way around.

a) Initialization

When the disk drive is first switched on, the RESET line is held low. This causes the
6502 to do an indirect JMP via the vector at $FFFC to the initialization procedure at
$EAAQ0. The main features of the initialization process are shown below.

OVERVIEW OF INITIALIZATION

SEAAQ Test zero page RAM
SEACY Do checksum test of ROM’s
$EAFO0 Test remainder of RAM
$EB22 Initialize I/O chips

$EB4B Set up buffer tables

$EBS87 Set up buffer pointers
$EBC2 JSR to inititialize FDC
$EBDA Initialize serial bus

b} Main IP Idie Loop

Whenever the drive is inactive and the 6502 is in IP mode, the 6502 executes the code
from $EBET to $ECID looking for something to do.

182

OVERVIEW OF IP MODE IDLE LOOP ($EBE7-$EC9D)

Yes Parse and execute
ifnense—— sy .
the waiting command

JSR PARSXQ ($C146)

Is the command-waiting
flag ($0255) set?

No
i ; Yes Service the
§ t};faat(t;ggté%? ;)eetr;dmg B — attention request
g ' JSR ATNSRV ($E85B)
No
Yes Turn on the
Is there a file open? | — drive active LED
No v
es
Is the error flag set? -— Flash the

drive active LED

No
JMP to start of loop

¢) Computer—Disk Drive Communications
The routines that handle communication on the serial bus are localized in one small area

of ROM, from $E853 to $EAGE. The entry points for the major routines are summariz-
ed below.

Entry Routine Function

$E853 ATNIRQ An IRQ is generated when the computer sets the
ATN line of the serial bus low. Branch to here from
IRQ handler to set attention pending flag.

$E85B ATNSRV Service an ATN signal on the serial bus

$E909 TALK Send data out on the serial bus

$E9C9 ACPTR Accept one byte of data from the serial bus
SEA2E LISTEN Accept incoming data bytes from the serial bus

d} Execution of Disk Commands

When the computer sends the 1541 a disk command, such as NEW, VERIFY, or
SCRATCH, the command is stored temporarily in the command buffer ($0200-$0229)
and the command pending flag ($0255) is set. The next time the 6502 works its way though
the IP idle loop (SEBE7-$ECID) it finds that the command pending flag has been set.
It then does a JSR to the PARSXQ routine ($C146) to parse and execute the command.
The parser first checks the command table (§FE89-94) to see if this is a valid command.
Next it checks the syntax of the command. If the command is correct, a JMP is made

183

to the appropriate ROM routine. The table below summarizes the various disk commands
and their entry points.

Entry Command Effect

SED84 V VALIDATE Create a new BAM based on the directory.

$D005 I INITIALIZE Initialize BAM by reading from disk.

$C8C1 D DUPLICATE Make a backup of a disk (not on 1541).

$CAFS8 M MEMORY-OP Perform a memory operation (M-R, M-W,
M-E).

$CC1B B BLOCK-OP Perform a block operation (B-P, B-A, B-F,
ete.).

$CB5C U USER JMP Execute user routines (U0, Ul, U2, ete.).

$E207 P POSITION Position to record in relative file.

$ETA3 & UTIL LDR Load routine in disk RAM and execute it.

$C8F0 C COPY Copy a file (single disk only on 1541).

$CASB8 R RENAME Rename a file in the disk directory.

$C823 S SCRATCH Scratch a file in the directory.

$EEOD N NEW Format a diskette (short and full).

For more details on these routines see Appendix B.

If no errors are encountered during the execution of a command, the routine is terminated
with a JMP to the ENDCMD ($C194). If errors are encountered, .A is loaded with an
error code, and the routine is aborted with a JMP to the command level error process-
ing routine at $K645.

e) File Management
File management is a major function of the interface processor. As a result, there are

many ROM routines that deal directly or indirectly with the management of files, the
directory and the BAM. A few of the major entry points are summarized below.

Entry Routine Function of File Management Routine

$C5AC SRCHST Search directory for valid or deleted entry.

$CBB4 OPNBLK OPEN a direct access buffer.

$CEOE FNDREL Find a record in a relative file.

$D156 RDBYT Read byte from a file. Get next sector if
needed.

$D19D WRTBYT Write byte to file. Write sector if full.

$D50E SETJOB Set up read or write job for FDC.

$D6E4 ADDFIL Add a file to the directory.

$D7B4 OPEN OPEN a channel for read, write, load, or save.

$DACO CLOSE Close the file associated with given channel#.

$DBAS CLSDIR Close directory entry for a write file.

$DC46 OPNRCH OPEN a channel to read using double
buffering.

184

$DCDA OPNWCH OPEN a channel to write using double

buffering.
$DFDO NXTREC Set up next record for a relative file.
$E31F ADDREL Add a new sector to a relative file.
$E44E NEWSS Add new side sectors to relative file.
$E4FC ERRTAB IP mode error message table.
$E645 CMDERZ2 IP mode error handler.
SEAGE PEZRO Display error diagnostics by flashing LED.
$EAAS8 DSKINT Initialize IP side of disk.
SECIE STDIR Convert directory to pseudo program and load.
$EF5C WFREE Mark given sector as free in the BAM.
$EF90 WUSED Mark given sector as in use in the BAM.
$F11E NXTTS Finds next available sector from the BAM.

9.4 Using the IP Routines

The interface processor routines in the 1541’s ROM are relatively easy to use. They
can be executed by using the command channel to send the disk drive the appropriate
memory-execute (M-E) command.

Before you try to use one of the IP routines you should:

Use the ROM maps in this chapter to locate a routine.

Use the tools given in Section 9.13 to make a copy of that area of ROM.
Disassemble the routine.

. Study the disassembly (use the ROM analysis in Appendix B as a guide) to deter-
mine any setup that is necessary.

Ll Al

NOTE: You cannot use the memory-execute (M-E) technique described in this section
when you are using any routine that involves reading from or writing to a diskette.
The reason for this restriction is that memory-execute commands are carried out while
the processor is in the IP mode. In this mode, the processor is interrupted every 10
milliseconds by an IRQ and switches into FDC mode. Any read or write operation will
be interrupted if this occurs. See Section 9.6 for the technique to use if you want to
use a routine that reads from or writes to the diskette.

Once you are sure that the routine performs the operation you want and what setup

is needed, you are ready to design your program. Your program will normally have three
parts:

1. A Setup Section

This section normally consists of one or more memory-write (M-W) commands to poke
any required setup values into the 1541’s RAM memory.

2. A Section to Execute the Routine

This section normally consists of one memory-execute (M-E) command to force the
1541’s microprocessor to execute the ROM routine.

185

3. An Information Retrieval Section

This section normally consists of one or more memory-read (M-R) commands to peek
the results of the routine out of the 1541’s RAM for use by your program.

Let’s take a look at a typical application of this technique.

Suppose we were writing a data base management program. One thing we would like
to build into our program is a check to be sure that we can never produce an unclosed
file *SEQ). This would happen if the user entered too much data and completely filled
the disk. We can’t rely on checking the drive’s error channel in this situation because
the DOS sends the disk full error too late; the damage is already done. We are going
to have to have some independent method of finding the number of blocks free on the
diskette before we write out the file.

Since we know that a directory listing shows the number of blocks free, we’ll start by
looking for some routines that deal with the directory. The chart of ROM routines that
deal with file management in Section 9.3 (e) has one entry that looks promising: STDIR
(BECIE), convert directory to pseudo program and load. We now turn to Appendix B
and look up this routine. Scanning through this routine doesn’t turn up an algorithm
that appears to calculate the number of blocks free and we’re back to square one. What
about the initialize routine? From the chart on the execution of disk commands in Sec-
tion 9.3 (d) we find that this routine starts at $§D005. Back to Appendix B. Eureka! At
$D075 we find the routine NFCALC. A bit of disassembly indicates that this routine
probably needs very little setup to calculate the number of blocks free and that it stores
the lo-byte of the count in NDBL ($02F A) and the hi-byte in NDBH ($02FC). Before
we set up an elaborate program, let’s check out these RAM locations using a test pro-
gram like this:

10 OPEN 15,8,.15,"1"

20 GOSUB 1Z0:REM CHECE DISK STATUS

Z0 OFEN 1,8,5,"@0:TEST FILE,.S,W"

40 GOSUB 120:REM CHECEK DISK STATUS

50 FOR E=1 TO 300

60 FRINT#1,"THIS 1S TEST RECORD NUMBER™;:
4
70 PRINT K;5:605UER 170:REM CHECEKE BRLOCEKS F
REE

80 NEXT

20 CLOSE 1:CLOSE15:END

100 :

110 REM SUEB TO CHECK DISK STATUS

120 INPUT E,.E$,T,.S

130 FPRINT EsE$3Ts5S

140 RETURN

150

160 REM SUER TO READ BLOCKS FREE

170 PRINTH#1S5S, "M-R"CHR$ (250) CHR$ (2) CHR$ (3
)

180 GET#15, X$:NL=ASC (X$+CHR$ (0))

186

170 GETH1S, X$IREM JUNK

200 GETHIS, X$INH=ASC(X$+CHRE (0})
210 FPRINT "BLOCEKS FREE=" Z2Z56+NH+NL
20 RETURN

After trying our test program, we find our problem is solved. As we write out our records
the DOS automatically updates the count in NDBL and NDBH to reflect the number
of blocks left. We don’t really need to execute a ROM routine after all. A memory-read
command is all we need. The moral? A bit of time spent studying and testing can really
simplify your life.

Since the “blocks free” example really didn’t illustrate the use of an IP routine, let’s
try again. This time we are interested in converting normal bytes into their GCR
equivalents to see what is actually written out to the disk. After snooping through the
IP tables in Section 9.3 without any luck, we try the FDC tables in Section 9.5. We
find what we need in 9.5 (c): PUT4GB ($F6D0), convert four data bytes into five GCR
bytes. In checking Appendix B we find that, although this is nominally an FDC routine,
it does not involve reading from, or writing to, a diskette. This means we can use the
memory-execute technique.

After a bit of disassembly we know what set-up is required:
1. The routine expects to find four normal bytes stored in RAM from $52-$55.

2. The pointer at $30/31 should point to the start of where the five GCR bytes that result
from the conversion are to be stored. We’ll use $0300-$0304.

3. The GCR pointer at $34 should be $00.

4. The entry point for the routine is definitely $F6DO0.

Now that we know what we have to do, let’s set up the program.

First, we'll start by inputting the four bytes we want to convert and storing them in
disk RAM from $52 (82) to $55 (85) using a memory-write command (M-W). Second, we
will use memory-write (M-W) commands to set the pointers at $30 (to 0), $31 (to 3), and
$34 (to 0). Third, we’ll execute the routine using a memory-execute (M-E) command.
Finally, we will peek the results from $0300-4 of the disk RAM using a memory-read
(M-R) command and five GET# statements. Here’s what the program looks like:

100 REM CONVERT BINARY TO GCR

110 PRINT"{CLR>ENTER FOUR BYTES (DECIMAL
) {DOWNZ "

120 B$(0)="0":Bs(1)="1"IFORK=0TO7:P (K)=2
~KINEXT

130 FORK=0TO7:F (K)=2"KINEXT

140 OPEN 15,8,15

150 :

160 REM INPUT BYTES & STORE IN DISK RAM
($52/5)

170 FOR K=0TO3

180 PRINT"BYTE#"K"="35IINFUT X

187

190 IF X<0 OR X>255 GOTO 180

200 PRINT"{UP>"TAB(18);:605UB430

210 PRINT#15, "M-W"CHR%$ (82+K) CHR$ (0) CHR$
1)CHR% (X)

220 NEXT

230 :

240 REM SET UFP POINTER TO STORAGE AREA (
$30/31)

250 PRINT#13, "M-W"CHR$ (48) CHR$ (0)CHR$(2)
CHR$ (O) CHR$ (3)

260 :

270 REM SET UP GCR POINTER ($34)

280 PRINT#15, "M-W"CHR$ (52) CHR$ (0)CHR$ (1)
CHR$ (0)

290 :

300 REM EXECUTE FUT4GE ($F6D0O) IPC ROUTI
NE

310 PRINT#15, "M-E"CHR$ (208) CHR$ (246)

320 :

330 REM PEEK OUT AND DISPLAY RESULTS
340 PRINT#15, "M-R"CHR%$ (00) CHR$ (3) CHR$ (3)

350 PRINT"{DOWN3}THE FIVE EQUIVALENT GCR
BYTES ARE: {DOWNZ}"

360 FOR K=1 TO S

370 GET#15,X$: X=ASC (X$+CHR% (0))

380 PRINT"BYTE#"K"="X;TAB(18):;:G605UB430
390 NEXT

400 CLOSE 15:END

410 :

420 SUR TO DISFLAY BINARY EQUIVALENTS
430 PRINT"Z";

4490 FOR L=7TOOSTEP-1

450 T=INT(X/2"L)

460 X=X-T#*pP (L)

470 PRINTB$(T);

480 NEXT:FRINT:RETURN

Many of the other IP ROM routines are just as easy to use. However, be careful because
some are tricky. Some expect to find a particular command in the command buffer. These
are tough to use because the memory-execute command will wipe out any set-up you
have done in the command buffer area. In these cases you will have to store a short
machine language routine in the disk RAM that sets up the proper command in the buf-
fer before it JMP’s to the IP routine. When you execute the routine, it should overwrite
the M-E command in the buffer with the command you want there. Happy sleuthing!

9.5 Major FDC Routines

One of the difficulties in finding an FDC routine to do the job you want is finding your

188

way through the detailed ROM maps in Appendix B. This section summarizes the ma-

Jjor FDC routines and their entry points.

a) Initialization

When the disk drive is first switched on, the reset line is pulsed lo. This causes the 6502
to RESET and it does an indirect JMP via the vector at $FFFC to the initialization
procedure at $EAAOQ. As part of the set up procedure, the variables and /O chips for
the FDC are initialized by the CNTINT routine (§F259-AF).

b) Main FDC Idle Loop

Every 10 milliseconds the 6522 timer generates an interrupt (IRQ) and the 6502 begins
to execute the main FDC loop looking for something to do. The main features of this

loop are summarized below.

OVERVIEW OF MAIN FDC LOOP ($F2B0)

Any jobs in job queue?
Yes
Is it a JMP job ($DO0)?
No
Should drive motor be ON?
No
Is drive up to speed?
Yes
Is the head stepping?
No
Is this the right track?
No
Set # of the tracks to the step
END $F99C)
Change in write protect?
No

Is head between tracks?

{No

No

——

Yes
ffve—-

Yes

189

JMP to END

Do JMP job ($F370)

Motor ON & JMP to

JMP to END

JMP to END

DO THE JOB

Set the change in
status flag ($1C)

Move the head
JMP DOSTEP ($FA2E)

END

[

Turn drive motor OFF? <Y_es_> Turn OFF motor
o Y JMP h
. es to the proper
Is the head in step mode? stepping routine
No

RTS to the IRQ routine

At the end of this loop, or when the job has been completed, the timer interrupt is re-
enabled and the 6502 leaves FDC mode.

c) Major FDC Entry Points

When in FDC mode the 6502 executes routines that directly control the operation of
the disk drive. These include: turning the drive motor ON or OFF, controlling the step-
per motor that moves the head from track to track, formatting a blank diskette, locating
a specific sector and reading or writing data, and translating information back and forth
between normal 8-bit bytes and the 10-bit GCR code that is actually recorded on a
diskette’s surface. The 6502 carries out these tasks in response to job requests placed
in the job queue by the IP processor. The entry points for the major FDC routines are
summarized below.

Entry Routine Function

$F259 CNTINT Initialize important variables and the I/O chips.

$F2B0 LCC Main FDC idle loop (IRQ entry every 10
millisec).

$F367 EXE Do execute job.

$F37C BMP Bump head to track #1 (step out 45 tracks).

$F3B1 SEAK Seek any header on a track.

$F4CA REED Read in data block of specified sector.

$F56E WRIGHT Write out data block of specified sector.

$F691 VRFY Read back data block to check for good write.

$F6D0 PUT4GB Convert four data bytes into five GCR bytes.

$F78F BINGCR Convert entire data buffer into GCR write
image.

$FTE6 GET4GB Convert five GCR bytes into four data bytes.

$FSE0 GCRBIN Convert GCR image of data block into normal
data.

$F934 CONHDR Convert header into a GCR search image.

$F99C END End of idle loop to control drive & stepper
motor.

$FACT FORMT Format blank diskette.

190

Since the read, write and format routines are of particular interest, let’s look at them
in more detail.

d) Read Data Block of Specified Sector

Before the read job code ($80) is placed in the job queue, the IP puts the desired track
and sector numbers into the header table as indicated below.

Job queue Use buffer Track # Sector #
location # address address address
$0000 0 $0300-FF $0006 $0007
$0001 1 $0400-FF $0008 $0009
$0002 2 $0500-FF $000A $000B
$0003 3 $0600-FF $000C $000D
$0004 4 $0700-FF $000E $000F
$0005 5 NO RAM $0010 $0011

Once the track and sector values are in place, the IP puts the read job code into the
job queue in the location that corresponds to the data buffer where the data is to be
stored. The next time the 6502 is in FDC mode it finds the job request. If necessary,
it turns on the drive motor, waits for it to get up to speed, and moves the head to the
proper track. It then executes the read routine outlined below:

OVERVIEW OF THE FDC READ ROUTINE

$F4D1 Find correct sector

Read data: first 256 into the
$F4D4 data buffer and the rest into
the overflow buffer

$F4ED Convert GCR to normal
$F4F0 Check data block ID
$F4FB Check data checksum
$F505 Exit, read was OK

e} Write Data Block of Specified Sector

Before the write job code ($90) is placed in the job queue, the IP puts the desired track
and sector numbers into the header table as indicated below.

191

Job queue Use buffer Track # Sector #

location # address address address
$0000 0 $0300-FF $0006 $0007
$0001 1 $0400-FF $0008 $0009
$0002 2 $0500-FF $000A $000B
$0003 3 $0600-FF $000C $000D
$0004 4 $0700-FF $000E $000F
$0005 5 NO RAM $0010 $0011

Once the track and sector values are in place, the IP puts the write job code into the
job queue in the location that corresponds to the data buffer containing the data to be
written. The next time the 6502 is in FDC mode it finds the job request. If necessary,
it turns on the drive motor, waits for it to get up to speed, and moves the head to the
proper track. It then executes the write routine outlined below:

OVERVIEW OF THE FDC WRITE ROUTINE

$F575 Calculate checksum.
$F57A Test if write protect on.
$F586 Convert buffer to GCR.
$F589 Find correct sector.
$F58C Wait out header gap.

Switch to write mode and

$F594 write out five $FF’s as sync.
$F5B1 Write out overflow buffer.
$F5BF Write out data buffer.
$F5CC Switch to read mode.

$F5D9 Convert GCR back to 8-bit.

$F5DC Change job code to VERIFY.

$FHE6 Go back to verify it.

f) Format a Blank Diskette

The IP format routine at $C8C6 sets up a JMP $FACT instruction at $0600 and then
puts an EXECUTE job code ($E0) into the job queue ($0003). On its next pass through
the idle loop the FDC finds the execute job code, executes the code at $0600, and jumps
to the formatting routine outlined below.

192

OVERVIEW OF THE FDC FORMATTING ROUTINE

$FACT

$FACB

SFAE3

$FAF5
$FBO00

$FBOC
$FBOF

$FB35

$FB7D

$FC36
$FC86
$FC8E
$FCIE
$FCAA
$FD24
$FD8B

$FD96

Check if this is first entry.
If not, branch to $FAFS5.

Do bump to track #1 (CLUNKY)

Initialize error count and
bytes around track. Exit.

Check if on right track.

Check for write protect tab.

Erase track with sync.

Write half of track with sync
and other half with non-synec.

Time syne & non-syne parts.

Compare times and calculate
how long tail gaps should be.

Create images of headers.

Create dummy data block.

Convert headers to GCR.

Convert data block to GCR.

Write out sectors in sequence.

Go to read mode and verify.

All sectors OK; do next track.

All tracks done; exit.

9.6 Using the FDC Routines

Some of the floppy disk controller routines in the 1541’s ROM are relatively easy to

use. Others are much more difficult.

