
::'. ':l~.::_oc. aenu
...1-.140.· ·choic.SI=3
.' 1'110- ·choiceSU):z"Start n+tiUe'
'.:ti80. choiceS(2) :="In5t~uctiOllsR
: . 1-1!1.O· ·choice$(3): =IIEnd progruti
".12qO. tytader (tj tle$,i)
:. S2tO· for i :=1 to choices do
·:.:·'220 print spilce$(l:S);iichoiceS(i)i
. 1·230 €ondfor i
~: l~ print horizontal'barSi"{C/DNJR
~.. ··1$ centre("Enter selectiun 1 t~ 3")
;... 1260 prittt
(U70 wtril. keyS<>chrS(O) do null
:: ·1215 whil. pjdc:${1I1- or pick$)·3"

by Borge R. Christensen
With Q foreword by Jim Butterfield

1130 pr DC ,,...enu
1140 choices:=3
1170 choice$(II:="Star~ "+title$
1180 choice$(21:="Instructions"
1190 choic~$(3):=ItEnd program"
1200 head~r(titl~$,I)

1210 for i: =1 to choic~s do
1220 print space$(1:5);i;choice$(il;
1230 ~ndfor i
1240 print horizontal'~ar$;"{C/DNl"

1250 cent r e C''Ent er se l ec t i on 1 t o 3")
1260 print
1270 while key$<>chr$(OI do null
1285 while pick$(I'l" or pickS)"3 11

by Borge R. Christensen
With a foreword byJim Butterfield

CO
Reference Guide

Borge R. Christensen

Fore~ord by Jim Butterfield

A TPUG publication

Toronto 1984
TORONTO PET USERS GROUP

© 1984 Borge R Chnstensen

Published by.

Toronto PET Users Group

1912A Avenue Road, SU,lte 1

Toronto, Ontano, Canada

M5M 4A1

ISBN 0-920607-00-4

First Pnntmq November 1984

.-
CONTENTS

foreword v

Preface vii

introduction with definitions . ix

COMAL reference guide . 1

With seaions on:

Expressions 14

Procedures and Parameters 37

Standard Functions 48

String Handling, Substrings 49

C·64 COMAL 80 Graphics 57

C·64 Sprite Commands . 62

Index 65

ill

FOREWOPJ) by Jim Butterfield

COMAL is an attractive language. It's as frlendly
as BASIC for the beginner, and yet allows the pro­
grammer to use advanced program stucture features
when needed. In fact, one of COMAL's greatest
benefits is in its helpfulness at different skill
levels: easy for the beginner, effective for the
advanced programmer.

COMAL is, in fact, a dialect of BASIC. But it's a
BASIC which has been expanded, standardlzed and
rationalized. COMAL does more, as compared to
"garden variety" BASIC. The various implementa­
tions of COMAL are relatlvely compatlble. COMAL
statements fit together to create programs that are
efficient and reliable. And COMAL programs use
relatively small amounts of memory, yet run
quickly.

COMAL is not yet a universal computer language. At
the present time, lt's available on a limited
number of computers. Only a few books and magazine
articles dealing with COMAL are to be found.

But COMAL is gaining in popularity. More people
than ever before are learning about - and using ­
COMAL.

This reference gUlde wlll help you put COMAL 0.14
to work, quickly and efficiently.

Jim Butterfleld
Toronto, ontario, November 1984

v

~EFACE
The programming language COMAL (COMmon Algorithmic
Language) was designed in 1973 by Benedict
Loefstedt and me In order to make life easier and
safer for people who wanted to use computers
without being computer people. We combined the
simplicity of BASIC with the power of Pascal.

If you take a close look at BASIC you will see that
its sImplicity stems mainly from its operating
environment, and not from the language itself.
Using BASIC, a beginner can type in one or two
statements and have his small program executed
immediately by means of one simple command. Line
numbers are used to insert, delete and sequence
statements. You do not need a sophisticated Text
Editor or an ambitious Operating System Command
Language. Input and output take place in a
straightforward way at the terminal.

On the other hand there is no doubt that as a
programming language, BASIC is hopelessly obsolete.
It was never a very good language, and seen from a
modern point of view it is a disaster. People who
start to learn programmIng using BASIC may easily
be led astray and, after some time, may find
themselves fighting with problems that could be
solved with almost no effort using programming
languages more adequate to guide human thinking.

COMAL includes the gentle operating environment of
BASIC and its usual simple statements, such as
INPUT, PRINT, READ, etc., but it adds to all that a
set of statements modelled after Pascal that makes
it easy to write well structured programs. Instead
of leading people away from the modern effective
way of professional programming, COMAL offers a
perfect introduction to this new art.

with C64 COMAL 0.14 by UniCOMAL Aps it is now
possible for anyone to become familiar with modern
principles of programming. It includes simple but
effective and versatile instructions to control
hi-res graphics and sprites.

Borge R. Christensen
Tonder, Denmark, AprIl 22, 1984

~

INTRODUCTION

The contents are arranged in paragraphs or
articles; one about each COMAL keyword and four
additional about assignments, expressions,
procedures and parameters, and standard functions.
These paragraphs and articles are arranged
alphabetically according to the keywords and the
four titles just mentioned. Some of the paragraphs
are very short and hold only a reference to an
article. An article normally consists of
definitions, comments, and examples.

Most <items> are defined on location but a few
fundamental ones are explained below and used
without futher notice in the articles. These are:

<identifier> is a string of up to 78 characters.
The leading character must be a letter, and the
following may be letters, digits, or anyone of
the characters: apostrophe ('), [, l, backslash, or
left arrow (displayed as underscore on the
printer) •

<variable name> can be an <identifier> to name a
real (floating) variable, <identifier># to name an
integer variable, or <identifier>$ to name a string
variable.

<file name> is a <string expression> that returns a
valid CBM disk operative system file name.

<expression> can be either a <numeric expression>
or a <string expression>. A <numeric expression>
returns a numeric value (integer or real), and a
<string expression> returns a string. Note that
only <numeric expressions> that return values in
the range from -32768 to 32767 can be assigned to
integer variables. Details about <expressions> may
be found in the survey (see EXPRESSIONS).

<numeric constant> is a usual decimal
representation of a number, and a <string constant>
is a string of characters enclosed in double
quotes.

IX

<file no.> is a <numer1C expression> that returns a
value in the range 1-255. A <unit no.> is a
<numeric expression> that returns a value in the
range 0-15. The COMAL System uses file #1 and #255
for system use.

<line number> is an integer in the range 1-9999.

In the syntax definitions, items in square brackets
[] are optional. Items enclosed in braces { } are
also optional, but may have several occurences.

It should be stressed that this survey of CBM COMAL
is neither a full formal definition nor a textbook.
Though it is believed to be complete and correct it
presupposes a certain knowledge about programming
in general and about CBM computers 1n particular. A
handbook that explains more detailed about CBM
COMAL and also contains much useful additional
information about CBM computers is

Len Lindsay: COKAL HANDBOOK

If you want a textbook about COMAL you could use

Roy Atherton: Structured Programming with COKAL

Borge R. Christensen: Beginning COKAL

A newsletter about COMAL and structured programming
is

COMAL TODAY (Editor: Len Lindsay)

All available from COMAL Users Group, U.S.A.,
Limited, 5501 Groveland Ter, Madison, WI 53716.

Borge R. Christensen
Tonder, Denmark, Aprll 1984

x

COMAL ",,,,.nce Guide
ABS

is a standard function. ABS(X) returns the absolute
value of X.

AND

is a Boolean operator that denotes
conjugation. See also EXPRESSIONS.

APPEND

logical

is a keyword used to spec1fy that a sequential file
is opened in append mode. See also OPEN.

ASSIGNMENTS

The syntax of an assignment is

<variable>:=<expression>

If the <variable> 1S of type string, the
<expression> must be of the same type. Type
conflicts between numerics and strings are normally
found and reported as program lines are entered.

The system is, however, very tolerant when numeric
types (reals and i n t.eq e r s) are concerned. Thus a
variable of type real will accept integer values
and you may use variables of type integer in real
expressions. An integer var iable will accept any
number in the range from -32768 to 32767. If a real
number in that range is assigned to an integer the
number is first rounded.

with numeric types, assignments like the following:

<variable>:=<variable>+<expression> and
<variable>:=<variable>-<expression>

may respectively be written in a shorthand form as

<var1able>:T<expression> and
<variable>:-<expression>

C-64 CO MAL Reference Guide

ASSIGNMENTS (cont1nued)

If the keyword LET is typed 1n before an assignment
it is ignored by the system. If the sign of
equality is entered i ns t e ad of the sign of
assignment, the system automatically converts "="
into ":=".

VOLUME:=LENGTH*WIDTH*HEIGHT/3
COUNTER:+INCREMENT
ADDRESS$:=STR$(NO)+NAME$+"@"+STREET$+"@"+CITY$+"*"
MAX#:=32128

ATN

is a standard function.
arctangent in radians of X.

AUTO

ATN(X) returns the

AUTO is a command that makes the COMAL system
generate line numbers automatically as a program is
entered. Its syntax is:

AUTO [<line number>] [,<increment»

where <increment> 1S a positive integer.

COMMAND GENERATES LINE NUMBERS:
------- ----------------------------
AUTO 0010, 0020, 0030, 0040, etc.
AUTO no 0110, 0120, 0130, 0140, etc.
AUTO ,2 0010, 0012, 0014 , 0016, etc.
AUTO 110,2 0110, 0112, 0114, 0116, etc.

If a v a Li d Li ne number is added to the word AUTO,
the generated sequence of numbers will start Wl th
the number thus indicated.

If a positive integer preceded by a comma is added,
the system will use this integer as an increment in
line numbers.

AUTO mode is swi tched off by pressing the RETURN
key twice in succession.

- 2 -

C-64 COMAL Reference Guide

BASIC

BASIC is a command that makes the computer switch
back to the built-in BASIC interpreter. The syntax
of the command is

BASIC

To return
reloaded.

to COMAL the interpreter must be

Note: The C64 reset function s orne t irnes fails when
the BASIC command is used. To be sure that the
system is truly reset to BASIC mode press
<STOP>+<RESTORE> once or twice.

CASE, WHEN, OTHERWISE, ENDCASE

The CASE
structure
syntax of
statements

statement is the head
that controls multI-way
the case structure and
is given in the following

of the CASE
branching. The
its individual
diagram:

CASE <case selector> [OF]
{WHEN <choice list>

<statement list>}
[OTHERWISE

<statement list>]
ENDCASE

The <case selector> is an <expression>. The <choice
list> is a list of <expressions>. The expressions
on the <choice list> following a WHEN statement
must be of the same type (real, integer, or string)
as the <case selector>.

If the value of the <case selector> is equal to the
value of one of the expressions on a <choIce list>
the corresponding <statement list> is executed.

As soon as a <statement list> has been executed,
the COMAL interpreter transfers control to the
statement following the ENDCASE statement, or stops
if no more statements follow. If the value of the
<case selector> does not match any of the
expressions on the choice lists the <statement
list> following OTHERWISE is executed, but if no
OTHERWISE statement IS present, an error message is
emitted and execution of the program is stopped.

- 3 -

C-64 COMAL Reference Guide

CASE, WHEN, OTHERWISE, ENDCASE (continued)

On the listing of a program statements ln a
<statement list> are lndented automatically
relatlve to the control statements:

CASE GUESS OF
WHEN 1,2,3,4,5

COLOUR$:="RED"
FACTOR: =1. 5

WHEN 6,7,8
COLOUR$:="YELLOW"
FACTOR:=3

WHEN 9
COLOUR$:="BLUE"
FACTOR:=lO

ENDCASE

If the <caSe selector> GUESS is equal
4, or 5, the first case is executed.
equal to 6, 7, or 8, the second case
and if GUESS is equal to 9 the last of
executed.

to 1, 2, 3,
I f GUESS is

is executed,
the cases is

CASE MONTH$ OF
WHEN "JAN","MAR","MAY","JUL","AUG","OCT","DEC"

PRINT "THE MONTH HAS 31 DAYS."
WHEN "APR","JUN","SEP","NOV"

PRINT "THE MONTH HAS 30 DAYS."
WHEN "FEB"

IF YEAR MOD 4=0 THEN
PRINT "THE MONTH HAS 29 DAYS"

ELSE
PRINT "THE MONTH HAS 28 DAYS"

ENDIF
OTHERWISE

PRINT "OLD MAN GREGOR TURNS OVER IN HIS GRAVE."
ENDCASE

CAT

is a command used to d i splay the contents of a
diskette. Its syntax is

CAT [<drive no.>]

The command

CAT

- 4 -

C-64 COMAL Reference Guide

CAT (continued)

causes the system to
diskettes mounted In
command

CAT °

display catalogs of
system dISk drIves.

all
The

shows the catalog of the diskette in drive 0, unit
8.

CHAIN

The CHAIN statement or command is used to load a
program stored on disk and run it. Its syntax is

CHAIN <file name> [,<unit no.>]

If no <un i t no , > is specified, disk un i t; number 8
is used. Programs already in main storage will be
deleted when the CHAIN statement is invoked. Only
programs stored by means of the SAVE command can be
retrieved via CHAIN.

CHAIN "UPDATE"

loads the program named "UPDATE" from drive 0, unit
8, and runs it. See also SAVE and LOAD.

CHR$

is a standard function. CHR$ (X)
character whose ASCII value IS X.

CLOSE

returns the

CLOSE is a statement or command used to sign-off
data files. Its syntax is

CLOSE [FILE] [<fi Le number>]

- 5 -

C-64 CO MAL Reference Guide

CLOSE (contlnued)

The statement (or command)

CLOSE

closes all flles that have been opened. The
statement (or command)

CLOSE 3

closes file number 3 only.

The keyword FILE is added automatically by the
interpreter 1 f not entered by the user. See also
OPEN, READ, PRINT, INPUT.

CLOSED

If the ~eyword CLOSED terminates the procedure
heading, all variables in the procedure will be
local. Normally this is only the case with the
parameters.

PROC WINDOW(X,Y) CLOSED
SCREEN(X,l)
FOR 1:=1 TO Y-X+l DO ERASE'LINE(I)
SCREEN(X,l)

ENDPROC WINDOW
II
PROC SCREEN(L,C) CLOSED

X:=984+L*40
POKE 209,X MOD 256 IILINE LOW BYTE
POKE 2l0,X DIV 256 IILINE HIGH BYTE
POKE 2ll,C-l IICO~UMN

ENDPROC SCREEN
If.
PROC ERASE'LINE(L) CLOSED

SCREEN(L,l)
FOR 1:=1 TO 40 DO PRINT" "

ENDPROC ERASE'LINE

The variables X, Y, L, C, and I are all local, X,
Y, L, AND C because they are parameters and I
because the procedures are closed. Thus the X used
in SCREEN and the X used in WINDOW are different
obJects. The same goes for I in WINDOW and
ERASE'LINE. See also PROCEDURES AND PARAMETERS and
PUNC.

- 6 -

C-64 COMAL Reference Guide

CON

CON is a command that restarts a program which has
been stopped.

CON

Due to the internal linking of structures in a
COMAL program, the CON command cannot be used after
delet10n or 1nsert1on of statements or introductIon
of new variables. See also STOP.

COS

1S a standard function. COS (X) returns the cosine
of X (X 1n rad1ans).

DATA

A DATA statement is used to hold numeric
constants that may be retr ieved in
statement. Its syntax 1S:

DATA <value> {,<value>}

or string
a READ

where <value> 1S a <numeric constant> or a <string
constant>.

REPEAT
READ NAME$,TEL
FQUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD
DATA "COLLINS",23,"JACOBS",34,"HUDSON",45
DATA "KILROY",l4,"ATHERTON",lO,"BRAMER",l5

See also EOD, READ, and RESTORE.

DEL

The DEL command is used to remove one or more lines
from a program in main storage:

DEL [<llne number> [- [c l i ne number>]]] or
DEL -<line number>

- 7 -

C-64 COMAL Reterence GUIde

DEL (continued)

COMMAND RESULTS
------- -------
DEL 100 Removes line 100 from program
DEL 100-200 Removes lines between 100 and 200

InclusIve
DEL -300 Removes all lines up to and

includIng 300
DEL 300- Removes all lines numbered 300 or

greater

Important note. Ali ne cannot be removed by Just
giving ItS lIne number. ThIS IS because empty
statements are allowed in versions 2.00 and later,
so e n t e r anq a line number and n o t h i nq else would
simply Introduce an empty statement with that line
number. The DEL command should not be confused with
the DELETE command which is used to remove files
from a disk.

DELETE

The DELETE statement or command is used to remove
files from a disk. Its syntax IS

DELETE <file name> [,<unit no.>]

The <file name> must include the drive number. Thus
the corowand

DELETE "O:MYPROG"

deletes the file "MYPROG" stored on the diskette In
drIve number 0, unit no. 8, whereas

DELETE "0:YOURPROG",9

erases the file "YOURPROG" stored on the diskette
In drive number 0, unIt number 9.

- 8 -

C-64 COMAL Reference Guide

DIM

The DIM statement is used to declare strings and
arrays of numerics and strings. Its syntax is

DIM <declaration> {,<declaration>}

A <declaration> could be a <numeric declaration> as
in

DIM TABLE(-l:lOO)

or a <string declaration> as in

DIM NAME$(0:20) OF 30

Since the DIM statement is very versatile and
powerful, it is not all that simple to give a
detailed descrIption of its syntax. Instead we
shall look at some examples. The statement

DIM TABLE (-1 : 100) , MA RKS (l0 0 0 : 1500 ,8 : 10)

declares an array of real numbers, named TABLE,
with i nd ace s ranging from -1 to 100, and a two
d i men s r o na I numeric array, named MARKS, with
indices ranging from 1000 to 1500 and 8 to 10. You
may use any <numer ic expression> for lower bound
and upper bound, as long as the value returned for
the lower one is smaller than or equal to the value
returned for the upper one. Non-integer values are
truncated. If no lower bound is given the
interpreter uses 1 in its place. Thus the statement

DIM JOBCODE(lOO)

declares an array of numerics with indices ranging
from 1 to 100 and is totally equivalent to

DIM JOBCODE(l:lOO)

The statement

DIM NAME$ OF 30, ANSW$ OF 3

- 9 -

C-64 COMAL ~eference GUlde

DIM (contlnued)

declares two slngle string variables such that the
first one may hold up to 30 characters and the
second one up to 3 characters. Slngle string
variables must be declared. The folloWlog statement

DIM PUPIL$(30:l00,8:l0) OF 30

declares an array of strings with i nd i c e s ranging
from 30 to 100 and 8 to 10 where each component may
hold up to 30 characters.

An array may have any number of dimensions.

DIV

is an operator that denotes i n t eqe r d i v i s i o n , See
also EXPRESSIONS.

DO

DO is used with FOR and WHILE statements. See FOR
and WHILE.

EDIT

The EDIT command is used to display a list of the
program presently in workspace, but without the
structured indentation invoked by the LIST command.
The syntax of the EDIT command is

EDIT [<line number> [- [<hne number>]]] or
EDIT -<line number>

The EDIT command is used when editlng to avoid
i nc I ud i nq "false spaces" caused - be the automatic
indentation of lines that are wrapped around. See
also LIST.

ELIF

The ELIF ("ELSEIF") statement can only be used with
the IF statement. See IF.

ELSE

The ELSE statement can only be used Wlth the IF
statement. See IF.

- 10 -

C-64 COMAL Reference Guide

END

The END statement makes the system terminate
execut10n of a program. See also STOP.

ENDCASE

The ENDCASE statement is used to terminate the last
block in a CASE mUlti-way branching structure. See
CASE.

ENDFOR

The ENDFOR statement is used to terminate the block
controlled by a FOR statement. See FOR.

ENDFUNC

The ENDFUNC statement 1S used to terminate the
def1nition of a user defined function. See FUNC.

ENDIF

The ENDIF statement is used to terminate the last
block of statements 1n an IF branch1ng. See IF.

ENDPROC

The ENDPROC
def1n1tion
PARAMETERS.

ENDWHILE

statement is used to
of a procedure. See

terminate
PROCEDURES

the
AND

The ENDWHILE statement
block of statements
statement. See WHILE.

ENTER

is used to
controlled

terminate the
by a WHILE

The ENTER command 1S used to enter a program stored
on d1Sk or tape into workspace:

ENTER <f11e name> [,<un1t no.>]

Default value of <un1t no.> is 8. The command

ENTER "O:MYPROG",9

- 11 -

C-64 COMAL Reference GU1de

ENTER (continued)

is used to enter the program "MYPROG" found on
drive number 0, unit number 9, whereas the command

ENTER IYOURPROG",l

retr1eves the program "YOURPROG" found on the
cassette in unit number 1 (datasette).

Only programs stored by means of the LIST command
may be retrieved with the ENTER command.

Important note: Program lines that are taken in by
the ENTER command are merged into an existing
prog r am in the s arne way as 1 i nes typed f rom the
keyboard. See also LOAD, LIST and SAVE.

EOD

is a standard Boolean function. EOD returns a value
of TRUE (numeric 1) i f the last element in a data
queue has been read, otherwise a value of FALSE
(numeric 0) is returned. See also READ.

EOF

is a standard Boolean function. EOF (X) returns a
value of TRUE (numeric 1) if the end-of-file in a
sequential file has been reached, otherwise a value
of FALSE (numer1c 0) 1S returned. See also READ and
INPUT.

OPEN 2,IPERSONS",READ
WHILE NOT EOF(2) DO

READ FILE 2: NAME$,ADR$,CITY$
PRINT NAME$
PRINT ADR$
PRINT CITY$

ENDWHILE
CLOSE

- 12 -

C-64 COMAL Reference Guide

ESC

The f uno t r o n ESC returns a value of TRUE (numeric
1) if the STOP key IS depressed, otherwise It
returns a value of FALSE (numerIc 0). The ESC
functIon is not actIve unless a TRAP ESC- statement
has been encountered. See also TRAP.