The easy ones are those that do not involve reading or writing to a diskette. An exam-
ple of this type of routine would be the GETAGB (§F7ES6) routine that converts 5 GCR
bytes into 4 normal 8-bit binary bytes. These routines can be executed by using the

techniques described in Section 9.4.

193

The tough ones are those that involve reading or writing to a diskette. To illustrate
how to do this, we’ll try something interesting. How about developing a routine that
allows us to move the head anywhere on a diskette (say track 5) and read the next header
(or whatever) that passes over the read/write head.

First we have to find out how to move the head around. A quick check of the map of
the 1/O chips at the end of Appendix A tells us that the stepper motor that moves the
head is controlled by bits 0 and 1 of DSKCNT ($1C00). Cycling these two bits causes
the head to move. Hmm ... Cycling the bits must mean: 00-01-10-11-00 versus
11-10-01-00-11. Time out for a bit of testing. Here’s our program:

100 REM MOVE THE 1541°S HEAD

110 PRINT"{CLR2{DOWN3COMMANDS: U=UF D=DO
WN R=QUIT"

120 OPEN 15,8,15,"I"

130 PRINT#15, "M-R"CHRS$ (0) CHR$ (28)

140 GET#15, X$: X=ASC (X$+CHR$ (0))

150 BI=X AND 3

160 PRINT"{HOME3 {DOWN 33}BI="BI

170 GET A%

180 IF A$="U"THEN BI=BI+1

190 IF A$="D"THEN BI=BI-1

200 IF A$="Q"THEN CLOSE 15:END

210 BI=BI AND 3

220 R=(X AND 252)0R BI

230 PRINT#15, "M~W"CHR$ (0) CHR$ (28) CHR$ (1)
CHR$ (R)

240 GOTO 130

After much peeking through the drive door with a flashlight we discover that our pro-
gram actually does make the head move. When we press ‘U’ the head moves closer
to the center (higher track numbers) and when we press “D” the head moves outward
(lower track numbers). We've got it! Quick let’s write it down before we forget.

To move the head, cycle bits 0 and 1 of $1C00

00—~ 01—- 10— 11— 00 head moves inwards
0 1 2 3 0

11- 10—+ 01— 00+ 11 head moves outwards
3 2 1 0 3

The only problem that remains is to find out how much the head moves each time.
Hmm. .. If we read from a track and then peek at $1C00 . . . Time for more testing:

10 REM CHECK PHASE FOR ALL TRACKS
20 OPEN 15,8,15,"I"

194

30 OFEN 1,8,5,"#"

40 FOR TR=1 TO 35

S50 PRINT#1S,"U1:5 O"TR;0

50 PRINT#15, "M—-R"CHR%$ (O) CHR$ (28)
70 GET#15, X$: X=ASC (X$+CHR$ (0))
80 PRINT TR;X AND 3

90 NEXT

100 CLOSE1:CLOSE1S

When we run this test program, we get a very interesting table:

1 0 2 2 3 0 4 2 5 0 6 2 7 0
8 2 9 0 10 2 11 0 12 2 13 0 14 2
15 0 16 2 17 0 18 2 19 0 20 2 21 0
22 2 23 0 24 2 25 0 26 2 27 0 28 2
2 0 30 2 31 0 32 2 3 0 34 2 35 0

The phase of the stepper motor is always even (0 or 2) when the head is on a track.
Therefore, the head must be moving half a track at a time. Very interesting indeed!

Now that we can move the head around, we want to find out how to read something.
But before we go rummaging through the ROM’s, wasn’t there something about the
clock rate being different for each zone? Ah, here it is. Bits 5 and 6 of $1C00 set the
recording density. Let’s see. Bit 5 represents 32 and bit 6, 64. Let’s change one line
of our last test program and try again. Here’s the new line:

80 PRINT TR3 X AND 96

When we run our revised program, we get another interesting table.

1 96 2 96 3 96 4 96 5 96 6 96 7 96
8 96 9 96 10 96 11 96 12 96 13 96 14 96
15 96 16 96 17 96 18 64 19 64 20 64 21 64
22 64 23 64 24 64 25 32 26 32 27 32 28 32
29 32 30 32 31 0 32 0 3 0 34 0 3% 0

By George, we've got it.

$1C00
Zone Tracks Bit 6 Bit 5 Number
1 1-17 1 1 96
2 18-24 1 0 64
3 25-30 0 1 32
4 31-35 0 0 0

Let’s do some digging in those ROM’s now. A quick scan through the table of Major
FDC Entry Points in Section 9.5 (¢) turns up SEAK ($F3B1), seek any header on the
track. A check of the detailed analysis in Appendix B looks promising. A careful study
of a disassembly of the routine indicates that this is just what we were looking for. And,
we don’t have to do much setup either. Here’s all the information we need:

195

1. The entry point is $F3B1.

2. JOB ($45) should be $30 so the branch at $F3EG6 is taken.

3. JOBN ($3F) should contain the correct buffer number so the error handler routine at
$F969 works properly.

Now comes the tricky part. Since the routine involves reading from or writing to a
diskette, we cannot execute the routine using a memory-execute command. We have
to use a two step process:

1. Use a memory-write command to store a machine language routine (it does the set-
up and then a JMP to $F969) into the start of one of the buffers (we'll use buffer
-0 at $0300).

2. Force the 6502, while in FDC mode, to execute our routine by putting a JUMP or
EXECUTE job code in the appropriate spot in the job queue (we’ll put a JUMP code
into $0000).

The program listed below puts it all together for us. It may appear a bit intimidating
at first. But, if you are interested in exploring the innards of your drive it is one of the
most powerful tools presented in this manual. It allows you to move the head anywhere
you want and read the next header passing over the read/write head. The screen display
shows you where the head is, what track and sector was read, and describes any read
errors that were encountered.

100 PRINT" {CLR3> {DOWN3 MOVE THE 1341°85
READ/WRITE HEAD"

110 PRINT" {DOWN 23 INSERT TEST DISK"

120 PRINT" {DOWN 2}PRESS {RVSIRETURN{ROFF
¥ WHEN READY"

130 =

140 REM MACHINE CODE ROUTINE TO READ A
HEADER

150 REM RESIDES AT $0300 (BUFFER #0)
160 :

170 DATA 169,48: :REM LDA #$30
180 DATA 133,6%: tREM STA %45

120 DATA 169,002 :REM LDA #$00
200 DATA 133,63: :REM STA $3F

210 DATA 76.177,243 ::REM JMP $F3B1
220 :

230 DH(O)="00":DH(1)="01"1Ds(2)="10"Ds(
3y="11"

240 DIM FD$(16)

250 FD$&(0)=" "
260 FD%(1)="01 ALL OK "
270 FD$(2)="02 HEADER BLOCK NOT FOUND"
280 FD#%(3)="03 NO SYNC CHARACTER "
290 FD$(2)="09 HEADER BLOCK CHkSUM ER™
300 T=13:N1s="7"IMN2%="7"TR=255

310 GET A%:IF A$<>CHR$(13) GOTO Z10

320 @

196

330 OFEN 15,8,15."1"

340 :

350 REM DIG OUT MASTER DISK ID

360 :

370 PRINT#15, "M-R"CHR$ (18) CHR$ (0) CHR$ (2)

J80 GETH#1S5S, 114X IFI14=""THENI1%$=CHR% (0)
390 GETHIS, IZ2$: IFI1Z2%=""THENIZ$=CHR$ (0)
400 :

410 PRINT"{CLR}"

420 :

430 REM READ THE DISK CONTROLLER FORT
440 :

450 PRINT#15, "M-R"CHR$ (0)CHR%(28)

460 GETH#15,A%:IF A$=""THEN A%$=CHR%$ (0)
470 A=ASC (A%)

480 CVv=3 AND A

490 A=(139ANDA)DR(FLE+IZ2x ((T>17)+(T>24)+(
T>30)))

500 FRINTH#1S5, "M-W"CHR% (0) CHR$ (28) CHR%(1)
CHR% (A OR 4)

510 :

520 REM DISFLAY VALUES

530 :

540 PRINT"{HOMEZ {DOWN> MOVE THE 1541°5
READ/WRITE HEAD"

S50 PRINT" {DOWN3CURREMT PHASE ="CV

S60 FRINT"BITS { % O OF $1COO ARE "D$(CY
)

S70 PRINT® {DOWN3MASTER DISK ID: "I1$:I2%
580 PRINT" {DOWN3}TRACK # FROM STEPFER:"T"
{LEFT? "

590 PRINT" {DOWN3}FDC ERROR: "FD% (E)

600 T$=STR$(TR):S$=STR$(SE):IF E<>1 THEN
TE="22"IN1$="72" : N2$="7" 1 GF=" 77"

610 PRINT" {DOWN3TRACK # A5 READ: "RIGHT
$(T$.2)

620 PRINT"SECTOR # AS READ: "RIGHT$(S5%.2
)

630 PRINT"ID OF TRACK READ: "N1$;N2$

640 PRINT" {DOWN 23}COMMANDS: "

650 PRINT"{DOWN} F1 = MOVE HEAD OUT (LO

WER TRACK #)
660 FRINT" F3

MOVE HEAD IN (HIGHER TR

ACK #)

670 FPRINT" FS = ATTEMPT TO READ TRACK #
& ID"

680 FRINT" F7 = TERMINATE PROGRAM"

690 FPRINT" I = INITIALIZE (TO TRACK 18

)I.
700 FP=FEEK (197)

197

710 IF P=3 GOTO 210
720 IF P=4 AND T>1 THEN C=-1:G07T0 800
730 IF P=5 AND T<35 THEN C=1:G0TO 800
740 IF FP=6 GOTO 990

750 IF P=33 THEN PRINT#15,"I":T=18:E=0IA
=214:607T0480
760 6GOTO 450
770 «
780 REM CHANGE PHASE IN RESFOMSE TO CCHMM
AND
790 :
800 CV=(CV + C)AND3
810 T=T+C*.SIIFT<1 THENT=1
820 IFT>36THENT=36
830 B=A AND 252
840 C=B+CV
850 PRINT#1S,"M-W"CHRS$ (0)CHR$ (Z28)CHR$ (1)
CHR$ (C)
860 E=0
870 60TO 450
880 :
890 REM TERMIMNATE PROGRAM (DRIVE OFF)
Q00 2
210 FRINTH#15, "M-W"CHR$ (0)CHR$ (28)CHR+ (1)
CHR% (240)
20 FOR K=1TO1O0:GETASINEXT
930 CLOSE 15:END
240 :
9530 REM ATTEMFT TO READ ANY HEADER
P60 :
970 REM READ % SEND MACHINE CODE ROUTINE

280 :

990 RESTORE:Cs=""

1000 FOR K=1 TO 11:READ X:C3=CE+CHR$(X):
NEXT

1010 FRINTH#1S, "M-UW"CHR$ (Q)CHR$(Z)ICHR$ (11
JCE

1020 :

1030 REM FPUT JMP JORBR IN THE JOR QUEUE
1040 :

1050 PRINT#1S5, "M-W"CHR$ (0) CHR$ (0)CHR$ (1)
CHR%$ (208)

1060 2

1070 REM WAIT FOR JOB TO FINISH

1080 :

1090 PRINT#15, "M-R"CHR$ (0) CHR$ (D)

1100 GETH#15,E$:E=ASC(E$+CHR$s(())

1110 IF E>127 GOTO 790

1120 :

198

1130 REM "E" 1S FDC ERROR CODE RETURNED
1140 1IF E<>1 GOTO 450

1150 :

1160 REM CLEAN READ S0 DIG OQUT ID, TRAK
& SECT

1170 :

1180 FRINT#15, "M-R"CHR$ (22)CHR% (0) CHR% (4
)

1190 GET#15,.MN1%

1200 GETH#15,NZ2$

1210 GETH#15, X$: TR=ASC(XS+CHR® (0))

1220 GET#15, X$:SE=ASC(X%+CHR%(0))

1230 GOTO 430

Although this program allows you to move the head and read data in half-track in-
crements, you can’t double the capacity of your drive by using all 70 “tracks.” The
magnetic path produced by the read/write head is just too wide. However, it may be
possible to devise a protection scheme in which the “protected information” is recorded
when the head is in an “odd phase” (1 or 3). Crosstalk from the two odd-phase tracks,
though, would make the diskette unreadable except by a specialized routine like this.

9.7 The Recording Process

A floppy diskette consists of a circular piece of plastic. It is coated on both sides with
a thin layer of magnetic particles, usually particles of iron oxide. Each particle is made
up of a large number of extremely small atomic magnets called “magnetic domains.”
When a floppy diskette is new, these magnetic domains are oriented randomly and the
surface is unmagnetized.

The record/play head consists of a coil of wire wrapped around a ring of iron or other
magnetic material. A small segment of the ring is missing. This is the “gap.” The gap
is the part that comes in contact with the surface of the diskette. Magnified many times,
the head looks something like this:

COIL
RECORD/PLAY
HEAD
RING OF
MAGNETIC
MATERIAL

k— GAP

199

Write Mode:

In write mode an electric current passes through the coil. The current causes the head
to become an electromagnet whose strength and polarity depends on the amount and
direction of the electric current. The gap in the ring interrupts the magnetic field and
causes it to flare outwards. If the gap is in contact with the surface of the floppy diskette,
some of the magnetic domains on the surface shift position and line up with the magnetic
field of the head. Some of these magnetic domains retain their new orientation even
after leaving the vicinity of the gap, i.e., the surface of the diskette has become
magnetized.

WRITE MODE

Y IO OONITINONNOIINIIIIIININESININOO IR IS I4

The amount and direction of the current flowing through the coil determines the strength
and polarity of the electromagnet. The more current, the stronger the electromagnet,
and the greater the magnetization of the surface of the diskette. In audio recording,
the amount of current flowing through the coil fluctuates to match the changing audio
signal. In digital recording, there are only two possible currents, full current in one direc-
tion or full current in the other direction. When data is recorded onto the surface of
a floppy diskette, the track becomes a series of bar magnets laid end to end.

WRITING
DATA

Read mode:

In read mode the moving magnetic areas on the surface of a diskette induce an elec-
trical voltage in the head. Because of the nature of electromagnetic induction, the
maximum induced voltage is NOT produced by the regions where the magnetic field
is greatest. The maximum signal occurs where the magnetic fields change most rapidly.
The signal from the head must, of course, be amplified and shaped before it is usable.

200

Writing data to a diskette:

When data is being recorded onto a floppy diskette, the data is “clocked out” at a fixed
rate. This permits an interesting recording scheme. The direction of the current flow-
ing through the head changes only when a “1” bit is to be recorded. Zeros are represented
by the absence of a transition at a particular location. The diagram below represents
what is actually recorded on a diskette.

NIN SIS NN SiS NIN SIS

1 1 0 1 0 0 1 0 1 1

Note that the data recorded onto a diskette is not divided into bytes. There is just one
continuous stream of bits. In order to know where to begin to read or write bits, we
need some special identifying mark. This is the function of the SYNC mark, a string
of 10 or more 1’s in a row. The GCR code (see Chapter 7) is designed so that no combina-
tion of bytes can produce more than eight “1” bits in a row. This guarantees the unique-
ness of the sync mark.

The 1541 records between 4000 and 6000 magnetic zones (bits) per inch. Since the diskette
rotates at a constant angular velocity (300 rpm), you may wonder how Commodore
manages to get more bits on the outer tracks than the inner ones. The 1541 manages
this bit of magic by clocking out the data at different rates depending on the track. On
the longer outer tracks, the data is clocked out faster than for an inner track (see table
in Chapter 3). However, the increase in clock rate is not really proportional to the in-
crease in track length. This means that the outer tracks have a bit density of only 4300
bits/inch while the inner tracks are recorded at 6000 bits/inch. If the clock were not in-
creased for the outer tracks, the bit density on the outermost track would fall to about
3500 bits/inch.

Reading data from a diskette:

When data is being read from a floppy diskette, the data is ‘“‘clocked in” at a fixed rate.
A magnetic transition is interpreted as a “1” bit. The lack of a signal when data is ex-
pected is interpreted as a ‘“0” bit. Since the speed of the drive is not absolutely con-
stant, we can run into problems if there are too many “0” (no signal) bits in a row. Com-
modore’s GCR code is designed so that no GCR byte, or combination of GCR bytes,
ever contains more than two consecutive “0” bits. As a further precaution, the clock
is zeroed (cleared) every time a ‘“1” bit is read. This re-synchronizes the clock to the
bit stream and prevents small fluctuations in the speed of the drive from causing read
errors.

9.8 Block Diagram of the 1541

This block diagram of the 1541 electronics emphasizes the components involved in reading
and writing data.

201

1541 BLOCK DIAGRAM

TO R-W
RAMK) O b DRIVER }=» HEAD
CLK
BYTE RDY/—t—I FROM
roME__Y so 8 e SHAPER fe— R-W
SO ENABLE I | HEAD
6502 6522
MPU ®
K Buffer QC
‘ rﬂf QD
6522 D IYNC CU
IRQ IRQ IRQ | {
L 1) +N
CLR

The divide-by-N counter determines the actual rate at which bits are read or written.

For tracks 1-17 the clock divisor is 13, for tracks 18-24 it is 14, for tracks 25-30 it is 15,
and for tracks 31-35 it is 16.

9.9 Writing Data to a Diskette

The diagrams below highlight the important components and waveforms involved in
the writing of a GCR encoded data byte to disk.

WRITE MODE
—@-— FLIP p—@-ﬁ [TO
d—)| pes FLOP DRIVER DISK
Shift
Register
6502 6522 CLK |-
MPU
BYTE RDY /
SO j= +8
N
SO ENABLE
QB
+16
COUNT
UpP
CLOCK — =N

202

®

®_

1 DATA l BITS lcwcml out 1 1 1 l

1

0 1 0 0 1 1 0

g

BYTE READY LINE 8 BIT CLOCKED OUT -»l

To help clarify the recording process let’s follow a byte of data (10100110) as it is writ-
ten to a diskette.

STEP 1. The 6502 converts the header block ID (807), the 256 data bytes, the data block

STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 1.

STEP 8.

checksum, and two null bytes into 325 GCR encoded bytes.

The head is positioned to the appropriate track and the clock divisor is set
to the correct value for this track.

The track is read until the correct sector header block is found. Wait out the
header gap.

Switch to write mode by ANDing the contents of the 6522’s peripheral con-
trol register (PCR) with §1F, ORing the result with $C0, and storing the final
result back in the PCR.

Write out five $FF characters as the data block sync mark.

Transfer the first 8-bit byte of the GCR encoded data to the data lines (D0-D7)
of the 6522 PIA.

Since Port A of the 6522 is configured as an output port, the data appears
on the Port A lines PAO to PA7. This transfers the byte to the 74L.S165 (UD3)
parallel to serial shift register.

The bits are clocked out of the shift register (2) whenever the QB line (1) of

the 74L.S193 hexadecimal counter (UF4) makes a transition from ground to
+5 volts.

203

STEP 9. The bit stream from the shift register (2) is presented to the clock input of
the 74LS74 flip flop (UF6). The output of this flip flop (3) changes state
whenever the bit stream (2) makes a transition from ground to +5 volts.

STEP 10. The output of the flip flop (3) is amplified and sent to the record/play head
of the drive. This causes the magnetic zones to be written onto the surface
of a diskette. Note that the direction of the electric current, and hence the
direction of magnetization, changes only when a “1” is to be written.

STEP 11. Onee all 8 bits have been clocked out of the shift register, the byte ready
line goes high. This sets the overflow flag in the 6502 to indicate that it is

time to send the next data byte to the 6522.
~ STEP 12. Once all the data bytes have been written, switch to read mode by ORing

the contents of the 6522’s peripheral control register (PCR) with $E0 and
storing the result back in the PCR.

9.10 Reading Data From a Diskette

The diagrams below highlight the important components and waveforms involved in
reading a GCR encoded byte of data.

1541 BLOCK DIAGRAM

READ MODE
FROM
SHAPER [a——r
BYTE RDY .8
SO fet— g
SO ENABLE e
6502 6522 CLK = 2)1QB
MPU i S—P
(:,B“ff" Shift G () qc
Register "e QD
IN COUNT U'P)
SYNC
+N
CLOCK |p=—t>
CLR/|
N[N s|s N~ s|s
CLR CLK CLR CLK CLR CLK CLR CLK

204

oO—F L& L ¥ 1L 451

l DATAl BITS lCLOCKEDl IN l
¥

oo

o—J L7 1 [

1 0 1 0 0 | 1 1 Lo

Shift Shift Shift Shift Shift Shift Shift Shift

BYTE READY r—‘-

To help clarify the reading process let’s follow a byte of data as it is read from a diskette.

STEP 1.

STEP 2.
STEP 3.

STEP 4.

STEP 5.

STEP 6.

STEP 7.

STEP 8.

The head is positioned to the appropriate track and the clock divisor is set
to the correct value for this track.

The track is read until the correct sector header block is found.
Wait for the sync mark at the start of the data block.

As the track passes over the record/play head a stream of weak electrical pulses
is induced in the head. A pulse is induced whenever the magnetic field changes
its orientation. The pulse is amplified and shaped (1).

The stream of pulses from the shaper circuitry (1) is fed to the CLEAR input
of the 741.S193 hexadecimal counter (UF4) and to the 74L.S02 (UE5) NOR gate.
Whenever a pulse occurs, the hexadecimal counter (UF4) and the divide by
N counter (UE7) are cleared to a count of zero. This ensures that the clock
is always synchronized with the incoming stream of pulses.

Once the hexadecimal counter has been cleared, it begins to count up the clock
pulses it receives from the divide by 16 counter. QA (not shown) is the 1’s
bit of the counter. QB (2) is the 2’s bit of the counter. QC (3) and QD (4) are
the 4’s and 8’s bits, respectively.

On each ground to +5 volt transition of QB (2), a bit is shifted into the 741.S164
serial to parallel shift register (UD2). The bit that is shifted in (5) is found
by NORing the QC (3) and QD (4) lines of the counter. Note that whenever
a pulse clears the divide by 16 counter, the next bit is read as a ““1.” If the
counter has not been cleared before the next ground to +5 volt transition of
QB (2), the next bit is read as a “0.”

Once 8 bits have been clocked into the shift register, the byte ready line goes

205

high. This sets the overflow flag in the 6502 to indicate that it is time to read
the data byte from the 6522.

STEP 9. The 6502 reads the data byte from the 6522 and stores it in RAM.

9.11 Summary of Bugs in DOS 2.6

Over the years, various bugs have been reported in Commodore’s disk operating systems.
In some cases, the bugs have been real; in other cases, imaginary. This section sum-
marizes our findings regarding the bugs in DOS 2.6. Please note that this information
applies only to the 1541.

1.

a)

b)

Incorrect dummy data block produced during formatting:

During formatting, all the Commodore disk drives (except the old 2040’s) write out
a dummy data block for each track and sector. On all the drives, except the 1541,
this dummy data block consists of 256 null bytes ($00). On the 1541 the dummy data
block consists of one $4B character followed by 255 §01 bytes. This is caused by an
unnecessary INX instruction at $FC86. If this byte were replaced by a NOP (§EA),
the normal dummy data block would be produced.

The difference in the dummy data blocks does not cause any real problems and pro-
vides an easy way to identify a diskette formatted on the 1541.

. The save and replace command “@0’":

Over the years numerous writers have advised Commodore owners not to use the
save and replace command because it contained a bug. Our study of the ROM routines
and a lot of testing has convinced us that the bug in the replace command is a myth.
There are, however, two situations in which the use of the @ replacement command
can cause problems:

Replacing an unclosed file, *SEQ, *PRG, etc:

When you replace a file, the new file is written to diskette first. Then the DOS pro-
ceeds to trace through the file chain of the old file and marks the sectors it finds
as available-for-use in the BAM. If the old file was unclosed, the track and sector
links may be incorrect and some of the blocks in a different active file on the diskette
may be freed (see a more detailed description of what happens in Section 2.5 on scratch-
ing a file). If this happens, subsequent writing to the diskette will overwrite the data
in this file. This is the most likely cause of user complaints about a bug in the save
and replace command on the 2040 and 4040 drives. The code at $C835 prevents this
from happening on the 1541 drive.

Not enough space on disk:
When a file is replaced, the new file is written to diskette before the old file is scratched.

If there is not enough space on the disk for the new copy of the file, the process aborts.
When this occurs, the error light will come on (72, DISK FULL). Usually, this makes

206

people wonder if something went wrong; so they VERIFY to be sure the file has
been saved correctly. The file verifies as OK. A check of the directory indicates no
unclosed files. However, the file may appear somewhat shorter than before. This did
not occur because your program has been compacted. Rather, it was truncated by
the DOS. It isn’t all there! We hope you have a backup handy. If not, you may still
be able to recover your file. A printout of the BAM and some quick work on editing
the directory entry’s starting track and sector are in order. (See Chapter 8.) The
sectors shown as unallocated (free) in the BAM hold the only complete copy of your
program, the original version that is. The latter portions of the @ replacement ver-
sion of your program have been stored in disk WOM (Write Only Memory) by the
DOS. Bye, bye.

3. The Block-Read (B-R) command:

This command has been replaced by the Ul command and with good reason. The
B-R command has two serious bugs that make it unusable on the 1541. The use of
this command is NOT RECOMMENDED! See Chapter 5 for the gory details.

4. The Block-Write (B-W) command:

This command has been replaced by the U2 command and with good reason too. The
B-W command is also unusable on the 1541. The use of this command is NOT RECOM-
MENDED either. Chapter 5 again gives the scoop.

5. The Block-Allocate (B-A) command:

Although this command seems to work correctly on other Commodore drives, it does
not work properly on the 1541. This command really has two functions:

a) To allocate a free sector in the BAM:

When the track and sector specified in the block-allocate command is free (not in use)
in the BAM, the block allocate command should allocate the block in the BAM. The
B-A command appears to do this correctly on the 1541.

b) Find the next available track & sector:

If the track and sector specified in the block-allocate command is already allocated
(in use) in the BAM, the block allocate command should not change the BAM in any
way. It should return a 65, NO BLOCK error and report the track and sector of
the next available block in the BAM. This feature of the B-A command was included
to allow the programmer who is creating his own random access files to determine
the next free block that he/she can use.

This feature of the B-A command does not work correctly on the 1541! The command
does return the track and sector of a free block all right, but with a difference!

1. It occasionally returns a sector on track 18. This should not happen because track
18 is reserved for the directory.

207

2. It ALLOCATES ALL THE BLOCKS on the track that it returns in the error
message in the BAM.

Because of these bugs, the use of the B-A command on the 1541 is NOT RECOM-
MENDED. However, the CERTIFY A DISKETTE program listed in Chapter 5
does work. The reason for this is that this program stores a duplicate copy of the
BAM in C64 RAM which is later rewritten to the diskette. This technique repairs
the damage done by the B-A command.

6. UJ: or U: command:

Commodore disk drives have traditionally used one or both of these commands to
enable the user to reset the drive (just as though the drive were turned OFF and
then ON again). Neither command works correctly on the 1541 drive. The drive goes
on a trip to never-never land and must be turned OFF and then ON again to recover
from one of these commands. The command “U;” is the one to use to reset the 1541.

7. UI- command:

The 1541 manual indicates that this command is used to set the disk drive to operate
correctly with the VIC-20. Current 1541’s work with a VIC-20, period.

Summary

Despite its flaws, the DOS in the 1541 is a remarkably efficient peripheral. The DOS
programs for most other microcomputers are vastly inferior to DOS 2.6; a little faster
maybe, but not as smart. The support of relative file structures, read ahead buffering,
and the underlying prineciples of asynchronous I/0 make the 1541 an outstanding bargain
in the world of microcomputing. These features are normally found only in multiuser
or multiprocess operating systems.

9.12 Write Incompatability with 4040

Programs or data stored on a diskette formatted on a 1541 disk drive can be READ
using a 2040 or 4040 disk drive. Conversely, a 1541 disk drive can READ a diskette
formatted on either a 2040 or 4040 disk drive. However, these drives are not completely
write compatible.

This write-incompatibility problem appears to be caused by two things:

1. Differences in the header gap length.
2. Alignment problems (particularly with the 1541).

Let’s consider the differences in the header gap length first.
Differences in Header Gap Length

The 2040 and 4040 drives use a header gap that is nine GCR bytes long while the 1541
uses a header gap that is only eight non-GCR bytes long. On this basis we would expect

208

the header gaps to be 90 and 64 bits long respectively. However, when we use a bit-
grabber to view the gap we find that the actual header gaps as recorded on disk are
100 bits for the 4040 and 92 bits for the 1541. In read mode, this makes no difference.
After reading the header bytes to check that this is the correct sector, all the drives
simply wait for the next sync mark. The number of bytes in the header gap does not
matter. Once the sync mark is over, the first character in the data block is read. This
is the data block ID character. If it is not a $07, the DOS reports a 22 READ ERROR
(data block not found).

In write mode, however, the length of the header gap is important. After reading the
header bytes to check that this is the correct sector, all the drives count off the bytes
that make up the header gap. Once the correct number of bytes have been read, the
drive flips to write mode and begins writing out the data block sync character. Since
this is reputed to be an important aspect of the write incompatibility problem, let’s ex-
amine what happens in some detail.

The last part of the header gap and the start of the data block syne mark in a sector
of a diskette that has just been formatted on a 1541 disk drive looks something like this:

Syne mark
1541 xxxxxxxxxx1111111111111111111311111111111111111— 92 bits

The last part of the header gap and the start of the data block sync mark in a sector
of a diskette that has just been formatted on a 4040 disk drive looks something like this:

Syne mark
4040 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXxXXxxxx111111111111 - 100 bits

When a sector of a diskette that was ORIGINALLY FORMATTED ON A 4040/2040
disk drive is REWRITTEN ON A 1541, the result is as follows:

Original Syne mark

4040 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 111111111111

Rewrite Syne mark

1541 XXXXXXXxxx-111111111111111111131111111113111111—
Syne mark

Result XXXXXXXxxx-11111111111113111311131111113113111113—

NOTE: The “-” marks when the drive switches into write mode. A transient current
appears to flow through the record/play head during this time interval.

The original sync mark on the diskette has been completely overwritten by the new
one. This sector can be read cleanly on any drive. It appears that a 1541 drive should
be able to write data onto a diskette that was originally formatted on a 4040 drive without
causing any problems.

When a sector of a diskette that was originally formatted on a 1541 disk drive is rewrit-
ten on a 4040/2040, the result is as follows:

209

Original Sync mark

1541 Xxxxxxxxxx111111111111111111111111111111111111»

Rewrite Syne mark

4040 XXXXXXXXXXXXXXxxxx-111111111111111111111111111111»
Pseudo-sync Syne mark

Result XXXxxxxxxx1111111-111111111111111111111311111111»

NOTE: The ““-” marks when the drive switches into write mode. A transient current
appears to flow through the record/play head during this time interval.

In this case, the original sync mark on the diskette has NOT been completely overwrit-
ten by the new one. The start of the old sync mark is still there. What actually gets
recorded at the start of the “new” sync mark depends on the speed of the drives, the
polarity of the magnetic field used to record the original ““1”” at that spot on the diskette,
and any transients that flow through the head as it switches into write mode.

Before you read this next section, be sure that you understand Section 9.7 on the Record-
ing Process.

Let’s take a look at an “exploded” view of that spot just before the new sync character
is written. Remember, a ““1” is not recorded as magnetization in a particular direction.
It is simply a change in the direction. Now that you've got that straight, here is what
that spot might look like.

Original [N SIS N|N S|S N|N S|S N|N S|S N|N S
1 1 1 1 1 1 1 1 1

Everything appears normal. Now let’s write that sync mark.

Original
bya1541N SIS N|N S|S NIN S|S N|N S|S NN S8

Replacement sync mark written 2N sls

by a 4040 N|IN S|S N|N S

?? = effects of transient currents

Result N S|S N|N S|S ?77{N S|S N|N S|S N|N S
1 1 1 1 1 1 1 1 1

Everything worked out just fine. We have a clean syne mark and the sector can be read
cleanly by either drive. However, suppose our 741.S74 flip-flop (UF6) had been in the
opposite state or the speed of this drive did not exactly match this new one. What would
happen? Take a look.

210

Original N S|S N|N SIS NIN SIS N|N S|S N|N 8
by a 15641

Replacement sync mark written 7718 NIN SIS NN §|S N
by a 4040
??7 = effects of transient currents
Result N SIS N[N §Si|S 7 NIN SIS NN SIS N
1 1 1 1 70 1 1 1 1

Argh! Potential problems. Because the magnetic polarity of the new ‘“1” happened to
match the polarity of the existing zone, we appear to have just created a double-length
magnetic zone. If we have, this will be interpreted as a “0” bit. From a study of the
bits actually recorded on disk, this appears to happen every time! If there are more
than 10 preceeding ““1” bits, this single “0” will be interpreted as the end of the sync
mark and the drive will interpret the rest of the sync bits as data. Since this will definitely
NOT be decoded as a $07 byte, the drive errs out with a 22 READ ERROR.

Since the header gaps only differ in length by 8 bits, we should always have only seven
1’s in the pseudo-sync. An examination of the bits recorded on the disk seems to sup-
port this conclusion. As a further test we did some testing using recently aligned drives.
We found surprisingly few errors when we use a 4040 disk drive to rewrite all non-
directory sectors on a 1541 formatted disk. On a freshly formatted diskette, we found
no errors at all after rewriting over 2400 sectors. If the sectors of the 1541 diskette
had been rewritten several times using a 1541 before they were rewritten on a 4040,
we did start to find a few errors. However, the error count was low. Usually less than
two errors when rewriting all 640 sectors and these tended to occur in two specific areas:
on tracks 25 or 26 or on tracks 31 or 32. These findings lead us to conclude that the
differences in header gap length is NOT the cause of write compatibility problems be-
tween the 1541 and 4040 disk drives.

If for some reason you want to reduce the difference in header gap further when writing
onto a 1541 formatted diskette using a 4040 drive, enter the following magic incantation
in either program or immediate mode.

OFEN 15,8,15
FRINTH#15, "M-W"CHR$ (157)CHR$ (16) CHRE (1) CHR: ()
CLOSE 15

This will change the header gap length of the 4040 drive from 9 to 8 GCR bytes (actual
length = 90 bits). You can now write to the 1541 diskette with little fear of damage.
However, you must remember to reset your 4040 drive (turn it off or issue a UJ com-
mand) before you insert one of your 4040 formatted diskettes. Otherwise, a magnetic
plague will develop among your 4040 formatted diskettes. Don’t say you weren’t warned!

Head Positioning Problems

Since we encountered so few errors using properly aligned drives, we feel that most
of the reported problems of incompatibilities are the result of head positioning errors.

211

If a sector is rewritten on a different drive and the position of the read/write head is
different, the new data will not completely replace the old as indicated below.

Original N SIS S
on one N 1 SIS 1 0 S
drive N SIS S
Rewritten S N|N S
on another S 1 0 NN 1 S
drive S N|N S
Original N 1 SiS 1 0 S
Rewritten S NIN S
by another S 1 0 NN 1 S
drive S NIN S

When this sector is read on the original drive, the head will pick up both the new signal
and the old signal. The relative strengths of these two signals depend on the amount
of the original signal remaining. If the two drives are sufficiently different, the read
signal will be garbled and produce an abundance of 22 and 23 READ ERROR’s.

Summary

In conclusion, although there is a difference in header gap size between the 1541 and
the 4040 drives, this does NOT appear to be the cause of write incompatibility problems.
Most complaints about the write incompatibilities of various disk drives are probably
due to problems in head positioning. Further evidence for this is the fact that some schools
are experiencing similar difficulties when students use several different 1541 drives for
saving programs on a single diskette.

9.13 TOOLS FOR EXPLORATION

To make your exploration of the 1541 easier we have developed two programs to assist
you.

a) Disk peek program

This program allows you to look at a hex dump of any area of the 1541’s RAM or
ROM. This is a very useful tool for examining the contents of the 1541’s RAM.

b) Create a file program

This program allows you to read out any area of the 1541’s RAM or ROM and store
the contents into a program file with any load address you choose. You can then load
the file into your 64’s memory and examine it using an extended machine language
monitor such as SUPERMON.

212

NOTE: Line 160 contains a special character #184 repeated 21 times. This character
can be typed by holding down the Commodore logo key in the lower left corner and
pressing the U key.

1541 DISK PEEK

100 REM 13541 DISK PEEK
110 REM BY GERALD NEUFELD
120 CO=0:C2=2:C7=7:CA=10:F=15:CG=146:HO=4

8:HX=127

130 Z$=CHR$(0) i N&=""

140 Ms=" {RVS5} PRESS: P TO PAUSE 8]
TO QUIT {ROFF*"

150 PRINT"{CLR>"TAB(?)"FPEEK OF 1541°S ME

MORY"

160 PRINTTAB(9) "{#184 213"
170 PRINTTAB(4)“ COPYRIGHT: G. NEUFELD,
1983"

180 PRINT" {DOWN3 ONE MOMENT PLEAS

E---.Il

190 DIM HX$(255) ,H$(15)

191 FOR K=0 TO 9:H$ (K)=CHR$ (48+K) :NEXT:F

ORK=10T015: H$ () =CHR$ (55+K) : NEXT

200 FORJ=0TOF:FORK=0TOF:IHX$ (J%16+K)=H$ (J
) +H$ (K) :NEXT:NEXT

210 PRINT" {HOME3 {DOWN 23"M$

220 PRINT"{DOWN} INPUT START ADDRESS IN
HEXADEC IMAL"

230 OPEN 15,8,15

240 PRINT" {DOWN} $0000":PRINT" (UP}";

250 INPUT H$

260 HL=CO:HH=CO:FORK=1T02:C=ASC(MID$ (H$,

K))-HO: IFC>CATHENC=C-C7

270 IF C<CO OR C>F THENPRINT"{UP 23";:GO

TO240

280 D=ASC (MID% (H$,K+2)) —HO: IFD>CATHEND=D
-Cc7

290 IF DZCO OR D>F THENPRINT"{UF 23";:GO
T0240

300 HH=HH+C*CG™(C2-K) s HL=HL+D*CG~ (C2~K) :
NEXTK

310 PRINT"{UP}"TAB(6);

320 PRINT#15S, "M-R"CHR$ (HL) CHR$ (HH) CHR% (8
)

330 Os="":FOR K=COTOC7:GET#15,A%:1IF A%=N
$THENAS=2%
340 A=ASC{A%) tE=AANDHXI1Es=".": IFE>31ANDE

CP7THENE$=CHR$ (E)
350 O%=04$+E$:PRINT" "HX${(ASC(A%)) s INEXT:

213

PRINT" {RVS>"0%

360 FL=0:HL=HL+8: IFHL >255STHENHL=HL -256:H
H=HH+1:FL=1:FRINTHM®

370 IF HL=128 THEN FL=1:FRINTM®

380 PRINT" $"HX$ (HH)HX$ (HL) :: IFFL=1THENF
RINT:FRINT"{UP>";:G0T0250

390 GET A%:IF A$=""GOTO 32

400 IF A%="P"THENFRINT:PRINT"{UP>"::60TO
250

410 CLOSE1S

CREATE A FILE

10 PRINT"{CLR> {DOWN}"TAB (&) "DISK ROM TO
FILE"

20 INPUT" {DOWN>START AT LOCATION (HEX)
C100{LEFT &3";A%

30 Z$=A%:GOSUBZBO:S=Z:IF ZF=1 GOTO 20

40 PRINT"{UF}"TAB(31)7Z

S50 INPUT"{DOWN3QUIT AT LOCATION (HEX) F
FFF{LEFT &63";A$

60 Z%=A%$:B0OSUB280:0=Z:IF ZF=1 GOTO SO
70 PRINT"{UF3"TAB(31)Z

80 INPUT"{DOWN3>SAVE IN FILE NAMED ROM 1
S41{LEFT 103";F$%

90 INPUT"{DOWNIWITH LOAD ADDRESS OF (HEX
) 1100{LEFT &3";iA%

100 Z$=A%$:B0SUR280:L=Z:1IF IF=1 GOTO 90
110 PRINT"{UP3"TAB(31)Z

120 OPEN15,8,15,"10"

130 OPEN 1,8,5, "@0:"+F$+",P,W"

140 INPUT#15,EN,EM$,ET,ES

150 IF EN>19 THEN PRINT" {DOWN}DISK ERROR
"EN;EM$3ET;ES: CLOSE1:CLOSE15: STOF

160 PRINT" {DOWN 23"

170 LH=INT(L/256) :LL=L-254%LH

180 PRINT#1,CHR®(LL) ; CHR$ (LH) }

190 FOR K=S TO @

200 KH=INT (K/256) : KL=K-256%KH

210 PRINTH#15, "M-RK"CHR$ (KL) CHR$ (KH)

220 GET#15,A%:IF A$="" THEN A$=CHR$ (0)
230 PRINTH#1,A%$;

240 PRINT"{UF}WORKING ON"K

250 NEXT

260 CLOSE1:CLOSE1S:END

270 :

280 Z=0:ZF=0

290 IF LEN(Z$)>4 THEN ZF=1:PRINT" {DDWN3 ¢
RVSIHEX STRING TOO LONG":RETURN

300 IF LEN(Z%)<4 THEN ZF=1:PRINT" {DOWN3{

214

RVSYHEX STRING TOO SHORT":RETURN

310 FOR k=1 TO 4

320 IN=ASC(MID$(Z$,K))—-48I1IF IN>9 THEM Z
N=ZN-7

330 IF ZIN<O OR ZN>15 THEN ZF=1:PRINT"{DO
WN> {RVS>BAD HEX CHARACTER":RETURN

340 2 = 7 + IM * 16" (4-K)

350 NEXT

360 RETURN

HAVE FUN!