EXEC

The keyword EXEC, short for EXECute, may be used to
indicate a procedure call. The syntax of a
procedure call is

[EXEC] <identlfier>«llst of actual parameters»

The normal way of calling a procedure IS by simply
s t a t i nq the name of the procedure followed by the
parameter list, If any. But for sake of
compa t i b i Li t y with e a r Li e r versions of COMAL the
dummy keyword EXEC may still be used. Normally the
EXEC is suppressed on the Li s t i nq of the program,
but by uSIng the SETEXEC command (see SETEXEC) you
can force the interpreter to display it.

The following statements

PRINTOUT(NAME$,ADDRESS$)
EXEC PRINTOUT (NAME$,ADDRESS$)

are equIvalent. They are both callIng the procedure
PRINTOUT passIng the parameters NAME$ and ADDRESS$.
See PROCEDURES AND PARAMETERS.

EXP

is a standard functIon. EXP(X) returns the value of
e (nat. loy. base) to the p owe r of X (thus be i nq
the Inverse of nat. log.)

- 13 -

C-64 COMAL Reference GUIde

EXPRESSIONS

A <numerIc expreSSIon> can contaIn constants,
varIables, and numerIC functIons, used wIth
parentheses and the f o Ll ow i nq operators ac c o r d i nq
to the usual rules of mathematics:

+

T
*
I

DIV
MOD

+

monadIc +
monadIc ­
power
multIplIcation
division
integer division (see below)
remainder from dIvisIon (see below)
add i tion
subtractIon

+A
-A
AlB
A B
AlB
A DIV B
A MOD B
A+B
A-B

If A and B are integers then A MOD B
so-called principal remainder from dIvisIon
B, i s e , the smallest non-negative integer
that

A B*Q + R

and A DIV B is the quotient Q.

is the
of A by
R such

Numeric values may be compared by means of the
following relational operators:

< <= >= > <>

i.e. "less than", "less than
to", "greater than or equal
and "is not equal to".

or equal to",
to", "greater

"equal
than",

Numeric expressions may be used as Boolean
expressions. A numeric value equal to zero IS
interpreted as FALSE, whereas any value other than
zero is interpreted as TRUE. A Loq i c a I operation
returns a numeric 1 for TRUE and 0 for FALSE.

The following Boolean operators are available:

NOT logIcal negatIon. NOT A returns a value of
FALSE, l.e.numeric 0, if A has a value of
TRUE, i.e. a numerIC value different from
zero, but a value of TRUE (numeric
1) if A has a value of FALSE (IS equal to
zero) •

- 14 -

C-64 COMAL Reference Guide

EXPRESSIONS (continued)

AND logical conJunction. A AND B returns a
value of TRUE if A and B are both TRUE,
otherWIse a value of FALSE IS returned.

OR logical disJunction. A OR B returns a value
of FALSE if A and B are both FALSE,
otherwise a value of TRUE is returned.

A <s t r i nq e x p r e s s i o n» may consist of string
constants, string variables, strIng array elements,
or string functIons concatenated by means of the +
sign. S't r r nq expressions may be compared by means
of the operators:

< <= >= > <>

me a n i nq t h i s t i me "comes before", "comes before or
is equal to", "is equal to", "comes after or is
equal to", "comes after", "is not equal to", using
lexicographical ordering. Note that strings with
relational operators make up expressions that
return numerical values; 1 for TRUE and 0 for
FALSE.

IN is used for string pattern matching. The
expression A$ IN B$ returns a value of zero
(Le. FALSE) if A$ is not found as a
substring of B$, but if A$ is found
as a sUbstring of B$ the expression returns
the position of the first matching
character.

If NAME$ has a value of "LOTTIE CHRISTENSEN" then
the expression

SURNAME~ IN NAME$

returns a value of 8 (TRUE) If SURNAME$ IS equal to
"CHRISTENSEN", but the value 0 (FALSE) if SURNAME$
is equal to "CRISTENSEN".

- 15 -

C-64 COMAL Reference Guide

EXPRESSIONS (continued)

The priority of the above mentIoned operators IS:

r (power)
/ DIV MOD

+
< <=
NOT
AND
OR

FALSE

>= > <> IN

To improve the readability of programs, two
constants TRUE or FALSE are p r ede f i ned , TRUE IS
equal to 1, and FALSE is equal to O.

FILE

See OPEN, CLOSE, READ, and WRITE.

- 16 -

C-64 COMAL Reference GUIde

FOR

A FOR statement IS used to control the executIon of
a FOR loop. The syntax of the FOR statement and FOR
loop is

FOR <for range> [<step>] DO
<statement lIst>

ENDFOR [<control varIable>]

where <for range> is

<control variable>:=<initlal value>
TO <final value>

and <step> is

STEP <step value>

The <control varIable> is a <numeric variable>, and
c i n i tial value>, <final value>, and <step value>
are <numeric expressions>.

The <control variable> followIng the keyword ENDFOR
hds been bracketed to Indicate that it is supplied
automatically by the interpreter if not entered by
the programmer. To ensure compa t i b i Li t y wi t h
earlier versions of COMAL the keyword NEXT is
accepted on entry instead of ENDFOR. In a listing
the keyword ENDFOR IS dIsplayed.

FOR X:=l TO 5 DO
SUM:=SUM+X
PRINT SUM;

ENDFOR X

First the control variable X IS set to 1 and the
two statements in the range of the loop are
executed. Then X is set to 2, and the statements
are executed again. ThIS goes on as long as X is
not greater than the final value 5. When X assumes
a value of 6 executIon of the loop IS stopped and
the interpreter starts on the statement following
the ENDFOR statement. Note that X has a value of 6,
i.e. <fInal value>+l, when the loop terminates.
Also note that this value is not actually used in
the loop.

- 17 -

C-64 COMAL Reference Guide

FOR (contlnued)

FOR N:=l TO 10 STEP 2 DO
SUM:=SUM+N
PRINT SUM

ENDE'OR N

In thIS example N assumes the values 1, 3, 5, 7, 9,
and 11, since a step value of 2 IS prescrIbed. Note
that the control variable N has an unused value of
11 when execution of the loop terminates.

FOR P:=lO TO 1 STEP -1 DO
PRINT TEXT$(l:P)

ENOFOR P

The statement in the loop is executed for P equal
to 10, 9, 8, ••• , 1. The t.e rm i na t i o n value of P is
o and not used in the loop.

A short FOR loop is available. Its syntax IS

FOR <for range> [<step>] DO <statement>

No ENOFOR statement is allowed in
one-line FOR statement may also
command.

this case. The
be used as a

FOR P:=lO TO 1 STEP -1 DO PRINT TEXT$(l:P)

This loop is functionally equivalent to the
previous one only this time the short form is used.

FOR T:=l TO 750 DO NULL

This loop waits till COMAL has counted from 1 to
750.

- 18 -

C-64 COMAL Reference Guide

FUNC, ENDFUNC, RETURN

The PUNC statement is used as the fIrst statement ­
or head - of any user-defIned function. The syntax
of a user defined functIon is

FUNC <function identifIer> <head appendix>
<function body>

ENDFUNC [<functIon identifIer>]

The <function identifier> is a <variable
identifier> and the <head appendix> is specified as

[«formal parameter list»] [CLOSED]

The <functIon body> is made up of COMAL statements.

A function value must be returned in a RETURN
statement (see RETURN), and at least one such
statement must be present in the <function body>.

The <function identifier> following ENDFUNC is
supplied automatically by the system during the
prepass if not entered by the programmer.

Note. If you are not very familiar with multi-line
functions and parameters, it might be adv isable
that you read the section about PROCEDURES AND
PARAMETERS before continuing the present one.

FUNC DISTANCE(X,Y)
IF X<=Y THEN

RETURN Y-X
ELSE

RETURN X-Y
ENDIF

ENDFUNC DISTANCE

ThIS functIon 15 called In a statement lIKe

PRINT DISTANCE(lO,-4)

The values of the actual parameters 10 and -4 are
assigned ("passed") to the formal parameters X and
Y, respectIvely, and the value 14 is returned. The
PRINT st3tement displays 14.

- 19 -

C-64 COMAL Reference GUIde

FUNC, ENDFUNC, RETURN (continued)

FUNC POS(A$,B$)
RETURN A$ IN B$

ENDFUNC POS

This functIon represents nothing but a renaming of
the IN operator. In some cases such a renaming
could contrIbute to better documentation.

FUNC GCDlt(Xlt,Ylt)
IF (Xlt MOD Ylt)=O THEN

RETURN Ylt
ELSE

RETURN GCDlt(ylt,Xlt MOD ylt)
ENDIF

ENDFUNC GCDlt

This function returns the GCD (Greatest Common
Divisor) of two integers. Note that the function
Itself is of type integer, and that it calls itself
recursively.

FUNe VALUE(A$) CLOSED
LN:=LEN(A$)
ONES:=ORD(A$(LN))-ORD("O")
IF LN=1 THEN

RETURN ONES
ELSE

RETURN ONES+VALUE(A$(l:LN-l))*lO
ENDIF

ENDFUNC VALUE

This function also calls itself recursively from
the expression in the last RETURN statement.

FUNC HASH(A$,HASHER) CLOSED
LN:=LEN(A$); T:=O
FOR 1:=1 TO LN DO T:+ORD(A$(I))
RETURN T MOD HASHER

ENDFUNC HASH

FUNC MEAN(N,REF A()) CLOSED
SUM:=O
FOR 1:=1 TO N DO SUM:+A(I)
RETURN SUM/N

ENDFUNC

- 20 -

C-64 COMAL Reference Guide

FUNC, ENDFUNC, RETURN (continued)

This funct10n
by reference.
and CLOSED.

GOTO

uses an array A passed as a parameter
See also PROCEDURES AND PARAMETERS

The syntax of a GOTO is:

GOTO <label>

where <label> 1S an <identifier>. The GOTO
statement transfers control to a <label statement>
thus deflned:

<label>:

IF FATALERROR THEN
PRINT "FATAL ERROR. CANNOT CONTINUE."
GOTO HALT

ENDIF

HALT:
S'fOP

US1ng a GOTO statement you can jump
structure, but not out of a procedure.
to jump into a structure the
unpredictable. Jumping into a procedure
system breakdown.

IDENTIFIERS

out of any
If you try

result is
may cause a

Identifiers are used to name variables, labels,
functions, and procedures. An identi f ier may
contain as many as 78 characters, all significant.
The f1rst character must be a letter, the rest may
be letters, d i q i t s , or anyone of the following
characters: apostrophe ('), [, 1, b ack s l a s h , or
left arrow «-).
Here are some legal ident1f1ers:

MAXNUMBER, HOUSENO, NUMBER'Of'VOWELS, NAME$,
NAME'OF'MY'UNCL£$

Nl, N2, N3, CREATE'RECORU, GET'DIGIT,
GE'f' CHARACTERS

- 21 -

C-64 COMAL Reference GU1de

IF, ELSE, ELIF, ENDIF

The IF statement is the head of t ne IF structure
that controls cond1t10nal branch1ng. The syntax of
the IF structure and the statements that go wlth it
is shown in the following diagram:

IF <logical expression> [THEN]
<statement list>

{ELIF <logical express10n> [THEN]
<statement list>}

[ELSE
<statement list>]

ENDIF

where <logical express10n> is the same as
<numerical expression>. The keyword THEN 1S
supplied automatically by the system if not entered
by the user. The 11 nes ina <statement 1 ist> are
automatically indented by the interpreter on the
program listing.