Late News

In early 1984 Commodore began shipping the 1541 disk drives that contained a new
$E000-$SFFFF ROM. The part numbers of these ROMs are: original 901229-03 revised
901229-05. The changes in the new ROM are:

$E683 Eliminate JSR TO ITTERR(SEAA4E) to solve stack overflow
$E68B problems.

$E780 to Eliminate power-on boot of the utility loader to solve possible
$E7A1 problems during initialization.

$EIDC Insert JMP to patch at $FF20.

SEAA4 Insert JMP to patch at $EF10.

$EBDB/DD/E0/E2 Change initialization of the serial bus.
$FEE6 New ROM checksum.

$FF10 New patch to change the initialization of the serial bus during the
power-up routine DSKINT.

$FF20 New patch to the serial bus listen routine ACPTR.
The ROM in the SX-64 has an additional change. The header block gap at $F58D has

been changed from $08 to $09 to eliminate the difference in header gap size between
the 4040 and SX-64.

215

APPENDIX A
1541 RAM VARIABLE DEFINITIONS

217

JOB QUEUE: $0000-$0005
The job queue is used to tell the disk controller what
disk operations to perform. A disk command such as LOAD,
SAVE, SCRATCH, etc. is interpreted by the drive's 6502
(while in its normal mode) and broken down into & set of
simple operations (jobs) such as: read track 9 sector 18
into data buffer #2, write the data in buffer #3 out to
track 12 sector 5, etc. The track and sector information
required for the job is placed into the header table and
the JOB CODE corresponding to the job to be done is put
in the job queue. The job code's position in the queue
indicates which data buffer (if any) is to be used and
where the track and sector information is stored in the
header table. When the 6502 is next in its floppy disk
controller mode (it switches every 10 milliseconds), it
scans the job queue looking for jobs to do. If it finds
one, it carries it out making use of the track and sector
information in the header table. Once the job is done,
or aborted, the disk controller replaces the job code
with an error code that indicates the job status.

JOB CODES ERROR CODES

$80 READ a sector $01 job completed successfully!
$90 WRITE a sector $02 header block not found
SAO0 VERIFY a sector $03 no SYNC character
SBO0 SEEK any sector $04 data block not found
$CO0 BUMP (move) head $05 data block checksum error

to track #1 $07 verify error after write
$DO0 JUMP to machine $08 write protect error

code in buffer $09 header block checksum error
SE0 EXECUTE code in S0A data block too long

buffer once up to $0B ID mismatch error

speed & head ready $10 byte decoding error

ADDRESS| NAME | JOB QUEUE DEFINITIONS
$0000 JOBS Use buffer #0 ($0300+), find T/S in $06/7
$0001 Use buffer #1 ($0400+), find T/S in $08/9
$0002 Use buffer #2 ($0500+), find T/S in S$SOA/B
$0003 Use buffer #3 ($0600+), find T/S in $0C/D
$0004 Use buffer #4 ($0700+), find T/S in SOE/F
$0005 Use buffer #5 (no RAM), find T/S in $10/1

HEADER TABLE: $0006-S0011
This is the area that specifies which tracks and sectors
are to be used for the jobs in the job queue. Tracks and
sectors are not needed for BUMP or JUMP jobs.

ADDRESS | NAME I HEADER TABLE DEFINITIONS

$0006/7 HDRS Track/sector for job in $0000 (buffer 0)
$0008/9 Track/sector for job in $0001 (buffer 1)
S000A/B Track/sector for job in $0002 (buffer 2)
$000C/D Track/sector for job in $0003 (buffer 3)
SO000E/F Track/sector for job in $0004 (buffer 4)
$0010/1 Track/sector for job in $0005 (buffer 5)

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS
$0012 DSKID Master copy of disk ID. This is the 1ID
specified when the disk was formatted.
It is updated whenever a SEEK job is
performed (see ROM patch $EF25). The
initialize command performs a seek and
therefore updates the master 1ID.
$0012 first ID character
$0013 second ID character
$0014/5 Unused - Disk ID for drive #1
$0016 HEADER Image of the most recent header read.
The characters appear here in the same
sequence that Commodore's manual says
they are recorded onto the disk surface.
$0016 first ID character
$0017 second ID character
$0018 track number
$0019 sector number
S001A header checksum
NOTE: They are actually recorded onto
disk in the opposite sequence.
$001B ACTJOB Not used
$001C WPSW Flag to indicate that there has been a
change in the write protect status.
$001D UNUSED (WPSW for drive #1)
SO001E LWPT last state of the write protect switch
SO001F UNUSED (LWPT for drive #1) Set to $01
on power-up
$0020 DRVST disk drive status
bit meaning
4 shut down drv motor? l=yes 0=no
5 drive motor l=on 0O=off
6 head stepping l=on 0O=off
7 drive ready? l1=no O=yes
$0021 UNUSED (DRVST for drive #1)
$0022 DRVTRK Track currently under R/W head
$0023 UNUSED (DRVTRK for drive #1)
$0024-| STAB Work area for doing interconversions of
$002D binary data and its GCR write images
SO002E/F| SAVPNT Temporary storage of pointers
$0030/1| BUFPNT Pointer to currently active buffer
$0032/3| HDRPNT Pointer to active values in header table
$0034 GCRPNT Pointer to last character converted
$0035 GCRERR Not used
$0036 BYTCNT Byte counter for GCR/binary conversions
$0037 BITCNT Not used
$0038 BID Data block ID character ($07)
$0039 HBID Header block ID character ($08)
S003A CHKSUM Storage of data or header checksum

220

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS

$003B HINIB Unused

$003C BYTE Unused

$003D DRIVE Always $00 on 1541

S003E CDRIVE Currently active drive ($SFF if inactive)

$S003F JOBN Position of last job in job gqueue (0-5)

$0040 TRACC Byte counter for GCR/binary conversions

$0041 NXTJOB Position of next job in job queue (0-5)

$0042 NXTRK Next track to move head to

$0043 SECTR Sector counter. Used by format routine

$0044 WORK Temporary workspace

$0045 JOB Temporary storage of job code

$0046 CTRACK Unused

$0047 DBID Data block ID code. Set on reset to $07.
This may be changed to write or read
data blocks with different data block
ID codes. However, the first nybble of
the data block ID code should always be
a zero ($0-). Otherwise, the controller
will have difficulty detecting the end
of the sync mark and the start of DBID.
If you try to read a sector whose DBID
is different from the value stored here,
the disk controller will put an error
code of $04 in the job queue and the
drive will report a #22 error (DATA
BLOCK NOT FOUND) .

$0048 ACLTIM Timer for acceleration of head

$0049 SAVSP Temporary save of the stack pointer

$004A STEPS The number of steps to move the head to
get to the desired track. To move the
head over 1 track, reguires XX steps.
Values between 0 and 127 move the head
out (to lower track numbers). Values
over 128 move the head (256-value) steps
in (to higher track numbers)

$004B TMP Temporary storage

$004cC CSECT Last sector read

$004D NEXTS Next sector to service

SO004E NXTBF Hi byte of a pointer to the next buffer
of GCR bytes to be changed into binary.
The GCR bytes in the overflow buffer are
translated first. This points to the
buffer that holds the rest of them.

SO004F NXTPNT Lo byte of a pointer to the next GCR
byte location that is to be translated

$0050 GCRFLG Flag to indicate whether the data in the
currently active buffer has been left
in binary (0) or GCR (1) form.

$0051 FTNUM Used by the formatting routine to store

the number of the track currently being
formatted. Set on reset to S$FF.

221

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS
$0052/5| BTAB Staging area for the four binary bytes
being converted to GCR by PUT4BG(SF6DO0)
or from GCR by GET4GB(SF7E6) .
$0056/D{ GTAB Staging area for the five GCR bytes
being converted from binary by PUT4BG
(SF6D0) or to binary by GET4GB(SF7E6).
SO005E AS Number of steps to use to accelerate or
decelerate when steppring the head ($04)
$O005F AF Acceleration/deceleration factor ($04)
$0060 ACLSTP Number of steps left to accelerate or
decelerate when stepping the head
$0061 RSTEPS Number of steps left to step the head
in fast stepping (run) mode.
$0062/3| NXTST Pointer to the appropriate head stepping
routine. Normally S$SFAO05 (not stepping)
$0064 MINSTP Minimum number of steps for the head to
move to make the use of fast stepping
mode useful ($C8). If fewer steps needed,
use the slow stepping mode.
$0065/6| VNMI Pointer to start of NMI routine ($EB2E).
Set on power up or drive reset.
$0067 NMIFLG Flag to indicate whether NMI in progress
$0068 AUTOFG Flag to enable (0) or disable (1) the
auto initialization of a disk (read BAM)
if ID mismatch detected.
$0069 SECINC Sector increment for use by SEQ routine.
Set on reset to ($S0A).
$006A REVCNT Counter for error recovery (number of
attempts so far) Set on reset to $05
$006B/C| USRIMP Pointer to the start of the user jump
table ($SFFF6). Set on power up or reset.
S006D/E| BMPNT Pointer to the start of the bit map
($0400). Set when a disk is initialized.
SO006F TO=TEMP| Temporary work area {($6F on reset)
$0070 Tl Temporary work area
$0071 T2 Temporary work area
$0072 T3 Temporary work area (SFF on reset)
$0073 T4 Temporary work area
$0074 Temporary work area
$0075/6| 1P Indirect pointer variable ($0100)
Set on power up or reset.
$0077 LSNADR Listener address ($28 on reset)
$0078 TLKADR Talker address ($48 on reset)
$0079 LSNACT Active listener flag
SO007A TLKACT Active talker flag
$007B ADRSED Addressed flag
$007C ATNPND Attention pending flag
$007D ATNMOD 6502 in attention mode
SO007E PRGTRK Last program accessed
$SO007F DRVNUM Current drive number (always 0 in 1541)
$0080 TRACK Current track number ($00 after use)
$0081 SECTOR Current sector number ($00 after use)
$0082 LINDX Logical index (current channel#)

222

ADDRESS| NAME 1541 RAM VARIABLE DEFINITIONS
$0083 SA Current secondary address
$0084 ORGSA Original secondary address
$0085 DATA Temporary data byte
$0086 RO Temporary result
$0087 R1 Temporary result
$0088 R2 Temporary result
$0089 R3 Temporary result
$008A R4 Temporary result
$008B/E| RESULT Result area ($S008B-SO08E)
$SO008F/3| ACCUM Accumulator ($S008F-0093)
$0094/5| DIRBUF Directory buffer ($0094-0095) $05/$02
$0096 ICMD IEEE command in (not used on 1541)
$0097 MYPA MY PA flag $00
$0098 CONT Bit counter for serial $00
Buffer byte pointers
These pointers (one for each buffer) are
used to point at the next byte in the
buffer to be used. The B-P command sets
these pointers.
$0099/A| BUFTAB Points to next byte in buffer #0 ($0300)
$009B/C Points to next byte in buffer #1 ($0400)
$009D/E Points to next byte in buffer #2 ($0500)
S009F/0 Points to next byte in buffer #3 ($0600)
$00A1/2 Points to next byte in buffer #4 ($0700)
$00A3/4 Points to next byte in CMD buffer ($0200)
SO00A5/6 Points to next byte in ERR buffer ($02D6)
$00A7/D| BUFO Table of channel#'s assigned to each of
the buffers. SFF is inactive buffer.
SO00AE/4| BUF1 Table of channel#'s assigned to each of
the buffers. SFF is inactive buffer.
$S00B5/A! RECL Table of lo bytes of record numbers for
each buffer
SO0BB/0| RECH Table of hi bytes of record numbers for
each buffer
$00C1/6| NR Table of next record numbers for buffers
$00C7/C| RS Table of record size for each buffer
$G0CD/ 2| SS Table of side sectors for each buffer
$00D3 F1PTR File stream 1 pointer
$00D4 RECPTR Pointer to start of record
$00D5 SSNUM Number of side sector
S00D6 SSIND Index to side sector
$00D7 RELPTR Relative file pointer to track
$00D8/C| ENTSEC Sector of directory entries
$00DD/1| ENTIND Index of directory entries
S00E2/6| FILDRV Default flag, drive # (all 0 on 1541)
SO00E7/B| PATTYP Pattern, replace, closed-flags, type
$O00EC/1| FILTYP Channel file type
$00F2/7| CHNRDY Channel status
SOOF8 EIOFLG Temporary for EOI
S00F9 JOBNUM Current job number

223

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS
SOOFA/E| LRUTBL Least recently used table
SOO0FF/0} NODRV No drive flag for drives 0 and 1
$0101/2{ DSKVER DOS version taken from track 18 sector 0
for drives 0 and 1
$0103 ZPEND Unused
STACK AREA $0104-S01FF
$0200-!| CMDBUF Command buffer ($0200-50229)
$0229 Disk commands such as: NO:GAMES #1,Gl
that are sent to the disk drive from
the computer over the serial bus are
stored here. The command is parsed to
locate special charactkers such as : ,
Once the command has been interpreted,
ROM routines are executed to do it.
$022A CMDNUM Command code number
$022B/D| LINTAB SA:LINDX table ($022B-$023D)
This table indicates the current status
of each data channel (secondary address)
Each™ position represents one channel,
channel 0=$022B; 1=$022C; 2=$022D; etc.
Possible channel status values are:
SFF - inactive $81 - open for write
$41 - read/write $01 - open for read
S022E/3| CHNDAT Channel data byte ($S023E-$0243)
The most recent byte read or written
for each channel
$0244/9| LSTCHR Channel last character pointer
Points to the last character read or
written in the buffer for each channel
S024A TYPE Active file type
$024B STRSI1Z Length of the string
$024C TEMPSA Temporary secondary address
$024D CMD Temporary Jjob command
$024E LSTSEC Work area for finding best sector to do
$024F/0| BUFUSE Buffer allocation
$0251/2] MDIRTY BAM dirty flag (drives 0/1)
$0253 ENTFND Directory entry found flag
$0254 DIRLST Directory listing flag
$0255 CMDWAT Command waiting flag
$0256 LINUSE LINDX use word
$0257 LBUSED Last buffer used
$0258 REC Record size. Used by directory routines
$0259 TRKSS Side sector track. Used by dir routines
S025A SECSS Side sector sector. Used by dir routines
$025B/F| LSTJOB | Last job by buffer ($025B/C/D/E/F)
$0260/5| DSEC Sector of directory entry by buffer
$0266/B| DIND Index of directory entry by buffer
$026C ERWORD Error word for recovery
$026D ERLED Error LED mask for flashing
S026E PRGDRV Last program drive
S026F PRGSEC Last program sector

224

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS
$0270 WLINDX Write LINDX
$0271 RLINDX Read LINDX
$0272/3| NBTEMP # blocks temp
$0274 CMDSIZ Command string size
$0275 CHAR Character under the parser
$0276 LIMIT PTR limit in comparison
$0277 F1CNT File stream 1 count
$0278 F2CNT File stream 2 count
$0279 F2PTR File stream 2 pointer
PARSER TABLES ($027A-$0289)
$027A/F; FILTBL Table of filename pointers
$0280/4{ FILTRK First file link (Track)
$0285/9| FILSEC First file link (Sector)
$028A PATFLG Pattern presence flag
$028B IMAGE File stream image
$028C DRVCNT Number of drive searches
$028D DRVFLG Drive search flag
$S028E LSTDRV Last drive w/o error. Used as the
default drive number.
S028F FOUND Found flag in directory searches
$0290 DIRSEC Directory sector
$0291 DELSEC Sector of first available entry
$0292 DELIND Index of first available entry
$0293 LSTBUF =0 if last block
$0294 INDEX Current index in buffer
$0295 FILCNT Counter of file entries
$0296 TYPFLG Match by type of flag
$0297 MODE Active file mode (R,W)
$0298 JOBRTN Job return flag
$0299 EPTR Pointer for recovery
$029A TOFF Total track offset
$029B/C| UBAM Last BAM update pointer
$029D/0| TBAM Track # of BAM image (drive 0/1)
$02A1/0| BAM BAM images ($02A1-02BO0)

OUTPUT BUFFERS ($02B1-S02F8)
$02B1/4| NAMBUF Directory buffer ($02B1-$02D4)
$02D5/8| ERRBUF Error message buffer ($02D5-$502F8)

S02F9 WBAM Don't write BAM flag. Set to 0 at start
and end of any disk command.

SO02FA/B| NDBL # of disk blocks free (lo byte 0/1)

S02FC/D| NDBH # of disk blocks free (hi byte 0/1)

SO02FE/F| PHASE Current phase of head stepper motor

225

ADDRESS NAME 1541 RAM VARIABLE DEFINITIONS
DATA BUFFERS ($0300-S$07FF)
$0300 BUFO Data buffer #0 ($0300~-S03FF)
$0400 BUF1 Data buffer #1 ($0400-$04FF)
$0500 BUF2 Data buffer #2 ($0500-$0S5SFF)
$0600 BUF3 Data buffer #3 ($0600-S06FF)
$0700 BUF4 Data buffer #4 (S0700-$S07FF) BAM ONLY'!
ADDRESS NAME 1541 1/0 DEFINITIONS
SERIAL 1/0 6522 ($1800-$180F)
$1800 PB DATA PORT B - Serial data 1/0
BITS FOR SERIAL HANDSHAKE
DATIN Bit 0 - $01 Data in line
DATOUT Bit 1 - $02 Data out line
CLKIN Bit 2 - $04 Clock in line
CLKOUT Bit 3 - $08 Clock out line
ATNA Bit 4 - $10 Attention acknowledge line
ATN Bit 7 - $80 Attention in line
$1801 PAl DATA PORT A - Unused
$1802 DDRB1 DATA DIRECTION FOR PORT B
$1803 DDRA1 DATA DIRECTION FOR PORT A - Unused
$1804 Ti1LC1 TIMER 1 LOW COUNTER
$1805 T1HC1 TIMER 1 HIGH COUNTER
$1806 T1LL2 TIMER 1 LOW LATCH
$1807 'TlHL2 TIMER 1 HIGE LATCH
$1808 T2LC1 TIMER 2 LOW COUNTER
$1809 T2HC1 TIMER 2 HIGH COUNTER
$180A SR1 SHIFT REGISTER
$180B ACR1 AUXILIARY CONTROL REGISTER
$180C PCR1 PERIPHERAL CONTROL REGISTER
$180D IFR1 INTERRUPT FLAG REGISTER
$180E IER1 INTERRUPT ENABLE REGISTER
DISX CONTROLLER 6522 {$1C00-S1COF)
$1C00 DSKCNT DATA PORT B - Disk controller 1/0
Bit 0 - $01 Bits 0 & 1 are cycled to
Bit 1 - $02 step the head
Bit 2 - $04 Motor on (1) or off (0)
Bit 3 - $08 Drive active LED on/off
Bit 4 - $10 Write protect sense
Bit 5 - $20 Density select (0)
Bit 6 - $40 Density select (1)
Bit 7 - $80 SYNC detect line

226

ADDRESS NAME 1541 I/0 DEFINITIONS
$1C01 DATAZ2 DATA PORT A - GCR data I/0O to diskette
$1C02 DDRBZ2 DATA DIRECTION FOR PORT B
$1C03 DDRA2 DATA DIRECTION FOR PORT A
$1Cc04 T1LC2 TIMER 1 LOW COUNTER
$1C05 T1RHC2 TIMER 1 HIGH COUNTER
$1C06 T1LL2 TIMER 1 LOW LATCH
$1Co07 T1HLZ TIMER 1 HIGH LATCH
$1C08 T2LC2 TIMER 2 LOW COUNTER
$1C09 T2HC2 TIMER 2 HIGH COUNTER
S1COA SR2 SHIFT REGISTER
$S1COB ACR2 AUXILIARY CONTROL REGISTER
$1coc PCR2 PERIPHERAL CONTROL REGISTER
$1COD IFR2 INTERRUPT FLAG REGISTER
$1COE IER2 INTERRUPT ENABLE REGISTER

227

APPENDIX B
ANALYSIS OF THE 1541°’s ROM

Here be dragons and ogres!
Travelers, walk not alone.