In COMAL you also have a short form of the IF
statement. Its syntax is:

IF <logical expression> THEN <statement>

Note that no ENDIF is allowed in this case. On the
other hand the keyword THEN must be entered.

IF I<=J THEN
W:=A(I); A(I):=A(J)i A(J):=W
I: = I +1; J: =J-l

ENDIF

If the expression I<=J evaluates to TRUE (numeric
1) the statement list between IF and ENDIF is
executed. If, however, it returns FALSE (numerlc 0)
the statement list is skipped and control is
transferred to the statement foll~wing ENDIF.

IF TRY<3 THEN
PRINT "NO, TRY AGAIN"

ELSE
PRINT "NO, THE ANSWER IS ~,RESULT

PRINT "TYPE THAT!"
ENDIF

- 22 -

C-64 COMAL Reference GUIde

IF, ELSE, ELIF, ENDIF (contInued)

If the expression TRY<3 evaluates to TRUE, the
statement b e t we e n IF and ELSE is executed, but if
it returns the value FALSE, the statements between
ELSE and ENDIF are executed. In both cases control
is then transferred to the statement following
ENDIF.

D:=B*B-4*A*C
IF D>O THEN

PRINT "TWO REAL ROOTS:"
PRINT "Xl = ", (-B+SQR(D))/2/A
PRINT "X2 = ", (-B-SQR(D))/2/A

ELIF D=O THEN
PRINT "ONE REAL ROOT:"
PRINT "X = ",-B/2/A

ELSE
PRINT "DISCRIMINANT NEGATIVE"
PRINT "NO REAL ROOTS."

ENDIF

If the e x p r e s s i o n 0>0 returns the value TRUE the
first three-statement list is executed, and the
rest is skipped. If, however, it is evaluated to
FALSE, the interpreter evaluates the expression 0=0
following ELIF. If that appears to be TRUE, the
second statement list is executed. If the second
ex p r e s s i o n also has a value of FALSE, execution
finally falls through to the last statement list,
i ve , the one following the ELSE statement. Note
that never more than one statement list is
executed. This means that if two expressions may
become TRUE, only the statement lISt followIng the
first of them is executed.

IF OB8<10 THEN
FREQUENCY(l) :+1

ELIF OBS<20 THEN
FREQUENCY(2) :+1

ELIF OBS<30 THEN
FREQUENCY(3) :+1

ELIF OBS<40 THEN
FREQUENCY (4) :+1

ELSE
FREQUENCY (5) :.t-l

ENOIF

- 23 -

C-64 COMAL Reference GU1de

IF, ELSE, ELIF, ENDIF (continued)

In th1S example 1t is ut1l1zeu that one <state~ent

list> at most 1S executed. If i t 15 TRUE that
OBS<lO all the rest of the Boolean express10ns are
also TRUE, but only FREQUENCY(l) 1S 1ncreased by 1.
I f on the other hand 1t 1s TRUE tha t 10 <=OBS and
OBS<20 only the second a s s i qrirnen t is executed. It
1S easy to see how t.h i s could be used in
statistics.

IF CHAR$ IN SET'OF'LETTERS$ THEN
IF CHAR$ IN SET'OF'VOWELS$ THEN

VOWELS:+1 //ANOTHER VOWEL
ELSE

CONSONANTS:+1 //ANOTHER CONSONANT
ENDIF

ELIF CHAR$=" " THEN
WORDS:+1 //ANOTHER WORD

ELIF CHAR$ IN SET'OF'DIGITS$ THEN
DIGITS:+1 //ANOTHER DIGIT

ELSE
SPECIALS:+1 //ANOTHER SPECIAL

ENDIF

IF JOB=3 THEN PRINTOUT

is functionally equivalent to

IF JOB=3 THEN
PRINTOUT

ENDIF

In both cases the procedure PRINTOUT is called if
JOB has a value of 3.

IN

is a Boolean operator used for str1ng matching. For
further explanation see EXPRESSIONS.

INPUT

The INPUT statement is used to fetch data from
keyboard. Its syntax is

INPUT [<prompt>:] <input list> [<print end>]
- 24 -

C-64 COMAL Reference GU1de

INPUT (continued)

where <prompt> is a c s t r i nq axp r e s s i on> , <i npu t
list> is a list of var1able identifiers, and <pr1nt
end> is a semicolon (;).

INPUT l'1AXNUMBI::R

When t.h i s statement 1S executed, the system
d i s p Lay s the s i q n "?" and waits for the user to
enter a number and press the RETURN key. The number
typed in is assigned as a value to MAXNUMBER.

INPUT "ENTER NAME: ". NAME$

When th1S statement is executed the system displays
the user defined prompt

ENTER NAME:

and pauses to let the user type in a string to be
assigned as a value to the variable NAME$.

INPUT NAME$,AGE

When this statement is executed the system d1splays
its standard prompt "?" and pauses. The user is
expected to type 1 n a str 1ng and press the RETURN
key. The string is then assigned to NAME$ and the
system submits another "?" on the same Li rie and
pauses to let the user type in a number.

INPUT A,B,C

This statement will ask the user to enter three
numbers. The following options may be chosen: You
can enter three numbers like

5 80 34

and then press RETURIJ. The var iable A is then set
to 5, B to 80, and C to 34. You can also enter the
three numbers 1n the folloW1ng manner:

5,80,34

- 25 -

C-64 COMAL Reference Guide

INPUT (contInued)

and then press RETURN. FInally you may obtain the
same result by enterIng 5 and press RETURN, then 80
and press RETURN, and finally 34 and press RETURN.
In the f i r s t two cases only one "?" is displayed,
in the last case three "?" are submitted.

INPUT "FROM: ":FIRST$i
INPUT" TO: ":LAST$

The semicolon terminating the fIrst statement
prevents the line from being shIfted after the
first string has been tys>ed in. The result of a
program-user dialog might look like this:

FROM: 12.DEC.80 TO: 23.DEC.80

The RETURN key was pressed after each entry.

Note that a string variable in an <input list> will
pick up all characters entered from the keyboard.
Therefore you can not have more than one string
variable in the Li s t , and it must always be the
last one,

INPUT FILE

is used to retrieve data from a file that was
created using PRINT FILE. It will also allow
characters to be read directly off the screen. The
syntax of an INPUT FILE statement is:

INPUT FILE <file no.>[,<rec. no.>]: <input list>
[<print end>]

where <Input lIst> IS a list of variable
i den t i f a e r s , <rec. no , > is a <numeric expression>
and <print end> is comma (,) or semicolon (i).

OPEN FILE 3,"MYDATA",READ
REPEAT

INPUT FILE 3: LINE$
PRINT LINE$

UNTIL EOF(3)
CLOSE

This program reads and dIsplays the contents of the
sequential file "MYDATA".

- 26 -

C-64 CO~AL Reference GUIde

INPUT FILE (contInued)

VIDEO:=3
OPEN FILE VIDEO,"",UtH'T 3,READ
SELECT "LP:"
FOR ROW:=l TO 25 DO

INPUT FILE VIDEO: TEXT~

PRINT TEX'!'$
ENDFOR ROW
CLOSE VIDEO
SELECT "OS:"

This program reads the screen lIne by lIne and
prints a hard copy of its contents.

INT

IS a standard f unc t i o n , INT (X) returns the integer
part of X, i v e , the greatest Integer less than or
equal to X.

KEY$

IS a standard function. It returns the first ASCII
character In the Input buffer. If no key has been
depressed, an ASCII null is returned.

PROC GET'CHAR(REF T~)

T$:=CHR$(O)
WHILE T$=CHR$(O) DO T$:=KEY$

ENDPROC GET'CHAR

LABELS

A label IS used as a Jump address for a GOTO
statement. The syntax of a label statement is

<IdentIfIer>:

NOt2 that GOTU <lIne number> IS not allowed.

IF BREAK THEN GOTO HALT

HALT:
STOP "EXECU'i'ION BRIoAKED BY USER"

- 27 -

C-64 CONAL Reference GUIde

LABELS (contInued)

If BREAK assumes a value of TRUE
to 0) control is transferred
statement. See also GOTO.

LEN

(value not equa 1
~o the label

is a standard function. LEN(X$) returns the current
length (number of characters) of the s t r i nq value
of X$.

LINEFEED

The command

LINEFEED+

makes the system emIt a linefeed after each
carriage return, when output is to the printer. The
command

LINEFEED-

disables this
out after a
LINEFEED-.

LIST

facilIty,
carriage

I. e. no
return.

linefeed
Default

is sent
mode is

is a command used to display or store a whole
program or a part of a program resIding in
workspace. The syntax of the command is:

LIST [<line number>[-[<line number>]]] or
LIST -<line number>

where <name> is the name of a functIon or a
procedure.

- 28 -

C-64 COMAL Reference Guide

LIST (cont1nued)

COMMAND

LIST
LIST 100
LIST 100-200

LIST -300

LIST 300-

RESULT

List the whole program
List llne numbered 100
L1st all llnes between 100 and 200

inclus1ve
List all lines up to and including

300
List all llnes numbered 300 or

greater

The LIST command may also be used to store programs
on disks or tapes. The command

LIST "MYPROG"

stores a program now 1n ma1n storage on d1Sk as a
program file with the name of "MYPROG". The program
is stored as source code, and may therefore later
be merged w1th another program 1n ma1n storage (see
ENTER). Since the LIST command handles source code
directly, this version 1S also permitted:

LIST 100-200 "YOURPROG"

In this case line 100-200 are stored i n a file
named "YOURPROG".

If another device than d i s k unit no. 8 is used,
<unit no.> must be added to the command.

A program that has oeen stored by the LIST command
has type SEQ and may be opened as any other
sequential file and read by an INPUT FILE
statement. See also PRINT FILE, ENTER, and EDIT.

LOAD

is a command used to retr1eve programs from disk or
tape. Its syntax 1S

LOAD <fIle name> [,<un1t no.>]

The c o.n.na nd

LOAD "t'1AINPROG"
- 29 -

C-64 COMAL Reference Guide

LOAD (continued)

will load the program "MAINPROG" into workspace. If
you want to retrIeve the program from a device
other than d i sk uni t no. 8, a uni t no. must be
specified:

LOAD IYOURPROG",l

will load the program "YOURPROG" from cassette into
workspace. See also CHAIN, SAVE, LIST, and ENTER.

LOG

is a standard function. LOG (X) returns the natural
logarithm of X.

HOD

is an operator that returns the remainder from
integer division. See also EXPRESSIONS.

NEW

is a command that clears the whole workspace of
program and data. Its syntax is

NEW

NEXT

The NEXT statement way be used to terminate a block
of statements controlled by a FOR statement. The
keyword NEXT is automatically altered into ENDFOR
by the interpreter. See also FOR.

NOT

is a Boolean operator that denotes negation. For
further explanation see EXPRESSIONS.

- 30 -

C-64 COMAL Reference Guide

NULL

The NULL statement does nothlng. Its syntax IS

NULL

It ~ight seem a bit strange or even extravagant to
have a "no-op" statement like that to perform the
"empty action", but it can be Inserted In some
speclal cases to satisfy the syntax of COMAL. The
example below will show how.

FOR 1:=1 TO 750 DO NULL //WAIT

OF

is a keyword used to t e rrn i na t e the CASE statement
and as part of the declaration of strlng variables
or strlng arrays. See also CASE and DIM.

OPEN

IS a command or statement used to asslgn numbers to
flIes for reference. Its syntax is

OPEN [FILE] <file number>,<file
info>] [, <type>]

name>[,<dev.

<f i Le number> is a <numeric e xp r e s s i o n > that must
return a value from 2-254, <dev. info> is

UNIT <unit no.> [,<secondary addr>]

where <secondary addr> is a cnume r i c expression>
that must return a value from 0-15. Finally <type>
is READ for sequentlal reading, WRITE for
sequential writlng, APPEND for contlnued sequential
wr i ting, or RANDOM <record length> for reading to
or wrltlng from a direct access file (random file),
where <record length> is a <numeric expression>
that must return a positlve value.

OPEN FILE 3,"MARKS",READ

assigns the
keyword READ
referred to,
it, startlng

f i Le "MARKS" as f i l e number 3. The
i nd i c a t e s that a sequential file is
and that data may be retrieved from

from the beginning of the file.
- 31 -

C-64 COMAL Reference Guide

OPEN (cont1nued)

OPEN FILE 4,"@0:MARKS",WRITE

The f1le "MARKS" 1S slgned on as file number 4. The
Keyword WRITE i nd i c a t e s that a s eque n t r a I file 1S
referred to, and that data may be stored i n it,
s t a r t i nq from the beginning of the file. The "@O:"
token i nd i c a t e s that i f the t i l e e x r s t s already
then it may be overwr1tten. The same effect may be
obta1ned by using these statements:

DELETE "O:MARKS"
OPEN FILE 4,"MARKS",WRITE

The keyword APPEND ind1cates that a sequent1al f1le
1S referred to, and that data may be stored in i t ,
starting from the end of the e x i s t i nq f i Le , thus
append1ng more data to it.

OPEN FILE 6,"MARKS",APPEND

The file "MARKS" 1S signed on as f i l,e number 6.

OPEN FILE 3,"CLIENTS",RANDOM 250

with this statement the d i r ec t access f i Le
"CLIENTS" is signed on for both reading and
wr1t1ng. The constant 250 follow1ng the keyword
RANDOM 1nd1cates that each record can be up to 250
bytes long. See also CLOSE, READ, WRITE, PRINT, and
INPUT.

OR

is a Boolean operator that denotes d1sjunct1on. See
EXPRESSIONS.

ORO

1S a standard function. ORD (X$) returns the ASCII
value of the first character held by X$.

OTHERWISE

The O'1'HERWISE statement 1S used i n the CASE
structure to IndIcate d default case. See CASE.

- 32 -

C-64 COMAL Reference GU1de

PASS

is a command to pass str 1ngs to the CBM
strings are i n t e r p r e t ed as commands by
operating system (see your d i s k manual
commands). Its syntax is

PASS <str1ng express1on>

d i sk , The
the disk
for disk

PASS "NO:CONNIE'S DISK,Ol"
command to the disk

PEEK

passes a format

is a standard function. PEEK (X)
contents of a memory loca t i on X (X
0-65535) in decimal representation.

POKE

returns the
in the range

is a statement or command to assign values to
specified locations in memory. Its syntax 1S:

POKE <location>,<contents>

where <location> is a
must return a value from
a cnume r i c e xp r e s s i on >
from 0-255 (one byte) •

POKE 650,128

PRINT

<numeric express1on> that
0-65535, and <contents> 1S
that must return a value

makes C64 keys repeat

The PRINT (may be entered
command outputs data to the
printer. Its syntax is

as ;)
data

statement
screen or

or
the

PRINT [<output list>] [<print end>]

where <output llSt> is

<print element> {<print separator>
<print element>}

- 33 -

C-64 COMAL Reference Guide

PRINT (continued)

The <print element> IS an <expression> or the TAB
function, and <print separator> IS eIther a comma
(,) or a s ern i co l on (;). I f a semicolon is used an
extra space IS output between one <prInt element>
and the next; 1 f a comma 1 s used no extra spaces
are output unless otherwise stated in a ZONE
statement (see ZONE). The <print end> IS the same
as <print separator>.

PRINT "THIS IS THE ",3,". TIME"

outputs

THIS IS THE 3. TIME

The same output results from

PRINT "THIS IS THE";3,". TIME"

The next statement:

PRINT "THE
",NAME$(NO)

NAME OF THE ",NO,". PUPIL IS

may output the following

THE NAME OF THE 5. PUPIL IS ROY MANNING

The same output may be produced by

PRL~T "THE NAME OF THE";
PRINT NO,". PUPIL IS";
PRINT NA"1E$(NO)

Note the use of semicolon as <print end> in t.h i s
case. If comma IS used you get

PRINT "THE NAME Of THl.: It,
PRINT NO,". PUPIL IS ..
PRINT NAME$(NO)

- 34 -

C-64 COMAL Reference Guide

PRINT FILE

is used to store data on d i s k or tape. Its syntax
is

PRINT FILE <file no.>[,<rec. no.>]: <pont list>
[<print end>]

<print Li s t» and cp r i n t end> are as specified for
PRINT, <rec. no.> is a <numeric expression>. A flle
that has been created using PRINT FILE is of type
SEQ and data from It may be retrleved by means of
INPUT FILE.

OPEN FILE 4,"PERSONS",UNIT 1, WRITE
FOR NO:=l TO MAXNO DO

PRINT FILE 4: NAME$(NO)
PRINT FILE 4: ADDR$(NO)
PRINT FILE 4: PAYCD(NO)

END FOR NO
CLOSE ..

The program stores data sequentially on a cassette
1 n the file signed on as number 4. The d a ta thus
sto~ed may be retrieved by means of the followlng:

OPEN FILE 6,"PERSONS",UNIT 1, READ
FOR J:=l TO MAX DO

INPUT FILE 6: NAME$(J)
INPUT FILE 6: ADDR$(J)
INPUT FILE 6: PAYCD(J)

ENDFOR J
CLOSE

Normally PRINT FILE and INPUT FILE are only used
for sequential data f i Le s on cassette. See also
READ FILE, WRITE FILE, and OPEN FILE.

PRINT USING

The PRINT USING statement is used when formatted
output of numbers IS requlred. The syntax is

PRINT USING <format info>: <using list>
[<print end>]

- 35 -

C-64 COMAL Reference GU1de

PRINT USING (continued)

where <format i n f o > is a <string e xp r e s s i ori > and
<pr i n t end> is as s pec i f i e d for PRINT. The cus i nq
l r s t > is

<numer1C expression> {,<numer1c expression>}

The <format 1nfo> can contain texts and format
f1elds. A format field 1S a str1ng that serves as a
model for the printout of numer1C values. The hash
mark (#) reserves a d i q i t place, the dot (.)
s p ec i f i e s the Lcc a t i on of the dec i ma I point, i f
any, and a m1nus Slgn can be introduced to be
displayed If the value of the number is negative.

PRINT USING" ### ####.##": A,B

If A equals 23.6 and B equals 234.567 the followIng
output is produced:

24 234.57

If A is equal to 1234 and B has a value of 546 the
following output is produced:

*** 546.00

with the three *'s ind1cat1ng that there IS an
overflow in the format.

PRINT USltJG "THE ROOT IS: -B.B": -B/2/A
,.

If B is equal to 15.748 and A is equal to 7.2 the
statement produces the following output:

THE ROOT IS: -1.09

If B equals 234.67 and A 1S equal -23.3 the
statement produces this output:

THE ROOT IS: 5.04

- 36 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS

The PROC statement is used as the f1rst statement ­
or head - of any user-def1ned procedure. The syntax
of a procedure is

PROC <procedure 1dent1f1er> <head append1x>
<procedure body>

ENDPROC [<procedure ident1fier>]

The <head append1x> 1S spec1fied as

[«formal parameter list»] [CLOSED]

The <procedure ident1f1er> 1S an <ldent1fier>, the
<procedure body> 1S made up of COMAL statements.
The <procedure identif1er> follow1ng ENDPROC is
suppl1ed automatically by the system dur1ng prepass
if not entered by the programmer.

The <formal parameter list> 1S spec1fied as

<formal parameter> {,<formal parameter>}

where a <formal parameter> could be either

[REF] <variable identifier> or
REF <variable ident1fier>({,})

If the keyword REF 15 used before a parameter 1t 1S
passed by reference, otherwise it is passed by
value. Arrays of any type can only be passed by
reference.

Example: A
statement

procedure that starts with th1S

PROC TRY(I,J)

called w1th:

TRY(FIRST,LAST)

- 37 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS (continued)

In thIS case the identifiers I and J in the
procedure head are formal parameters, and a value
is a s s i q ned to each of them when the procedure is
called. The IdentIfIers FIRST and LAST referred to
in the calling statement are actual parameters and
must be defIned whenever the statement comes to be
executed. During the procedure call, I is assigned
the value of FIRST (the value of FIRST IS "passed"
to I), and J IS assigned the value of LAST. Since
actual values are passed, I and J are also called
value parameters.

But there is more to it. I and J wIll be treated as
local variables to the procedure TRY, and that
means that they will not be known to the "world"
outsIde the procedure, and therefore they will not
be confused with variables I and J, if any, in
other parts of the program. Also when the procedure
is finished any trace of local variables is
removed.

Actual parameters to be passed by value may be
constants, var iables, or expressions, as long as
they a re ready to "del i ver a val ue" on request,
i.e. whenever a call is invoked. The procedure TRY
might be called by statements like

TRY{1,9) or TR¥{P-l,P+L-l)

PROC BACKWARDS (W$)
LN:=LEN(W$); B$:=fi"
FOR I:=LN TO 1 STEP -1 DO B$:+W${I)

ENDPROC BACKWARDS

The above procedure IS called from these malnllnes:

DIM B$ OF 30
INPUT "ENTER WORD (MAX. 30 CHAR.): ". B$
BACKWARDS (B$)
PRINT B$

- 38 -

C-64 COMAL Reference GU1de

PROCEDURES AND PARAMETERS (cont1nued)

The value of B$ 1S passed to W$ du r i nq the call.
Note that W$ is not declared explicitly. When a
string var1able is used as a formal parameter it is
automatically q i v e n the length necessary to hold
the actual string value passed to it. When the
procedure is finished the part of memory oc cup i ed
by W$ is set free.
A procedure is headed

PROC WRITERECORD(R,N$,REF M())

and 1S called by

WRITERECORD(STUDENTNO,NAME$,MARKS)

In this example Rand N$ are
parameters, and du r i nq the call they
the values of STUDENTNO and NAME$,
The

REF M()

formal value
are ass igned

respectively.

denotes a formal parameter M that is called by
reference. The string "()" following M indicates
that M must refer to a one d i men s i o na I array. If
the call is to be legal, MARKS must be the name of
a one d1mensional array. with a reference parameter
no assignment takes place during the call, but the
formal parameter in question is simply used by the
p--rocedure as a "nickname" for the actual parameter.
So in this case MARKS will actually "suffer" from
anyth1ng WRITERECORD does to M. The following
metaphor might help you to remember what a
reference parameter is: A boy named JEREMY 1S
called JIM at home Le. locally. If JIM is
overfed by his mother the world will see JEREMY
grow fat. The procedure WRITERECORD might also be
headed

PROC WRITERECORD(R,REF N$,REF M())

The only difference from the former heading is that
N$ is now a parameter to be called by reference. N$
w111 only refer to NAME$ and no ass ignment ta1<es
place. This of course speeds up the process and
saves storage.