229

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

SETLDA

LEDSON

ERROFF

ERRON

PARSXQ

PS5

PsS10

PsS20

$C100

$C118

$C123

$Ccl2cC

$C146

$C150

$C153
$C15D

$C160

$C163

SC1l6A

SCL17A

$C181

Turn on drive-active LED:

Set bit 3 of DSKCNT ($1C00) to turn on
LED for the current drive (DRVNUM; S7F).
Turn on drive-active LED:

Set bit 3 of DSKCNT ($1C00) to turn on
drive active LED for drive 0.

Turn off error LED:

Store $00 in ERWORD (S026C) and in ERLED
($026D) to clear any error status and
turn off drive-active/error LED.

Turn on error LED:

Store $80 in ERWORD ($026C) to ensure
LED will continue to flash and set bit

3 of DSKCNT to turn the LED on using

the LED mask from LEDMSK (SFECA).

Parse string in command buffer:

Clear the "don't write BAM" flag, WBAM
(S02F9) and move the drive number of the
last successful job from LSTDRV ($S028E)
(S028E) to DRVNUM (S7F). This makes the
last used drive the default drive.

JSR to OKERR ($SE6BC) to clear any errors
and move the OK error message into the
error buffer.

Check if the command's secondary address
(ORGSA; $84) was SOF (command channel).
If it was not S$OF, exit with a JMP to
OPEN ($D7B4).

If the secondary address was $0F, JSR to
CMDSET (SC2B3) to interpret the command
and set up the necessary variables and
registers (on return .Y=0).

Move first character of command from the
command buffer ($0200) to CHAR (S$0275).
Search the command table (CMDTBL; SFE89)
for this character. If not found, exit
by loading .A with a #$31 (BAD COMMAND)
and jumping to the command level error
handler (CMDERR; $C1C8).

If found, store the command's position
in the table (the command number) into
CMDNUM ($022A). Check if this command
must be parsed by comparing the command
number with $09. If parsing is required
(NEW, RENAME, SCRATCH, COPY, & LOAD),
JSR to TAGCMD (SClEE) to set tables,
pointers and patterns.

231

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

PS30

$C184

Move the address of the appropriate ROM

routine from the tables, CJUMPL (SFE95)

and CJUMPH (SFEAl) into $6F/S$S70 (TEMP).

Exit with an indirect JMP to the routine
via the vector at TEMP ($6F).

ENDCMD

SCREND

SCREN1

CLRCB

CMDERR

SIMPRS

PRSCLN

SC1a3

SC1AD

$C1BD

scics

$CiD1

SC1DB

SC1E>5

Terminate command successfully:

Clear the "don't write BAM" flag, WBAM
(S02F9). Load .A with the error status
from ERWORD ($026C). If non-zero, an
error has occurred so exit with a JMP

to CMDERR ($C1C8).

If command completed with no errors, set
TRACK ($80), SECTOR (S$81), and the
pointer into the command buffer, CB(SA3)
to $00. JSR to ERRMSG ($SE6C7) and ERROFF
($C123) to clear any error status.

Move current drive number from DRVNUM
(S7F) to last used drive number, LSTDRV
(S028E) . Set the drive-busy flag, NODRV
(SFF) to $00 to indicate that the drive
is inactive. JSR to CLRCB ($Cl1lBD) to
zero the command buffer. JMP to FREICH
(SD4DA) to clear the internal channel.
Clear the command buffer ($0200-50228):
Erase any old command information by
overwriting the old command with $00.
Command level error handling:

Set TRACK ($80) and SECTOR ($81) to s$00
and JMP to CMDER2 ($SE645).

Simple parser:

Initialize .X and the file table pointer
FILTBL ($027A) to $00. Load .A with a
$3A (:) and JSR to PARSE ($C268) to scan
the command string for a colon.,

On return Z=1 if ":" found and .Y points
to its position in the command. If not
found, leave FILTAB=$00 and exit. If ":"
was found, set FILTAB=(":" position - 1)
and exit. All exits are with a JMP to
SETANY ($C368) to set the drive number.
Find colon (:) in command string:

Load .X and .Y with $00 and .A with $3A
(:) and JMP to PARSE (S$C268).

Tag command string, set up CMD structure
and file stream pointers:

232

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

TAGCMD

TC25

TC30

TC35

TC40

SC1EE

SC1F3

$C1F8
SC1FD
SC1FE

$C200

SC20A

COMMAND STRUCTURE (Bit mapped)

The disk commands, RENAME, SCRATCH, NEW,
and LOAD, are analyzed by this routine
to determine the command structure. As
the command is parsed, bits in IMAGE
(S028B) are set or cleared to indicate
the presence or absence of various parts
of the command. Once the command has
been analyzed, its structure image is
checked against the correct structure
for that command given in STRUCT (SFEAS+)

Pl Wild cards present (Y=1)

Gl More than one file implied (Y=1)
D1 Drive # specified {(not default)
Filenamel given

P2 Wild cards present (Y=1)

G2 More than one file implied (Y=1)
D2 Drive # specified (not default)
N2 Filename2 given

O N WS U
2z
—

NOTE: Bits 7-4 refer to file #1
Bits 3-0 refer to file #2

JSR to PRSCLN (SClE5) to locate the
position of the colon (:) that is a
necessary part of all these commands.

e.g. RO : NEWNAME=OLDNAME (Rename)
If no colon was found, load .A with $34
to indicate a bad command and exit with
a JMP to CMDERR ($C1C8).
If a colon was found, set FILTAB to the
colon position - 1.
Check if a comma was found before the
colon (.X > 0 on return from PARSE).
If a comma was found, the syntax is bad
so exit via TC25 (SC1F3).
Load .A with $3D (=) and JSR to PARSE
($C268). On return .X=0 indicates that
no wild-card characters (? or *) were
found. If any were found, set bit 6 (G1)
of IMAGE ($028B) to indicate that the
command applies to more than one file.
In all cases, set bit 5 (D1) of IMAGE
to indicate that a drive # is present
and set bit 0 (N2) to indicate that a
second file name is given (fixed later)

233

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

TC50

TC60

TC70

TC75

TC80

$SC20F

$C216

$C223

$C228

SC22B

$C234

$C23E

$C245

$C24A

$C24cC

$C254

$C260

Increment .X and use it to set the
lengths of filenames 1 and 2, F1CNT and
F2CNT ($0277/8). Filename 2 will default
to the same length as filename 1.

Check if PARSE found any wild cards by
loading PATFLG ($028A). If any found,
set bit 7 (Pl) of IMAGE ($028B).

Set pattern flag, PATFLG ($028A) to $00
to prepare for parsing the rest of the
command.

Check if there is any command left to
parse by checking the value of .Y set by
PARSE. If .Y=0, nothing left so branch
to TC75 ($C254) to check structure.
Store value from .Y in filetable, FILTBL
($027A) ,X. Set the pointer to the start
of filename #2, F2PNT ($0279) from the
current value of FICNT ($0277).

Load .A with $8D (shifted CR) and JSR to
PARSE ($C268) to parse the rest of the
command. On return increment .X so it
points to the end of the string and put
the value into F2CNT ($0278). Decrement
the value of .X to restore its former
value.

Check if any wild cards were found by
PARSE in filename 2 by checking the
pattern flag, PATFLG ($028A). If any
were found, set 3 (P2) of IMAGE ($028B).
Check if there was a second filename by
checking if .X = FICNT. If second file
name is only 1 chr long, branch to TC70.
Set bit 2 to indicate that the command
implies more than one second file name.
Set bit 1 to indicate that a second
drive 1is specified and bit 0 to indicate
that a second file name is given. EOR
this with IMAGE (clears bit 0) and store
the result back into IMAGE (S028B).
Check IMAGE against the entry for that
command (CMD number from CMDNUM, $022A)
in the structure table, STRUCT (SFEA5+)
If match, syntax is OK; exit with an RTS
Store IMAGE in ERWORD ($026C). Load .A
with a $30 to indicate a bad syntax and
exit with a JMP to CMDERR ($C1C8).

234

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

PARSE

PR10

PR20

PR25

$C268

SC26B

$C270

$C278
$C280

$C283

Parse string:

On entry, .A contains the character to
be found in the string, .Y points to the
the character in the string where the
scan is to start, and .X points into the
file table, FILTABRB,X.

The routine scans the string for special
characters "*", "?2", and "," as well as
the desired character. In scanning the
string .Y is used as a pointer to the
character in the command string being
examined and .X is a pointer into the
file table, FILTAB ($027B+) for storing
the positions (.Y value) of the start &
end of file names that are found. When a
wild card (* or ?) is found, the pattern
flag PATFLG ($028A) is incremented. When
a comma is found, its position is noted
in the file table, FILTAB and a check is
made to ensure that not too many file
names are present.

When the special character is found or
the end of the command is reached, the
routine ends. If no wild cards have been
found, the pattern type, PATTYP,X 1s set
to $80. Otherwise it is left unchanged.
On exit, .¥=0 and the Z flag =0 if the
desired character has not been found. If
it has been found, .Y = the position of
the character and the 2 flag is set.

Store the desired character in CHAR
($0275) .

Start of loop using .Y as a counter to
scan the command string. If .Y is
greater than or equal to the length of
the command string, CMDSIZE ($0274),
branch to PR30 (SC29E).

Load command string character into .A
and increment .Y counter. Check if it is
the desired character. If it is, branch
to PR35 ($C2A0).

Check if it is a wild card ("*" or "?2").
If not, branch to PR25 ($C283).
Increment the pattern flag, PATFLG
($028A) to count the # of wild cards.
Check if it is a comma (","). If not,
branch back to PR10 to get next command
string character.

235

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

PR28

PR30

PR35

PR40

CMDSET

Cs07

$C287

$C292

$C296

$C29E

S$SC2A0

SC2AD

$C2B1

$C2B3

$C2B7

$C2BA

$cacl

$SC2CA

Transfer character count from .Y to .A
and store in the file table, FILTAB+1,X
($027B,X) to indicate where the file
name ends. Load .A with the pattern flag
PATFLG and AND it with $7F. If the
result is zero (no wild cards found),
branch to PR28.

Wild cards were present, so store $80

in PATTYP,X ($E7,X) to indicate this.
Also store $80 into PATFLG to zero the
count of wild cards but indicate that
there are wild cards in the string.
Increment .X (counts number of files &
points into FILTAB) and compare it to
$04 (the maximum number of file names
allowed in a command string). If the
maximum has not been exceeded, branch
back to PR10 to continue the scan.

Load .Y with $00 to indicate that the
desired character was not found.

Store a copy of the command size, CMDSIZ
($0274) into the file table, FILTAB+1,X
($S027B,X) . Load the pattern flag, PATFLG
and AND it with $7F. If the result is O,
no wild cards have been found so branch
to PR40.

Wild cards were present, so store $80

in PATTYP,X (SE7,X) to indicate this.
Transfer character count from .Y to .A.
This sets the Z flag if the desired
character has not been found.

Initialize command tables & pointers
Find length of command string and zero
all variables and pointers.

Load .Y from BUFTAB+CBPTR ($A3). This is
the length of the command that was sent
from the computer. If .¥Y=0, branch to
CS08 (s$cC2CB).

Decrement .Y and if .¥=0, branch to CS07
(SC2CA) .

Load .A with the character from the
command buffer, CMDBUF,Y ($0200,Y) and
see if it is a carriage return ($0D). If
it is, branch to CS08 ($SC2CB).

Decrement .Y and load the next character
from the command buffer. If this is a
carriage return ($0D), branch to CS08
($C2CB). If not, increment .Y

Increment .Y pointer into command buffer

236

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

Cso08

CMDRST

ONEDRV

ALLDRS

AD10

SETDRV

$C2CB

$C2D4

$C2DC

$C312

$C320

$C325

$SC32A

$C32D

$C335

$C33C

Store length of command (.Y) in CMDSIZ

($027B) . Compare length (.Y) with the

maximum allowable length ($2A) to set

the carry flag. Load .Y with S$FF. If
command length was OK, branch to CMDRST.

Command over-size so set command number

($022A) to SFF, load .A with $32 to

indicate a TOO LONG ERROR and exit with

a JMP to CMDERR ($C1C8).

Zero all important variables & pointers:
BUFTAB+CBPTR (S$SA3) REC ($0258)
FILTBL ($027A-7F) TYPE ($024A)
ENTSEC ($S00D8-DC) TYPFLG ($0296)
ENTIND (SOODD-E1) F1PTR ($00D3)
FILDRV (S$SQ00E2-E6) F2PTR ($0279)
PATTYP ($SOOE7-EB) PATFLG ($028A)
FILTRK ($0280-84) ERWORD ($026C)
FILSEC ($0285-89)

Set first drive & table pointers:

Change pointer to end of the first file

name (F1CNT; $0277) to point to the end

of the second file name (use value from

F2CNT; $0278). Store $01 in F2CNT and in

F2PTR ($0279) to clear these variables

Set up all drives from F2CNT:

Load .Y with last drive used from LSTDRV

($028E) and .X with $00.

Save .X into F1PTR ($D3). Load .A from

FILTAB,X ($027A,X) so it points to the

start of the Xth file specified in the

command string.

JSR to SETDRV ($C33C) to set drive #.

On return .Y contains the drive number

specified in the command or the default.

NOTE: Bits represent drives (If bit 7

set, use default. Bit 0 = drive #0/1)

Recover .X pointer from F1PTR. Store .A

in FILTAB,X ($027A,X). Move drive # from

.Y to .A and store in FILDRV,X ($027A,X)

Increment .X pointer and compare it to

F2CNT ($0278) to see if any more files

were specified. If more, branch back to

AD10 to do the next one. If not, RTS

Set drive # from text or default to O

On entry and exit .A is an index into

the command buffer.

On entry .Y is the default drive #. On

exit it is the drive specified or the

default drive.

237

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

SD20

sD22

SD24

SD40

SD50

SETANY

SAQ05

$C33C
$C33D
$C33F

$C341

$C346

SC34B

$C34cC

$C34D

SC34F

$C352
$C355
$C357

$SC35B

$C361
$C362

$C368
$C36D
$C370

Move pointer into command buffer from

.A to .X

Load .Y with $00 to ensure that the

1541's default drive is ALWAYS DRIVE #0

Load .A with $3A (:) to prepare to hunt

for a colon (drive # is just before :).

Check for colon in command string at

CMDBUF+1,X ($0201,X). Picks up syntax:
X#:FILENAME as in S0:JUNK

If found, branch to $D40.

Check for colon in command string at

CMDBUF,X ($0200,X). Picks up default

drive syntax as in S:JUNK

If colon NOT found, branch to SD40.

Colon found so increment pointer (.X) so

it points to the first character in the

filename.

Transfer .Y to .A to set up the default

drive

AND .A with $01 to ensure drive number

in ASCII form ($30 or $31) is converted

to $00 or $01.

Transfer .A to .Y to restore drive #.

Transfer .X to .A to restore index into

command string and exit with an RTS.

Set drive # from command string with the

syntax: X#:FILENAME. On entry .X points

to the # in the command string.

Load .A with the drive number (in ASCII)

from CMDBUF,X ($0200,X).

Increment .X twice so it points to the

first character in the file name.

Compare .A (drive number} to $30 (dr#0).

If equal, branch back to SD22 ($C34D)

Compare .A {(drive number} to $31 (dr#l).

If equal, branch back to SD22 ($C34D)

If not egual, must be default drive so

branch back to SD20 ($C34C).

Set drive # from command string with the

syntax: X#,FILE or xx=FILE.

Transfer the drive number from .Y to .A.

OR .A with $80 to set the default drive

bit and then AND the result with $81 to

mask off any odd bits. Branch back to

SD24 (SC34F) to terminate routine.

Set drive # from any configuration:

Set IMAGE ($028B) to $00.

Load .Y from FILTBL ($027A).

Load .A with the (CB),Y character from

the command string and JSR to TSTOV1 to

test for a "0" or "1".

238

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

SA10

SA20

TOGDRV

FS1SET

FS10

$C371

$C377

$C37D

$C383

$C388

$C38C

$SC38F

$C398

$C39D

SC3A2

$C3AC

$C3B0

On return .A contains $00 or $01 if the
drive was specified. If not specified,
.A is $80 or $81. If the drive number
was given, branch to SA20 ($C388).
Increment the pointer into the command
string (.Y). Compare the pointer value
to the command length (CMDSIZ; $0274)
to see if we are at the end. If we are,
branch to SA10 ($C383).

If not "0" or "1", set the pointer (.Y)
to the end of the command less one (so
it points to the last character before
the RETURN to pick up things like V0)
and loop back to SA05 ($C370).
Decrement IMAGE (becomes S$FF) to flag a
default drive status and load .A with a
$00 to ensure default to 0 on the 1541.
AND the drive number in .A with $01, and
store the result in the current drive
number, DRVNUM ($7F).

Exit with a JMP to SETLDS ($C100) to
turn on the drive active light.

Toggle drive number:

Load .A with current drive number from
DRVNUM ($7F). EOR it with $01 to flip
bit #0, AND it with $01 to mask off the
bits 1-7, and store the result back in
DRVNUM (S$7F).

Set pointers to one file stream and
check type:

Zero .Y and load .A with the pointer to
the end of file name 1 (F1CNT; $0277).
Compare .A to the pointer to the end of
file name 2 (F2CNT; $0278). If equal,
there is no second file so branch to
FS15 ($C3B8).

Decrement F2CNT and load .Y with its
value. Load .A with the pointer to the
filetype in the command string from
FILTAB,Y ($S027A,Y). Transfer this value
to .Y and use it to load the file type
into .A from the command string (CB),Y.
Load .Y with $04 (the number of file
types less 1).

Loop to compare the file type in .A to
the list of possible file types,TYPLST,Y
When a match occurs, branch to FS15
($C3B8). If no match found this time,
decrement .Y and, if there are any file
types left, loop back to FS10. NOTE: if
no match occurs, file assumed to he DEL.

239

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

FS15

TSTOV1

TOV1

OPTSCH

0s10

0s15

0s30

0835

0845

SC3B8

$C3BD

$C3C7

SC3CA

$C3D5

SC3EQ

SC3ES8

$C3EB

SC3EF

SC3FE

$C400

$C409

$SC41B

Transfer file type from .Y to .A and
store in TYPFLG ($0296).

Test if character in .A 1is ASCII 0O or 1:
Compare .A to ASCII "0O" ($30) and then
to ASCII "1" ($31). If a match in either
case, branch to TOV1.

OR .A with $80 to set bit 7 to indicate
no match was found.

AND .A with $81 to convert ASCII to HEX
and preserve bit 7.

Determine optimal search for LOOKUP and
FINFIL:

Zero TEMP ($6F) and DRVFLG ($028D) and
push $00 onto the stack. Load .X with
value from F2CNT ($0278). Note: TEMP 1is
the drive mask.