- 39 -

C-64 COMAL Reference Guide

PROCEDURES AND PARAMETERS (continued)

A procedure with this heading is given

PROC PRINTOUT(REF TABLE(,))

The string "(,)" f o Ll ow i nq the name TABLE Indicate
that TABLE must refer to a two d rme ns i o na I
numerIcal array. By analogy the string "(,,)" would
indicate reference to a three d i men s i ona L array,
and so forth.

PROC BACKWAHDS(REF W$) CLOSED
LN:=LEN(W$)
DIM B$ OF LN
FOR I:=LN TO 1 STEP -1 DO B$:+W$(I)
W$:=B$

ENDPROC BACKWARDS
II
DIM B$ OF 30
INPUT "WORD (MAX. 30 CHAR.): II. B$
BACKWARDS (B$)
PRINT B$

The string B$ declared In the procedure has nOthIng
to do wi t h the s t r i nq B$ declared in the ma i n l i n e
program, since t he procedure is closed. In fact W$
is t ak r nq over the part of "outer B$". See also
FUNC and CLOSED.

RANDOM

IS a keyword used to Indicate that a fIle IS opened
for random access. See OPEN FILE.

READ

The READ statement is used to retrieve data from a
data queue set up in DATA statements. Its syntax is

READ <varIable identIfIer>
{,<variable IdentIfier>}

As data elements are read a data pOInter IS moved
to point to the next element. When the last element
in the queue has been read a built-in Boolean
function EOD (End-Of-Data) returns a value of TRUE.
See STANDARD FUNCTIONS.

- 40 -

C-64 COMAL Reference Guide

READ (continued)

The data pointer may be reset to the beginning of a
queue by means of the RESTORE statement. See
RESTORE.

READ NAME$,TEL

DATA "JOHN NELSON",34

After the READ statement has been executed, NAME$
is assigned the value "JOHN NELSON" and TEL is set
to 34. Note that a string constant must be
a s t r i nq variable, and a nume r i c constant
read by a numerlC variable. The types
variables in the READ statement must
accordance wi th the types of the constants
queue.

NO:=l
REPEAT

READ NAME$(NO) ,TEL(NO)
NO:+1
PRINT NAME$(NO) i
PRINT "HAS TEL.NO."iTEL(NO)

UNTIL EOD

read by
must be
of the
be in
in the

DATA "MAX ANDERSSON",34,"PETER CRAWFORD",45
DATA "ANNI BERSTEIN",12,"LIZA MATZON",56

See also DATA.

READ FILE

The READ FILE statement is used to retr leve data
from sequential and random access files stored by
using the WRITE FILE statement (see WRITE FILE).
Its syntax is

READ FILE <file no , > [,<record no.>]:
<variable list>

where <file no.> and <record no.> are both <numeric
expression>.

- 41 -

C-64 COMAL Reference Guide

READ FILE (continued)

Note that a variable on the <variable Li s t > may
refer to an array, and in that case a whole array
of data can be retrIeved In a single execution of a
READ FILE statement

DIM NAME$(lOO) OF 30
READ FILE 2: NAME$

Values for the whole .array NAME$ IS retrieved from
the sequential fIle signed on as fIle number 2.

READ FILE 4,RECNO: NAME$,OWNER$,DEST$,CARGO'NO

The statement reads from record no. RECNO In the
fIle opened as no. 4. See also OPEN, PRINT, INPUT,
and CLOSE.

REF

A keyword used to mark formal parameters to be
called by reference. See PROCEDURES AND PARAMETERS
and FUNC.

REM

The keyword RE!1 is used to initiate comments. The
interpreter converts It Into the symbol "II". A
comment may be placed on a lIne of its own (like a
REM statement in BASIC) or at the end of any other
statement, and is initiated with the symbol "II".

IF CH$ IN VOWELS$ THEN IllS IT A VOWEL?
COUNT'VOWELS:+1

ELSE I/MUST BE A CONSONANT
COUNT'CONSONANTS:+1

ENDIF IILETTER

RENUM

is a command used to change or adJust lIne numbers.
Its syntax is

RENUM [<lIne number>] [,<Increment>]

- 42 -

list> is
<numeric

numeric

C-64 COMAL Reference Guide

RENUM (continued)

RENUM

causes the llne numbers to become: 10, 20, 30, etc.

RENUM 100

causes the 1 ine numbers to become: 100, 110, 120,
etc.

RENUM 150,5

causes the 1 ine numbers to become: 150, 155, 160,
165, etc.

RENUM ,2

causes the Li ne numbers to become: 10, 12, 14, 16,
etc.

REPEAT

A REPEAT statement i n i t I a t e s a REPEAT loop. The
syntax of the REPEAT loop and the REPEAT and UNTIL
statements is given in thlS diagram

REPEAT
<statement list>

UNTIL <numerlC expression>

The program s e c t i on q i ve n by <statement
executed repetltlvely untll the
express i on> returns a val ue of TRUE (1. e.
non-zero) •

REPEAT
READ NAME$,TEL
FOUND:=(THISNAME$=NAME$)

UNTIL FOUND OR EOD

RESTORE

is a statement that resets the data pointer to the
first element in a data queue. Its syntax is

RESTORE

See also DATA and READ.

- 43 -

C-64 COMAL Reference Guide

RETURN

The RETURN statement IS used to return a value from
a function, or to return from a procedure before
the ENDPROC statement is reached. Its syntax is

RETURN [<numeric expression>]

FUNC MAX(X,Y)
IF X<=Y THEN

RETURN Y
ELSE

RETURN X
ENDIF

ENDFUNC MAX

FUNC GCD(A,B)
IF (A MOD B)=O THEN

RETURN B
ELSE

RETURN GCD(B,A MOD B)
ENDIF

ENDFUNC GCD

Note that
recursIvely.
PARAMETERS.

RND

the
See

function
also FUNC

is
and

calling Itself
PROCEDURES AND

IS a standard functiorr. RND(X,Y), X and Y integers
and X less than Y, returns a random integer in the
range from X to Y. RND (Y) returns a random real
number in the range from 0 to 1. If Y is negative
the same sequence of random numbers IS always
displayed, but if Y IS non-negative a new random
start is implied.

RUN

The RUN command Invokes a prepass of the program in
workspace (unless the program has already been
prepassed and no changes have been made in it) and
then starts execution of It. See also CHAIN. Its
syntax IS

RUN
- 44 -

C-64 COMAL Reference Guide

SAVE

is a command to store programs on d1skette or tape.
Its syntax 1S

SAVE <file name> [<unit no.>]

Programs stored by using SAVE may be retrieved by
LOAD or CHAIN.

SAVE "AUNTIE"

stores the program presently in workspace on a
diskette in unit no. 8.

SAVE "UNCLE",l

stores the program presently in workspace on a tape
in unit no. 1. See also LOAD, CHAIN, LIST, and
ENTER.

SELECT [OUTPUT]

is a command or a statement used to direct printout
to the screen or the printer. Its syntax is

SELECT [OUTPUT] <device>

where <device>
(Data Screen).
screen.

is
The

"LP:" (Line Printer) or "OS:"
default output device is the

PRINT "I AM HERE."
PRINT "WHERE ARE YOU?"
SELECT "LP:"
PRINT "I AM HERE BESIDE YOU."
SELECT "OS:"
PRINT "THANKS, PRINTER."

The two first texts are displayed on the screen,
the third one is sent out on the printer, and the
fourth one appears on the screen.

- 45 -

C-64 COMAL Reference GUIde

SETEXEC

is a command to make the interpreter list the
keyword EXEC when listing a program (see EXEC). Its
syntax is

SETEXEC <sign>

where <sign> is + or -.

SETEXEC+
SETEXEC-

makes COMAL list the keyword EXEC
causes EXEC to be supressed

The default mode is SETEXEC-. If you are In
SETEXEC+ mode the keyword EXEC is inserted
au t oma t i c a Ll y by the system. This means that you
never need to type in EXEC. On the other hand if
you are in SETEXEC- mode you are allowed to type in
the EXEC. The interpreter will then simply ignore
it.

Note. The reason for hav i nq this command
COMAL IS one of c ompa t i b i l i ty. In earl ier
of COMAL the EXEC was compulsory, and some
might still like to have it. See also EXEC.

SETKSG

in C64
version
people

is a command used to suppress the error messages.
Its syntax IS

SETMSG <sIgn>

where <sign> is + or -. Default mode IS SETMSG+.

Error messages are held in a fIle on the diskette
to save main storage. ThIS means that you will have
to wait about 3 seconds to get a message on the
screen. To a traIned programmer this could be
annoying. Therefore the option to sWItch the
messages off is given wi t h SETMSG. If in SETt1SG­
mode a prompt lIke

ERROR 12

is d r s p l ayad with the cursor
estImated location of the error.

- 46 -

placed on the

C-64 COMAL Reference Guide

SGN

is a standard f un c t i o n , SGN (X) returns the s r q n of
X: -1 if X is p o s i r i ve , 0 If X IS equal to zero,
and 1 if X is positive.

SIN

is a standard function. SIN (X) returns the SIne of
X (X In radians).

SIZE

The SIZE command print the size of free memory In
bytes. Its syntax is

SIZE

SQR

is a standard function. SQR (X) returns the square
root of X (X non-negative).