Pull .A from the stack and OR it with
the value in TEMP ($6F). Push the result
back onto the stack. Load .A with $01
and store this value in TEMP. Decrement
.X (pointer into file table). If no
files left (.X=SFF), branch to $0S30.
Load .A with the drive for the file from
FILDRV,X ($E2,X). If this file uses the
default drive (bit 7 set), branch to
0S15. Do two ASL's on TEMP (S$S6F).

Do one LSR on .A. If drive number in .A
was 1, the carry bit is set so branch
back to 0S10.

Since drive number was 0, do one ASL on
TEMP ($6F) and branch back to 0S10.

Pull .A from the stack and transfer this
value to .X. Use this value as an index
and load .A with a value from the search
table, SCHTBL-1,X ($C43F,X). Push this
value onto the stack, AND it with $03,
and store the result in DRVCNT ($028C).
Pull the original value off the stack
and do an ASL. If bit 7 is not set,
branch to 0S40.

If bit 7 was set, load A. with the value
from FILDRV (SE2).

AND .A with $01 and store the result in
DRVNUM ($7F). Load .A with DRVCNT($028C)
and 1if $00, only one drive is addressed
so branch to 0S60.

JSR to AUTOI ($C63D) to check the drive
status and initialize it if necessary.
On return, branch to 0S70 if the drive
is ready (.A=0).

Drive is not ready so load .A with $74
to indicate the drive is not ready and
JSR to CMDERR (S$SC1C8).

240

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

0s50

0560

0s70

0s45

SCHTBL

LOOKUP

LKO5

LK10

LK15

LK20

$C420

$C42D

$C434

$C439

$C43C

$C440

SC44F

$C452

$C45A

$C45C

$C461

$C462

$C470

$C473

JSR to TOGDRV ($C38F) to switch drives
and JSR to AUTOI (S$SC63D) to check this
drive's status and init it if necessary.
On return, save the processor status on
the stack. JSR to TOGDRV to switch back
to the first drive. On return, pull the
status back off the stack. If the second
drive 1is active, branch to 0S570.

Since second drive is not active, set
DRVCNT ($020C) to $00 to indicate only
one drive addressed and branch to 0S70.
JSR to AUTOI ($SC63D) to check the drive
status and initialize it if necessary.
On return, branch to 0845 1f the drive
is NOT ready (.A<>0).

Teminate routine with a JMP to SETLDS
($SC100) to turn on the drive active LEDs
Do a ROL on the value in .A and JMP to
0835 (sC400).

Search Table

BYTES $00, $80, $41

BYTES $01, $01, s$01, sO01

BYTES $81, $81, $81, s81

BYTES $42, $42, $42, $42

Look up all files in command string in
the directory and fill tables with info.
JSR to OPTSCH to find optimal search
pattern and turn on drive active LEDs.
Store $00 in DELIND ($0292), to indicate
that we are NOT looking for a deleted or
unused directory entry. But, for one or
more specific file names. JSR to SRCHST
(SC5AC) to start the search process.

On return, branch to LK25 if a valid
file name was found (Z flag =0)

Since no file name was found, decrement
DRVCNT ($028C), the number of drive
searches to be made. If any more left
(DRVCNT >= 0), branch to LK15.

Since there are no more drive searches
to be done, exit with an RTS.

Store $01 in DRVFLG ($028D) and JSR to
TOGDRV ($C38F) to switch drives. JSR to
SETLDS ($C100) to turn on the other LED.
Then JMP back to LKO5 to begin the
search on the other drive.

JSR to SEARCH ($C617) to read the next
valid file name in the directory.

On return, branch to LK30 to abandon the
search if a valid file name was NOT
found (Z flag = 1).

241

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

LK25

LK26

LK30

FFRE

FF15

FFST

FF10

FNDFIL

$C475

$C478

$C47D

SC47E

$C485

$C48a

SC48B

SC48E
$C490

$C492

$C49D

$C4A5

sc4a7v
SC4AA

SC4AF

$SC4B5

JSR to COMPAR ($SC4D8) to compare the
list of files found with list of those
required. On return, FOUND ($028F) is O
if all files have NOT been found.

Load .A with the value from FOUND. If
not all the files have been found yet,
branch to LK26 to continue the search.
All files have been found so exit from
the routine with an RTS.

Load .A with the value from ENTFND
($0253) to check if the most recent
compare found a match. If not (.A=8$FF),
branch to LK20 to search directory for
another valid file name. If a match was
found, branch back to LK25 to try again.
Load .A with the value from FOUND. If
not all the files have been found yet,
branch to LK10 to continue the search.
All files found so exit with an RTS.
Find next file name matching any file
in stream & return with entry stuffed
into tables:

JSR to SRRE ($C604) to set up and read
in the next block of directory entries.
If no files found, branch to FF10.

If files were found, branch to FF25.
Store $01 in DRVFLG ($028D) and JSR to
TOGDRV (S$SC38F) to switch to the other
drive. JSR to SETLDS ($C100) to turn on
the new drive active light.

Find starting entry in the directory:
Store $00 in DELIND ($0292), to indicate
that we are NOT looking for a deleted or
unused directory entry. But, for one or
more specific file names. JSR to SRCHST
(SC5AC) to start the search process.

On return, branch to FF25 if a valid
file name was found (Z flag =0)

Store .A value in FOUND ($028F).

Load .A from FOUND ($028F). If non-z2ro,
all files found so branch to FF40 & exit
Since there is nothing more on this
drive, decrement DRVCNT by 1. If any
more drives left, branch to FF15 to try
the other drive. If none left, do an RTS
Continue scan of directory:

JSR to SEARCH ($C617) to retrieve the
next valid file name from the directory.

242

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

FF25

FF30

FF40

COMPAR

CP02
CPO5

CP10

$C4B8
$C4BA

SC4BD

sc4ac’7

$C4C9

SC4CE

$C4D7

$C4D8

SC4E6
SC4E7

SC4EC

SC4F3

On return, branch to FF1l0 if no more
entries available on this drive.

JSR to COMPAR ($C4D8) to see if any of
the names found match the ones needed.
On return, load .X from ENTFND ($0253).
If a match on a name was found (.X<128),
branch to FF30 to check the file type.
If no match found (.%>127), load .A with
the value from FOUND($028F) to check if
all files have been found. If not(.A=0),
branch back to FNDFIL to load another
name from the directory.

If .A<>0, all files have been found so
branch to FF40 and exit with an RTS.
Check the file type flag, TYPFLG($0296).
If it is $00, there is no file type
restriction so branch to FF40 and exit.
Load the file pattern type from PATTYP,X
(SE7,X), AND it with the file type mask
#507, and compare it to the value in
TYPFLG ($0296). If the file types do not
match, branch back to FNDFIL to continue
the search.

Terminate the routine with an RTS.
Compare all file names in command list
with each valid entry in directory.

Any matches are tabulated.

Set the found-entry flag, ENTFND ($0253)
to SFF and zero the pattern flag PATFLG
($028A). JSR to CMPCHK ($C589) to check
the file table for unfound files. If
there are unfound files (2 flag = 1),
branch to CP10 to begin comparing.
Terminate routine with an RTS.

JSR to CC10 ($C594) to set F2PTR (50279)
to point to the next file needed on this
drive. On return, branch to CP02 to exit
if no more files needed on this drive.
Load .A with the current drive number
from DRVNUM ($7F) and EOR it with the
drive number specified for the file,
FILDRV,X ($E2,X). LSR the result. If the
carry flag is clear, the drive number 1is
correct for this file so branch to CP20
to find the name in the directory list.
AND the value in .A with $40 to check if
we are to use the default drive (NOTE:
$40 rather than $80 because of the LSR).
I1f we can not use the default drive,
branch back to CP05 to set up the next
file name on our list of files needed.

243

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

CP20

CP30

CP32
CP33

CP34

CP40

SCAF7

SCA4FE

$C502

$C50A

$C511

$C515

$C51B

$C51D

$C522

$C529

$SC52B

$C52F

$C535

$C53B

Compare DRVCNT ($028C) with $02. If
equal, don't use default drive so branch
back to CPO0S5.

At this point we have a match on the
drive numbers so check the directory
entries to see if we can match a name.
Load .A with the pointer to the position
of the required file name from FILTBL,X
($027A,X) and transfer this value to .X.
JSR to FNDLMT to find the end of the
command string. On return, load the
pointer into the directory buffer (.Y)
with $03 (so 1t points past the file
type, track and sector) and JMP to CP33.
Compare the .Xth character in the
command string (the required filename)
with the .Yth character in the directory
buffer (the directory entry). If equal,
branch to CP32 to set up for the next
character.

No exact match so check if the command
buffer character is a "?" which will
match any character. If not, branch to
to CP05 to try the next file name.
Compare the character we just used from
the directory buffer with $SA0 to see if
we've reached the end of the name. If

we have, branch to CP05 to try the next
file name.

Increment .X and .Y

Compare .X with the length of the
command string, LIMIT ($0276). If we are
at the end, branch to CP34.

Check if the new character in the file
name, CMDBUF,X ($0200,X) is a "*". If it
is, it matches everything so branch to
CP40 to tabulate this match.

If not a "*", branch to CP30 to keep on
matching.

Compare .Y to $13 to see if we are at
the end of the name in the directory.

If we are, branch to CP40 to tabulate.
If not at the limit, check the character
in the directory entry name. If it isn't
an $A0, we did not get to the end of the
name so branch back to CP0O5 to try again
The filenames match so keep track of it
by storing the pointer to the entry from
F2PNT ($0279) into ENTFND ($0253).

Get the file type pattern ($80,%$81,etc)
from PATTYP,X (SE7,X), AND it with $80,
and store it in PSTFIG.

244

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

Cp42

CMPCHK

CC10

CC15

$C542

$C547

$SC54B

SC55A
$C55C

$C562

$C56A

$C572

$C578
$CS57D

$C582

$C589

$C594

$SC59A

Get the pointer to the directory entry
from INDEX ($0294) and store it in the
entry index, ENTIND,X ($SDD,X).

Get the sector on track 18 on which the
entry is stored from SECTOR ($81) and
store it in, ENTSEC,X ($D8,X).

Zero .Y and load .A with the file type
of this directory entry from (DIRBUF),Y
($94) ,Y. Increment .Y. Save the type on
the stack. AND the type with $40 to see
if this is a locked file type, and store
the result in TEMP ($6F). Pull the file
type off the stack and AND it with S$DF
(SFF-$20). If the result 1is > 127 (the
replacement bit not set), branch to CP42
OR the result with $20.

AND the result with $27 and OR it with
the value stored in TEMP ($6F) and store
the final result back in TEMP.

Load .A with $80, AND .A with the file
pattern type from PATTYP,X (SE7,X}), OR
the result with the value in TEMP ($6F),
and store the final result back in
PATTYP,X.

Load .A with the file's drive number
from FILDRV,X ($SE2,X). AND it with $80
to preserve the default drive bit, OR it
with the current drive number, DRVNUM
($7F) and store the result back into
FILDRV,X ($SE2,X).

Move the file's first track link from
(DIRBUF) ,Y(.Y=1) to FILTRK,X ($0280) and
increment .Y.

Move the file's first sector 1link from
(DIRBUF) ,Y(.Y=2) to FILSEC,X ($0285).
Check the current record length, REC
($0258). If NOT $00, branch to CMPCHK.
Set .Y to $15 and move the file entry's
record size from (DIRBUF),Y to REC.
Check table for unfound files

Set all-files-found flag, FOUND ($028F)
to SFF. Move the number of files to test
from F2CNT ($0278) to F2PTR ($0279).
Decrement the file count, F2PTR ($0279).
If any files left, branch to CC15.

If none left, exit with an RTS.

Load .X with the number of the file to
test from F2PTR. Load .A with the file's
pattern type from PATTYP,X (SE7,X). If
file has not been found yet (bit 7 is
still set) abort search by branching to
CcCc20.

245

~

NAME

ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

cc20

SRCHST

SR10

SR15

SR20

Load .A with the file's first track link
from FILTRK,X ($0280,X). If non-zero,
the file has been found, so branch back
to CCl0 to test the next file.

SC5A6 Load .A with $00 and store it in the
all-files-found flag, FOUND ($028F) to
indicate that all files have NOT been
found and exit with an RTS.

Initiate search of directory:

SC5AC Returns with valid entry (DELIND=0) or
with the first deleted entry (DELIND=1)
Load .Y with $00 and store it in DELSEC.
($0291). Decrement .Y to $FF and store
it in the found-an-entry flag, ENTFND
($0253).

SC5B5 To start search at the beginning of the
directory, set TRACK ($80) to $12 (#18)
(from $FE79) and SECTOR ($81) to $O01.
Also store $01 in last-sector-in-file
flag, LSTBUF ($0293).

$C5C1 JSR to OPNIRD ($D475) to open the
internal channel (SA=16) for a read and
to read in the first one or two sectors
in the file whose T/S link is given in
TRACK ($80) and SECTOR ($81).

$C5C4 Test LSTBUF ($0293) to see if we have
exhausted the last sector in the
directory file. If not (LSTBUF <> $00),
branch to SR15.

$C5C9 Exit with an RTS.

SC5CA Set the file count, FILCNT ($0295) to
$07 to indicate that there are 8 entries
(0-7) left to examine in the buffer.
SC5CF Load .A with $00 and JSR to DRDBYT to
read the first byte in the sector (the
track link). On return store this value
into LSTBUF ($0293). This sets LSTBUF to
$00 1if there are no more blocks left in
in the directory file.

$SC5D7 JSR to GETPNT ($D4E8) to set the
directory pointer, DIRBUF ($94/5) to the
data that was just read into the active
buffer, BUFTAB,X ($99/A,X).

DIRBUF does NOT point to the start of the data
buffer ($0300, $0400,...). It points to the first
data byte ($0302, $0402,...). As the entries are
examined, it is update to point to the start of

the entry ($0x02, $0x22, $0x42,...).

246

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

SR30

SRRE

$C5DA

$C5DF

$CS5E3

$C5E8

SC5F0

SC5F8

SC5FA

SCS5FB

$C602

$C604

SC60E

$C611

Decrement the entry count, FILCNT and
load .Y with $00 to begin examination of
the first directory entry.

Test the entry's file type in (DIRBUF),Y
If non-zero, this is NOT a deleted or
blank entry so branch to SR30.

Process a scratched or blank entry

Test DELSEC ($0291) to see if a deleted
entry has already been found. If it has
(DELSEC <> $00), branch to SEARCH(S$C617)
This 1s first deleted entry so JSR to
CURBLK ($DE3B) to set up the current
sector 1in SECTOR ($81). Save the sector
number in DELSEC ($0291).

Load .A with the low byte of the pointer
to the start of this entry (its position
in the data buffer) from DIRBUF ($94).
Load .X with the current value of DELIND
($0292). This sets the z flag to 1 if
only valid entries are desired.

Store the pointer in .A into DELIND.

If the Z flag is set, we need valid
entries, not deleted ones, so branch to
SEARCH to continue the search.

We wanted a deleted entry and we found
one so terminate routine with an RTS.

We have found a valid entry. Check if we
are looking for one by comparing DELIND
($0292) to $01. If not equal, we want a
valid entry so branch to SR5O0.

If DELIND = 1, we want a deleted entry,
not a valid one, so branch to SEARCH to
continue the quest!

Re-enter the directory search:

Set TRACK ($80) to $12 (#18) from S$FE85
Set SECTOR ($81) from the last directory
sector used, DIRSEC ($0290).

JSR to OPNIRD ($D475) to open the
internal channel (SA=16) for a read and
to read in the first one or two sectors
in the file whose T/S link is given in
TRACK ($80) and SECTOR ($81).

Load .A with the pointer INDEX ($0294)
that points to the start of the last
entry we were examining and JSR to
SETPNT ($D4C8) to set the DIRPNT ($94/5)
to point to the start of the entry.

247

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

SEARCH

SR40

SR50

AUTOI

$Ce617

$C621

$C629

SC62F

$C634

$C637

$C63C

$C641

$C647

SC64C

SC64F
$C651

$C655

$C659

$C65D

Continue search of entries:

Set found-entry flag, ENTFND ($0253) to
SFF. Load .A with number of entries left
in the buffer from FILCNT ($0295)., If
none left, branch to SR40 to get the
next buffer of directory entries.

There is at least one more entry left in
this buffer so load .A with $20 (the #
of characters in each entry) and JSR to
INCPTR ($SD1C6) to set DIRPTR ($94/5) to
point to the start of the next entry.
JMP to SR20 ($C5D7) to process it.

Get next buffer oi entries:

JSR to NXTBUF ($D44D) to read in the
next directory sector and JMP to SR10

to begin processing it.

We have found a valid entry so save

how far we got and return.

Save low byte of the pointer to the
entry, from DIRBUF($94) in INDEX($0294).
JSR to CURBLK ($SDE3B) to store the
sector we are checking in SECTOR ($81).
Save the current sector number from
SECTOR ($81) 1in DIRSEC ($0290) and RTS.
Check drive for active diskette, init

if needed. Return no drive status.

Test auto-initialization flag, AUTOFG
($68). If AUTOFG <> 0, auto-init is
disabled so branch to AUTO2 (SC669).
Load .X with the current drive number
from DRVNUM ($7F). Test whether the
diskette has been changed by doing an
LSR on the write-protect-change flag for
the current drive, WPSW,X ($1C/D). If
the carry flag, C, is clear, the disk
has not been changed so branch to AUTO2.
Load .A with S$SFF. Store this value as
the job return code in JOBRTN ($0298).
JSR to ITRIAL ($SDOOE) to do a SEEK to
the current drive to determine if a
diskette is present.

Load .Y with S$FF (default to true).
Compare the value in return job code in
.A with $02. If equal, NO SYNC was found
so branch to AUTOl to abort.

Compare the value in return job code in
.A with $03. If equal, NO HEADER was
found so branch to AUTOl to abort.
Compare the value in return job code in
.A with $0F. If equal, NO DRIVE was
found so branch to AUTOl to abort.

Seems OK so load .Y with $00.

248

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

AUTO1

AUTO2

TRNAME

TN10O

TN20

TRCMBF

TR10

TR20

SC65F

$C666

$C669

SC66E

SC66F

$C672

$C675

$C67A

SC67F
$C681

$C687

$C688
SC68B

$C697
$C69C
SC69F

SC6A5

Load .X with the current drive number
DRVNUM (S$S7F). Transfer the value of .Y
into .A ($S00 if OK;$FF if BAD) and store
in the current drive status, NODRV,X
(SFF,X). If status is bad (not $00),
branch to AUTOZ2 to abort.
JSR to INITDR ($D042) to initialize the
current drive.
Load .A with the current no-drive status
and terminate routine with an RTS.

NOTE: Z flag set if all is OK.
Transfer filename from CMD to buffer:
On entry, .A=string size; .X=starting
index in command string; .Y=buffer #
Save .A (string size) on the stack.

JSR to FNDLMT ($C6A6) to find the 1limit
of the string in the command buffer that
is pointed to by .X.

JSR to TRCMBF (SC688) to transfer the
command buffer contents from .X to LIMIT
to the data buffer whose number is in .Y
Restore the string size into .A from the
stack. Set the carry flag and subtract
the maximum string size, STRSIZ ($024B).
Transfer the result from .A to .X. If
the result is 0 or negative, the string
does not need padding so branch to TN20.
String is short and needs to be padded
so load .A with SAOQ.

Loop to pad the string in the directory
buffer with .X S$A0's.

Terminate routine with an RTS.

Transfer CMD buffer to another buffer:
.X=index to first chr in command buffer
LIMIT=index to last chr+1l in CMD buffer
.Y=buffer#. Uses current buffer pointer.
Multiply .Y by 2 (TYA;ASL;TAY).

Use current buffer pointers, BUFTAB,Y
($99/A,Y) to set the directory buffer
pointers, DIRBUF ($94/5).

Zero .Y (index into directory buffer)
Move character from CMDBUF,X ($0200,X)
to (DIRBUF),Y ;(S$%4),Y.

Increment .Y. If .Y eguals $00, branch
to TR20 to abort.

Increment .X. If .X < LIMIT ($0276)
branch back to TR10 to do next character
Terminate routine with an RTS.