- 47 -

C-64 COMAL Reference Guide

STANDARD FUNCTIONS

ABS(X)
ATN(X)
CHR$(X)

COS (X)
EOD

EOF(X)

ESC

EXP(X)

KEY$

INT(X)

LEN(X$)

LOG (X)

ORO (X$)

PEEK X

RNO(X,Y)

RND(X)

SGN(X)

returns the absolute value of X.
returns the arctangent in radians of X.
returns the character whose ASCII value

is X.
returns the cosine of X (X In radIans).
returns a value of TRUE (numeric 1) if
the last element in the data queue has

been read, otherwise a value of FALSE
(numeric 0) is returned.

returns a value of TRUE (numeric 1) if
the end-of-file mark in a sequentIal
file opened as file number X has been
encountered, otherwise a value of
FALSE (numeric 0) is returned.

returns a value of TRUE (numerIC 1) if
the STOP key is depressed, otherwIse
It returns a value of FALSE
(numer i c 0).

returns the value of e (nat. log. base)
to the power of X (thus beIng the
Inverse of nat. log.)

returns the fIrst ASCII character in the
keyboard buffer. If no key has been
depressed, a CHR$ (0) is returned.

returns the integer part of X, I.e. the
greatest integer less than or equal to
X.

returns the current length, i.e. number
of characters, of the strIng value of
X$.

returns the natural logarIthm of X, X
posItive.

returns the ASCII value of the first
character held by X$.

returns the contents of memory locatIon
X (X In the range 0-65535) in decimal
representation.

returns a random integer in the range
fro~ X to Y, X and Y Integers and X
less than Y.

returns a random real In the ran?e from
o to 1. If X is negatIve the same
sequence is always generated, other­
WIse a random start IS Implied.

returns the sIgn of X: -1 If X IS
positive, 0 if X IS equal to zero, and
1 If X IS posItive.

- 48 -

C-64 COMAL Reference GUlde

STANDARD FUNCTIONS (continued)

SIN(X)
SQR (X)

TAN (X)

STATUS

returns the sine of X (X in radians).
returns the square root of X

(X non-negat1ve) •
returns the tangent of X (X 1n radians).

is a command that makes the system dlsplay the disk
operatlve system status and SWltches off the error
indicator.

STEP

is a keyword that may be used in FOR statements to
indicate an optional counter variable increment.
See FOR.

STOP

is a
syntax

STOP

statement
is

to stop program execution. Its

STRING HANDLING, SUBSTRINGS

A string variable must always be declared. For
example

DIM NAME$ OF 30

declares a string variable NAME$ that may hold up
to 30 characters. If 3 string array is declared,
the maximum length of the components must Also be
specified. For example

DIM ADDRESS$(100,3) OF 20

declares a two dlmens10nal strlng array, where each
component may hold up to 20 characters.

- 49 -

C-64 COMAL Reference GU1de

STRING HANDLING, SUBSTRINGS (cont1nued)

Formal parameters of
predeclared length. Thus

PROC PACK (N$)

type
in

string have no

the parameter N$ is automatically given the length
necessary to hold the string value passed to 1t.

A sUbstring is specified by giving the pos1tion of
the first and last character in it. If for example
NAME$ has the value: "RICHARD PAWSON", then

NAMES(9:14)

returns the string "PAWSON".

If the string SPACES$ is declared (DIM) to a length
of 60 characters, the ass1gnment

SPACES (1:60) :=""

f1lls SPACES with blanks.

In the string NAME$, the expression NAMES(5) is
equal to NAMES(5:5), i s e , i f the substring is only
one character long, you only have to give the
posIt1on of that character.

Also note that substring as s i qnmen t is allowed in
CBM COMAL. If the following statements are executed

DIM ADDRESS$ OF 80
ADDRESS$(1:80) :=""
ADDRESS$(21:40) :=HOUSE$

the current value of HOUSE$ is stored in ADDRESS$
on po s i t i on s 21-40. If the value of HOUSE$ has a
length of more than 20 characters surplus
characters are lost.

- 50 -

C-64 COMAL Reference Guide

STRING HANDLING, SUBSTRINGS (contInued)

If a substrIng of an array component IS to be
po i n t ed out, the component is f i r s t; Indicated and
after that the substring. If TEL$(23) has a value
of

"HARRY HENDERSON 3456"

then the strIng expressIon

TEL$(23) (21:24)

returns the value "3456".

SYS

is a statement that invokes a subroutine call
(JSR). Its syntax is

SYS <memory location>

where <memory location> is a <numeric expression>
that must return a value in the range 0-65535.

TAB

In a PRINT statement the TAB function may be used
to set the next print positIon. The argument of the
TAB function must be posItive and not greater than
32767. If a value greater than 80 (line length)
results It is t i r s t d i v i d e d by 80, and the
remainder IS used. Non-integer values are truncated
before use. I f the TAB function evaluates to a
posItIon prior to the current one, the line is
shifted before the tabulatIon is effected.

PRINT" MATHEMATICS:",TAB(20),2

produces thIS printout

MATHEMATICS: 2

with "2" printed in column 20.

- 51 -

C-64 COMAL Reference Guide

TAB (continued)

PRINT" MATHEMATICS:",TAB(5),2

produces this printout

MATHEMATICS:
2

The example demonstrates that if the TAB f u nc t i o n
returns a po s i t i on prior to the current one, the
line is shIfted first. See also PRINT.

TAN

is a standard function. TAN (X) returns the tangent
of X (X in radians).

THEN

is a keyword used to terminate an IF statement. See
IF.

TO

is a keyword used in the FOR statement to separate
<initial value> from <fInal value>. See FOR.

TRAP

IS a statement or a command used to enable or
dIsable the functioning~of the STOP key. Its syntax
IS

TRAP ESC <sign>

where <SIgn> is one of the characters + or -.
Default mode is TRAP ESC+.

- 52 -

C-64 COMAL Reference GUide

TRAP (continued)

After the statement or command

TRAP ESC-

has been encountered by the interpreter, depressing
the STOP key will have no effect on program
execution, but the function ESC (see ESC) returns
the value TRUE (numer ic 1). The command or
statement

TRAP ESC+

brings the STOP key back to normal mode of
operation.

TRUE

is a predefined constant with the numeric value 1.
See also FALSE.

UNIT

is a keyword used in OPEN FILE statements when a
certain external device must be indicated. Default
unit is always diSk unit no. 8. See OPEN FILE.

UNTIL

IS a statement used to terminate the block of
statements in a REPEAT-UNTIL loop. See REPEAT.

USING

is a keyword used wi t.h PRINT to q i ve a formatted
output of numerIcal values. See PRINT USING.

WHEN

is a statement used to Ln i t i a t e a block of
statements In the CASE structure. See CASE.

- 53 -

C-64 COMAL Reference GUIde

WHILE

IS the leading statement
structure. The syntax of the
statements that control it is

in the
WHILE

WHILE
loop and

loop
the

WHILE <numeric expression> [DO]
<statement list>

ENDWHILE

The block of statements in the <statement list> is
executed repetitively as long as - i.e. while - the
expression following the WHILE keyword is evaluated
to TRUE. When the expression evaluates to FALSE,
control is transferred to the statement t o Ll ow i nq
the ENDWHILE statement.

If the <statement list> contains only one statement
a short form of the WHILE loop may be used. Its
syntax is

WHILE <numerical expression> DO <statement>

In this case no ENDWHILE statement is needed - nor
allowed - to terminate the loop.

TAKEIN ("NAME")
WHILE NOT OK DO

ERROR ("NAME")
TAKEIN("NAME")

ENDWHILE
~

WHILE X<A(I) DO 1:+1

is functionally equivalent to

WHILE X<A(I) DO
1:+1

ENDWHILE

- 54 -

C-64 COMAL Reference Guide

WRITE FILE

is a statement used to store data in a sequentlal
or random access flle. Its syntax is

WRITE FILE <file no.> [,<record no.>]:
<variable list>

where <file no.> is a <numeric expression> that
must return an integer in the range 2-254 (the
COMAL System uses numbers 1 and 255), and <record
no.> is a <numeric expression> that must return a
positlve integer.

Data stored using the WRITE FILE statement may be
retrleved wlth the READ FILE statement but not wlth
the INPUT FILE statement.

WRITE FILE 2: NAME$,ADDRESS$,PAYCODE

wrltes sequentially the values of the vatiables on
the list to flle number 2.

WRITE FILE 4,NO: NAME$,ADDR$,DEPTNO

writes the values of the variables on the list to
file number 4, in the record given by the value of
NO.

Note. WRITE FILE and READ FILE cannot be used with
fjles stored on cassette.

- 55 -

C-64 COMAL Reference Guide

ZONE

is a system state variable that defines the width
of the print zones. The value of ZONE may be set
with thlS statement

ZONE <zone width>

where <zone width> is a non-negative <numerlcal
expression>. Default value of ZONE is zero.

ZONE 10
PRINT 1,2,3
PRINT "----5----0----5----0----5"

produces the following output:

123
----5----0----5----0----5

ZONE 20
PRINT "PRICE PER POUND:",PRICE

If PRICE has the value 1.5 this printout is
submitted

PRICE PER POUND: 1.5

PRINT ZONE

displays the present value of ZONE.

- 56 -

(,64 COMAL 80 GRAPHICS
BACK

Syntax: BACK <distance>

This statement/command mOves the turtle <distance>
screen units backwards. If the pen is down (see
PENDOWN), a line is drawn u s i nq the present
PENCOLOR. See PENCOLOR.

BACKGROUND

Syntax: BACKGROUND <color>

where <color> returns an integer value from 0 to 15
(see COMMODORE 64 USER'S GUIDE, page 61). The
statement/command sets the background to the color
given by the value of <color>. When in hi-res
graphics the instructIon is not executed, untIl
COMAL has met a CLEAR statement/command. See CLEAR.

BORDER

Syntax: BORDER <color>

Sets the border to the color given by the value of
<color>. See also BACKGROUND.

CLEAR

Syntax: CLEAR

Clears the graphics screen.

DRAWTO

Syntax: DRAWTO <x>,<y>

Draws a line from the present position of the pen
to the position «x>,<y». The present color of the
pen is used.

- 57 -

C-64 COMAL Reference Guide

FILL

Syntax: FILL <x>,<Y>

Fills the closed area c o n t a i nq the po s r t i o n
«x>,<y» with the present color of the pen. See
PENCOLOR. The bound of a closed area IS thus
defIned: A boundary pOInt IS one that has a color
different from that of the background or a pOInt on
the edge of the present frame. See FRAME.

FRAME

Syntax: FRAME <xmin>,<xmax>,<ymin>,<ymax>

Defines the frame within wh i cn the pen is a c t i ve ,
No drawing takes place In points whose coordinates
are outs ide the frame the lower left corner of
which is given by «xmln>,<ymin», and whose upper
right corner is «xmax>,<ymax». However the turtle
is still dIsplayed outside the frame. Default frame
covers the whole graphics screen, i.e. you have

<xmin>::=O <xmax>::=319 <ymln>::=O <ymax>::=199

FULLSCREEN

Syntax: FULLSCREEN

Shows the whole of the graphics screen, i , e. no
text window is displayed on the upper two lines of
the physical screen (unli~e SPLITSCREEN).

HIDETURTLE

Syntax: HIDETURTLE

The turtle is no longer shown on the graphics
screen. This makes some graphICS faster.

HOME

Syntax: HOME

Places the turtle in the position (160,99) head
vertically upward (zero direction).

- 58 -

C-64 COMAL Reference GUlde

LEFT

Syntax: LEFT <angle>

The turtle turns its head <angle> degrees to the
left (counter clockwise).

MOVETO

Syntax: MOVETO <x>,<y>

Moves the turtle wi thout drawi ng from its present
position to the positlon «x>,<y».

PENCOLOR

Syntax: PENCOLOR <color>

Sets the color used for drawing, i.e. the color of
the pen. ThlS is also the color of the cursor and
turtle, and the color in which text is displayed on
the text screen. Normally <color> i s an r n t e q e r
from 0 to 15. See BACKGROUND.

PENDOWN

Syntax: PENDOWN

The turtle's pen is now active, i v e , the turtle
leaves a trace as long as its movements are inside
the present frame and the pen's color is different
from that of the background. See PENCOLOR.

PENUP

Syntax: PENUP

The turtle's pen is lifted, i v e , it no longer
leaves a trace on the screen. However note that
DRAWTO and PLOT work even if PENUP is set.

PLOT

Syntax: PLOT <x>,<y>

Displays the position «x>,<y»
color of the pen.

- 59 -

in the present

C-64 COMAL Reference Guide

PLOTTEXT

Syntax: PLOTTEXT <x>,<y>,<text>

The text given by the string expression <text> is
displayed on the graphics screen such that the
lower left corner of the first character of <text>
is placed at the position «x),<y». However note
that the applied coordinates are set to the
greatest multiple of 8 less than or equal to the
given values. Texts can only be displayed in hi-res
graphics mode.

RIGHT

Syntax: RIGHT <angle>

makes the turtle turn its head <angle> degrees to
the right (clockwise).

SETGRAPHIC

Syntax: SETGRAPHIC <type>

Initializes the graphics
graphics screen visible.
two graphic modes:

systems and makes the
On COMMODORE 64 you have

High resolution graphics: <type>=O
Multicolor graphics: <type>=l

In high resolution graphics you have 320*200 pixels
at your disposal. The whole of the graphics screen
is split up in 40"25 blocks, each of which holds
8*8 pixels. Each i nd i v i du a I block only allows two
colors to be applied at a time. One of these colors
is the background. The other color is defined as
soon as a pixel in the block is set. If on a later
occasion a pixel inside a block 1S set with a
different color the whole block changes to the
latter one.

In mult1color graphics the resolution in the
horizontal direction is only half the one in
hi-res, i v e , you now have 160*200 pixels at your
disposal. Again the screen is divided in 40*25
blocks, but each of them only holds 8*4 pixels.
However each block can hold up to four different
colors one of which is the background.

- 60 -

C-64 COMAL Reference Guide

SETHEADING

Syntax: SETHEADING <direction>

The turtle turns Its head to pOInt at <direction>
degrees c l oc kw i s e from zero (which is vertically
upward) •

SETTEXT

Syntax: SETTEXT

Hides the graphics screen and shows the text
screen. However the graphics instructIons stIll
work on the hidden graphics screen. The result of
graphics activities can easily be revealed by using
the SETGRAPHIC command.

SHOWTURTLE

Syntax: SHOWTURTLE

Makes the turtle v i s i b Le on the q r aph i c s screen.
When COMAL is started a default SHOWTURTLE is
executed, i v e , from start the turtle is shown on
the graphIcs screen. See HIDETURTLE.

SPLITSCREEN

Syntax: SPLITSCREEN

A window into the text screen IS dIsplayed on the
top two lines of the phy s i c a I screen. See
FULLSCREEN.

TURTLESIZE

Syntax: TURTLESIZE <sIze>

Defines the size of the turtle. The value of <size>
is an integer from 0 to 10. Default value of <sIze>
is 10.

- 61 -

SMITES

DATACOLLISION

Syntax: DATACOLLISION«sprite>,<read»

This function returns a value of TRUE, if sprite
no. <sprite> c o Ll r d e s with graphics information,
i.e. a non-background sprite pixel is also a
non-background graphics pixel. The collision
detection is au t oma t i c a Ll y done by the v i d e o chip
each time a sprite is drawn. If <read> has a value
of TRUE (1), a c o Ll i a i o n is registered as soon as
it takes place, l.e. the function returns a value
of TRUE at that moment. If <read> is set to FALSE
(0), it is registered when a colllslon has happened
already. In thlS case the functlon returns the
value TRUE, if sp r i t e no. <sprite> has collided
with some other graphics information earlier.

DEFINE

Syntax: DEFINE <lmage no.>,<definition>

where <image no , > is an integer from 0-47, and
<definition> is a string expression that returns
the 64 characters which defines the image. You can
have a pool of 48 images (47 if a turtle is used)
and each of these can be used as a model for any
one of the 8 (7 if a turtle is used) sprites that
way perform on the screen at the same tlme. Not all
of the 48 images need to be defined, and later on
more than one sprite can be modelled after the same
image.

HIDESPRITE

Syntax: HIDESPRITE <sprite>

Sprite no. <sprite> is no longer displayed on the
screen.

- 62 -

C-64 COMAL Reference Guide

IDENTIFY

Syntax: IDENTIFY <sprlte>,<image no.>

Sp r i t e no. c sp r i t a > is mod e Ll ed after <i maqe no , >
Imagine you have a cupboard fIlled with drawIngs of
d i f f e r e t shapes numbered 0-47. Each time the
IDENTIFY statement is used, a drawing IS taken out
of the cupboard and we have a shape after that
d r aw i nq act on the screen as sprite no. <ap r i t.e>,
The <spr i te> must be an integer from 0 to 7. If
used the turtle acts as number 7.

PRIORITY

Syntax: PRIORITY <sprlte>,<p>

If <p> is TRUE, the p i xe l s in sprite no. <sprite>
WIll have lower prIority than the graphIcs pIxels,
i.e. the sprite WIll appear underneath the
graphics. If <p> IS FALSE, the sprite will have
hIgher priorIty than the graphIcs. The prIorIty
among the sprites is fixed: A sprite wi t h a lower
number has a hIgher prIorIty. Thus sprite no. 0 has
a hIgher prIorIty than sprIte no. 1 etc.

SPRITEBACK

Syntax: SPRITEBACK <color-l>,<color-2>

where <color-I> and <color-2> are Integers from 0
to 15. The statement defInes the two COlTllTlon colors
to be used with multicolor sprites.

SPRITECOLLISION

Syntax: SPRITECOLLISION«sprite>,<read»

A function tnat returns the value TRUE, if and only
if sprite no. <sprite> has c o Ll i d ed wi t n another
sprite. About <read> see DATACOLLISION.

- 63 -

C-64 COMAL Reference Guide

SPRITECOLOR

Syntax: SPRITECOLOR <sprite>,<color>

Defines the color of sprIte no. <sprite> to b~come

<color> (0-15).

SPRITEPOS

Syntax: SPRITEPOS <sprIte>,<x>,<y>

positions sprite no. c s p r r t e > such that the upper
left corner appears at the position «x>,<y», <x>
in 0-319, <y> in 0-199.

SPRITESIZE

Syntax: SPRITESIZE <sprite>,<x>,<y>

If <x> is TRUE (1), sprite no. <sprite> is expanded
to double width, if <v> is TRUE, the sprite is
expanded to double height. The resolution is not
affected by the expansions.

- 64 -

INDEX

COMAL Keywords

ABS
AND
APPEND
ATN
AUTO

BASIC

1
1
1
2
2

3

CASE, WHEN, OTHERWISE,
CAT
CHAIN
CHR$
CLOSE
CLOSED
CON
COS

ENDCASE 3
4
5
5
5
6
7
7

DATA
DEL
DELETE
DIM
DIV
DO

7
7
8
9

10
10

EDIT
ELIF
ELSE
END
ENDCASE ••••••
ENDFOR
ENDFUNC
ENDIF
ENDPROC
ENDWHILE
ENTER
EOD
EOF •••••••
ESC
EXEC
EXP

65

10
10
10
11
11
11
11
11
11
11
11
12
12
13
13
13

FALSE
FILE
FOR
FUNC,

GOTO

C-64 COMAL Reference Guide

ENDFUNC, RETURN

...

16
16
17
19

21

IDENTIFIERS •••••••••••
IF, ELSE, ELIF, ENDIF
IN ..
INPUT
INPUT FILE
I NT ..

21
22
24
24
26
27

KEY$.. 27

LABELS
LEN
LINEFEED
LIST
LOAD
LOG

27
28
28
28
29
30

MOD

NEW
NEXT
NOT
NULL

.. 30

30
30
30
31

..OF
OPEN
OR
ORD
OTHERWISE

PASS
PEEK
POKE
PRINT
PRINT FILE
PRINT USING

66

31
31
32
32
32

33
33
33
33
35
35

C-64 COMAL Reference Guide

RANDOM
READ
READ FILE
REF
REM
RENUM
REPEAT
RESTORE
RETURN
RND
RUN

40
40
41
42
42
42
43
43
44
44
44

SAVE •••••••••
SELECT[OUTPUT)
SETEXEC
SETMSG
SGN
SIN
SIZE
SQR
STATUS
STEP
STOP
STRING HANDLING,
SYS

TAB
TAN
THEN
TO
TRAP
TRUE

UNIT
UNTIL
USING

SUBSTRINGS

45
45
46
46
47
47
47
47
49
49
49
49
51

51
52
52
52
52
53

53
53
53

WHEN
WHILE
WRITE

ZONE

FILE

..

53
54
55

55

67

C-64 COMAL Reference GUlde

BACK ••••••
BACKGROUND
BORDER
CLEAR
DRAWTO
FILL
FRAME
FULLSCREEN

HIDETURTLE
HOME ••••••

LEFT

MOVETO

PENCOLOR
PENDOWN
PENUP
PLOT
PLOTTEXT

RIGHT

SETGRAPHIC
SETHEADING
SETTEXT
SHOWTURTLE
SPLITSCREEN

TURTLESIZE

Sprites

DATACOLLISION •••••••
DEFINE
HIDESPRITE
IDElJT IFY
PRIORITY
SPRITEBACK
SPRITECOLLISION
SPRITECOLOR
SPRITEPOS
SPRITESIZE

68

57
57
57
57
57
58
58
58

58
58

59

59

59
59
59
59
60

60

60
61
61
61
61

61

62
62
62
63
63
63
63
64
64
64

Easier than BASIC, more powerful than basic, COMAL (COMmon
Algorithmic Language) wasdevelopedfor learningprogramming.

COMALgivesmanyerror messages as linesareentered - no more
waiting untila program is run beforefinding a type mismatch or syntax
error.

COMALhasstructures that makewriting legible programseasy
(multiple line IFstatements; IF, THEN, ELSEIF, ELSE; PROCEDURES
and FUNCTIONS that can be invoked just by their names; REPEAT,
UNTIL; WHILE, ENDWHILE, etc.) while retaining mostof the
commandsof BASIC

Variables in COMAL can haveup to 78characters so youcan easily
seewhatthe program IS dOing: VOLUME'REGISTER:=54296 IS easier
to understand than V = 54296.

COMAL0.14 for the Commodore64 hasthe graphicscommandsthat
Commodore forgot; defining and usmqspritesis easy; and it even has
theTURTLE graphics that LOGO is famousfor.

IsCOMALthe language thatwill replace BASIC? Try it and find out!

Published by:

Toronto PET UsersGroup
1912A Avenue Road, Suite 1

Toronto, Ontario, Canada
M5M 4A1

ISBN 0-920607-00-4