249

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

FNDLMT

FLO5

FL10

GETNAM

GNSUB

SC6A6

$C6AD
$C6BO
$C6B4
$SC6B8
SC6BC

$C6C3

$C6C8
SC6CB

$C6CD

SC6CE
$C6D1

$C6D4

$C6D7

$C6DD

SC6DE

SC6E2

SC6ES

SC6ES

SC6ED

Find the limit(end) of the string in the
command buffer that is pointed to by X
Zero the string size, STRSIZ ($024B).
Transfer the starting pointer from .X

to .A and save it on the stack.

Load .A with the Xth command string
character, CMDBUF,X ($0200,X).

Compare the character to a ",". If they
match, we're at the end. Branch to FL10.
Compare the character to a "="., If they
match, we're at the end. Branch to FL10.
Increment STRSIZ ($024B) and .X

Check if the string size, STRSIZ, has
reached the maximum size of S$SOF (#15).
If it has, branch to FL10 to quit.
Compare .X to the pointer to the end of
the command string, CMDSIZ ($0274). If
we're NOT at the end. Branch to FLO05.
Store the .X value (the last character
plus 1) into LIMIT ($0276).

Pull the original .X value off the stack
into .A and transfer it to .X

Terminate routine with an RTS.

Get file entry from directory:

(called by STDIR and GETDIR)

Save secondary address, SA ($83) on the
stack.

Save the current channel#, LINDX ($82)
on the stack.

JSR to GNSUB (SC6DE) to get a directory
entry using the internal read channel
SA=S11(#17).

Pull the original SA and LINDX values
from the stack and reset these variables
Terminate the routine with an RTS.

Get file entry subroutine:

Set current secondary address, SA ($83)
to $11 (internal read secondary address)
JSR to FNDRCH (SDOEB) to find an unused
read channel.

JSR to GETPNT ($D4E8) to set the
directory buffer pointer, DIRBUF ($94/5)
from the pointer to the currently active
buffer using values from BUFTAB ($30/1).
Test the found entry flag, ENTFLG($0253)
to see if there are more files. If there
are more (ENTFLG > 127), branch to GNO5.
No more entries so test DRVFLG ($028D)
to see if we have the other drive to do.
If DRVFLG <> 0, branch to GNO050 to do
the other drive.

250

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

SC6F2 JSR to MSGFRE ($C806) to send the BLOCKS
FREE message.

SC6F5 Clear carry bit and exit with an RTS.

GNOS5 SC6F7 Test drive flag, DRVFLG ($028D). If $00,
branch to GN10.

GNO50 SCeFC Decrement drive flag, DRVFLG ($028D). If
not $00, branch to GN0O51 to do a new
directory.

$C701 Decrement drive flag, DRVFLG ($028D).

$C704 JSR to TOGDRV ($C38F) to switch drives.

SC707 JSR to MSGFRE ($C806) to send the BLOCKS
FREE message.

SC70A Set the carry flag and exit with a JMP
to TOGDRV (S$C38F) to switch drives.

GNO51 SC70E Load .A with $00 and zero the hi byte of
the number of blocks counter, NBTEMP+1
($0273) and the drive flag DRVFLG ($028D)

SC716 JSR to NEWDIR ($C7B7) to begin a new
directory listing.

$C719 Set the carry flag and exit with an RTS.

GN10 SC71B Load .X with $18 (#24), the length of an
entry in a directory listing
e.g. 114 "PROGRAM FILENAME" PRG

SC71D Load .Y with $1D, the position of the
hi byte of the # of blocks in the file.

SC71F Load .A with the hi byte of the # of
blocks in the file. Store this into the
hi byte of the block counter, NBTEMP+1
($0273). If zero, branch to GN12.

$C726 Load .X with $16 (#22) the directory
length 1less 2.

GN12 $C728 Decrement Y so it points to the position
of the lo byte of the # of blocks in
the file.

SC729 Load .A with the lo bvte of the # of
blocks in the file. Store this into the
lo byte of the block counter, NBTEMP
($0272) .

SC72E Compare .X to $16 (#22) the directory
length less 2. If they are equal, branch
to GN14.

$C732 Compare .A (the lo byte of the blocks)
with $O0A (#10). If .A<10 branch to GN14

$C736 Decrement .X (we will need less padding
since # of blocks is at least 2 digits.

$C737 Compare .A (the lo byte of the blocks)
with $64 (#100). If A<100 branch to GN14
$SC73B Decrement .X (we will need less padding

since # of blocks is at least 3 digits.

251

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

GN14 $C73C JSR to BLKNB ($SC7AC) to clear the name

buffer for the next entry. On return Y=0
SC73F Load .A with the file type from the
directory buffer (DIRBUF),Y and save the
file type onto the stack.
$C742 Do an ASL of the value in .A to set the
carry bit if this is a valid file that
has not been closed. (see BCS $C764)
SC743 If .A<128, branch to GNI15.

NOTE: The branch at $C742 and the code following is what
produces the PRG<K, SEQ<K, etc. file types. Note that
these file types are LOCKED and can't be SCRATCHED!
The locking and unlockinag of files is NOT supported
by any Commodore DOS. To lock a file, change its
file type in its directory entry from $80, $81, etc
to $CO0, S$Cl, etc. Reverse the process for unlocking

SC745 Load .A with a $3C (a "<").

$C747 Store this value into the name buffer
NAMBUF+1,X (S02B1,X).

GN15 SC74A Pull the file type off the stack and AND

it with $0OF to mask off the higher bits.
Transfer it to .Y to use as an index.

SC74E Move last character in file type name
from TP2LST,Y (SFECS5,Y) to the name
buffer, NAMBUF,X ($02B1,X).

SC754 Decrement .X

$C755 Move middle character in file type name
from TP1LST,Y (SFECO,Y) to the name
buffer, NAMBUF,X (S02B1,X).

SC75B Decrement .X

$C75C Move first character in file type name
from TYPLST,Y (SFEBB,Y) to the name
buffer, NAMBUF,X ($02B1l,X).

$C762 Decrement .X twice

SC764 If carry bit is set (indicates valid
entry; see $C742) branch to GN20.

SC766 Load .A with $2A (a "*") to indicate an
improperly closed file.

SC768 Store the "*" in NAMBUF+1,X ($02B1,X).

GN20 SC76B Store a shifted space, $A0 in the buffer

(between name & type) and decrement .X
SC771 Load .Y with $12 (#18) so it points to
the end of the name in the dir buffer.

GN22 $C773 Loop to transfer the 16 characters in

the file name from the directory buffer
to the name buffer.

SC77E Load .A with $22 (a '"')

$C780 Store quotation mark before the name.

252

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES
GN30 $C783 Loop to scan up the name looking for a
quote mark($22) or a shifted space($AQ).
When either character is found or the
end of the name is reached, store a $22
(quote mark) at that location. Then AND
any remaining characters in the name
with $7F to clear bit 7 for each one.
GN40 SC7a7 JSR to FNDFIL ($C4B5) to find the next
entry. On return, set the carry bit.
GN45 SC7AB Terminate the routine with an RTS.
Blank the name buffer:
BLKNB SC7AC Load .Y with $1B, the length of the name
buffer, and .A with $20, a space.
BLKNB1 SC7B0 Loop to store $20's in all locations in
the name buffer, NAMBUF ($S02B1-CB)
SC7B6 Terminate the routine with an RTS.
New directory in listing
NEWDIR SC7B7 JSR to BAM2X (S$F119) to set BAM pointer
in buffer 0/1 tables and leave in .X
SC7BA JSR to REDBAM ($FODF) to read in the BAM
to $0700-FF if not already present.
SC7BD JSR to BLKNB ($SC7AC) to blank the name
buffer, NAMBUF ($02B1-CB).
SC7C0O Set TEMP ($6F) to SFF
SC7C4 Set NBTEMP ($0272) to the current drive
number from DRVNUM (S$S7F)
SC7C9 Set NBTEMP+1 ($0273) to $00
SC7CE Load .X with the position of the read
BAM job in the queue from JOBNUM (SF9).
SC7D0 Set high byte of the pointer to the
directory buffer, DIRBUF ($94/5) using a
value (3,4,5,6,7,7) from BUFIND,X(SFEEOQ)
$C7D5 Set low byte of the pointer to the
directory buffer, DIRBUF ($94/5) using
the value ($90) from DSKNAM (SFE88).
DIRBUF now points to the start of the
disk name in the BAM buffer ($0x90)
SC7DA Load .Y with $16 (#22), the name length.
ND10 $SC7DC Load .A with character, (DIRBUF),Y and
test if it 1s a shifted blank (SAO0).
If not, branch to ND20.
SC7E2 Since it 1s not a shifted blank, load .A
with a $31 (ASCII "1") for version #1.
SC7E4 BYTE $2C here causes branch to ND20.
ND15 SC7E5 Load .A with character, (DIRBUF),Y and
test if it is a shifted blank ($SAQ).
If not, branch to ND20.
SC7EB Since it is not a shifted blank, load .A
with a $20 (ASCII space).
ND20 SC7ED Store the character in .A into the name

buffer, NAMBUF+2,Y ($02B3,Y).

263

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES
SC7F1 If more characters left (.¥>=0) branch
back to ND15.
SC7F3 Store a $12 (RVS on) in NAMBUF ($S02B1l)
SC7F8 Store a $22 (guote) in NAMBUF+1 ($S02B2)
SC7FD Store a $22 (guote) in NAMBUF+18 ($02C3)
SC800 Store a $20 (space) in NAMBUF+19 ($02C4)
$C805 Terminate routine with an RTS.
Set up message "BLOCKS FREE"
MSGFRE $C806 JSR to BLKNB (SC7AC) to clear the name
buffer.
$C809 Load .Y with $0B (message length -1).
SC80B Loop using .Y as index to move message
from FREMSG,Y ($C817,Y) to NAMBUF,Y
($02B1,Y).
$C814 Terminate routine with a JMP to NUMFRE
(SEF4D) to calculate the number free.
FREMSG SC817 Message "BLOCKS FREE"
- - * - SCRATCH ONE OR MORE FILES - % - % -
SCRTCH $C823 JSR to FS1SET ($C398) to set up for one
file stream.
$C826 JSR to ALLDRS ($C320) to all drives
needed based on F2CNT.
$C829 JSR to OPTSCH (SC3CA) to determine best
sequence of drives to use.
$SC82C Zero file counter, RO ($86)
$C830 JSR to FFST ($C49D) to find the first
directory entry. If not successful,
branch to SC30.
NOTE: THE FOLLOWING CODE PREVENTS FREEING THE SECTORS
OF AN UNCLOSED FILE.
SC15 $SC835 JSR to TSTCHN (S$SDDB7) to test for active
files from index table.
$C838 If file active (carry clear), branch to
SC25.
NOTE: THE FOLLOWING CODE PREVENTS THE SCRATCHING OF

A LOCKED FILE (BIT 6 OF THE FILE TYPE SET).

Load .Y with $00.

Load .A with file type from (DIRBUF),Y
($94,Y).

AND the file type with $40 to test if it
is a locked file (bit 6 of filetype set)
If a locked file, branch to SC25.

JSR to DELDIR (S$SC8B6) to delete the
directory entry. Stores $00 as the file
type and rewrite the sector on disk.

264

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

$C845
$C847

$C849
SC84B
$C84D

$C852

Load .Y with $13 (#19).

Test whether this is a relative file by
loading .A with 19th character of the
entry (the track of the side-sector
pointer for a REL file) from (DIRBUF),Y
If $00, not a REL file so branch to SC17
Store track pointer into TRACK ($80).
Increment .Y and move sector pointer
from (DIRBUF),Y into SECTOR ($81).

JSR to DELFIL (SC87D) to free the side
sectors by updating and writing the BAM

TEE FOLLOWING CODE PREVENTS FREEING THE SECTORS
OF A FILE IF ITS REPLACEMENT WAS INCOMPLETE (BIT 5 SET).

NOTE:

SC20
SC25

SC30

DELFIL

$C85C
SC85E
$C863
$C868

SC86B
$C86D

$C870
$C872
$C876
$C87A

$C87D

$SC880

$C883

$C886

Load .X with the directory entry counter
ENTFND ($0253) and .A with $20.

AND .A with the file pattern type in
PATTYP,X (SE7,X) to check if this 1is an
opened but unclosed file.

If unclosed file, branch to SC20.

Move initial track link from FILTRK,X
($0280,X) into TRACK ($80).

Move 1nitial sector 1link from FILSEC,X
($0285,X) into SECTOR ($81).

JSR to DELFIL ($SC87D) to free the file
blocks by updating and writing the BAM
Increment the file counter, RO ($86).
JSR to FFRE ($SC48B) to match the next
filename in the command string.

If a match found, branch to SC15

All done. Store number of files that
have been scratched, RO ($86) into

TRACK ($80)

Load .A with $01 and .Y with $00

Exit with a JMP to SCREND ($Cl1A3)

Delete file by links:

JSR to FRETS ($SEF5F) to mark the first
file block as free in the BAM.

JSR to OPNIRD ($D475) to open the
internal read channel (SA=17) and read
in the first one or two blocks.

JSR to BAM2X (SF119) to set BAM pointers
in the buffer tables.

Load .A from BUFO,X ($A7,X) and compare
it to SFF to see if buffer inactive.

I1f inactive (.A=$FF), branch to LCEL2
Load write BAM flag, WBAM ($02F9), OR it
with $40 to set bit 6 and store it back
in WBAM to indicate both buffers active.

255

* DUPLICATE

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

DEL?2 $C894 Zero .A and JSR to SETPNT ($D4C8) to set
pointers to the currently active buffer.

$C899 JSR to RDBYT ($D156) to direct read one
byte (the track link from the buffer)
$SC89C Store track link into TRACK ($80)
SC89E JSR to RDBYT ($D156) to direct read one
byte (the sector link from the buffer)
SC8A1 Store sector link into SECTOR ($81)
$SC8A3 Test track link. If not $00 (not final
sector in this file), branch to DEL1
s$c8a’ JSR to MAPOUT (SEEF4) write out the BAM.
SC8AA Exit with a JMP to FRECHN ($D227) to
free the internal read channel.

DEL1 SC8AD JSR to FRETS(SEF5F) to de-allocate(free)
specified in TRACK ($80) & SECTOR (s$81)
in the BAM.

SC8BO JSR to NXTBUF ($D44D) to read in the
next block in the file (use T/S link).

SC8B3 JMP to DEL2 to de-allocate the new block
Delete the directory entry:

DELDIR SC8B6 Load .Y with $00 (will point to the 0Oth

character in the entry; the file type).
SC8B8 Set the file type, (DIRBUF),Y: (S94),Y
to $00 to indicate a scratched file.
$C8BB JSR to WRTOUT ($SDESE) to write cut the
directory block.
SC8BE Exit with a JMP to WATJOB ($D599) to

wait for the write job to be completed.

DISK * NOT AVAILABLE ON THE 1541

Load .A with a $31 to indicate a bad
command and JMP to CMDERR ($C1C8).

FORMAT

This routine sets up a jump instruction in buffer 0
that points to the code used by the disk controller
to do the formatting. It then puts an exectute job
code in the job queue. The routine then waits while
the disk controller actually does the formatting.

Store JMP S$SFABB ($4C,$BB,SFA) at the
start of buffer 0 (S0600/1/2).

Load .A with $03 and JSR to SETH ($D6D3)
to set up header of active buffer to the
values 1n TRACK ($80) and SECTOR ($81).
Load drive number, DRVNUM ($7F), EOR it
with $EO (execute job code) and store
the result in the job queue ($0003).

256

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

FMT105

SC8EO

SCBE4

SC8ES

Load .A from the job gqueue ($0003). If
.A > 127, the job has not been finished
yet so branch kack to FMT105.

Compare .A with $02. if .A < 2, the job
was completed OK so branch to FMT110.
Error code returned by disk controller
indicates a problem so load .A with $03
and .X with $00 and exit with a JMP to
ERROR ($E60R).

Job completed satisfactorily so exit
with an RTS.

DSKCPY

DX0000

DX0005

DX0010

$C90C
$SCI90F

$C912

$C919

$CI91F

$C923

Store SEO in BUFUSE ($S024F) to kill the
BAM buffer.

JSR to CLNBAM (S$F0ODl1l) to set track and
sector links in BAM to $00.

JSR to BAM2X ($F119) to return the BAM
LINDX in .X.

Store SFF in BUF0,X ($SA7,X) to mark the
BAM as out-of-memory.

Store S$OF in LINUSE ($0256) to free all
LINDXs.

JSR to PRSCLN (SClE5) to parse the
command string and find the colon.

If colon found (Z flag =0), branch to
DX0000.

Colon not found in command string so
command must be CX=Y. This command is
nct supported on the 1541 so exit with
a JMP to DUPLCT ($SC8C1).

JSR to TC30 (S$C1F8) to parse the command
string.

JSR to ALLDRS ($C320) to put the drive
numbers into the file table.

Load .A with the command pattern image
as determined by the parser from IMAGE
($028B). AND the image with %01010101
($55). If the result is not $00, the
command must be a concatenate or normal
copy so branch to DX0020.

Check for pattern matching in the name
(as in cl:game=0:*) by loading .X from
FILTBL ($027A) and then loading .A from
the command string, CMDBUF,X ($0200,X).
The value in .A is compared to $2A ("*")
If there is no match, there is no wild
so branch to DX0020.

Load .A with the $30 to indicate a
syntax error and JMP to CMDERR ($C1C8).

257

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

DX0020

PUPS1

COPY

COPO1

$C928

SC92F

$C932

$C952

$C955

$C95C

$C962

$C968

SCI96E

$C971

$C979

SCI97E

$C982

Load .A with the command pattern image
as determined by the parser from IMAGE
($028B). AND the image with %11011001
($D9). If the result is not $00, the
syntax is bad so branch to DX0010 and
abort.

JMP to COPY (58C952) to do the file copy.
syntax error and JMP to CMDERR ($C1C8).
Subroutine used to set up for copying
entire disk (C1=0). Not used on 1541.
Copy file(s) to one file:

JSR to LOOKUP ($SC44F) to look up the
file(s) listed in the command string in
the directory.

Load .A with the number of filenames in
the command string from F2CNT($0278) and
compare it with $03. If fewer than three
files, this is not a concatenate so
branch to COP10 ($C9A1l).

Load .A with the first file drive number
from FILDRV (SE2) and compare it to the
second drive number in FILDRV+1l (SE3).
If not equal, this is not a concatenate
so branch to COP10 ($C9A1l).

Load .A with the index to the first file
entry from ENTIND ($DD) and compare it
to the second file's index in ENTIND+1
(SDE) . If not equal, this is not a
concatenate so branch to COP10 ($C9Al).
Load .A with the first file's sector
link from ENTSEC ($D8) and compare it

to the second file's link in ENTSEC+1
($SD9). If not equal, this is not a
concatenate so branch to COP10 ($C9A1l).

JSR to CHKIN (SCACC) to check if input
file exists.

Set F2PTR ($0279) to $01 and JSR to
OPIRFL (SC9FA) to open the internal read
channel, read in the directory file, and
locate the named file.

JSR to TYPFIL ($D125) to determine the
file type. If $00, a scratched file so
branch to COP01 (file type mismatch).
Compare the file type to $02. If not
equal, it is not a deleted program file
so branch to COP05 to continue.

Bad file name. Load .A with $64 to
indicate a file type mismatch and JSR

to CMDERR ($C1C8).

258

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES
COPOS $C987 Set secondary address, SA ($83) to $12
(#18, the internal write channel)

$C98B Move the active buffer pointer from
LINTAB+IRSA ($S023C) to LINTAB+IWSA
($023D) .

$C991 Deactivate the internal read channel by
storing SFF in LINTAB+IRSA ($023C).

$C996 JSR to APPEND (S$SDA2A) to copy first file

$C999 Load .X with $02 and JSR to CY10 (SCY9BR9)
to copy second file behind the first.

SC99E Exit routine with a JMP to ENDCMD ($C194)

COPY FILE
COP10 $C9A1 JSR to CY (S$CS9A7) to do copy.
SC9A3 Exit routine with a JMP to ENDCMD ($C194)
CY SC9A7 JSR to CHKIO ($SCAE7) to check if file
exists.

SC9AA Get drive number from FILDRV ($E2), AND
it with $01 (mask off default bit), and
store it in DRVNUM (S$7F).

SC9BO JSR to OPNIWR ($D486) to open internal
write channel.

SCI9B3 JSR to ADDFIL (SD6E4) to add the new
file name to the directory and rewrite
the directory.

SCI9B6 Load .X with pointer from F1CNT ($0277).

CY10 SC9B9 Store .X in F2CNT ($0278).

SCY9RBC JSR to OPIRFL (S$CY9FA) to open internal
read channel and read in one or two
blocks of the directory.

SC9BF Set secondary address, SA ($83) to $11,
to set up the internal read channel.

SCIC3 JSR to FNDRCH (S$SDOEB) to find an unused
read channel.

SCI9C6b JSR to TYPFIL ($D125) to determine if
the file is a relative file.

$C9CH9 If not a relative file (Z flag not set
on return), branch to CY1O0A.

SC9CB JSR to CYEXT ($SCA53) to open copy the
relative file records.

CY10A SCICE Store $08 (EOI signal) into EOIFLG(SF8).

SC9D2 JMP to CY20.

CY1l5 SCI9D5 JSR to PIBYTE (SCF9B) to write out last
byte to disk.

CY20 $C9D8 JSR to GIBYTE (SCA35) to get a byte from
the internal read channel.

SC9DB Load .A with $80 (the last record flag)

and JSR to TSTFLG (SDDA6) to see if this
is the last record.

259

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

CY30

OPIRFL

SCI9EO

SC9E5
SCY9E7

SC9EA

SCIF3

SCIOFA

SCA03

$CA08

$CAQC

SCAOF

SCAl4

$SCAl7

SCa21

SCA26

On return if Z flag is set (test failed;
this is not the last record) branch to
CY1l5 to do some more.

Last record done so JSR to TYPFIL(SD125)
to get file type.

On return if Z flag is set branch to
CY30 to do some more.

JSR to PIBYTE ($SCF9B) to write out last
byte to disk.

Check if there are more files to copy
by locading .X from F2PTR ($0279),
incrementing it by 1, and comparing it
to F2CNT ($0278). If the carry bit is
clear, there are more files to copy so
branch back to CY10.

Since no more files to copy, set the SA
($83) to $12 (internal write channel)
and JMP to CLSCHN ($SDB02) to close the
copy channel and file.

Open internal read channel to read file:
Load .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the drive number of the file to
be read from FILDRV,X ($E2,X). AND this
drive number with $01 to mask off the
default drive bit, and store the value
in DRVNUM (S7F) to set the drive number.
Set the current TRACK ($80) to 18 ($12),
the directory track.

Set the current SECTOR($81) to the
sector containing the directory entry
for this file from ENTSEC,X ($D8,X).

the directory track.

JSR to OPNIRD ($D475) to open the
internal read channel to read the
directory.

ILoad .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the pointer to the start of the
entry from ENTIND,X (SDD,X).

JSR to SETPNT ($D4C8) to set the track
sector pointers from the entry.

Load .X with the file pointer F2PTR
($0279) and use this as an index to load
.A with the file's pattern mask from
PATTYP,X ($E7,X). AND this value with
$07 (the file type mask) and use it to
set the file type in TYPE ($024A).

Set the record length, REC ($0258) to
$00 since this is not a relative file.
JSR to OPREAD ($DY9A0) to open a read
channel.

260

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

SCA29 Load .Y with $01 and JSR to TYPFIL
($SD125) to get the file type.

SCA2E If Z flag set on return (indicates that
this is not a relative file} branch to
OPIR10.

SCA30 Increment .Y by 1.

OPIR10 SCA31 Transfer the value in .Y into .A

SCA32 Exit with a JMP to SETPNT ($D4C8) to set
the track & sector pointers from the
directory entry.

Get byte from internal read channel:
GIBYTE SCA35 Set the secondary address, SA ($83) to
$11 (#17) the internal read channel.
Get byte from any channel:
GCBYTE SCA39 JSR to GBYTE ($D39B) to get the next
byte from the read channel.

SCA3C Store the byte in DATA ($85).

SCA3E Load .X with the logical file index
LINDX ($82) and use this as an index to
load .A with the channel status flag,
CHNRDY , X

SCA42 EOR .A with $08, the not EOI send code
and store the result in EOIFLG (SF8).

SCA46 If .A <> $00 (EOI was sent!), branch to
GIB20 and exit.

SCA48 JSR to TYPFII, ($SD125) to get the file
type. If Z flag set on return (indicates
this is not a relative file)}, branch to
GIB20 and exit.

SCA4D Load .A with $80 (the last record flag)
and JSR to SETFLG ($SDD97).

GIB20 S$SCAS52 Terminate routine with an RTS.
Copy relative records:
CYEXT SCA53 JSR to SETDRN ($D1D3) to set drive #.

SCAS56 JSR to SSEND (SEICB) to position side
sector and BUFTAB to the end of the
last record.

SCAS9 Save side sector index, SSIND ($D6) and
the side sector number, SSNUM ($D5) onto
the stack.

SCASF Set the secondary address, SA ($83) to
$12, the internal write channel.

SCA63 JSR to FNDWCH ($D107) to find an unused
write channel.

SCA66 JSR to SETDRN ($D1D3) to set drive #.

SCA69 JSR to SSEND ($SE1CB) to position side

sector and BUFTAB to the end of the
last record.

261

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES

SCA6C JSR to POSBUF ($E2C9) to position the
proper data blocks into the buffers.

SCA6F Set R1 ($87) to the current value of
the side sector index, SSIND ($Dé6).

SCA73 Set RO ($86) to the current value of
the side sector number, SSNUM ($D5).

SCA77 Zero R2 ($88) and the low bytes of the
record pointer RECPTR ($D4) and the
relative file pointer ($D7).

SCA7F Restore the original values of the side
side sector number, SSNUM ($SD5) and the
sector index, SSIND ($D6) from the stack

SCA85 Terminate the routine with a JIJMP to
ADDR1 (SE33B).

RENAME

RN10

SCA91
$SCA9S
SCAS7
SCA99

$CA9C

SCA9F

$CAAS

SCAA9

SCAAC

SCAAF

JSR to ALLDRS ($C320) to set up all the
drives given in the command string.

Load .A with the drive specified for the
second file from FILDRV+1l ($E3), AND it
with $01 to mask off the default drive
bit, and store the result back in
FILDRV+1 (SE3).

Compare the second drive number (in .A)
with the first one in FILDRV ($E2). If
equal, branch to RN1O0.

OR the drive number in .A with $80 to
set bit 7. This will force a search of
both drives for the named file.

Store the value in .A into FILDRV (SE2)
JSR to LOOKUP ($C44F) to look up both
file names in the directory.

JSR to CHKIO (SCAE7) to check for the
existance of the files named.

Load the value from FILDRV+1l (SE3), AND
it with $01 to mask off the default
drive bit, and use the result to set the
currently active drive, DRVNUM (S7F).
Set the active sector number, SECTOR
($81) using the directory sector in
which the second file name was found
(from ENTSEC+1; $D9).

JSR to RDAB (S$SDE57) to read the
directory sector specified in TRACK($80)
and SECTOR ($81).

JSR to WATJOB ($D599) to wait for the
job to be completed.

Load .A with the pointer to the entry in
the buffer from ENTIND+1 ($DE), add $03
(so it points to the first character in
the file name), and JSR to SETPNT($D4C8)
to set the pointers to the file name.

262

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

CHKIN

CK10

CK20

CHKIO

CK25

CK30

SCABR7

SCABA

SCAC3
SCAC6

SCAC9

SCACC

SCAD3
SCAD6

SCADA

$CADC

SCAE1

SCAE®6

SCAE7

JSR to GETACT (SDF93) to store the
active buffer number in .A.

Transfer the buffer number to .Y, load
.X from the file table FILTBL ($027Aa),
.A with $10 (the number of characters
in a file name) and JSR to TRNAME (SC66E)
to transfer the file name from the
command string to the buffer containing
the file entry.

JSR to WRTOUT (SDESE) to write out the
revised directory sector.

JSR to WATJOB ($D599) to wait for the
job to be completed.

Terminate the routine with a JMP to
ENDCMD ($C194).

Check existance of input file:

Load .A with the first file type from
PATTYP+1 (SE8), AND it with the file
type mask ($07) and store it in TYPE
($024Rn).

Load .X from F2CNT ($0278).

Decrement .X by 1 and compare it with
the value of F1CNT (S0277).

If the carry is clear, the file has been
found so branch to CK10.

Load .A with the file's track link from
FILTRK,X ($0280,X). If link is NOT $00,
branch to CK10.

Since the file has not been found, load
.A with $62 and exit with a JMP to
CMDERR ($C1C38).

Terminate routine with an RTS.

Check existance of 1/0 file:

JSR to CHKIN ($SCACC) to check for the
existance of the input file.

Load .A with the file's track link from
FILTRK,X ($0280,X). If link equals $00,
branch to CK30.

The file already exists so load .A with
$62 and exit with a JMP to CMDERR(S$C1C8)
Decrement .X (file counter). If more
files exist, branch back to CK25.
CMDERR (S$SC1C8).

Terminate routine with an RTS.

MEMORY ACCESS COMMANDS (M-R, M-W, AND M-E)

$SCAF8 | Check that the second character in the

command is a by: loading .A with
the character from CMDBUF+1 ($0201),
and comparing it with $2D ("-"). If not
equal, branch to MEMERR (SCB4B).

263

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES
SCAFF Set up address specified in command by
moving the characters from CMDBUF+3
($0202) and CMDBUF+4 ($0203) to TEMP
($6F) and TEMP+1 ($70).
SCB09 Set .Y to $00.
SCBOB Load .A with the third character of the
command (R,W,E) from CMDBUF+2 ($0202).
SCBOE Compare .A with "R". If equal, branch
to MEMRD ($CB20).
SCB12 JSR to KILLP ($F258) to kill protection.
NOTE: this does nothing on the 1541!
SCB15 Compare .A with "W". If equal, branch
to MEMWRT (SCB50).
SCB19 Compare .A with "E". If NOT equal,
branch to MEMERR ($CB4B).
MEMEX SCB1D Do indirect jump using the pointer set
up in TEMP ($006F).
MEMRD $SCB20 Load .A with the contents of (TEMP),Y
($6F) ,Y and store the value in DATA ($85)
SCB24 Compare the command string length,CMDSIZ
($0274), with $06. If it is less than or
equal to 6 (normally 5), branch to M30.
NOTE: PREVIOUSLY UNDOCUMENTED COMMAND!'!

MRMULT

SCB2B
SCB2E
SCB2F
$CB31

SCB33

$SCB35

SCB37

$CB3A

SCB3E

Multi-byte memory read:

Load .X with the 6th character in the
command string from CMDBUF+5 ($0205).
Decrement .X (now $00 if only one to
read) .

If the result is $00, all done so branch
to M30.

Transfer the value in .X to .A and clear
the carry flag.

Add the lo byte of the memory pointer

in TEMP ($6F). This value is the lo

byte of the last character to be sent.
Increment the lo byte pointer in TEMP
(S6F) so it points to the second memory
location to be read.

Store the value in .A into LSTCHR+ERRCHN
($0249) .

Load .A with the current value of TEMP
($6A) , the lo byte of the second memory
location to be read and store this value
in CB+2 (SAS).

Load .A with the current value of TEMP+1
($70), the hi byte of the second memory
location to be read and store this value
in CB+3 ($A6).

264

NAME ADDRESS DESCRIPTION OF WHAT ROM ROUTINE DOES
SCB42 Continue memory read with a JMP to GE20
($D443) .
M30 SCB45 JSR to FNDRCH ($DOEB) to find an unused
read channel.
$CB48 Terminate memory read with a JMP to
GE15 (sD43A).
MEMERR SCB4B Load .A with $31 to indicate a bad
command and JMP to CMDERR ($C1C8).
MEMWRT SCB50 Move byte from CMDBUF+6,Y (50206,Y) to
memory at TEMP,Y (S$BF,Y).
SCB55 Increment .Y and compare .Y with the
number of bytes to do, CMDBUF+5 ($0205).
SCB59 I1f more to do, branch back to M10.
SCB5B Terminate memory write with an RTS.

NOTE: U0 restores pointer to JMP table

USRINT

UsS10

USREXC

OPNBLK

SCB5C
$SCBSF

SCB63

SCB6B

SCB6C

SCB6F

SCB72

SCB78

SCB7C
SCB7D

SCB81

$CB84

$SCB89

User jump commands:

Load .Y with the second byte of the
command string from CMDBUF+1 (50201).
Compare .Y to $30. If not equal, this
is NOT a UO command so branch to US10.
Restore normal user jump address (SFFEA)
storing $EA in USRJMP ($6B) and SFF in
USRIMP+1 ($6C).

Terminate routine with an RTS.

JSR to USREXC ($SCB72) to execute the
code according to the jump table.
Terminate routine with a JMP to ENDCMD
($C194).

Decrement .Y, transfer the value to .A,
AND it with $OF to convert it to hex,
multiply it by two (ASL), and transfer
the result back into .Y.

Transfer the lo byte of the user jump
address from the table at (USRJMP),Y
to IP ($75).

Increment .Y by 1.

Transfer the hi byte of the user jump
address from the table at (USRJMP),Y
to IP+1 ($76).

Do an indirect jump to the user code
through the vector at IP ($0076).

Open direct access buffer in response
to an OPEN "#" command:

Use the previous drive number, LSTDRV
(S028E) to set the current drive number
DRVNUM (S7F).

Save the current secondary address, SA
($83) on the stack.

265

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

OBO5

OB10

OB15

SCB8C

SCBSF
SCB92

$SCB96

$CB98

$SCBI9D
SCBAOQO

$CBAS

SCBAA

$CBB1

$CBBS

$CBBF

$CBC6

SCBCD

$CBDD

$CBE2

JSR to AUTOI ($C63D) to initialize the
disk. This is necessary for proper
channel assignment.

Restore the original secondary address,
SA ($83) by pulling it off the stack.
Load .X with the command string length
CMDSIZ ($0274). Decrement .X by 1.

If .X not equal to zero, a specific
buffer number has been requested{e.g.#1)
so branch to 0OB10.

No specific buffer requested so get any
available buffer by loading .A with $01
and doing a JSR to GETRCH (S$D1E2}.

On return, JMP to OB30.

Load .A with $70 to indicate that no
channel is available and JMP to CMDERR
(scicsy.

Specific buffer requested so load .Y
with $01 and JSR to BP0S5 (SCC7C) to
check the block parameters.

Load .X with the number of the buffer
reguested from FILSEC ($0285) and check
it against $05 (the highest numbered
buffer available). If too large, branch
to OBO5 and abort the command.

Set TEMP ($6F) and TEMP+1 ($70) to $00
and set the carry flag.

Loop to shift a 1 into the bit position
in TEMP or TEMP+1 that corresponds to
the buffer requested. For example:
TEMP+1 (00000000) TEMP{0000001)=buffer
TEMP+1 (00000000) TEMP(0000100)=buffer
TEMP+1 (00000001) TEMP(0000000)=buffer
Load .A with the value in TEMP (S$6F)
and AND it with the value in BUFUSE
($024F) which indicates which buffers
are already in use. If the result is
NOT $00, the buffer reguested is already
in use so branch to OB05 to abort.

Load .A with the value in TEMP+1 ($70)
and AND it with the value in BUFUSE+1
($0250) which indicates which buffers
are already in use. If the result is

NOT $00, the buffer requested is already
in use so branch to 0B05 to abort.

Mark the buffer requested as in use by
ORing the value in TEMP with the value
in BUFUSE and the value in TEMP+1 with
the value in BUFUSE+1.

Set up the channel by loading .A with
$00 and doing a JSR to GETRCH ($D1E2)

to find an unused read channel.

Load .X with the current channel# from
LINDX ($82).

o N O

266

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

OB30

BLK10

BLK30

BLK40

SCRE4

SCBE9
SCBEA

$SCBF1

$CBF3

SCBFB

SCBFD

$CCO02

$CCO07

SCCOD
SCCOF

$CC13

$cca4
$CC26
$CC2B
$CC30

$CC33

Use .X as an index to move the sector
link from FILSEC($0285) to BUFO0,X(SA7,X)
Transfer the sector link from .A to .X.
Use .X as an index to move the current
drive number from DRVNUM($7F) to JOBS,X
($00,X) and to LSTJOB,X ($025B,X).

Load .X with the current secondary
address, SA ($83).

Load .A with the current value from the
logical index table, LINTAB,X ($022B,X).
OR this value with $40 to indicate that
it is read/write mode and store the
result back in LINTAB,X.

Load .Y with the current channel#, LINDX
($82).

Load .A with SFF and store this wvalue
as the channel's last character pointer
LSTCHR,Y ($0244,Y).

Load .A with $89 and store this wvalue

in CHNRDY,Y ($00F2,Y) to indicate that
the channel is a random access one and
is ready.

Load .A with the channel number from
BUF0O,Y ($00A7,Y) and store it in
CHNDAT,Y(S023E,Y) as the first character
Multiply the sector value in .A by 2

and transfer the result into .X

Set the buffer table value BUFTAB,X
($99,X) to S$01.

Set the file type value FILTYP,Y (SEC,Y)
to $O0E to indicate a direct access file
type.

Terminate routine with a JMP to ENDCMD
(sCc1c4).

Block commands:

Zero .X and .Y. Load .A with $2D ("-")
and JSR to PARSE ($C268) to locate the
sub-command (separated from the command
with a "-").

On return branch to BLK40 if Z flag is
not set ("-" was found).

Load .A with $31 to indicate a bad
command and JMP to CMDERR ($C1C8).
Load .A with $30 to indicate a bad
syntax and JMP to CMDERR ($C1C8).
Transfer the value in .X to .A. If not
$00, branch to BLK30.

Load .X with $05 (the number of block
commands - 1}.

267

NAME

ADDRESS

DESCRIPTION OF WHAT ROM ROUTINE DOES

BLK50

BLK60

BLKPAR

BPO5

BP10O

$CC35

$CC38

$CC42

$CC48

SCC4B

$CC50

$CC5A

$CC5D

$CC63

SCC6F

$CC78

SCC7A
$CcicC

SCCTF
$CC83
$CC87

$CC8B

$CCI91

Load .A with the first character in the
sub-command from CMDBUF,Y ($0200,Y).
Loop to compare the first character in
the sub-command with the characters in
the command table BCTAB,X ($CC5D,X). If
a match is found, branch to BLK60. If NO
MATCH is found, branch to BLK10.
Transfer the pointer to the command in
the command table from .X to .A. OR this
value with $80 and store it as the
command number in CMDNUM ($022Aa).
JSR to BLKPAR ($CC6F) to parse the
block parameters.
Load .A with the command number from
CMDNUM ($022a), multiply it by 2 (ASL),
and transfer the result into .X.
Use .X as an index into the jump table
BCJIJMP,X ($CC63) to set up a jump vector
to the ROM routine at TEMP ($6F/70).
Do an indirect JMP to the appropriate
ROM routine via the vector at TEMP(S$6F).
Block sub-command table ($SCC5D-$CC62)
.BYTE "AFRWEP"
Block jump table ($CC63-SCC6E)
$CC63/4 $03,SCD BLOCK-ALLOCATE $CDO3
$CC65/6 $F5,8CC BLOCK-FREE SCCF5
$SCC67/8 $56,$CD BLOCK-READ SCD56
$CC69/A $73,SCD BLOCK-WRITE $SCD73
$CC6B/C SA3,S$SCD BLOCK-EXECUTE SCDA3
$CC6D/E S$BD,SCD BLOCK-POINTER SCDBD
Parse the block parameters:
Zero .X and .Y. Load .A with $3A (":")
and JSR to PARSE ($C268) to find the
colon, if any.
On return branch to BP05 if Z flag is
not set (":" found; .Y= ":"-position+1l)
Load .Y with $03 (start of parameters)
Load .A with the .Yth character from
the command string.
Compare the character in .A with $20,
(a space). If equal, branch to BP10.
Compare the character in .A with $29,
(a skip chr). If equal, branch to BP10.
Compare the character in .A with $2C,
(a comma). If NOT equal, branch to BP20.
Increment .Y. Compare .Y to the length
of the command string